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Implicit Scene Context-aware Interactive Trajectory
Prediction for Autonomous Driving

Wenxing Lan, Dachuan Li, Memeber, IEEE, Qi Hao, Memeber, IEEE, Dezong Zhao, Senior Member, IEEE,
and Bin Tian, Memeber, IEEE

Abstract—The accurate prediction of behaviors of surrounding
traffic participants is critical for autonomous vehicles (AV).
How to fully encode both explicit (e.g., map structure and
road geometry) and implicit scene context information (e.g.,
traffic rules) within complex scenarios is still challenging. In
this work, we propose an implicit scene context-aware trajectory
prediction framework (the PRISC-Net, Prediction with Implicit
Scene Context) for accurate and interactive behavior forecasting.
The novelty of the proposed approach includes: 1) development
of a behavior prediction framework that takes advantage of
both model- and learning-based approaches to fully encode scene
context information while modeling complex interactions; 2)
development of a candidate path target predictor that utilizes
explicit and implicit scene context information for candidate path
target prediction, along with a motion planning-based generator
that generates kinematic feasible candidate trajectories; 3) inte-
gration of the proposed target predictor and trajectory generator
with a learning-based evaluator to capture complex agent-agent
and agent-scene interactions and output accurate predictions.
Experiment results based on vehicle behavior datasets and real-
world road tests show that the proposed approaches outperform
state-of-the-art methods in terms of prediction accuracy and
scene context compliance.

Index Terms—Trajectory Prediction, Interaction, Semantic
Context, Traffic Rules

I. INTRODUCTION

ACCURATELY predicting the intention and behavior of
surrounding traffic agents is critical for autonomous ve-

hicles (AVs) [1], [2], which is premise for reasonable decision-
making as well as safe motion planning [3]–[8]. In complex
traffic scenarios, the behavior of an agent is usually shaped
by various agent-agent interactions and complex scene context
(including both explicit and implicit ones). The explicit scene
context refers to environment information that can be directly
represented using certain map formats (e.g. road network
geometry, road boundaries, etc.). In addition, an AV is also
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Fig. 1. Examples of incorrect behavior predictions due to ignorance of implicit
scene context. Left: Out-of-road boundary predictions. Right: Predictions with
incorrect driving direction. Dots represent the final position of vehicles.

required to infer implicit scene context from formatted data
(e.g. lane change is only allowed at solid lane markings).
Therefore, it is challenging to accurately predict the interactive
motions of traffic agents, whose intentions and behaviors are
multimodal and affected by various factors [4].

Existing behavior prediction frameworks can be divided into
two categories: model-based and learning-based approaches.
The former forecasts agents’ future behavior using explicit
models that describe agents’ physical motion states [5]. How-
ever, such approaches rely on the assumption of simple and
basic kinematics, and they are typically incapable of address-
ing the multi-modality and interaction factors in complex
scenarios. In recent years, learning-based approaches have
been widely applied in behavior prediction. Such approaches
typically utilize deep neural network (DNN) frameworks (e.g.,
convolutional neural network (CNN) [9], graph neural network
(GNN) [10]) to extract interaction and scene context features
from certain representations of map and agents’ states [4], [5],
[10]–[17]. Using these scene context features, such approaches
directly regress future trajectories of the target agent based
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in an end-to-end manner [10], [15], [16]. Although learning-
based approaches show promising prediction accuracy and
effectiveness in modeling interactions, they typically ignore
the feasibility (i.e., vehicle kinematics) and semantic con-
straints (i.e., map structure and road geometry). Some recent
research efforts attempt to address the kinematic feasibility
by incorporating model-based motion planning to generate
feasible candidate trajectories [13], [17], [18], but they cannot
fully account for implicit scene context constraints such as
traffic rules.

Despite the achievements of the existing approaches, devel-
oping an accurate and reliable behavior prediction framework
still faces the following challenges: 1) Fully encoding the
scene context information. The agents’ motions are shaped
by explicit (e.g., road structures) and implicit scene context
factors (e.g., traffic rules). How to fully incorporate and
represent such scene context knowledge is the key to ensuring
prediction accuracy. 2) Guaranteeing the feasibility of pre-
dicted behaviors. Most existing learning-based approaches fol-
low a model-free paradigm without considering the kinematic
constraints of vehicles. It is necessary to ensure the predicted
trajectories are physically feasible for AVs. 3) Modeling the
complex interactions. Capturing the interactions among agents
and the environment is critical to achieving reliable behavior
prediction in complex scenarios. How to effectively represent
multi-agent and agent-to-environment interactions is still a
challenging issue.

To address these issues, we propose the Prediction with
Implicit Scene Context (PRISC-Net), a novel framework that
takes advantage of both model- and learning-based approaches
to provide accurate and scene context-compliant trajectory pre-
dictions. The proposed model-based candidate trajectory gen-
eration stage encodes scene context and kinematic constraints,
while the learning-based evaluation stage copes with complex
interactions and multi-modality. The major contributions of
this paper include:

• Developing an implicit scene context-enhanced candidate
path target predictor. It fully incorporates implicit and
explicit scene context information to generate candidate
target waypoints and ensures scene context compliance.

• Developing a novel planning-based trajectory generator
that provides candidate trajectories with kinematic feasi-
bility guarantees.

• Integrating the proposed generator with a learning-based
evaluator to encode complex multi-agent and agent-to-
environment interactions and output final trajectory pre-
dictions.

• Conducting experiments based on vehicle behavior
datasets and real-world road test. The proposed ap-
proaches outperform existing methods in terms of traffic-
rule compliance and accuracy (Source codes are available
at: https://github.com/Joe12138/PRISC-Net-V1).

The remainder of the paper is structured as follows.
Section II reviews related work. Section III formulates the
problem and provides the overview of the proposed frame-
work. Section V presents the proposed methods in detail.
Section VI compares our approach with several state-of-the-

art approaches on both real-world and simulation datasets.
Section VII concludes this paper and discusses future work.

II. RELATED WORK

A. Scene Context Encoding

For AV trajectory prediction applications, rich scene context
features are required to be learned from the elements of the
traffic scene, including the map context and historical state
of agents. Rich scene context can be provided by datasets
collected in the real-world (e.g., INTERACTION [19], Argov-
erse [20]) and simulators (e.g., CARLA [21], MetaDrive [22]).
Furthermore, some existing works [23]–[27] apply Scenarios
Engineering (SE) to generate rich scene context for algo-
rithm training and testing automatically. For example, Guo
et al. calibrate trajectory prediction through SE to improve
the evaluation index of prediction by utilizing more traffic
information and attribute characteristics [23]. Li et al. apply
computer graphics (CG) to clone real highway scenarios and
generate synthetic multi-challenge video datasets, which can
test foreground detection algorithms after translating [24].
The scene context encoding methods can be divided into two
categories: rasterized encoding [15], [28]–[32] and vectorized
encoding [4], [10]–[12], [33].

Rasterized encoding methods first extract map elements
(e.g., lane boundaries, traffic lights, crosswalks) from the high
definition (HD) map, then render these scene elements in
different colors or masks in bird’s eyes view RGB images,
and finally use the convolutional neural network (CNN) [9]
to encode the image. Based on this encoding method, both
Cui et al. and Djuric et al. employ a CNN to extract scene
context features from rasterized images [15], [29]. Similarly,
MultiPath [28] uses CNNs to extract agent-agent interaction,
scene, and agent features from top-down rasterized images.
Hong et al. encodes the scene context by using a CNN back-
bone of 2D convolutions, whose input is top-down rasterized
images [30]. Heatmap output for future motion estimation
(HOME) [31] rasterizes the HD map in 5 semantic channels,
then applies a classic CNN model to encode scene context.
A CNN is designed in Heterogeneous edge-enhanced graph
attention network (HEAT-I-R) [32] to extract road features
from a bird’s eye view of the driving scene. These rasterized
methods cannot capture the structural information of HD maps
and do not allow non-grid sampling of goal points due to
the shape of convolutions [12]. Furthermore, employing CNN
makes computation become expensive [4].

