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SUMMARY

Learning to seek rewards and avoid punishments, based on positive and negative choice outcomes, is
essential for human survival. Yet, the neural underpinnings of outcome valence in the human brainstem
and the extent to which they differ in reward and punishment learning contexts remain largely elusive.
Here, using simultaneously acquired electroencephalography and functional magnetic resonance imaging
data, we show that during reward learning the substantia nigra (SN)/ventral tegmental area (VTA) and locus
coeruleus are initially activated following negative outcomes, while the VTA subsequently re-engages exhib-
iting greater responses for positive than negative outcomes, consistent with an early arousal/avoidance
response and a later value-updating process, respectively. During punishment learning, we show that
distinct raphe nucleus and SN subregions are activated only by negative outcomes with a sustained post-
outcome activity across time, supporting the involvement of these brainstem subregions in avoidance
behavior. Finally, we demonstrate that the coupling of these brainstem structures with other subcortical
and cortical areas helps to shape participants’ serial choice behavior in each context.

INTRODUCTION

Humans, and other animals, constantly use positive and nega-

tive feedback to adjust their behavior toward maximizing re-

wards and minimizing punishments. Positive outcomes (reward

or omission of punishment) increase the likelihood of repeating

the same choice, and negative outcomes (omission of reward

or punishment) increase the likelihood of avoiding that choice

in the future. While distinct brainstem subregions have been

implicated in reinforcement learning,1–4 especially in invasive

non-human animal studies, a full spatiotemporal account of the

human brainstem pathways associated with outcome valence

during reward and punishment learning is still lacking. Human

functional magnetic resonance imaging (fMRI) studies often

lack the necessary sensitivity to isolate small subcortical struc-

tures but, more critically, lack the temporal resolution to identify

the relative timing with which subcortical outcome valence sig-

nals might emerge. Moreover, a direct comparison of these tem-

poral dynamics during human reward vs. punishment learning—

under the same experimental setting—is also lacking.

During reward learning, animal electrophysiological studies

identified fast dopaminergic responses in substantia nigra/

ventral tegmental area (SN/VTA) complex, with increased activity

in response to unexpected positive outcomes and decreased

activity in response to unexpected negative outcomes.2,5–9

Non-human animal studies also implicated noradrenergic neu-

rons in the locus coeruleus (LC) in reward learning1,10–12 by

enhancing arousal in response to salient events, such as omis-

sions of expected rewards, and redirecting attention toward

negative outcomes and facilitate behavioral change.1,11,13–15 In

humans, the evidence for outcome valence signals in SN/VTA

and LC is scarcer but largely consistent with non-human animal

studies.16–19

The role of brainstem subregions in signaling outcome valence

in punishment learning is more debatable. For example, while

some non-human animal studies argued that outcome valence

is encoded by SN/VTA neurons in a similar manner as in reward

learning (i.e., increases/decreases following positive/negative

outcomes),7 others point to mainly positive activations of SN/

VTA neurons following negative punishing outcomes,6,20

possibly via distinct neuronal subpopulations.2,5,7,21–24 Similarly,

raphe nucleus (RN) serotoninergic neurons have been implicated

in punishment learning, by responding to negative outcomes and

mediating avoidance behavior,3,25–28 likely via their projections

to other subcortical and cortical areas.29–31 Indirect evidence

for the role of RN in punishment learning also comes from

human pharmacological studies using serotoninergic agonists/

antagonists.32–38

While the SN/VTA, LC, and RN have been implicated in reward

and punishment learning, the extent to which they encode

different outcome valence signals that cascade rapidly in

time—and are thus intermixed at the level of macroscopic fMRI
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activity and likely single-neuron responses as well39—remains

unclear. Importantly, these brainstem structures broadcast

widely to downstream cortical areas such that these different

outcome valence signals could be independently communicated

to separable cortical areas to regulate adaptive behavioral re-

sponses.1,30,40–44 For example, using fusion of electrocenpha-

lography (EEG) and fMRI data, Fouragnan et al.45 showed that

in reward learning, an early outcome valence system initiated

an automatic alertness response following negative outcomes

while in parallel downregulated activity of a later reward-related

system to promote avoidance learning. Conversely, positive out-

comes primarily activated the later system, consistent with a role

in approach learning and value updating.

This organization of neuronal information flow offers an oppor-

tunity to first intercept and decouple these separable signals of

outcome valence at the level of cortical responses (i.e., down-

stream of their brainstem counterparts) using high-temporal-res-

olution EEGmeasurements. Subsequently, these electrophysio-

logical signatures can be mapped back onto distinct subcortical

structures using fusion of EEG and concurrently acquired high-

resolution brainstem fMRI. Importantly, this approach can be de-

ployed on both reward- as well as punishment-based learning,

within the same experimental session, to enable direct compar-

isons of the spatiotemporal brainstem pathways involved in each

context, a critical endeavor toward a comprehensive under-

standing of human reinforcement learning.

