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Abstract
Steel, a critical material in construction, automobile, and railroad manufacturing industries, often presents defects that can 
lead to equipment failure, significant safety risks, and costly downtime. This research aims to evaluate the performance of 
state-of-the-art object detection models in detecting defects on steel surfaces, a critical task in industries such as railroad 
and automobile manufacturing. The study addresses the challenges of limited defect data and lengthy model training times. 
Five existing state-of-the-art object detection models (faster R-CNN, deformable DETR, double head R-CNN, Retinanet, and 
deformable convolutional network) were benchmarked on the Northeastern University (NEU) steel dataset. The selection of 
models covers a broad spectrum of methodologies, including two-stage detectors, single-stage detectors, transformers, and 
a model incorporating deformable convolutions. The deformable convolutional network achieved the highest accuracy of 
77.28% on the NEU dataset following a fivefold cross-validation method. Other models also demonstrated notable perfor-
mance, with accuracies within the 70–75% range. Certain models exhibited particular strengths in detecting specific defects, 
indicating potential areas for future research and model improvement. The findings provide a comprehensive foundation 
for future research in steel defect detection and have significant implications for practical applications. The research could 
improve quality control processes in the steel industry by automating the defect detection task, leading to safer and more 
reliable steel products and protecting workers by removing the human factor from hazardous environments.
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Introduction

Steel is crucial to our way of life and essential to a sus-
tainable circular economy, since it is a permanent material 
that can be recycled indefinitely without losing its qual-
ity. Global crude steel output in 2019 was 1868.8 million 
tonnes, according to the World Steel Association [1], mak-
ing it incredibly significant and lucrative in today’s build-
ing, industrial, and construction industries and are utilized 
in many sectors, including automobile production, aviation 
components, tools, agricultural, mining, catering, shipping, 
medical, electronic parts, and construction, to mention a few. 
One of the most essential factors for determining the quality 
of hot-rolled steel sheets is their appearance. If the product 
does not meet the standards and criteria of clients due to 
defects, the end user will not accept it. There is a consider-
able motivation to detect surface defects early in the fabrica-
tion process, because undesirable or irreparable faults may 
result in the rejection of a completed fabrication product [2]. 
Detecting surface defects has become increasingly important 
as customer requirements have become more stringent [3].
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The typical surface defects of steel, as depicted in Fig. 1 
from the Northeastern University (NEU) steel dataset, 
includes crazing, inclusion, patches, pitted surface, rolled-in 
scale, and scratches [4]. The intraclass defects in the data-
set result in considerable differences in appearance, such 
as the category scratches exhibiting horizontal, vertical, or 
diagonal scratch defects. Meanwhile, interclass defects such 
as rolled-in scale, crazing, and pitted surfaces have similar 
properties. Due to the lighting and material variances in the 
greyscale images, defects having interclass similarities are 
incredibly challenging to detect. The evolution in computer 
vision and image processing techniques has created novel 
ways, which include object detection with SWIFT cluster-
ing [5], SURF modelling [6], among others, to detect the 
defects [7]. However, they take a comparatively longer time 
and lower accuracy than modern deep learning techniques 
[8]. A wide range of cutting-edge deep learning models that 
can detect objects and defects in images with high accuracy 
has been researched and implemented in the industry [9]. 
The object detection algorithm consists of single- and two-
stage detectors. The two-stage detector includes a convolu-
tional neural network (CNN) that extracts image features for 
classification, region proposal networks, and bounding box 
regression at the end. In contrast, the single-stage detector 
does not include region proposal networks.

An efficient neural network model that can detect defects 
accurately must be created to detect the defects on the steel 
surfaces. A massive quantity of labelled data must be trained 
using a powerful graphical processing unit (GPU) to obtain 

optimum accuracy in detecting defects on steel surfaces. The 
introduction of transfer learning has resulted in a signifi-
cant shift in the learning processes of deep neural networks. 
Since the dataset used in this study is relatively small, with 
a limited number of images in each class, transfer learning 
is integrated before training each model. While previous 
studies have made significant strides in steel surface defect 
detection, they have primarily focused on defect classifica-
tion rather than localization and detection. The benchmark 
paper by the authors of [10] introduced a novel Xsteel sur-
face defect dataset (X-SDD) and analyzed the performance 
of various models. However, their work was limited to 
defect classification and did not extend to the localization 
and detection of these defects. Similarly, the authors of [11] 
used transfer learning to analyse state-of-the-art classifiers 
on the NEU and Severstal datasets. However, their work was 
also confined to classifying the defects.