In contrast to rasterized encoding method, vectorized en-
coding methods abstract all geographic entities (e.g., roads,
traffic lines) and traffic agents as polylines. Therefore, the
structural features of scene context are better captured by
vectorized encoding methods [12]. Neural network with vector
representation (VectorNet) [10], [23], target-driven trajectory
prediction (TNT) [11] and target-driven trajectory prediction
with dense goal set (DenseTNT) [12] all use a multilayer
perceptron (MLP) [34] to learn object features from vectorized
polylines, then employs a graph neural network to extract high-
order interactions based on learned object features. Nonethe-
less, these methods fail to consider the relations between

https://github.com/Joe12138/PRISC-Net-V1
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objects and cannot learn any semantic information about traffic
rules (e.g., traffic signs). Lane graph convolutional network
(LaneGCN) [33] encodes the driving scene as a lane graph and
applies graph convolutions with adjacency matrices to capture
the complex scene feature from the lane graph. Hierarchical
vector transformer (HiVT) [4] employs hierarchical vector
transformer to learn multi-agent and agent-scene interaction
from vectorized scenes. However, all of the methods cannot
fully encode the scene context information since they do not
consider implicit scene context (e.g., traffic signs, speed limit)
at all when encoding the driving scene.

Encoding scene context as vectors is beneficial for providing
more accurate and detailed information to trajectory predictors.
However, most existing vectorized encoding methods only
utilize explicit scene context (e.g., road structures), but they
typically ignore implicit scene context (e.g., traffic rules) [5].
Therefore, such approaches may lead to inaccurate and unrea-
sonable final predictions. In this work, we propose a candidate
path target predictor that utilizes both explicit and implicit
scene context by enhancing vectorized representations with
a rule-constrained path search, respectively (More details are
presented in Section III C).

B. Candidate Trajectory Generation
Since the behavior of agents is uncertain and multi-modal,

trajectory predictors typically generate several possible can-
didate trajectories for further selection. Therefore, the quality
of candidate trajectories significantly affects the accuracy and
feasibility of the final predictions. Existing candidate trajectory
generation methods can be divided into two categories: neural
network regression-based methods [4], [10]–[12], [31] and
model-based methods [13], [17], [18].

Neural network regression methods apply neural networks
(e.g., MLP, long short-term memory (LSTM) [35]) to regres-
sion predicted trajectories based on scene context features or
interaction features. VectorNet [10], TNT [11], HiVT [4] and
DenseTNT [12] all employ MLP to regress future trajectories
of the target vehicle based on scene features learned from
vectorized scene context. A convolutional decoder is adopted
by HOME to output an image with sampled target locations;
then, a separate model is applied to generate full trajectories
connecting the initial agent position to all sampled locations
on the image [31]. HEAT-I-R [32] applies LSTM to generate
future trajectory based on scene context and interaction fea-
tures. Similarly, both Li et al. and Kaouther et al. use LSTM
to generate future trajectory based on interaction features [36],
[37]. All of these regression methods can generate highly
accurate but unreasonable and kinematic unfeasible future
trajectories of the target vehicles, as shown in Fig. 1 and 9.

To account for feasibility constraints in behavior prediction,
model-based motion planners are integrated into the prediction
framework to generate candidate trajectories in some recent
model-based methods [13], [17], [18]. The Frenét [38] and
polynomial curve-based planners [39], such as quintic poly-
nomial planner, are used in [17] and [13], [18] to generate
possible future trajectories, respectively. In contrast to those
trajectories directly regressed by neural networks, those tra-
jectories generated by model-based planners can inherently

satisfy kinematic constraints with guaranteed feasibility for
AVs. However, the Frenét planner relies on scenario-specific
parameters and it is thus sensitive to the input reference line,
making it less suitable for many prediction tasks (Fig. 6).
Therefore, trajectories generated by the Frenét planner may
enter an unreasonable area, as shown in Fig. 7. Moreover,
the quintic polynomial planner-based prediction scheme re-
quires additional vehicle states (e.g., x-y coordinate, speed,
acceleration, and heading), which is difficult to obtain or
predict yet. The main flaw of planning-based approaches lies in
their difficulties in utilizing implicit scene context information.
Compared to regression methods, trajectories generated by
model-based methods are more reasonable and kinematic
feasible.

However, how to overcome the inherent limitations of ex-
isting curve-based planners and encode implicit scene context
information (e.g., traffic rules) in trajectory generation are still
challenging. In this work, we propose an optimization-based
parameter-free planner without requiring additional vehicle
state observations and reference lines. In addition, implicit
scene context information is utilized to constrain the final
position of future trajectories (c.f. Section III D).

C. Interaction Modeling

Modeling multi-agent and agent-scene interaction is cru-
cial for the real-world application of trajectory predictors in
interactive scenarios. Deo and Trivedi employ convolutional
social pooling to learn inter-agent interaction from an occu-
pancy grid [40]. HOME [31] uses attention [41] to model
agent interaction by generating a query vector and key as
well as value vectors for the target agent and other actors,
respectively. Similarly, both Li et al. and Kaouther et al.
apply multi-head attention to model higher-order interactions
rather than pairwise vehicle interactions [36], [37]. A graph
neural network is adopted by VectorNet [10], TNT [11], and
DenseTNT [12] to model high-order multi-agent and agent-
scene interactions. LaneGCN [33] proposes a FusionNet to
capture a complete set of actor-map interactions. HiVT [4]
employs a transformer to model local inter-agent and agent-
scene interactions in a region area; then, global interaction
is modeled by another transformer. HEAT-I-R [32] proposes
a heterogeneous edge-enhanced graph attention network to
extract inter-agent interaction.

Interaction features should include the degree to which other
traffic entities influence the target vehicle. Therefore, atten-
tion [41] is more suitable for modeling interactions. However,
most existing works ignore the interaction among future trajec-
tories of the target vehicle when modeling interactions, making
them unable to predict multi-modal behaviors. In this work, we
employ various self-attention models to capture multi-agent,
agent-scene, and future agent-agent interactions. Using these
interaction features, the proposed framework can effectively
cope with the multi-modality of interactive behaviors.

III. PROBLEM FORMULATION

Denoting the autonomous ego-vehicle as vego, and the
observed state S of its surrounding vehicles V (vego /∈ V)



4

Model-based Trajectory GeneratorLearning-based Candidate Path Target Predictor
High Definition (HD) Map & 
Vehicle State Information

N
eural N

etw
ork

Predicted C
andidate

Path Target

Scene Context Feature

Interaction Features

Vehicle State Feature

C
andidate Parth Targets

Learning-based Trajectory Evaluator

Multi-agent

Agent-environment

Future-future

C
andidate Trajectories

Parameter 
Optimizer

Quintic Polynomial-
based Planner

N
eural N

etw
ork

Predicted Trajectories(Complex Interaction Features)

Speed
Direction

N
eural N

etw
ork

N
eural N

etw
ork

Acceleration

HD Map (ℳ )

Vehicle State Information (𝐬𝐬tar ∪ 𝒮𝒮nbr𝑠𝑠)

Data 
Flow ℳ + 𝐬𝐬tar ∪ 𝒮𝒮nbr𝑠𝑠 𝒯𝒯A = 𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛 𝑛𝑛=1

𝐾𝐾 𝒯𝒯 = 𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛 𝑛𝑛=1
𝑁𝑁 (𝒯𝒯 ⊂ 𝒯𝒯A)Neural NetworkAlgorithm 1 𝒞𝒞𝒯𝒯 = 𝑐𝑐𝑡𝑡𝑖𝑖 𝑖𝑖=1

𝑘𝑘 = 𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗 𝑗𝑗=1
𝑇𝑇𝐹𝐹Planner

𝑠𝑠tar0 ∈ 𝐬𝐬tar
𝒫𝒫𝒯𝒯 (𝒫𝒫𝒯𝒯 ⊂ 𝒞𝒞𝒯𝒯)