Here, using simultaneously acquired EEG-fMRI, we show that

there are significant differences in how outcome valence signals

are encoded in the human brainstem. Critically, our findings are

uniquely enabled via our EEG-fMRI fusion and not seen with a

traditional stand-alone fMRI analysis.

Specifically, during reward learning, we show that the SN/

VTA and LC are initially activated by negative outcomes, while

a distinct VTA cluster subsequently exhibits greater responses

for positive than negative outcomes, consistent with an early

arousal/avoidance response and a later value-updating pro-

cess, respectively. During punishment learning, RN and SN

are only activated by negative outcomes and show more sus-

tained post-outcome activity across time, supporting the role

of these brainstem subregions in avoidance behavior. We

corroborate these findings further by demonstrating that the

coupling of these brainstem structures with other subcortical

and cortical areas help shape participants’ serial choice

behavior.

RESULTS

Probabilistic reversal-learning task performance
We analyzed simultaneous EEG-fMRI data from 28 participants

while they performed a probabilistic reversal-learning task

divided into reward and punishment blocks. In the reward

context, participants could win one (positive outcome) or zero

(negative outcome) points, and in the punishment context, they

could lose zero (positive outcome) or one (negative outcome)

points. On each trial, subjects were asked to choose between

two abstract symbols, which were associated with different

probabilities (70% and 30%) of positive or negative outcomes,

and through feedback, they had to learn to select the symbol

with the highest probability of positive outcomes in the reward

context and to avoid the symbol with the highest probability of

negative outcomes in the punishment context (Figure 1A). How-

ever, in each block ‘‘reversals’’ in contingencies were introduced

whereby the high/low probability was re-assigned to the oppo-

site symbol, and subjects entered a new learning phase. Each

block comprised three reversals (every 20 ± 2 trials), resulting

in four learning phases.

Participants’ choices tracked these reversals (Figure 1B) and

were probabilistic based on expected values assigned to each

symbol on individual trials (Figure S1A), in line with the principles

of reinforcement learning (see STAR Methods). Choice accu-

racy, as well response times, did not differ between reward

and punishment contexts (both p > 0.44; Figures 1C and 1D).

As expected, participants switched their choices to a larger

extent following negative than positive outcomes (F(1,27) =

114.86, p < 0.001, Figure 1E) and were also slower when making

a choice following negative outcomes (F(1,27) = 4.88, p = 0.036,

Figure 1F), regardless of the context (both interactions outcome

valence3 context, p > 0.68). Moreover, participants updated the

expected value of the chosen stimulus (estimated using a rein-

forcement-learning model) to a larger extent following negative

outcomes than following positive outcomes (F(1,27) = 341.32,

p < 0.001, Figure 1G) in both contexts (interaction outcome

valence 3 context, p > 0.75). Taken together, these findings

suggest that while choice behavior is comparable across reward

and punishment contexts, positive and negative outcomes

contribute differently to behavioral adaptation, with the negative

outcomes being the main driver of the behavioral changes

observed in our task.

Temporal cascade of outcome valence signals
To identify temporally distinct neuronal signals associated with

outcome valence (positive and negative) and to compare these

signals across reward and punishment contexts, we used sin-

gle-trial multivariate discriminant analysis of the EEG signals

locked to the delivery of the outcome. This analysis was per-

formed separately for each participant. Specifically, we esti-

mated spatial weightings of the EEG sensors discriminating be-

tween positive vs. negative outcome trials across different

outcome-locked time windows (from �100 to 850 ms relative

to outcome onset)45,46 in each of the reward and punishment

contexts separately.

Applying these temporally specific spatial weights to single-

trial EEG data produces a measurement of the trial-wise ampli-

tudes of the signals discriminating outcome valence. These am-

plitudes (y-values; see STAR Methods, Equation 5) can be

thought of as a proxy of the neuronal response variability

following positive and negative outcomes, with activity common

to both types of outcomes removed. Our discriminator was de-

signed to map positive and negative outcomes to a continuum

of positive and negative discriminator amplitudes, respectively.

We view these amplitudes as representing a graded response

to the different outcome types: large positive amplitudes are

reflective of a strong response to a positive outcome, large nega-

tive amplitudes are reflective of a strong response to a negative

outcome, and intermediate magnitude amplitudes are reflective

of a weaker response to either outcome. While the outcome was
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categorical (positive or negative), we view these amplitudes as

representing endogenous variability in the encoding of individual

trial outcomes, which we will leverage to enable the fusion of

EEG with fMRI.

To quantify the discriminator’s performance over time, we

used the area under a receiver operating characteristic curve

(that is, Az value) with a leave-one-out trial cross-validation

approach. To visualize the spatial distribution of the relevant

discriminating activity, we computed forward models of this ac-

tivity over time (see STAR Methods, Equation 6). Across partici-

pants, we identified a time period of significant (above chance)

discriminator performance, representing a cascade of three

spatiotemporally distinct EEG components discriminating be-

tween positive and negative outcomes, in both reward and

punishment contexts. Specifically, a first midline component

emerged between 200 and 280 ms, a second centroparietal

component between 320 and 400 ms, and a third temporoparie-

tal and far frontal component between 460 and 540ms (Figure 2).