Therefore, there is a clear gap in the literature for research 
that not only classifies steel surface defects, but also local-
izes and detects them. This is a crucial area of research, as 
the ability to accurately localize and detect defects can sig-
nificantly improve the quality control processes in the steel 
industry. This research investigates the existing algorithms 
for surface steel detection on the Northeastern University 
(NEU) steel database [12], which includes faster R-CNN 
[13], deformable DETR [14], double head R-CNN (DH 
R-CNN) [15], Retinanet [16] and deformable convolution 
network (DCN) [17]. The NEU steel database is a compre-
hensive and challenging database that contains images of 

Fig. 1  Sample images from 
across all classes from the 
NEU steel dataset. a Craz-
ing. b Inclusion. c Patches. d 
Rolled-in scale. e Pitted surface. 
f Scratches
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hot-rolled steel strips with multiple defects, some of which 
are invisible to the naked eye. Experimentation revealed that 
the DCN model works best, with 77.28% average precision, 
followed by the DH R-CNN. The benchmarking work will 
offer an unbiased view of the existing deep learning mod-
els applied to the NEU steel dataset serving as a basis for 
future research. This effort will serve as a tool for evaluating 
and comparing performance to create continuous improve-
ment to the future models leading to a more efficient model. 
”Related work”, “Background” and “Methodology” consists 
of the related work, dataset and methodology, respectively, 
followed by “Results and discussions”, “Analysis” and 
“Conclusion”, consisting of results, analysis and conclusion.

Related Work

The literature of vision-based approaches on defect detection 
is divided into two categories: traditional computer vision 
and deep learning approaches.

Traditional Techniques

The traditional image processing approach detects and seg-
ments defects using rudimentary properties indicated by 
local abnormalities. Jonker et al. [18] proposed a pattern 
recognition classifier based on support vector classifiers to 
distinguish the metallic defects. Jia et al. [19] proposed a 
method that thoroughly investigated the visual defect fea-
tures and created a support vector machine learning algo-
rithm that automatically learns complex decision limits in 
the presence of data noise. Pernkopf et al. [20] proposed a 
surface defect detection on steel blocks using the Bayesian 
network classifiers. Wu et al. [21] proposed an approach 
that can eliminate the problem of false alarms by scales and 
water markings using an undecimated wavelet transform and 
mathematical morphology in the surface defect detection 
of hot-rolled steel plates. Yazdchi et al. [22] eliminated the 
stationary background and improved the image detection by 
employing the temporal Fourier analysis. Borselli et al. [23] 
used the fuzzy inference method to figure out the flaws to be 
solved in a classification challenge. Li et al. [24] proposed 
a plan named regular bands which requires knowledge of 
the period length of a repeating pattern to detect defects 
with X-rays. Liu et al. [25] devised a defect identification 
technique based on the Haar–Weibull variance, created to 
describe stochastic texture distributions.

While these traditional techniques have achieved detec-
tion accuracies in the range of 90%, they have several 
limitations [26]. They often rely heavily on manual feature 
engineering, which requires domain knowledge and can be 
time-consuming. They might perform well on specific tasks 
or datasets they were designed for, but they may need to 

generalize better to new jobs or different data types [27]. 
Traditional methods might also be sensitive to variations in 
lighting, orientation, scale, etc. [28]. Deep learning methods 
have significantly outperformed conventional methods for 
complex tasks involving a high-level understanding of the 
scene, such as object detection, semantic segmentation, or 
image captioning. Furthermore, the performance of deep 
learning models typically improves with more data, making 
them a better choice in the era of big data [29]. Traditional 
techniques might benefit less from large datasets. Lastly, 
deep learning allows for end-to-end learning, where a model 
learns to map raw input data to output predictions in a single 
step. This can lead to better performance by enabling the 
model to learn complex patterns in the data. In contrast, 
traditional methods often involve multiple steps (e.g., feature 
extraction, feature selection, classification), which might not 
be optimally combined. Despite these limitations, traditional 
computer vision techniques have significantly progressed in 
defect detection. Still, the era of deep learning has surpassed 
these traditional techniques exponentially in a relatively 
shorter time and with higher accuracy [29].

Deep Learning Techniques

Since the early 2010, research into applying deep learning to 
tackle computer vision challenges has accelerated. Examples 
include object identification, object tracking, picture classifi-
cation, semantic segmentation, feature extraction, and other 
vision challenges. Object detection is the critical interest in 
defect detection since defects are viewed as objects and must 
be located and categorized [30]. Deep learning has reduced 
the need for human interaction in categorization, making it 
more accessible, efficient, and cost-effective, with the CNNs 
supplementing the deep learning technique. CNNs are suit-
able for object classification, localization, and detection. 
CNNs, however need a massive amount of training data, 
which might be challenging due to ethical and social causes. 
Artificial neural networks have been frequently employed for 
defect identification using CNN because they have consist-
ently demonstrated high performance in processing images 
to get the desired output [31].