Neural Network

ℳ + 𝐬𝐬tar ∪ 𝒮𝒮nbr𝑠𝑠

Fig. 2. Overview of the proposed implicit scene context-enhanced trajectory prediction framework (PRISC-Net). 1) The learning-based candidate path target
predictor predicts future candidate path targets PT of the target vehicle, using HD map M and vehicle’s state observations {star ∪Snbrs} (cf. Section V-A)
as the input. 2) The model-based trajectory generator generates kinematic feasible candidate trajectories CT starting from the initial position of a target
vehicle based on the predicted candidate path targets PT (cf. Section V-B). 3) The learning-based trajectory evaluator evaluates candidate trajectories and
rank them by E with complex interaction features, and the most possible predicted trajectories Ttar are outputted. (cf. Section V-C).

can be obtained by the detection-and-tracking modules of
vego. In addition, we assume that vego has access to a
pre-built high definition (HD) map M (including explicit
and implicit scene context information) of the current traffic
scenario to obtain lane connectivity, traffic rules, and other
semantic information. For a given target vehicle vtar ∈
V for prediction, we denote its surrounding vehicles as
Vnbrs = {v1,v2, ...,vm} along with their state sequences
as si = {s−TH+1

i , s−TH+2
i , ..., s0i }(i ∈ {1, 2, ...,m}) (where

TH denotes the history observation time horizon, and each
state vector is composed of the position (x, y), heading θ and
velocity v). Therefore, the set of observed state of Vnbrs is
represented by Snbrs = {s1, s2, ..., sm}, where m = |V \
{vtar}

⋃
{vego}| ( | · | presents the number of elements in a

set). star = {s−TH+1
tar , s−TH+2

tar , ..., s0tar} denotes the historical
states of the target vehicle vtar.

Given vtar, V , M, star and Snbrs, the objective of the
proposed framework is to predict the possible future trajec-
tories Ttar of vtar, which consists of states of vtar up to the
prediction horizon TF . In addition, each predicted trajectory
in Ttar should satisfy feasibility constraints C consisting of
scene context constraints CE and kinematic constraints CK .

IV. FRAMEWORK OF THE PROPOSED PRISC-NET

The overall framework of the proposed PRISC-Net is shown
in Fig. 2, and it consists of three primary components: can-
didate path target predictor, the trajectory generator and the
trajectory evaluator.

• Candidate Path Target Predictor (learning-based): The
candidate path target predictor P aims to predict a set of
candidate path target (i.e., final key position (x − y co-
ordinate, denoted as PT = {τn}Nn=1 = {(xn, yn)}Nn=1)
along the possible path) of the given target vehicle at
certain time step in the future, using features learned by
a neural network. The input of P includes HD map M
and state information (i.e., x−y coordinate, heading and
velocity) of vehicles {star ∪ Snbrs}. Firstly, P applies
the candidate path search algorithm (Algorithm 1) to
search possible reachable paths of the given target vehicle
with HD map and vehicles’ state information. Then,
several candidate final positions of the given target ve-
hicle (PT A = {τn}Kn=1 = {(xn, yn)}Kn=1) are sampled

from the centerline of possible reachable paths with a
uniform distance. Finally, P selects part of candidate final
positions PT (PT ⊂ PT A) as candidate path targets
using features learned by a neural network from the HD
map and vehicles’ state information (More details can be
found in Section V-A, and the overview of P is shown
in Fig. 3.).

• Feasible Candidate Trajectory Generator (model-based):
Given the predicted candidate path targets τ i (τ i ∈ T ),
the feasible candidate trajectory generator G generates
kinematic feasible candidate trajectories CT = {cti}ki=1

(cti = {(xj , yj)}TF
j=1 where TF is the prediction time

horizon, and k denotes the number of candidate trajecto-
ries) staring from the initial position of a target vehicle.
Concretely, G takes the initial state of the given target
vehicle s0tar (s0tar ∈ star) and the predicted candidate path
target τ i (τ i ∈ PT ) as inputs.

• Trajectory Evaluator (learning-based): The predicted
candidate trajectories CT are then evaluated and ranked
by the learning-based trajectory evaluator E . The most
possible trajectory Ttar (Ttar ⊂ CT ) is finally selected
and outputted by E , using implicit multi-agent and
agent-to environment interactions captured by the neural
network-based evaluator.

V. PROPOSED METHODS

A. Scene Context-constrained Learning-based Candidate Path
Target Predictor

The proposed candidate path target prediction pipeline
(Fig. 3) consists of 3 stages: candidate target sampling (cf.
Section V-A1), scene feature extraction (cf. Section V-A2) and
state feature encoding (cf. Section V-A3). Firstly, to account
for both the explicit and implicit scene context information, a
traffic rule-constrained path search algorithm (cf. Algorithm 1)
is applied to search reachable paths from the HD map, and
then the candidate final position of the given target vehicle
is sampled from these paths. Secondly, VectorNet [10] and
LSTM [35] are employed to extract scene context features
from the vectorization of traffic scene, as well as the trajecto-
ries of surrounding agents and target vehicle features from the
state information of the target vehicle, respectively. Thirdly,
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Fig. 3. Pipeline of the proposed candidate path target predictor. Firstly, an implicit scene context-constrained path search algorithm (cf. Algorithm 1) is
applied to search reachable paths, and candidate targets are sampled along these paths. Secondly, VectorNet [10] and LSTM [35] are employed to extract
scene context features from the vectorized traffic scene and target vehicle feature from its state observations, respectively. Finally, the final candidate path
targets and their probabilities are predicted according to scene and state features.

the final candidate path targets and their probabilities are
predicted according to features extracted in the second stage.

1) Candidate Path Target Sampling: As the vehicles are
supposed to follow traffic regulations and drive only in the
drivable area of the road, reachable paths RP = {rpi}Mi=1

(rpi = {(xj , yj)}PL
j=1 where rpi is centerline of path rpi

1) of
the target vehicle are firstly searched from the road network
under traffic rule constraints (e.g., road geometry, speed limit).
Our path search algorithm is implemented using the Depth-
First-Search (DFS) [42] on the HD map (Algorithm 1). To
account for the constraints of implicit scene context (e.g.,
traffic rules), we incorporate speed limit and traffic sign
information to restrict the search for drivable paths. Therefore,
reachable paths generated by the proposed approach are more
scene context-compatible, and the efficiency is also improved
as the search space is restricted. Assuming that vtar normally
does not deviate too much from lanes, the candidate path target
(TA = {τn}Kn=1 = {(xn, yn)}Kn=1), where (x, y) denotes a 2-
D location in the global map) are uniformly sampled along the
centerline of the generated drivable paths (marked as purple
solid dots in Fig. 3). The effectiveness of this module is shown
in Section VI-C1.

2) Scene Feature Extraction: To efficiently encode the
scene context information, we use the hierarchical graph
neural network-based VectorNet [10]–[12] to extract scenario
context features from HD map and state observation of the
vehicles. Please note that compared to the original Vector-
Net [10], we add extra implicit scene context (e.g., speed
limit, traffic sign information) into lane node features, and
implementation details can refer our codebase, which is avail-
able at https://github.com/Joe12138/PRISC-Net-V1). Taking
advantage of the VectorNet, the proposed framework learns
features from vectorized center lines of road networks and

1rpi is usually represented with discrete points, sampled with uniform
distance interval σ. Thus, PL = ⌈ lrpi

σ
⌉, where lrpi is the length of rpi

and ⌈·⌉ is ceiling function.

Algorithm 1: Scene-context-constrained Candidate
Path Search
Input: HD Map: M; historical state sequence of target

vehicle: star = {s−TH+1
tar , s−TH+2

tar , ..., s0tar}
Output: Centerline waypoints of drivabel paths:

CL = {cl1, cl2, ..., clm}
1 MLC ← Extract lane connectivity from M;
2 SL ← Extract speed limits from M;
3 T S ← Extract traffic signs from M;
4 Llane ← Find lanes where the target vehicle is on

according to M and star;
5 CL← Empty set;
6 for lane ∈ Llane do
7 P ← Apply DFS [42] on MLC;
8 for path ∈ P do
9 pathSL ← Cut off path with SL and T S;

10 Add pathSL to CL;
11 end
12 end
13 CL← Filter CL with end point position;

trajectories of agents in the region of interest. In this manner,
we can fully encode the structured scene context information
and implicit multi-agent, agent-scene interactions as a unified
vector representation of features.