The spatial topographies for the three components were compa-

rable across reward and punishment contexts, suggestive of

potentially similar cortical neural generators driving the relevant

outcome valence signals over time. In a separate control exper-

iment, we showed that none of these components arose due to

differences in the visual properties of the outcome stimuli (see

Figure S1B).

Spatiotemporal dissociation of outcome valence signals
In stand-alone fMRI, outcome valence signals would typically be

identified via a categorical contrast of positive vs. negative

outcome trials. Critically, however, there are two major short-

comings with this approach. Firstly, the sluggish nature of the

blood-oxygen-level-dependent (BOLD) signal precludes a tem-

poral dissociation of the relevant neural systems (i.e., activations

maps are ‘‘static’’), which as we demonstrated above are

Figure 1. Experimental task and behavioral measures

(A) Schematic representation of the probabilistic reversal-learning task. On each trial, subjects had to choose between two abstract symbols carrying different

probabilities (70% and 30%) of yielding positive and negative outcomes, in separate reward and punishment contexts. Once a choice was made, the outcome

was revealed by using different arrows in each context. In the reward context, participants could win one (positive outcome) or zero (negative outcome) points,

and in the punishment context they could lose zero (positive outcome) or one (negative outcome) points.

(B) Trial-by-trial percentage of choosing the ‘‘correct’’ symbol (i.e., the symbol associated with the highest probability of yielding positive outcomes) across

participants in the reward and punishment contexts (n = 28 subjects). Shaded gray areas represent the ‘‘reversals’’ in the contingencies. Each central line

represents the mean, and the filled colored areas represent the ±standard error of the mean.

(C) Mean percentage of ‘‘correct’’ choices in reward and punishment contexts.

(D) Mean responses times in reward and punishment contexts.

(E) Mean percentage of switches following positive and negative outcomes in reward and punishment contexts.

(F) Mean response times following positive and negative outcomes in reward and punishment contexts.

(G) Mean update of the expected value of the chosen stimulus following positive and negative outcomes in reward and punishment contexts. In (C)–(G), con-

nected dots represent data points from the same subject; the error bars displayed on the side of the scatterplots indicate the sample mean ± standard error of the

mean.
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cascading in rapid temporal succession. Secondly, conventional

fMRI contrasts reveal only relative differences between categor-

ical variables (here, positive vs. negative outcomes) and do not

consider endogenous neural fluctuations within nominally iden-

tical outcomes (i.e., within positive and negative outcomes,

separately) that could afford additional explanatory power in

revealing the underlying neural networks (especially in smaller

subcortical structures suffering from lower signal-to-noise ratio

in the fMRI).

Here, we used the endogenous single-trial variability in the

electrophysiological amplitudes of the three temporally distinct

EEG components of outcome valence (y-values) to build sepa-

rate parametric EEG-informed fMRI regressors for positive and

negative outcomes. In other words, we leveraged the endoge-

nous trial-by-trial variability within each of the two outcome types

to obtain a better understanding of how they independently

explain changes in the BOLD signal in each of the three time win-

dows. Ultimately, this EEG-fMRI fusion controls for unspecific

valence effects embedded in a conventional contrast and en-

sures that the relevant brain activations are now also defined in

terms of their relative timing. Using this approach and brain-

stem-tailored fMRI sequences (Figure S2A), we aimed to test

how BOLD activity in ‘‘learning-associated’’ subcortical regions

(e.g., SN/VTA, RN, and LC) map onto each of the three outcome

valence EEG components and to compare those activations be-

tween reward and punishment contexts.

Importantly, we note that the trial-by-trial variability in our EEG

component amplitudes is likely influenced mainly by cortical re-

gions near the recording electrodes and to a lesser extent by

distant (e.g., subcortical) structures. The originality of our

approach, however, hinges on our ability to exploit this trial-

wise variability to also reveal activations from deeper subcortical

structures provided their BOLD signal covaries systematically

with that of the cortical sources of our EEG (e.g., by broadcasting

relevant activity to dedicated cortical target sites).1,30,41 To

further validate this proposition, we collected additional data

from a separate passive visual stimulation experiment and

confirmed that superficial EEG activity from the visual pathway

can be used to expose covarying activity in the superior collicu-

lus in the brainstem and with additional explanatory power

compared with a standard fMRI analysis (see Figure S2D). For

our main experiment, we used anatomical masks to define broad

regions of interest for the SN/VTA, LC, and RN and report any re-

sulting spatial dissociations within eachmask based on the loca-

tion of the observed activations. To additionally characterize the

spatiotemporal dynamics of the EEG cortical sources, we

extended our analyses to the rest of the brain covered by our

fMRI field of view. For comparison, and to further demonstrate

the advantage of the EEG-fMRI fusion, we first performed stan-

dard generalized linear model (GLM) analyses in which we set

categorical BOLD predictors for outcome valence, as commonly

done in stand-alone fMRI studies.