He et al. [32] devised a new deep learning-based defect 
detection system with realistic commercial applicability by 
fusing multiple hierarchical features that can determine the 
class along with the detailed location of the defect. Lv et al. 
[33] contributed a new dataset GC10-DET and benchmarked 
state-of-the-art deep learning models including (single-
stage detector) SSD, faster R-CNN, and YOLO (You Only 
Look Once) algorithms on the NEU-DET and GC10-DET 
dataset along with proposing a novel method to address the 
accuracy requirements for metallic defect detection. Cheng 
et al. [34] proposed an improvised single-stage detector 
called the DEA_retinanet having variable channel attention 
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and remarkable feature fusion. Tang et al. [35] proposed a 
method for detecting surface defects on steel strips based 
on an attention mechanism and multi-scale max pooling. To 
compensate for the information loss caused by single max 
pooling, the study suggested an attention mechanism and a 
multi-scale max-pooling (MSMP) approach. Li et al. [36] 
proposed an improved YOLO_v5 and an optimized Incep-
tion Resnet_V2 model in a Two-Stage Industrial Defect 
Detection Framework to address the problem of complicated 
morphology, tiny size, and other comparable characteris-
tics. Tian et al. [4] proposed DCC-CenterNet which locates 
centre points using a keypoint estimation technique using a 
centeredness function improving the overall accuracy.

Much time and research are devoted to detecting defects 
in steel surfaces with the help of modern and innovative 
deep learning algorithms. The deep learning models have 
a superior advantage over the traditional vision-based 
approaches as they attain a higher accuracy within a short 
training period. Numerous research papers published on 
steel defect detection claim to localize and detect defects, 
but many focus on classification [37–39].

Background

The background section discusses the Northeastern Univer-
sity (NEU) dataset, its composition, and the addition of a 
‘background’ class for improved model performance. An 
outline of cross-validation and model training methodology, 
including dataset division, learning rate selection, and epoch 
counts for each model is then explained.

A crucial part of our methodology is the tuning of hyper-
parameters. Hyperparameters are parameters whose values 
are set before the learning process begins and can signifi-
cantly influence the performance of a model. Our study 
used a consistent set of hyperparameters across all models 
to provide a fair and consistent comparison ground. How-
ever, we acknowledge that this approach might not bring out 
the best performance of each model. Therefore, we discuss 
our choice of hyperparameters and the potential impact of 
hyperparameter tuning on model performance. Therefore, 
we discuss our choice of hyperparameters and the potential 
impact of hyperparameter tuning on model performance in 
the ‘Cross-Validation and Model Training Tuning’ section 
of this paper.

An overview of the key concepts behind the models used 
in this study, namely faster R-CNN, DH R-CNN, RetinaNet, 
DETR, and DCN, is provided, along with a discussion on 
their relevance in deep learning. Lastly, we touch upon the 
concept and benefits of transfer learning and its application 
in our study. This section offers the necessary context to 
understand our research approach and findings.

Dataset

The Northeastern University (NEU) surface defect database 
record [12] contains 1800 greyscale images divided into six 
classes with 300 samples each, as displayed in Table 1. The 
six classes of hot-rolled steel strip surface defects, compris-
ing crazing (Cr), inclusion (In), patches (Pa), pitted surface 
(PS), rolled-in scale (RS), and scratches (Sc), are illustrated 
in Fig. 1 [40].

In addition to these six classes, we have introduced a 
’background’ class. This class represents areas in an image 
that do not contain any of the object classes the model has 
been trained to detect. Including a background class is cru-
cial for the model to classify and avoid false positives cor-
rectly. The background class serves as a category for any-
thing the model does not recognize as an object of interest. 
This strategy helps reduce the number of false positives, 
thereby improving the model’s overall accuracy [41].

All the images in the dataset have a resolution of 200 × 
200 pixels. The defect crazing, pitted surface, and rolled-
in scale have interclass similarities making their detection 
strenuous. Due to the intraclass similarities like the horizon-
tal, slanted, and vertical patterns, defects such as scratches 
are quite challenging to detect. The greyscale dataset can 
result in faulty detection of intraclass defects due to the light-
ing conditions. The intraclass as well as the interclass defects 
are the significant challenges in the NEU steel dataset [40]. 
Intraclass defects are variations or differences within the 
same type of defect, while interclass defects occur between 
different types of defects.

Cross‑Validation and Model Training

The dataset was then divided into fivefold for cross-valida-
tion. Cross-validation is a statistical method used to estimate 
the skill of machine learning models. It involves partitioning 
the dataset into subsets, training the model on some subsets, 
and testing the model on the remaining subsets. This process 
is repeated multiple times, and the results are averaged to 
provide a more robust estimate of model performance [42].