3) State Feature Encoding: Candidate target prediction is
essentially a multi-label task that requires intensive features
to guarantee the prediction accuracy. Therefore, extra state
features of vtar are extracted from its historical state sequence
(including x-y coordinate, velocity, and heading). Further-
more, the proposed state feature extractor is structured with
a temporal convolutional layer [43] followed by a long short-
term memory (LSTM) layer [35]. The effectiveness of this
module is shown in Section VI-C2 and Fig. 13.

https://github.com/Joe12138/PRISC-Net-V1
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Using the sampled candidate targets (PT A = {τn}Kn=1 =
{(xn, yn)}Kn=1), the extracted scene feature (Fsce) and state
feature (Fsta) as the input, a 3-layer multilayer perceptron
(MLP) [34] (namely Mp) is trained to predict the likelihood
that a candidate target is the possible position of vtar in a
prediction horizon. Since the candidate targets are sampled
exactly from the centerlines of lanes, We utilize an additional
MLP Md to regress the distance between a candidate target
and the ground truth position. Identical to Mp, Md is also
a 3-layer MLP. The loss function used for training candidate
target predictor is as follows:

L = Lp(π, µ) + Ld(Md(x),Md(y),△xµ,△yµ) (1)

where

π(τn|(Fsce,Fsta)) =
exp{Mp(τ

n, (Fsce,Fsta))}∑
τ ′ exp{Mp(τ

′ , (Fsce,Fsta))}
(2)

is a discrete distribution over the candidate positions τn, and
Lp and Ld are cross entropy and Huber loss, respectively. µ
is the candidate target closest to the ground truth position µgt,
and △xµ and △yµ are distance between µ and µgt in x and
y direction, respectively.

B. Planning-based Feasible Candidate Trajectory Generator

Given the reference reachable path waypoints, we propose
an optimization-based planner to generate kinematic-feasible
and scene context-compliant candidate trajectories CT =
{cti}ki=1 (cti = {(xj , yj)}TF

j=1 where TF is prediction horizon,
and k denotes the number of candidate trajectories). The
proposed PRISC-Net framework adopts polynomial curve-
based planning to guarantee the smoothness and feasibility
of generated trajectories.

We adopt the quintic polynomial planner to generate feasible
and smooth trajectories connecting a given initial state (i.e.,
the final observed position of vtar in the previous prediction
interval) to a goal state (candidate reference waypoints pro-
vided by the candidate target predictor). However, the quintic
polynomial planner requires additional input parameters (i.e.,
velocity, acceleration, and heading at the key points) not
provided by the candidate target predictor. In our proposed
trajectory generator, such input parameters are determined by
solving the following optimization problem:

arg min
vtar,atar,θtar

(kj

10TPred∑
i=1

Ji) + kv△v + ks△sLat (3)

s.t.max(0, vstart − α1) ≤ vtar ≤ min(vstart + α1, SL) (4)
max(−2, astart − α2) ≤ atar ≤ min(astart + α2, 3) (5)
max(−π, θstart − α3) ≤ θtar ≤ min(θstart + α3, π) (6)

where Ji, △v, and △sLat are the jerk at time step i, the
velocity difference and lateral offset in the whole predicted
trajectory, respectively. α1, α2, α3, kj , kv and ks are all
positive coefficients for adjusting the range limits (The value
of α1, α2 and α3 can be determined according to the physical
properties of a general vehicle model. The setting of kj , kv and
ks used in Song et al [17] is adopted in this work). Therefore,
given x-y coordinates (xstart, ystart), velocity vstart, acceler-
ation astart and the orientation of driving θstart of the initial

HD map & Vehicle State Information

History Trajectory Search Path
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Fig. 4. Pipeline of the proposed learning-based trajectory evaluator. Firstly,
historical and predicted candidate trajectories and reachable paths are encoded
as scene context features (cf. Section V-C1). Secondly, four self-attention
modules are employed to extract multi-agent and agent-scene interactions (cf.
Section V-C2). Finally, a multi-layer perceptron (MLP) is used to evaluate
each predicted candidate trajectory according to interaction features and output
the ultimate trajectory prediction.

state, as well as x-y coordinates (xtar, ytar) of target state and
speed limit SL at a given target state, the input parameters of
the polynomial planner can be determined by minimizing the
objective function given by Eq. 3. In addition, the optimization
problem can be solved using an off-the-shelf solver, i.e., SciPy
package 2, or using the sampling-based method used by Song
et al. [17]. The effectiveness of the trajectory generator is
shown in Section VI-C3.

C. Interaction-aware Learning-based Trajectory Evaluation

As the trajectory generation stage yields multiple possible
trajectories of vtar, a learning-based evaluator is utilized to
determine the ultimate trajectory prediction result by scoring
all possible candidates. The trajectory evaluation is essentially
a multi-label task, and the evaluator needs to select the most
possible one or several trajectories from the candidates by
considering various factors, such as agent-scenario interactions
and scene context. Furthermore, the proposed PRISC-Net
extracts such implicit interaction features (cf. Section V-C2)
using the Self-attention [41] mechanism, with the encoded
state observations of traffic entities, the scene context infor-
mation, and the predicted candidate trajectories as the input.

1) Trajectory and Path Encoding: Before capturing interac-
tions among the traffic entities, we first encode observed states
of traffic entities, the reachable paths, and predicted candidate
trajectories of vtar in the scene context. Each observed state
sequence and predicted trajectory are discretized as a sequence
of 2-D positions with equal time intervals, and each reachable
path is split with the same distance interval. To better model
the relative motion of vtar and its reference path, the Frenét
coordinate is adopted in addition to the Cartesian coordinate
to form a combined spatial representation. These paths and
the historical and predicted trajectories are then encoded with

2More details are available at https://scipy.org/
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a temporal convolution layer [43] followed by a long short-
term memory (LSTM) layer [35]. The trajectory encoder uses
a unidirectional LSTM [35], while the paths encoder employs
a bidirectional LSTM [35] since the predicted path waypoints
are not associated with direction information.

2) Modeling Interactions : Similar to [17], to fully capture
the implicit interactions between scene context factors and dy-
namic agents, four Self-attention [41] modules are utilized to
extract path-to-historical trajectory (P2H), historical trajectory-
to-historical trajectory (H2H), path-to-candidate prediction
(P2C), and candidate prediction-to-candidate prediction (C2C)
interaction features, respectively. Concretely, the abstract spa-
tial relationship between traffic entities and the roads is
considered as agent-scenario interactions, which are classified
into historical and future interactions. The historical one is
extracted by the P2H module,by encoding reachable paths with
historical state observations of traffic entities. The future one is
encoded by the P2C which interprets the dependency between
reachable paths and candidate future trajectories of the target
vehicle. On the other hand, agent-agent interactions represent
the spatial-temporal interrelationship of the behaviors of the
traffic entities. Such interactions are captured by H2H and
in the past time domain, using the trajectory encoding of
agents and encoded historical agent-scenario interaction as
inputs. Finally, the C2C interprets the differences between
candidate trajectories. These interaction features are encoded
as high-dimension vectors, which are concatenated to fully
describe the future trajectories. The Self-attention mechanism
is formulated as follows:

Qi = WQai,Ki = WKbi,Vi = WVci (7)

Si = softmax(
QiK

T
i√

dk
)Vi (8)

where WQ, WK, WV ∈ Rdk×dh are learnable matrices for
linear projection and dk is the dimension of key vectors. For
different Self-attention modules in trajectory evaluation, ai,
bi, and ci denote the corresponding feature vectors of the
given scene context entity. (More details can be found in
https://github.com/Joe12138/PRISC-Net-V1)).