Standard fMRI analysis of outcome valence
In a standard fMRI analysis, we contrasted categorical outcome

regressors for positive and negative outcomes (GLM 1; STAR

Methods). This analysis did not reveal any brainstem clusters

with greater BOLD response for positive than negative outcomes

in either the reward nor the punishment context. The inverse

contrast revealed greater BOLD response to negative compared

to positive outcomes in the ventral portion of right SN (without

overlapping with VTA) in the reward context and in a larger clus-

ter extending across the right SN and VTA and into the ventral

portion of left SN in the punishment context (Figure 3A, see

also Figure S3A and Table S1). Overlapping these clusters in

reward and punishment contexts showed a similar pattern of ac-

tivations only in the right ventral portion of SN (Figure 3A, see

also Figure S3A). In the punishment context, we also found

greater activation to negative compared to positive outcomes

in median RN. These results broadly suggest that negative out-

comes engage the brainstem to a larger extent than positive out-

comes, in both reward and punishment contexts, consistent with

the behavioral results reported above.

Assessing the categorical contrasts of positive > negative and

negative > positive outcomes beyond the brainstem (across the

remaining fMRI field of view, Figure S2A) revealed distributed

and broadly similar brain networks across reward and punish-

ment contexts (Figure 4A, see also Figure S3B and Table S2).

Specifically, regions in which the BOLD signal was greater for

positive than negative outcomes included areas of the human

reward/value network such as the ventromedial prefrontal cor-

tex, striatum, and amygdala, whereas regions in which the

Figure 2. EEG-temporal components of

outcome valence

Multivariate discriminator performance (Az) during

positive vs. negative outcome discrimination of

outcome-locked EEG responses in reward (left) and

punishment (right) contexts. Shaded gray areas

represent the three outcome value components

with spatially distinct scalp topographies (averaged

across each time window). Each central line repre-

sents the mean across subjects (n = 28), and the

filled colored areas represent the ±standard error of

themean. The dotted line indicates an Az value of 0.5

(chance level).
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BOLD signal was greater for negative than positive outcomes

included the thalamus, insula, and prefrontal cortex. Overall,

these results agree with a large body of literature reporting

activations relating to contrasts of positive vs. negative

outcomes.47–50

EEG-informed fMRI analysis of outcome valence
While the standard fMRI analysis revealed a set of activations in

the brainstem for the negative > positive outcome contrast, their

relative timing remains unclear. It is also possible that additional

brainstem clusters might activate transiently, including some

that show the opposite effect (i.e., greater response to positive

than negative outcomes). In turn, these signals could be multi-

plexed and averaged out at the level of macroscopic BOLD ac-

tivity when using a standard fMRI analysis. To obtain a more

comprehensive understanding of the spatiotemporal dynamics

of outcome valence in the brainstem activations, we leveraged

the relevant electrophysiological components we obtained

above (Figure 2) to perform an EEG-informed fMRI analysis

(GLM 2; see STAR Methods). In this analysis, we used the sin-

gle-trial variability in the outcome valence y-values derived for

each of the three temporally distinct EEG components to build

separate fMRI regressors for positive and negative outcomes

(i.e., 6 regressors; 2 outcome types 3 3 time windows). We

repeated this EEG-informed fMRI analysis for each of the reward

and punishment contexts separately. Finally, we tested the con-

trasts for positive > negative outcomes and negative > positive

outcomes on these EEG-informed fMRI regressors. We note

that because negative outcomes were mapped to negative

y-values in the EEG discrimination analysis (see above), we flip-

ped the sign of the y-values in the negative outcome regressors

so that the contrasts between positive and negative outcome re-

gressors remained meaningful. The GLMs described above

(GLM 2) included concurrent EEG-informed regressors for the

three temporally distinct EEG components and were designed

specifically to detect brain activations that were stronger/unique

for a specific component (that is, cannot be explained by any

shared variance across regressors). However, it is possible

Figure 3. Spatiotemporal dissociation of outcome valence signals in the brainstem

(A) Activations in the brainstem for negative > positive outcomes in reward (upper panel) and punishment (bottom panel) contexts using standard categorical

outcome regressors (all Z scores >2.3, cluster corrected; GLM 1, see STAR Methods; see also Figure S3A and Table S1).