Table 1  Number of images in 
each class of the NEU dataset

Defect Num-
ber of 
images

Crazing 300
Inclusion 300
Patches 300
Pitted surface 300
Rolled-in scale 300
Scratches 300
Total 1800
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The entire dataset was tested to generate the mean average 
precision (mAP) for each of the models. Faster R-CNN, DH 
R-CNN, Retinanet, and DCN models were put through the 
training loop of 24 epochs, whereas the deformable DETR 
model had to run 50 epochs for the data to converge.

The learning rate, a tuning parameter in an optimiza-
tion algorithm that determines the step size at each itera-
tion while moving towards a minimum of a loss function, 
was carefully adjusted during training [43]. The learning 
rate of 0.0025 was chosen for all models to ensure a fair 
comparison. This value is a reasonable choice because it is 
small enough to prevent the models from overshooting the 
optimal solution, but large enough to ensure that the models 
converge in a reasonable amount of time.

Models and Their Key Concepts

Faster R-CNN is the oldest model used in this study and 
many new models have been developed based on it. It 
remains the state-of-the-art two-stage used in a variety of 
applications. Retinanet is the only single-stage state-of-the-
art detector compared in this study. Having at par accuracy 
with two-stage detectors and concise training and inference 
time, Retinanet is used in diverse applications. DH R-CNN 
is a model that challenges the conventional two-stage mod-
els by exchanging its heads for classification and localiza-
tion tasks and gives interesting results on the steel dataset. 
Deformable DETR is a latest detector and is a faster version 
of DETR [44] which uses transformers for object detection. 
All the above models are the most used in the field of deep 
learning, forming a benchmark for the NEU steel dataset.

Transfer Learning

A large amount of data along with a considerably large train-
ing time using a strong graphical processing unit (GPU) is 
needed to achieve optimal output accuracy in classification 
and detection tasks after training a neural network. The 
learning mechanisms in deep neural networks have changed 
exponentially with the introduction of transfer learning. A 
pre-trained model is a deep learning model trained on a large 
benchmark dataset like the ImageNet and it excels in extract-
ing image characteristics from a new dataset [45]. Transfer 
learning aids in the training of new data using previously 
learned data. It also aids in efficiently avoiding data over-
fitting [46]. For all the experiments, fivefold cross-validation 
was used to validate the benchmark models. The training 
loss and accuracy, validation loss and accuracy, and training 
duration were all collected with identical model parameters. 
The resulting average data was tallied, and graphs for visual 
representation were created.

Methodology

In this research, we adopted a systematic approach to ensure 
the accuracy and reliability of our results. Our methodology 
involved several crucial steps, each designed to address spe-
cific aspects of the research question. We began by sourcing 
our dataset from the NEU website, which provided a diverse 
range of images for our analysis. Recognizing the potential 
issues that could arise from poor image quality, imbalanced 
distribution, and mislabelling, we undertook a meticulous 
examination of the dataset. We manually verified the ground 
truth annotations on the images, ensuring that our dataset was 
robust and reliable. This step was critical as a dataset health 
check is a prerequisite for training a defect detection model. 
Following the initial preparation, we divided the dataset into 
fivefold for cross-validation. This process was designed to 
provide a comprehensive assessment of our models’ perfor-
mance across different subsets of the data. We then tested the 
entire dataset to generate the mean average precision (mAP) 
for each of the models. Our study employed several models, 
including faster R-CNN, DH R-CNN, Retinanet, and DCN. 
These models underwent a training loop of 24 epochs. How-
ever, the deformable DETR model required 50 epochs for the 
data to converge. In all our models, we used Resnet-50 as the 
backbone. This decision was based on Resnet-50’s proven per-
formance in various tasks. The subsequent sections provide a 
more detailed discussion of the backbone and the models used 
in this research.

Backbone

In our study, we have chosen to use ResNet-50 as the back-
bone architecture. This choice is motivated by several factors. 
ResNet-50, a convolutional neural network with skip connec-
tions and 11 million parameters, has been widely adopted in 
the field of computer vision due to its deep, yet computation-
ally efficient architecture. This allows it to learn a rich hierar-
chy of features from input images, making it a robust choice 
for our application [47]. Furthermore, ResNet-50 has demon-
strated superior performance in various tasks, including image 
classification, object detection, and semantic segmentation. Its 
innovative use of residual connections effectively mitigates the 
vanishing gradient problem, enabling it to learn effectively 
from large-scale datasets. Lastly, our choice of ResNet-50 
aligns with established practices in the field, facilitating com-
parisons with other studies and promoting the reproducibility 
of our work [48].