All possible trajectories T outputted by the generator are
scored using a maximum entropy model. The interaction
features IF extracted by the Self-Attention modules are
concatenated and used as the input of the scoring model:

ξ(τ |IF) = exp{g(IF , f(τ))}∑
τ ′∈T exp{g(IF , f(τ ′))}

(9)

where g(·) is implemented using a 3-layer MLP [34], and the
function f(·) is defined as follows:

f(τ) =
exp(−D(τ, tGT)/σ)∑

τ ′∈T exp(−D(τ ′ , tGT)/σ)
(10)

where σ is the temperature factor, and D(·) is the accumulated
squared distance error between the predicted and ground-truth
trajectories. The loss function for training the proposed overall
trajectory evaluator is as follows:

LE = LCE(ξ(τ |IF), f(τ)) (11)

where LCE is the cross-entropy loss, which measures the
probabilistic deviation of the estimated score from the score
labels. Given the evaluated scores, the predicted candidate
trajectories are ranked in descending order, and the top NT
trajectories are selected as the ultimate trajectory predictions
of vtar, along with their probabilities estimated using their
scores.

VI. EXPERIMENTS

A. Experiment Setup

1) Datasets and Testing vehicle : To evaluate the effec-
tiveness and performance of the proposed approaches, the
proposed PRISC-net is validated on both real-world vehicle
motion datasets and simulated dataset. In addition, we have
implemented the proposed trajectory prediction framework on
a testing vehicle and conducted real-world road tests. Details
of the datasets and testing vehicles are as follows:

• Datasets: We evaluated the proposed framework for
predicting the future trajectories of motor vehicles using
three datasets: two real-world datasets and an in-house
simulated dataset.
a) Real-world Datasets: In this work, the INTERAC-
TION motion prediction dataset [19] and exits and entries
drone (exiD) dataset [44] are used for the evaluation.
Concretely, INTERACTION dataset [19] contains the
labeled trajectories of traffic agents and HD map informa-
tion in highly interactive real-world scenarios, including
roundabout, signalized/unsignalized intersections as well
as highway/urban merging and lane change, recorded at
various locations of the different countries. All training
and test trajectory data in INTERACTION are provided
in the form of 4-second state sequences sampled at 10
Hz. Similarly, the exiD dataset collects trajectories of
traffic agents in on- and off-ramp scenarios in German
Autonahn [44]. All training and test trajectory data in the
exiD dataset are sampled at 25 Hz [44].
b) Simulation Dataset: We recorded the motion state of
100 vehicles and all traffic signals in a simulated scenario
from the Intel CARLA simulator [21]. All training and
test trajectory data are provided in the form of 300-
second and 100-second state sequences sampled at 10
Hz, respectively. Therefore, there are 296,000 and 96,000
cases in the training and test dataset, respectively.

• Tesing vehicle: The configuration of the testing vehicle
used for road test is shown in Fig 5. The testing vehicle
is equipped with an onboard 128-channel LiDAR, four
milliwave radars, a GNSS-inertial navigation module
and an onboard computer. During the road test, the
relative positions of surrounding vehicles are extracted
using the 3D point clouds captured by the LiDAR, and
these positions in the LiDAR coordinate system are then
transformed into x-y coordinates in the global reference
frame, using the absolute ego-vehicle location provided
by the GNSS-inertial system. The velocities of surround-
ing vehicles are measured by the milliwave radars. The
proposed PRISC-Net trajectory prediction algorithms are
programmed in Python and C++ and implemented in the

https://github.com/Joe12138/PRISC-Net-V1
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Fig. 5. Configuration of the testing vehicle for the real-world road test,
equipped with a 128-channel LiDAR, a high-precision GNSS-inertial navi-
gation system, and an onboard computer for hosting the software.

onboard computer with an Intel i7-6700 processor and 32
GB of memory.

2) Evaluation Metrics: We evaluate the proposed approach
based on two types of metrics: the prediction accuracy metrics,
including miss rate (MR) [4], minimum average and final dis-
placement error (minA/FDE) [4], and the feasibility metrics:
the traffic rule violation rate (TRV). The evaluation metrics
are defined as follows:

• minimum Average Displacement Error (minADE): the l2
distance between the most possible trajectory among k
predicted trajectories and the ground truth, averaged over
all future time steps (k = 6 in this paper).

• minimum Final Displacement Error (minFDE): the l2
distance between the most possible trajectory among k
trajectories and the ground-truth at the final time step of
prediction (k = 6 in this paper).

• Miss Rate (MR): the ratio of cases where the displace-
ment between the predicted endpoint and the ground-truth
endpoint exceeds the pre-defined threshold β (β = 2.0m
in this paper).

• Traffic Rule Violation Rate (TRV): the ratio of scenarios
where any predicted trajectory violates traffic rule or
scene context constraints. Typical cases include entering
non-drivable areas, speeding, and retrograding. Entering
non-drivable area is the case that any point of any pre-
dicted trajectory lies in the non-drivable area. Speeding
means that the speed of any point in any predicted tra-
jectory exceeds the speed limit. Retrograding represents
cases in which the predicted trajectories drive against the
direction of traffic. In this work, a predicted trajectory is
considered retrograding if the angle between the driving
direction of any point of that trajectory and the lane
reference exceeds 90 degrees.

In addition, the most possible trajectory is defined as the one
that has the minimum final displacement error (FDE).

3) Data Format: The input, output, and intermediate data
are shown in Fig. 2. Formats of these data are as follows:

a) Map Data: The proposed PRISC-Net is comptatible
with HD maps in the Lanelet2 [45] or OpenDRIVE vector
map formats3. The map data encodes roads (long) using a
representation of lanelets (short), and the connectivity among
lanelets is also defined. The HD map also encodes implicit
scene context (traffic signs, driving directions, and speed
limits).

b) State data of Vehicles: The state data of vehicles
consist of timestamped 2-D position (x, y), heading (θ) and
velocity (v). The state sequences are sampled at a frequency
of 10 Hz (for INTERACTION dataset [19], simulation dataset,
and real-road test) or 25 Hz (for the exiD dataset [44]).

4) Implementation Details: All learning-based models are
trained on an NVIDIA TITAN V100 GPU with 12 GB
memory, and the implementation details for each stage are
as follows:

a) Candidate Path Target Predictor: For candidate target
sampling, two points are sampled every meter from lane
centerlines. The number of hidden units is set to 64 for all
3-layer MLPs. The overall target predictor is trained for 80
epochs using Adam [46] optimizer with the batch size and
initial learning rate set to 128 and 1× 10−3, respectively.

b) Trajectory Generator: In our experiment, the coeffi-
cients in Eq. 4, 5, 6 are set as: kj = 0.1, kv = ks = 1, α1 = 5,
α2 = 2 and α3 = π

6 .
c) Trajectory Evaluator: The INTERACTION dataset

provides an observed state sequence with a time interval of
△T = 0.1s, and the continuous trajectories are discretized
with the same time interval. All reachable path inputs are
discretized with a distance interval of △D = 2m. We train the
evaluator for 80 epochs with a batch size of 128 and initial
learning rate of 1 × 10−3. The evaluator is optimized with
Adam [46] with a decay of 10 every 10 epoch.

B. Comparison with State-of-the-art Methods

We compare the performance of the proposed PRISC-
Net against three representative state-of-the-art interactive
predictors: the PRIME [17], the DenseTNT [12], and the
HEAT-I-R [32]. The PRIME utilizes a pipeline similar to our
proposed PRSIC-Net, consisting of a model-based planner and
a learning-based evaluator. It predicts multi-modal trajectories
by jointly considering motion constraints, lane connectivity,
and inter-agent interactions. The DenseTNT has achieved top
ranks on several behavior forecasting benchmarks and won the
1st place winner of the 2021 Waymo Motion Prediction Chal-
lenge. The HEAT-I-R is an end-to-end approach that utilizes
inter-agent interaction, map, and vehicle state information to
make trajectory predictions. A comparison of the performance
of the trajectory predictors is shown in Table I.