(B) Activations in the brainstem for positive > negative and negative > positive outcomes in reward and punishment contexts using separate parametric re-

gressors for positive and negative outcomes based on the EEG single-trial variability for three distinct outcome-locked time windows (all Z scores >2.3, cluster

corrected). Opaque clusters resulted fromGLMs that included EEG-informed regressors for all three time windows (GLM 2, see STARMethods), and transparent

clusters resulted from GLMs that included EEG-informed regressors for each time window separately (GLM 3, see STAR Methods; see also Figure S4A and

Table S3). In (A) and (B), bars depict mean parameter estimates (i.e., betas) for the BOLD response for positive and negative outcomes within each cluster across

subjects (n = 28). Error bars indicate the mean ± standard error of the mean. In each depicted slice, Z is the z coordinate in the standard MNI brain. SN/VTA,

substantia nigra/ventral tegmental area; LC, locus coeruleus; RN, raphe nucleus.
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that a brain region that was comparably activated across the

three time windows could remain undetected in the above anal-

ysis after the shared variance in the three time windows was

factored out. To address this, we also explored additional

EEG-informed GLMs separately for each of the temporally

distinct components (GLM 3; STAR Methods).

In the reward context, and unlike the standard fMRI analysis,

we dissociated temporally distinct brainstem activation profiles

for both the negative > positive and positive > negative contrasts

(GLM 2). Specifically, we identified a cluster in LC and a cluster

encompassing VTA and the ventral portion of right SN exhibiting

greater response for negative compared with positive outcomes

in the first time window, with a distinct cluster in VTA exhibiting a

greater response for positive compared with negative outcomes

in the second time window (Figure 3B and Table S3). We did not

find any significant activations in either contrast in the third time

window. Additional separate analyses for each of the temporally

distinct components (GLM 3) did not show any significant activa-

tions in the brainstem regions of interest in any of the three time

windows, suggesting that the activations described above for

the reward context were transient and time window specific.

Importantly, the early activations in LC and later activations to

positive > negative outcomes in VTA were not detected in the

standard fMRI analysis. These results further confirm that the

endogenous variability in our EEG-derived measure of outcome

valence can offer additional explanatory power over and above

standard categorical contrasts in fMRI analysis. Taken together,

these findings are consistent with an early automatic alertness

response to negative outcomes driven by LC and SN, followed

by a later VTA response likely involved in updating value and

driving reward-based learning.

In the punishment context, a cluster encompassing part of

dorsal and median RN showed greater response for negative

compared with positive outcomes in the first time window (Fig-

ure 3B, opaque clusters); no clusters survived correction in the

other time windows (GLM 2). Additional separate analysis for

each of the temporally distinct components (GLM 3) revealed a

median RN cluster that showed greater response for negative

than positive outcomes across the three time windows (Fig-

ure 3B, transparent clusters). We also found SN clusters (not

overlapping with the VTA) showing greater response for negative

than positive outcomes across the second and third time win-

dows, albeit with different spatial locations (Figure 3B, trans-

parent clusters). Specifically, we found a cluster in the right

ventral portion of SN in the second time window and a separate

cluster in the left dorsal portion of SN in the third time window

(Table S3). These results suggest a quick engagement of the

RN to negative outcomes, which persists throughout the

outcome period, along with a later involvement of distinct por-

tions of the SN (relative to reward learning) consistent with a

role of these subregions in avoidance learning.

Whereas the reward context was characterized by transient

LC and SN/VTA responses to negative and negative/positive

outcomes (respectively), the punishment context was charac-

terized by more sustained responses in the RN and distinct

SN subdivisions only to negative outcomes. To further test

the extent to which the brainstem responded similarly/differ-

ently to outcome valence in reward vs. punishment contexts,

Figure 4. Spatiotemporal dissociation of outcome valence signals in the entire fMRI field of view

(A) Activations for positive > negative and negative > positive outcomes in reward (upper panel) and punishment (bottom panel) contexts using standard cat-

egorical outcome regressors (all Z scores >2.3, cluster corrected; GLM 1, see STAR Methods; see also Figure S3B and Table S2, n = 28 subjects).

(B) Activations for positive > negative and negative > positive outcomes in reward and punishment contexts using separate parametric regressors for positive and

negative outcomes based on the EEG single-trial variability for the three time windows (all Z scores >2.3, cluster corrected). Opaque clusters resulted fromGLMs

that included the EEG-informed regressors for all three time windows (GLM 2, see STAR Methods), and transparent clusters resulted from GLMs that included

EEG-informed regressors for each timewindow separately (GLM 3, see STARMethods; see also Figure S4B and Table S4, n = 28 subjects). Below each depicted

slice, Z is the z coordinate in the standard MNI brain.
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we extracted the parameter estimates (i.e., betas) from each

cluster and compared them between contexts. We found that

the pattern of activations for positive vs. negative outcomes

within each brainstem cluster was different between

contexts, suggesting that the clusters reported above were pri-

marily driven by the context from which they were derived

(Figure S4A).