Resnet‑50

Residual networks (Resnet-50) are extremely deep convolu-
tional neural networks possessing skip connections with 11 
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million parameters. By linking each block with a skip con-
nection, the vanishing gradient problem is addressed. The 
skip connection skips over several network levels. The two 
3 × 3 convolutions are used in each block to get the desired 
output utilizing batch normalization and rectified linear unit 
(ReLU) activation [49]. The architecture of Resnet-50 is dis-
played in Fig. 2.

Defect Detection Models

In this subsection, we will introduce and discuss five deep 
learning models that have been utilized in our study. Each 
of these models plays a crucial role in addressing specific 
aspects of our research problem. We will provide a concise 
overview of the model

Faster R‑CNN

The region-based convolutional neural network (R-CNN) 
[13] is a popular two-stage neural network for object recog-
nition. This network comprises three subsidiary networks: 
the feature network, the region proposal network (RPN), 
and the detection network [51]. Faster R-CNN replaces 
the selective search approach with an RPN enhancing the 
object detection accuracy and speed. The model thus has 
quite a good advantage over other models to detect smaller 
objects. The structure of faster R-CNN incorporates feature 
extraction, region proposal, bounding-box regression, and 
classification. The faster R-CNN architecture combines fast 
R-CNN and the RPN which replaces the selective search 
method increasing the speed and accuracy of detection by 
sharing the feature map extracted by the convolutional net-
work [30]. With Resnet-50 as the backbone, the pre-trained 
faster R-CNN uses a feature pyramid network that extracts 
single-scaled images as inputs and returns proportionately 
scaled feature maps at several layers in a completely con-
volutional way. The batch size chosen is two images per 
GPU and the loss function used is the cross-entropy loss. 
The model incorporates a threshold value of 0.5 for non-
maximum suppression (NMS). The architecture of the faster 
R-CNN model is displayed in Fig. 3.

Deformable Detection Transformer (DETR)

Carion et al. [52] proposed DETR, giving a new trajectory 
to the field of computer vision in 2020. An updated version 
of the DETR was released in 2021 by Zhu et al. [14] called 
the deformable DETR. It required ten times fewer epochs to 
train by giving comparatively better accuracies on smaller 
objects compared to the preceding models. Deformable 
DETR’s attention modules only pay attention to a few essen-
tial sample points surrounding a reference point [53]. To 
sample local pixels rather than all pixels, deformable DETR 
replaces the multi-head self-attention layer with a deform-
able attention layer along with a cross-section module that 
integrates the multi-scale feature representation [54]. The 
backbone used is Resnet-50 with an encoder and decoder 
having six layers each. The type of loss function used is the 
Focal loss which allows practical training on all the samples 
in the dataset without simple negatives overpowering the 
loss function. The model includes a threshold value of 0.5 
for Non-maximum Suppression (NMS). The optimizer used 
in the transformer model is ADAMW [55]. The architecture 
of the deformable DETR model is displayed in Fig. 4.

Double Head R‑CNN

The double-head R-CNN (DH R-CNN) [56] was proposed 
as the model separates the sibling head of the R-CNN net-
work into two distinct branches for classification and locali-
zation. DH R-CNN investigates the best architectures for 
classification and localization using a contrasting approach 
in comparison to the conventional R-CNN. Wu et al. [15] 
recognized that for the classification challenge, the fully 
connected head is more suitable whereas for the localiza-
tion or bounding box regression task is suitable. The batch 
size of two images per GPU was chosen, and the loss func-
tion utilized was the cross-entropy loss. The model has a 

Fig. 2  Architecture of Resnet-50 [50]

Fig. 3  Architecture of faster R-CNN

Fig. 4  Architecture of deformable DETR
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non-maximum suppression (NMS) threshold of 0.5. The 
architecture of the deformable DETR model is displayed 
in Fig. 5.

Retinanet

Retinanet [34] is a single-stage detector made up of a 
Resnet-50 as the backbone network and two task-specific 
subnetworks that establish the focal loss in the training pro-
cess and play an essential role in promoting object detection 
research in several aspects. Equivalent to the speed of previ-
ous single-stage detectors, the Retinanet proposed by Lin 
et al. [16] surpasses the accuracy of the two-stage detectors 
at a faster rate. The backbone, an off-the-shelf convolutional 
network, oversees constructing a convolutional feature map 
over an entire input picture. On the output of the backbone, 
the first subnetwork conducts convolutional object classifi-
cation; the second subnetwork does convolutional bounding 
box regression. The two subnetworks have a straightforward 
architecture. The loss used is focal loss with Resnet-50 as 
the backbone. The architecture of the Retinanet model is 
displayed in Fig. 6.

Deformable Convolution Network (DCN)

DCNs [17] are used to learn more information and fea-
tures about the geometric transformation that regular con-
volutional neural networks find challenging to understand. 
Deformable convolution utilizes a standard fixed sample grid 
and incorporates 2D offsets into the normal convolution pro-
cedure. To acquire fractional points not established places 
on the grid, bilinear interpolation is utilized to estimate pixel 
values, which are then added as offsets to the current sam-
pling positions. Deformable convolution layers, which are 
more likely to include object-level semantic information, can 
be used in the final layers of the convolutional network [57]. 
The architecture of the DCN model is displayed in Fig. 7.