1) Overview of evaluation: The evaluation results are sum-
marized in Table I. These results indicate that our proposed
PRISC-Net outperforms state-of-the-art methods in both pre-
diction accuracy and feasibility metrics. In terms of minFDE
and MR, PRISC-Net achieves state-of-the-art performance on
both real-world and simulated datasets, compared with the
other three methods. For minADE and TRV, the proposed

3More details are available at https://www.asam.net/standards/detail/opendrive/



9

TABLE I
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART APPROACHES ON

REAL-WORLD AND SIMULATED TRAJECTORY DATASET.

Methods k1 MM1 minADE↓2 minFDE↓2 MR↓3 TRV↓3

(%)

Evaluated on the INTERACTION real-world test dataset

PRIME [17] 6 ✓ 0.676 1.096 0.141 92.67

DenseTNT [12] 6 ✓ 0.322 0.897 0.091 22.65

HEAT-I-R [32] 1 ✗ 0.216 0.780 0.079 1.20

PRISC-Net 1
✓

0.273 0.743 0.058 0.33

(ours) 6 0.214 0.425 0.029 0.39

Evaluated on the exiD real-world test Dataset

PRIME [17] 6 ✓ 13.885 19.178 0.956 0.06

DenseTNT [12] 6 ✓ 0.709 2.636 0.199 17.89

HEAT-I-R [32] 1 ✗ 7.922 15.703 0.903 100.00

PRISC-Net 1
✓

1.284 1.035 0.150 33.54

(ours) 6 1.272 0.673 0.044 34.23

Evaluated on the simulated test dataset

PRIME [17] 6 ✓ 1.599 3.424 0.224 17.16

DenseTNT [12] 6 ✓ 1.882 3.307 0.286 76.24

HEAT-I-R [32] 1 ✗ 2.039 5.44 0.399 22.38

PRISC-Net 1
✓

1.429 3.849 0.277 6.81

(ours) 6 1.200 3.084 0.223 8.70
1 k: number of predicted trajectories; MM: multi-modal prediction.
2 minA/FDE: minimum average/final displacement error.
3 MR: miss rate; TRV: traffic rule violation rate.

PRISC-Net outperforms the other three state-of-the-art meth-
ods on the INTERACTION and simulated dataset.

a) PRISC-Net vs. PRIME: In terms of prediction ac-
curacy, the proposed PRISC-Net outperforms PRIME on all
three datasets. Specifically, PRISC-Net achieves an average
improvement of 61.38%, 55.88%, and 58.43% in minADE,
minFDE, and MR on three test datasets. For feasibility met-
rics TRV, the proposed PRISC-Net outperforms PRIME on
INTERACTION and simulated dataset, with an improvement
of 99.58% and 49.30%.

b) PRISC-Net vs. DenseTNT: The proposed PRISC-
Net outperforms DenseTNT in both prediction accuracy and
feasibility metrics on the INTERACTION and simulated
datasets. On exiD dataset, our proposed PRISC-Net outper-
forms DenseTNT in terms of minFDE and MR. Compared
against DenseTNT, PRISC-Net achieves an average improve-
ment of 44.61% and 56.37% in terms of minFDE and MR
among all three datasets, and an average improvement of
34.89% and 93.43%in minADE and TRV on INTERACTION
and simulated dataset, respectively.

c) PRISC-Net vs. HEAT-I-R: For fairness considerations,
we have also conducted single-modal trajectory prediction
experiments, and the results are summarized in Table I. Again,
the proposed PRISC-Net outperforms HEAT-I-R in terms of
minFDE, MR, and TRV on all three test datasets. Specifically,
the proposed PRISC-Net achieves an average improvement of
42.47%, 46.85%, and 69.51% in terms of minFDE, MR, and

TRV on all three test datasets, respectively.
2) Analysis of Experiment Results:

a) Understanding the comparison results with PRIME:
As shown in Table I, the proposed PRISC-Net outperforms
the baseline PRIME in all accuracy metrics on the three test
datasets, with a decrease of minADE, minFDE and MR upt o
50% on real-world datatsets. It is also worth mentioning that
our proposed PRISC-Net outperforms PRIME significantly
in terms of scene context compliance (i.e., TRV) on the
INTERACTION and simulated datasets.

To further investigate the strength of our proposed approach,
we record the number of traffic violations of each type (shown
in Table II) on the INTERACTION dataset. Moreover, quali-
tative prediction results of PRIME and the proposed PRISC-
Net are plotted in Fig. 7 (INTERACTION datatset) and Fig. 11
(simulated dataset).

From the experiment results, we can conclude that:
• Our proposed PRISC-Net consistently improves the ac-

curacy of trajectory prediction, as our path search mech-
anism provides better predicted reachable paths. When
sampling candidate path targets in the proposed PRISC-
Net, using both explicit and implicit scene context im-
proves the precision of the reachable paths, making the
predictor more scene context-compliant than the road
geometry-dependent-only PRIME predictor. (A more de-
tailed analysis is presented in Section VI-C1).

• The planning-based trajectory generator of our proposed
PRISC-Net improves the quality of candidate trajec-
tories due to the advantage of scene context-aware,
optimization-based planning. First, unlike PRIME, which
uses fixed parameters for trajectory generation, using
dynamical parameters (e.g., scene-related final position
of target agents) in the proposed PRISC-Net can improve
the quality of generated candidate trajectories. Second,
the optimization-based planner in the proposed PRISC-
Net does not require precise reference lines and vehicle
state heuristics, making it more robust than the curvature-
and state-sensitive PRIME (Fig. 6). Third, fully utilizing
scene context information helps the proposed PRISC-
Net to predict more accurate final position of future tra-
jectories. Therefore, experiment results indicate that our
proposed planning-based trajectory generator provides

Reference Line
Centerline
History Trajectory

Ground-truth Trajectory

Frenét Planner

Our Planner
Quintic Polynomial Planner

Fig. 6. Comparison of candidate trajectories generated by Frenét planner
used in the baseline PRIME, quintic polynomial planner, and our proposed
planner in PRISC-Net. (Tested on INTERACTION dataset [19]). Using our
heuristic-free, scene context-enhanced optimization-based trajectory generator,
the proposed PRISC-Net can generate more accurate and scene context-
compliant candidate trajectories.
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PRIME Our Method History Trajectory Ground-truth TrajectoryUpper Legend:

Lower Legend: PRIME Our Method Speed Limit

Enter Non-drivable Area Enter Non-drivable Area

Overspeed

Enter Non-drivable Area
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Large Prediction ErrorLarge Prediction ErrorLarge Prediction Error

Fig. 7. Qualitative trajectory prediction results in the planar (upper) and speed dimension (lower) of the proposed PRISC-Net and baseline PRIME in
merging (left), intersection (middle) and roundabout (right) scenarios. Green ellipses represent the cases where predicted trajectories (blue dash lines) enter the
non-drivable areas. Orange rectangular and purple rounded rectangles represent cases where predicted trajectories perform retrograde motions and overspeed,
respectively.

more accurate and scene context-compliant candidate
trajectories, which helps the proposed PRISC-Net make
more accurate predictions.

TABLE II
NUMBER OF TRAFFIC RULE VIOLATION CASES OF PREDICTED

TRAJECTORIES ON THE INTERACTION DATASET

Methods Entering ND Area∗ ↓ Speeding↓ Retrograding↓

PRIME 43,527 37,369 1,950

DenseTNT 2,588 15,051 2,123

HEAT-I-R 906 47 94

PRISC-Net (ours) 286 32 26
∗ND: Non-drivable

b) Understanding the comparison results with
DenseTNT: Table I indicates that our proposed PRISC-
Net outperforms the baseline DenseTNT [12] with a large
decrease of prediction error and traffic rule violations on both
real-world INTERACTION and simulated datasets. On the
exiD dataset, the proposed PRISC-Net also achieves better
prediction accuracy (minFDE and MR), compared with the
baseline DenseTNT.