While themain focus of this work was to offer a spatiotemporal

account of the neural correlates of outcome valence in the hu-

man brainstem, we additionally inspected the EEG-informed

fMRI positive vs. negative contrasts in the remaining field of

view afforded to us by our fMRI sequence (Figure S2A). We

used these results to obtain a broad view on how brainstem sig-

natures of outcome valence are likely broadcasted onto the cor-

tex. Although we observed stark differences in the representa-

tion of outcome valence in the brainstem across reward and

punishment contexts, other brain areas exhibited broadly similar

spatiotemporal activation patterns across the two contexts (Fig-

ure 4B, opaque clusters; see also Figures S4B and S4C and

Table S4). Specifically, in the first time window, we identified

brain regions with greater responses for negative than positive

outcomes (GLM 2) and that have been implicated in salience

monitoring and negative outcome processing,48,51 such as in-

sula and prefrontal areas (Figure 4B, opaque clusters). During

the second and third timewindows, we identified a network of re-

gions that showed greater response for positive than negative

outcomes (GLM 2) and that comprised mainly regions of the hu-

man valuation system,52 such as the striatum and ventromedial

prefrontal cortex (Figure 4B, opaque clusters). There were addi-

tional activations in the punishment context, mainly in the first

time window.

Additionally, separate GLMs for each the temporally distinct

components (GLM 3) further confirmed broadly similar brain

networks for outcome valence in reward and punishment con-

texts across the three time windows, including insula for

negative > positive outcomes and ventromedial prefrontal cortex

and striatum for positive > negative outcomes (Figure 4B, trans-

parent clusters, see also Table S4). Overall, our results suggest

that while brainstem pathways implicated in reward- and punish-

ment-based learning are largely different, cortical representa-

tions of outcome valence signals are likely converted into a com-

mon currency to drive learning in similar ways, which might

further explain the comparable behavioral measures and EEG

signals across the two contexts.

Brainstem functional connectivity dynamics
To further understand how our temporally resolved brainstem

clusters are coupled with other brain areas and whether the

strength of that coupling is associated with behavioral choices,

we performed additional psychophysiological interaction ana-

lyses. We used the brainstem clusters identified in each time

window as seed regions and the participants’ stay/switch

response in the next trial as psychological regressor. We de-

signed this analysis to test the extent to which brainstem

outcome representations could explain downstream choice

behavior, in accordance with reinforcement learning theory.53

In our analysis, a positive correlation indicates stronger coupling

when the same stimulus is chosen in the next trial (stay), and a

negative correlation indicates stronger coupling when the oppo-

site stimulus is chosen in the next trial (switch).

During reward learning, in the first time window, we found a

negative coupling between the BOLD activity in the LC cluster

and the anterior cingulate gyrus, consistent with the role of this

region in error monitor and switching behavior.54,55 We found a

positive coupling between the SN/VTA cluster in the first time

window and inferior frontal gyrus. In the second time window,

we found a positive coupling between the VTA cluster and brain

areas typically implicated in reward processing (e.g., ventral

striatum, globus pallidum, thalamus), consistent with their role

in reinforcing the rewarded choice (Figure 5, see also

Table S5).41

During punishment learning, we only found a negative

coupling between RN clusters and cortical structures (e.g., fron-

tal medial/orbital and temporal cortex) as well as subcortical

structures (e.g., midbrain, ventral striatum, thalamus, amygdala,

hippocampus). Similarly, the SN was negatively coupled primar-

ily with cortical structures (e.g., frontal medial/orbital, temporal

fusiform/inferior, and occipital cortex) (Figure 5, see also

Table S5). These findings corroborate the interplay between

the brainstem and other subcortical and cortical regions known

to play a role in cognitive control by enhancing avoidance (or

switch) behavior following negative outcomes,30,56 and they

further support the involvement of our identified brainstem clus-

ters in reinforcement learning.

Although we showed above that choice behavior was modu-

lated by the strength of coupling between the brainstem clusters

and other brain areas, we also tested whether the BOLD activity

obtained directly from individual brainstem clusters predicted

stay/switch behavior (see STAR Methods). We found that

BOLD estimates in the VTA cluster during omission of reward

(i.e., negative outcomes in the second timewindow of the reward

context) predicted stay/switch behavior (b = �0.00033, p =

0.029), such that lower BOLD VTA activity for negative outcomes

was associated with higher probability of repeating the choice

(stay) in the next reward trial. Across subjects, higher VTA activity

in response to negative outcomes was positively correlated with

overall accuracy in the reward context (rbend = 0.45, p = 0.0098).

These additional analyses further support the role of the VTA in

modulating reward-based learning/behavior. We did not find

any significant relations between the other individual brainstem

nuclei and stay/switch responses, which suggests that, more

generally, choice behavior does not depend solely on individual

brainstem nuclei but most likely on the strength of their coupling

with other brain areas, as we have demonstrated previously.45

Oscillatory activity analysis of outcome valence
While our work focuses primarily on the brainstem pathways

associated with transient evoked EEG responses, previous

EEG studies have also investigated the role of ongoing oscilla-

tory modes in encoding unexpected positive and negative out-

comes.57–60 To test how these oscillatory phenomena, in partic-

ular theta and high-beta power, might manifest in our own data,

we performed a separate set of analyses (see STAR Methods).