Experimental Setup

All the trials were carried out using the Ubuntu Linux 
operating system. The models were trained on an Intel i7 
processor running at 3.60 GHz with 32 GB of RAM and 

the graphics processing unit was an Nvidia Quadro P5000. 
PyTorch was the deep learning framework employed in this 
study. The learning rate was set to 0.0025 for all the experi-
ments. The value of momentum employed was 0.9, which 
is extensively used in the machine learning and neural net-
work fields. The dataset was divided with an 80:20 split with 
1440 images for training and 360 images for testing. Basic 
augmentation methods like random flip and normalization 
have been applied to the images for pre-processing. For bet-
ter visualization, the final result is supplied together with 
graphs displaying the number of epochs vs accuracy using 
the fivefold cross-validation technique. The mean average 
precision (mAP) is reported with a 50% threshold value.

Results and Discussions

Experimental Results

From the experiments, it is observed that the DCN model 
achieves the highest mAP of 77.28%. The time taken by 
DCN for inference is lower than thatof other models 
which is 68.75 ms. Crazing, scratches, and rolled-in scale 
defects can be detected with a very high accuracy using 
the DCN model as compared to the other models. Crazing 
is exceptionally difficult to detect; however, DCN detects 

Fig. 5  Architecture of double-head R-CNN

Fig. 6  Architecture of Retinanet

Fig. 7  Architecture of DCN
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the defect with an mAP of 48.58%. It can be observed 
from Fig. 8 that at around the fifth epoch, the accuracy of 
the DCN model plummets to 60%. Having said that, after 
the tenth epoch, the DCN model’s accuracy begins to flat-
ten and no significant surge is seen. It can be observed 
from Table 2 that DH R-CNN achieves the second-highest 
precision with an mAP of 75.56%. The training time taken 
by the model is around 214 min and for inference it is 
around 161.1 ms, which is substantially large as compared 
with many other models used in this research, even after 
incorporating transfer learning. It attains the highest mAP 
for defect inclusion with an mAP of 80.48%. The model 
also attains considerably high accuracy for the defect 
patches and scratches. In Table 2, values in bold represent 
the best performance metrics achieved among the com-
pared models. This includes the highest mean Average 
Precision (mAP) at 0.50, the best performance in detect-
ing various defects such as crazing, inclusion, patches, 
pitted surface, rolled-in scale, and scratches, as well as 
the shortest training and inference times, and the fewest 
number of parameters.

Retinanet takes the lowest inference time of 57.63 ms 
with an average mAP of 74.56%. Retinanet provides the 
best accuracy for the defect patches and pitted surface 
representing an mAP of 92.38% and 85.7% respectively. 
Retinanet is a single-stage detector and establishes a sig-
nificant mAP of 74.56% within the least possible training 
time of 83 min. Faster R-CNN attains an mAP of 73.34% 
and the training time of the model is 106 min and the 
inference time is 91.66 ms.

The deformable DETR model takes 302 min of train-
ing time to attain an mAP of 71.98%. It takes 50 train-
ing epochs for the deformable DETR model to reach the 
current level of mAP, whereas all the other models in the 
study took only 24 epochs and considerably less train-
ing time to attain the maximum mAP achieved. How-
ever, it only took 91.66 ms for inference compared to DH 
R-CNN, which took 161.1 ms for inference.

Observations

From Fig. 9, positive detection with the blue bounding 
box representing the ground truth and the orange bound-
ing box representing the predicted outcome during the test-
ing phase were visualized [58]. Similarly, in Fig. 10, the 
incorrect predictions of the models predicted for the defect 
can be observed. We can deduce substantial false positives 
(FP) by the visualization of the testing dataset. Figure 14 
shows the graphical representation of class-wise accuracy 
for each of the tested models. The defects crazing and rolled-
in scale have a noticeable drop in accuracy compared with 
the defects inclusion, patches, pitted surface, and scratches.