History Trajectory Our MethodGround-truth Trajectory DenseTNT

Fig. 8. Qualitative trajectory prediction results of the proposed PRISC-Net
and the baseline DenseTNT in interactive scenarios. The predicted trajectories
of our proposed method (red square) coincide better with the ground truth
(green cross).

The qualitative trajectory prediction results of the baseline
DenseTNT and the proposed PRISC-Net are plotted in Fig. 9
(INTERACTION datatset) and Fig. 11 (the simulatied dataset).
From the qualitative (cf. Fig. 9 and Fig. 11) and quantitative
results in Table I and Table II, we can conclude that:

• In the path target prediction stage, our proposed scene
context-aware path search approach predicates more ac-
curate path targets, which aids the proposed PRISC-Net
in achieving better overall performance. In contrast, the
baseline DenseTNT samples a larger number of path
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DenseTNT Our Method History Trajectory Ground-truth TrajectoryUpper Legend:

Lower Legend: DenseTNT Our Method Speed Limit
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Retrograding

Overspeed

Enter Non-drivable Area
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Fig. 9. Qualitative trajectory prediction results in the planar (upper) and speed dimension (lower) of the proposed PRISC-Net and baseline DenseTNT
in merging (left), intersection (middle) and roundabout (right) scenarios. The green ellipse and gray triangle indicate the case where predicted trajectories
enter non-drivable areas and are kinematically unfeasible, respectively. Orange rectangular and purple rounded rectangles represent the cases where predicted
trajectories perform retrograding motions and overspeed, respectively.

targets. In fact, dense sampling typically degrades the
overall performance, which is illustrated in Section VI-C1
and Fig. 13. In addition, the baseline DenseTNT samples
candidate path targets from the current position along the
entire possible path to the very end, without considering
whether certain parts of the path are infeasible. In con-
trast, using the implicit scene context information, our
proposed scene context-aware path search strategy avoids
the dense sampling process and only searches the feasible
part of paths constrained by scene context.

• Unlike the baseline DenseTNT that regresses trajectories
in an end-to-end manner, our proposed PRISC-Net takes
into account implicit scene context and kinematic con-
straints when generating candidate trajectories. Therefore,
it can guarantee the kinematic and context feasibility of
predicted trajectories (cf. Section V-B).

• Taking advantage of the interaction-aware trajectory eval-
uator, our proposed PRISC-Net can effectively capture
the interaction among future trajectories. Therefore, the
proposed PRISC-Net can generate more accurate multi-
modal trajectories in highly interactive complex scenarios
(Fig. 8).

c) Understanding the comparison results with HEAT-
I-R: On the three test datasets, the proposed PRISC-Net
consistently outperforms the baseline HEAT-I-R in terms of
all evaluation metrics when predicting multiple trajectories
(Table I).

From the qualitative study results shown in Fig. 10, 11 and
statistics in Table II, we can conclude that:

• Fully utilizing both explicit and implicit scene context
improves the prediction accuracy and feasibility. For
explicit scene context, in contrast to the baseline HEAT-
I-R that utilizes a rasterized map, the proposed PRISC-
Net encodes the HD map as vectorized representation,
which provides better structural features [12]. In addition,
using the implicit scene context information, the proposed
PRISC-Net can capture extra context features than the
explicit map-dependent HEAT-I-R.

• Taking advantage of the joint model- and learning-based
pipeline, the proposed PRISC-Net outperforms the pure
end-to-end approaches. During the model-based path tar-
get prediction and candidate trajectory generation stage
of our proposed framework, implicit scene context and
kinematic constraints are effectively incorporated, making
the predicted trajectories more accurate, feasible, and



12

HEAT-I-R Our Method History Trajectory Ground-truth TrajectoryUpper Legend:
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Fig. 10. Qualitative trajectory prediction results in the planar (upper) and speed dimension (lower) of the proposed PRISC-Net and baseline HEAT-I-R in
merging (left), intersection (middle) and roundabout (right) scenarios. Green ellipses and gray triangles represent the cases where predicted trajectories (blue
dash lines) enter non-drivable areas and are kinematically unfeasible, respectively. Orange rectangular and purple rounded rectangles represent the cases where
predicted trajectories perform retrograding motions and overspeed, respectively.

context-compliant.

C. Ablation Study

To evaluate the effectiveness and strength of each compo-
nent of the proposed PRISC-Net, we conduct an ablation study
and compare the proposed components (reachable path search,
candidate target prediction, feasible trajectory generation, and
trajectory evaluation) with those in the baseline PRIME [17]
on the INTERACTION dataset.

1) Reachable Path Search: To improve the efficiency of
path target prediction and guarantee the scene-context compat-
ibility of candidate paths, the proposed PRISC-Net utilizes im-
plicit scene context (e.g., speed limits, traffic signs) to restrict
the search of reachable paths. To validate its effectiveness, we
compare the performance of the candidate path target predic-
tors with reachable paths searched by the proposed PRISC-
Net and the baseline PRIME (in Fig.13). The target prediction
with reachable paths searched by PRISC-Net outperforms the
baseline PRIME in accuracy. In addition, the training of the
target predictor of the proposed PRISC-Net is more time-
efficient. Compared to the baseline PRIME which takes about
30 minutes for each iteration during training, the training

time of the target predictor of PRISC-Net is approximately
6 minutes per iteration. To investigate the factors affecting the
training efficiency, we compared the length of predicted paths
and the number of candidate targets sampled by PRIME and
PRISC-Net:

• Path length: According to Table III, the average length of
reachable path searched by PRISC-Net is approximately
30 meters shorter than those by PRIME (Fig.12), greatly
improving efficiency. This conclusion works for each
type of scene in INTERACTION. The average length of
reachable paths searched by PRIME and PRISC-Net in
the roundabout, intersection, merging scene are 121.7,
89.3, 96.5 m and 52.8, 77.1, 80.1 m, respectively (tested
on INTERACTION validation set). It is worth mentioning
that for roundabout scenarios, the length of reachable
paths in PRISC-Net is only half of the length in baseline
PRIME. Since roundabout scenarios are more interactive,
they involve lower speed limits and denser traffic signs.
Such factors must be considered for a more efficient
search of candidate paths.

• Number of candidate path targets: According to Table III,
the number of sampled candidate targets of PRISC-
Net is only one-third of the number of targets of the
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316-247

Predicted Trajectories in Frame 257
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Predicted Trajectories in Frame 425
History Trajectory Our MethodGround-truth Trajectory DenseTNT PRIME HEAT-I-R
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Fig. 11. Overview of the map and recorded dataset in a simulated scenario (first row) and qualitative prediction results at frame 44 (second row), 257 (third
row) and 425 (forth row). For qualitative prediction results, the first figure compares trajectories generated by all methods; the second, third, and fourth figures
show comparisons between our proposed method and the baseline PRIME, DenseTNT, and HEAT-I-R. The green ellipse and gray triangle indicate the case
in which predicted trajectories enter non-drivable areas and are kinematically unfeasible, respectively. The orange rectangles represent the cases in which
predicted trajectories perform retrograde motions.
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Fig. 12. Qualitative reachable paths searched by the baseline PRIME (1 and 3) and our proposed PRISC-Net (2 and 4) in roundabout scene (1 and 2) and
intersection scene (3 and 4).

TABLE III
AVERAGE LENGTH AND NUMBER OF CANDIDATE PATH TARGETS

SAMPLED FROM PATHS SEARCHED BY BASELINE PRIME AND PRISC-NET

Path Type Dataset Average Length Number of Candidate Path Targets

AVG1±STD1 AVG1±STD1 MAX2 MIN2

PRIME Train 98.99±34.13 1,017.61±503.57 8,561 11

Path Val 99.03±34.73 959.97±481.77 8,610 31

PRISC-Net Train 71.65±25.52 322.59±260.54 1,601 5

Path Val 70.76±24.99 311.78±251.43 1,490 6

1 AVG: average value; STD: standard deviation.
2 MAX/MIN: maximum/minimum value.
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Fig. 13. The performance of candidate target predictor with different inputs.

baseline PRIME in both training and test sets. This is
also an important factor that improves the efficiency of
the proposed approach.