Specifically, we found that EEG theta power was higher for

negative compared to positive outcomes (b = �21, p < 0.001).

In contrast, high-beta power was, on average, higher for positive

Cell Reports 42, 113589, December 26, 2023 7

Article
ll

OPEN ACCESS



compared to negative outcomes, although this difference did not

reach statistical significance (b = 1.6, p = 0.25). Overall, these ef-

fects were prominent throughout the feedback period, in both

the reward and punishment contexts (Figures S5A and S5B),

and they are largely consistent with previous studies.57–60 To

assess the brain networks associated with these two oscillation

modes, we subsequently performed an EEG-informed fMRI

analysis by using single-trial power estimates in the theta and

high-beta bands as parametric regressors of BOLD activity for

positive and negative outcomes in each context.

Trial-wise fluctuations in theta power were associated primar-

ily with activations in the punishment context, where we

observed greater responses to positive than negative outcomes

in occipital and cingulate areas. We also found greater re-

sponses to negative compared to positive outcomes in the

caudate (Figure S5C). Trial-wise fluctuations in the high-beta po-

wer were associated with higher activations for positive than

negative outcomes in the vmPFC (as in Mas-Herrero et al.61) in

the reward context and in a separate caudate cluster (compared

to theta power) in the punishment context. We also found higher

activations for negative than positive outcomes in frontal clusters

only in the punishment context (Figure S5C). Overall, these find-

ings suggest that these oscillatory phenomena manifest largely

at the level of the human reward network and are likely playing

an additional modulating role on learning and valuation.57,62

Finally, we ran an exploratory analysis in which we showed

that individual estimates for positive responses in the vmPFC

associated with high-beta band in the reward context were

negatively correlated with positive activations in the later VTA

cluster identified by our original EEG-fMRI analysis in the second

timewindow (r = - 0.37, p = 0.046; linear regression, b =�0.0036,

p = 0.022; Figure S5D). This seems consistent with a role of the

dopaminergic VTA neurons in modulating vmPFC activity, which

Figure 5. Brainstem functional connectivity

and modulation of switch/stay behavior

Coupling between the brainstem clusters identified

in the EEG-informed fMRI analysis in each time

window and other brain networks (all Z scores >2.3,

cluster corrected), when participants (n = 28)

repeated (purple) or switched (orange) their choice in

the next trial, in the reward (upper panel) and pun-

ishment (bottom panel) contexts (see also Table S5).

Below each depicted slice, Z is the z coordinate in

the standard MNI brain. SN/VTA, substantia nigra/

ventral tegmental area; LC, locus coeruleus; RN,

raphe nucleus.

in turn might increase the high-beta power

associated with reward processing.57

DISCUSSION

Here we coupled EEG with simultaneously

acquired fMRI to offer a full characteriza-

tion of the spatiotemporal dynamics of

outcome valence signals in different brain-

stem subregions (SN/VTA, LC, and RN)

during reward- and punishment-based

learning. We leveraged the high-temporal resolution of the EEG

to build fMRI regressors, which identified latent brainstem acti-

vations of outcome valence not seen with a stand-alone fMRI

analysis and assigned temporal order to those activations.

Animal electrophysiology studies have proposed that SN/VTA

signals positive and negative outcomes similarly in reward and

punishment learning, representing a single dimension of value.7

However, there is contradictory evidence suggesting that reward

and punishment are represented as two independent dimen-

sions in SN/VTA.6 Our data are consistent with the latter,

whereby SN/VTA exhibited early responses to negative out-

comes and a distinct VTA cluster responded later to positive out-

comes during reward learning, whereas during punishment

learning, SN was activated later and by negative outcomes

only. Furthermore, LC and RN responded to negative outcomes

during reward and punishment learning, respectively, further re-

inforcing the notion of distinct brainstem pathways of outcome

valence. This work challenges theories of outcome evaluation

by suggesting that brainstem pathways might encode positive

outcomes associated with delivery of rewards and omission of

punishments differently. Similarly, our results suggest that nega-

tive outcomes associated with omission of rewards and delivery

of punishments involve different pathways.