Figure 11 shows the confusion matrix [58] for each of 
the models summarizing the prediction across all six classes 
can be visualized. For individual classes, significant detec-
tion performance can be observed. Comparing the confusion 
matrices across all the models, it has been observed that 
the DCN model predicts the defects with better accuracy. 
Background class has been added to the confusion matrix, 
which is necessary for tracing FP and missing defections, 

Table 2  Mean average precision and the class-wise average precision of the models used in the research along with the training time, inference 
time, number of parameters, and the total number of epochs

Pretrained mAP
(0.50)

Crazing Inclusion Patches Pitted
surface

Rolled-in
scale

Scratches Training time
(min)

Inference time
(ms)

Parameters
(millions)

Epochs

Deformable Detr 71.98 39.52 76.98 89.7 80.74 56.5 77.54 302 91.66 39.82 50
Faster R-CNN 73.3 39.7 76.1 90.62 84.7 56.36 90.42 106 61.80 41.5 24
DH R-CNN 75.56 45.34 80.48 92.1 85.48 59.78 91.72 214 161.1 46.74 24
Retinanet 74.56 42.7 76.52 92.38 85.7 60.52 84.42 83 57.63 36.21 24
DCN 77.28 48.58 80.24 92.18 85.22 65.74 93 98 68.75 44.63 24

Fig. 8  Mean average precision (0.5) vs number of epochs curve for 
faster R-CNN, deformable DETR, DH R-CNN, Retinanet and DCN 
models
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thereby covering all possible defections. From Fig. 12 [59], 
we observe the average precision–recall curve for all the 
models along with the detailed breakdown of FP. Com-
paring all the models in the study, it is observed that the 
DCN model has the highest area under the curve (AUC), 
followed by DH R-CNN. The PR curve gets strictly higher 
than the last curve as the evaluation criteria become leni-
ent. For deformable DETR, the AP (average precision) at 
the intersection over union (IoU) at 0.50 is 0.728. The AP 
grows further to 0.882 after all the localization errors are 
ignored other than the duplicate detections termed as perfect 
localization. The AP will rise to 0.887 after all the class 
confusions are removed which happens when the defects 
are grouped under the same class label. Finally, once the 
background FP is removed, the AP further rises to 0.997. 
The background is a step function that has the value of one 
until the maximum recall is attained and then declines to 
zero for a single category. Figure 12 shows that the AP for 
faster R-CNN is 0.734, and it rises to 0.904 with perfect 
localization. The elimination of any class confusion does 
not affect AP. When the background FP is eliminated, the 
AP rises to 0.974. The AP for DH R-CNN is 0.751, which 
rises to 0.912 after complete localization and 0.987 after 
background removal. Retinanet has an AP of 0.74, which 
rises to 0.89 following perfect localization. After removing 
the class confusion, the AP would have a value of 0.896. 
After removing the background, the AP value will be close 
to 0.997. In the instance of the DCN model, overall AP is 
0.771 at IoU = 0.50, and perfect localization would increase 
AP to 0.912. Removing all class confusion would just mar-
ginally increase AP to 0.913. By removing the background 
FP, the performance improves to 0.982. Figure 13 shows the 
precision–recall (PR) curve for all the individual models.

Analysis

From all of the models utilized in this study, crazing is the 
least detectable defect, and it covers medium to extensive 
defect areas, and a substantial number of images in the 
training set exhibit more than one crazing defect in a single 
image. Figure 14 shows that DCN and DH R-CNN have 
more excellent mAP for defect crazing concerning other 
models. Both these models are based on R-CNN with a 
Resnet-50 backbone. The effect of compounded defor-
mation is significant when the deformable convolutions 
are superimposed. This led to better detection of crazing 
defects. Retinanet employs thousands of region proposals 
with focal loss as the loss function, making it challenging 
to identify crazing, since crazing resembles its background, 
resulting in multiple false detections reducing the mAP of 
the entire model for the defect. After visualizing the test 
results, it is observed that the deformable DETR fails to 

Fig. 9  Samples from the test data which were correctly identified. 
The predicted bounding boxes are represented in orange, whereas the 
ground truth is represented by the blue box. a Inclusion. b Patches. c 
Pitted surface. d Scratches

Fig. 10  Samples from the test data which were incorrectly identified. 
The predicted bounding boxes are represented in orange, whereas the 
ground truth is represented by the blue box. a Crazing. b Inclusion. c 
Rolled in scale. d Scratches
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Fig. 11  Confusion matrix. a Faster R-CNN. b Deformable DETR. c DH R-CNN. d Retinanet. e DCN

Fig. 12  Precision vs recall curve [59]. a Faster R-CNN. b Deformable 
DETR. c DH R-CNN. d Retinanet. e DCN. 1. C75: precision–recall 
(PR) at IoU = 0.75. 2. C50: PR at IoU = 0.50. 3. Loc: PR at IoU 