2) Candidate Path Target Prediction: As described in Sec-
tion V-A2, the proposed PRISC-Net extracts rich scene fea-
tures with implicit context states. The performance comparison
of candidate target prediction of approaches with and without
state features is shown in Fig.13. These results indicate that by
incorporating additional state features, the proposed PRISC-
Net achieves better accuracy in target prediction.

3) Feasible Trajectory Generation: We compare the tra-
jectories generated by the baseline PRIME (based on basic
Frenét planner [38] with fixed parameters for each traffic
scenario), and our proposed PRISC-Net with an optimization-
based planner and dynamic parameters. As shown in Table IV,

TABLE IV
THE QUALITY OF PREDICTED TRAJECTORIES GENERATED BY PRIME AND

PRISC-NET

Method
Training Set Validation Set

minADE↓ minFDE↓ minADE↓ minFDE↓
baseline PRIME 0.719 1.118 0.716 0.819

PRISC-Net (ours) 0.205 0.322 0.194 0.321

the trajectories generated by our PRISC-Net achieve better
accuracy than those of baseline PRIME, on both INTERAC-
TION training and validation set. Therefore, using dynamic
parameters and scene-context information in the optimization-
based planner greatly improves the accuracy of the predicted
candidate trajectories, even in the presence of inaccurate
reference lines and vehicle state heuristics (Similar results can
also be found in Fig. 6).

We conducted further comparative experiments to validate
these factors. In these experiments, ground-truth parameters
are given to these two planners to generate trajectories.
The experiment results are as follows: the average minADE
of our planner and Frenét planner [38] are 0.19±0.23 and
1.57±27.83, respectively. In addition, the average minFDE
are 0.00±0.00 and 3.52±52.72, respectively (Numbers after
± are standard deviation). These results further indicate that
the proposed planner-based PRISC-Net can generate feasible
trajectories with higher accuracy, without requiring precise
trajectory parameters.

4) Trajectory Evaluation: To validate the effectiveness of
the trajectory evaluator employed by the proposed PRISC-
Net in modeling agent-scene interactions, we compare the
performance of learning-based trajectory evaluators with and
without features Fsce outputted by the scene feature extractor.
As shown in Table V, the trajectory evaluator without Fsce

outperforms feature-based evaluators with lower minFDE and
MR, and achieves comparative minADE. The results indicate
that the trajectory evaluator employed in the proposed PRISC-
Net can effectively capture agent-agent and agent-scene inter-
actions without requiring additional feature extraction.

D. Real-world Road Test

To demonstrate the effectiveness of our proposed PRISC-
Net in real-world autonomous driving applications, we con-
ducted real-world road tests based on the testing vehicle shown
in Figure 5 and Section VI-A.
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TABLE V
COMPARISON THE PERFORMANCE OF TRAJECTORY EVALUATOR WITH

AND WITHOUT LEARNED SCENE FEATURES

Module minADE1↓ minFDE1↓ MR2↓

With Fsce 0.208 0.526 0.036

Without Fsce 0.214 0.425 0.029
1 minA/FDE: minimum average/final displacement error.
2 MR: miss rate.

Front  End Camera View Back  End Camera View

Point Cloud of the Scenario High Definition Map of the Scenario 

Target Vehicle
Surrounding Vehicle
Ego Vehicle

Fig. 14. Sensing data of the road test scenario captured by the testing vehicle
sensors: RGB images (upper left and upper right), LiDAR point clouds (lower
left). High-definition map (lower right) is also utilized.

1) Testing Scenario: The road test scenario is shown in
Fig. 14. It contains an intersection with multiple directional
traffic controlled by traffic signals. We select the van driving
in front of the ego vehicle as the target vehicle (shown in the
front camera view of Fig. 14) which makes a left turn at the
intersection. The target vehicle’s future motion in the next 20
seconds (the lower right subfigure of Fig. 14) is continuously
predicted by the proposed PRISC-Net, which runs on the
vehicle-mounted computer.

2) Experiment Results: The quantitative and qualitative
results of real-world road test are shown in Table VI and
Fig. 15, respectively. For both single-modal and multi-modal
predictions in the 20-second continuous prediction cycle, the
proposed PRISC-Net achieves minADE and minFDE of less
than 0.4m and 0.1m, respectively, with approximate zero MR
and TRV. The test results indicate that the proposed PRISC-
Net is effective in predicting accurate and feasible motions of
surrounding vehicles in real-world applications.

3) Runtime Analysis: During operation, the inference time
of the proposed PRISC-Net is affected by the complexity of

TABLE VI
PERFORMANCE OF PRISC-NET ON REAL-WORLD ROAD TEST

Method k minADE minFDE MR TRV(%)

PRISC-Net 1 0.382 0.040 0.000 0.00

6 0.380 0.032 0.000 0.00

Frame=35 Frame=65

Frame=95 Frame=125

History Trajectory Ground-truth Trajectory PRISC-Net

Fig. 15. Qualitative trajectory prediction results from real-world road tests at
different time intervals.

the scenario, the density of path target sampling, and candidate
trajectory generation density. It takes 588 ms (on average) to
predict a target vehicle’s future motion, by running the codes in
Python with a single thread on the vehicle-mounted computer
( Section VI-A1). More specifically, the average time cost of
target prediction, trajectory generation and evaluation is 288,
99, and 201 ms, respectively. Therefore, the proposed PRISC-
Net achieves desirable computational efficiency and shows
good potential for real-time autonomous driving applications.
In addition, PRISC-Net could be implemented with a more
efficient programming language (e.g., C++) with a parallel
computing mechanism to reduce the time cost further.

E. Discussions

From the evaluation results, we have the following obser-
vations:

• Fully encoding the scene context information can improve
prediction accuracy. The proposed PRISC-Net utilizes the
abundant implicit scene context information to restrict the
drivable area of the target vehicle and extract scene fea-
tures, which helps to make more accurate candidate path
target predictions, ultimately resulting in more accurate
predicted trajectories.

• The optimization-based planner helps to guarantee the
feasibility of predicted candidate trajectories: The pro-
posed Optimization-based planner allows the proposed
PRISC-Net to effectively incorporate kinematic and
scene-context constraints, making the generated candidate
trajectories more robust and feasible.

• Modeling complex interactions can greatly improve the
quality of predicted trajectories. The agent-to-agent and
agent-to-environment interactions are effectively modeled
by the attention mechanism in the proposed trajectory
evaluator, which aids the proposed PRISC-Net in predict-
ing more reasonable multi-modal trajectories in complex
and interactive scenarios.

VII. CONCLUSION

This paper has presented a scene context-aware behav-
ior prediction framework for forecasting surrounding vehi-
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cles’ future trajectories in highly interactive and complex
scenarios. The proposed PRISC-Net combines the strength
of both model- and learning-based approaches to generate
kinematic feasible, context-compliant, and interaction-aware
trajectory predictions. The proposed candidate path target
predictor can fully utilize scene context to make accurate and
context-compliant target waypoint predictions. The proposed
trajectory generator can generate kinematic feasible candidate
trajectories. Finally, the learning-based trajectory evaluator
can capture complex interactions and generate accurate final
predictions. We evaluated the proposed framework on real-
world and simulated behavior datasets, and its effectiveness is
also demonstrated in road test via implementations on a testing
vehicle. Experimental results show that the proposed PRISC-
Net outperforms the state-of-the-art end-to-end methods in
terms of prediction accuracy, feasibility, and scene context
compliance.

Taking advantage of the joint model- and learning-based
pipeline and the scene context awareness, our proposed frame-
work shows good potential for trajectory prediction in real-
world autonomous driving applications in complex scenarios,
and it is scalable for other applications beyond the autonomous
driving domain.

For future work, one promising direction is to address
the diversity of traffic participants by introducing a category-
specific attribute encoder since the behavior patterns of differ-
ent traffic participants vary broadly. Another possible work is
incorporating an adaptation mechanism to handle corner cases
where the target vehicles do not follow traffic rules.
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