= 0.10. 4. Sim: PR after removal of false positives (FP). 5. Other: 
PR after removal of class confusions. 6. BG: PR after background 
removal. 7. PR after removal of all errors
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detect the defect crazing in multiple images. Deformable 
DETR uses fewer significant reference points in its spatial 
feature maps, reducing defect identification rates. The defect 
inclusion is extensive, and some of the samples in the dataset 
have a distinct appearance, while others blend in with the 
background. There are multiple inclusion defects in a single 
image, the highest being six defects in a single image. DCN 
and DH R-CNN can detect the defect with higher precision 
than other models having better detection success rates as 
seen from Fig. 14. The defect patches are medium to large 
in size having a strong contrast, making them immediately 
distinguishable from their background. Inclusion defects are 
contained with patches in some of the images in the dataset, 
which helps the models in learning the difference between 
the defect patches and inclusion. The defect patches have 
high accuracy due to their immediately recognisable appear-
ance. Pitted surface defects are significant, and most of the 
defects cover the entire dimension of the images, leading to a 

lower generalization of the defects. DCN, DH R-CNN, Reti-
nanet, and faster R-CNN attain similar accuracies, whereas 
deformable DETR fails to achieve the average accuracy 
other models achieve. This could be due to the defect charac-
teristics surrounding the reference point extracted using the 
multi-scale deformable attention module. The initial estima-
tion of the bounding box centre is made using the reference 
point predicted by the detecting head as relative offsets from 
the reference point, resulting in improper defect detection.

Besides crazing, another complex defect to identify is 
the rolled-in scale, which includes defects of all sizes. The 
rolled-in scale defect has little resemblance to the defect 
inclusion and is blended in with its background, making 
detection challenging. Compared to other models, DCN 
achieves a high level of precision by adding new offsets to 
the spatial sampling sites in the deformable convolutional 
modules and learning the balances during the training. 
The highest precision is achieved for scratches from all the 
defects by the DCN model. DH R-CNN and faster R-CNN 
model also attain perfect accuracy. However, Retinanet and 
deformable DETR underperforms while detecting scratches. 
Unlike crazing and rolled-in scale, scratches have a strong 
contrast to their background and are immediately visible, yet 
they contain many patterns and defects scattered over the 
images. The focal loss, which helps distinguish the experi-
ence from the object, is the loss function of Retinenet and 
deformable DETR. Although the defect scratches are more 
minor, the bounding boxes of the slanting and horizontal 
scratch defects encompass most of the image, reducing the 
focus loss effectiveness.

Conclusion

In this research paper, we addressed the critical problem 
of steel defect detection and benchmarked five state-of-the-
art models on the NEU steel dataset, providing an in-depth 
analysis of each. Our findings indicate that the deformable 
convolutional network (DCN) model achieves the highest 
accuracy compared to other models, while RetinaNet, a 
single-stage detector, attains perfect precision with the least 
inference time.

Each model has its strengths and weaknesses, both over-
all and within each class. Identifying these strengths and 
addressing the models’ weaknesses could pave the way for 
improved models, significantly benefiting the defect detec-
tion industry. Deep learning models, particularly convolu-
tional neural networks (CNNs), have the distinct advantage 
of scalability and adaptability. They can handle more exten-
sive and complex datasets, learning directly and adaptively 
from raw data without manual feature engineering. This 
ability to understand intricate patterns and representations 
is a significant advantage over traditional machine learning 

Fig. 13  Precision vs recall curve for faster R-CNN, deformable 
DETR, DH R-CNN, Retinanet, and DCN models

Fig. 14  Classwise mAP for the six defects on faster R-CNN, deform-
able DETR, DH R-CNN, Retinanet, and DCN models
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models, making them highly efficient for tasks such as image 
classification and object detection. Furthermore, the perfor-
mance of deep learning models can improve with more data 
or sophisticated architectures.

We acknowledge that our study might not bring out the 
best performance of each model due to the consistent set of 
hyperparameters used across all models. In future work, we 
plan to include a comprehensive hyperparameter tuning pro-
cess for each model to optimize their performance further. 
We also plan to extend our experiments to other datasets 
to validate the generalizability of our findings and further 
improve the models’ performance in steel defect detection.

Further improvements could also be achieved by adding 
more layers and trainable parameters to the models. Future 
research could explore unsupervised learning approaches 
for defect detection and enhance the detection of crazing 
defects by incorporating synthetic training data through data 
augmentation. Integrating active learning and human-in-the-
loop systems could also be beneficial. In addition, we plan 
to include “true negative” examples in our future work and 
evaluate the models’ performance in a more realistic sce-
nario. This will provide valuable insights into the practical 
applicability of these models for detecting steel defects. It’s 
important to note that our study was limited to the NEU 
dataset. In future work, we plan to consider more datasets 
to validate the generalizability of our findings and further to 
improve the models’ performance in steel defect detection.

Data availability The dataset used in this study is available at the fol-
lowing website: https:// github. com/ siddh artam ukher jee/ NEU- DET- 
Steel- Surfa ce- Defect- Detec tion/ tree/ master/ IMAGES. Researchers 
interested in accessing the dataset can do so by visiting the provided 
link.
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