Critically, these insights are enabled by our EEG-informed

fMRI fusion approach, which assigned temporal order to the

relevant pathways and further revealed latent brainstem activa-

tions not observed with stand-alone fMRI. This further highlights

the importance of using endogenous variability in the electro-

physiological signal to build continuous fMRI regressors to cap-

ture more fine-grained variations in the BOLD signal than con-

ventional categorical regressors, even in deep and small

subcortical areas. For example, using this fusion approach in

the reward context revealed that the LC and VTA emerge in serial
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fashion over temporally distinct time windows. Early LC engage-

ment likely enhances arousal and redirection of attention toward

negative outcomes,1 whereas subsequent VTA activation sug-

gests a more deliberate process consistent with dopaminergic

reward prediction error signaling (greater responses to positive

than negative outcomes) observed in other human studies and

more consistently in electrophysiological non-human animal

studies.5–7,16,19,42

Consistent with this framing, we showed that early LC and SN/

VTA responses to negative outcomes were functionally coupled

with regions of the cingulate and frontal cortex, respectively,

known target sites for error/salience detection and response in-

hibition.1,54,63–66 Similarly, the later VTA cluster was functionally

coupled with basal ganglia structures (nucleus accumbens and

globus pallidum) and thalamus when participants repeated the

choice in the next trial, and its BOLD responses for negative out-

comes correlated with stay/switch behavioral patterns and over-

all accuracy, supporting the idea that VTA broadcasts signals

associated with reward value updating and action reinforce-

ment.21,53 Taken together, these results can extend the frame-

work of two separate valence systems during reward-based

learning45 to the brainstem, whereby early automatic arousal

and salience LC and SN/VTA responses to negative outcomes

interact with later VTA responses to promote avoidance behavior

and downregulate value information during learning.

In the punishment context, EEG-informed regressors revealed

the relative timing of outcome valence activations. Our results

implicate distinct RN and SN subdivisions in the signaling of

negative outcomes such that early and transient activation of

dorsal RN neurons could signal rapid arousal and salience,

whereas more sustained activation of median RN could be

involved in adjusting behavioral responses to recurrent negative

outcomes.25,27,67,68 Later activations in ventral/dorsal SN subdi-

visions might be associated with the processing of negative out-

comes and/or aversive salience, respectively, which are critical

for punishment-based learning.7,21,23,69,70 Our data are broadly

consistent with electrophysiological evidence that subpopula-

tions of RN serotoninergic and SN dopaminergic neurons can

be activated by unexpected negative outcomes during punish-

ment learning.3,6,7,23,24,71

RN serotonergic neurons are known to regulate dopami-

nergic transmission in SN through direct projections.31,72–76

Our connectivity analysis indeed showed that early RN re-

sponses interacted with SN to generate choice behavior

away from negative outcomes. Thus, it is likely that an early

serotonergic system initiates a fast arousal/avoidance

response in the presence of negative outcomes, which in

turn facilitates dopaminergic responses of a later aversive-

salience-processing system to enhance avoidance behavior.

Our connectivity analysis also suggests that both RN and SN

broadcast extensively to other subcortical and cortical net-

works to shape avoidance responses, and that it is this

coupling, rather than activity of individual brainstem nuclei,

that drives choice behavior. Taken together these findings pro-

vide further support for the role of these brainstem subregions

in punishment-based learning.56,71

There is general consensus that dopamine and serotonin can

respond to outcome valence in reward and/or punishment con-

texts.77,78 Electrophysiological studies have shown that SN/VTA

dopaminergic responses are fast and transient, whereas RN

serotoninergic responses are typically characterized by slower

temporal dynamics and more sustained over time.3,71 However,

human studies using stand-alone fMRI studies have been unable

to assess and further validate these temporal dynamics. Here, by

fusing EEG-fMRI, we showed that different SN/VTA subdivisions

indeed showed transient responses to negative or positive out-

comes, whereas an RN cluster showed sustained activity in

response to negative outcomes over time during punishment

learning. Our results, therefore, extend the temporal dissocia-

tions reported in animal studies for the SN/VTA vs. RN to the hu-

man brain and provide further support for the involvement of

dopamine in both reward and punishment learning7,21 and sero-

tonin specifically in punishment learning.78,79

Whereas the spatiotemporal dynamics of brainstem re-

sponses were notably different between reward and punishment

contexts, other brain areas followed a broadly similar pattern of

activations. Both in reward and punishment contexts, activations

to negative outcomes weremostly observed earlier, whereas ac-

tivations to positive outcomesweremore robust in later timewin-

dows. This serial cascade supports a two-valence system for

both reward- and punishment-based learning outside of the

brainstem, whereby an early system (e.g., insula and prefrontal

cortex) engages fast alertness and avoidance responses in the

face of negative outcomes, while a later, more deliberate system

(e.g., striatum and ventromedial prefrontal cortex) controls value

updating and learning.45,48,80 It is thus possible that the early

system generates a fast alertness response in the presence of

negative outcomes, and in parallel, it downregulates the late

value-updating system to generate avoidance behavior and pro-

mote learning.

Our data suggest that while brainstem subregions might

signal positive and negative outcomes differently in reward

vs. punishment contexts, these outcome valence signals are

eventually broadcasted to a domain-general network for updat-

ing value information and driving learning. For example, the or-

bitofrontal cortex is known to increase activity in response to

delivery of rewards and omission of punishments,81,82 suggest-

ing similar signatures of outcome valence across reward and

punishment contexts.83–86 Thus, our findings help to extend

the ‘‘common currency’’ framework,87 whereby domain-spe-

cific brainstem representations of outcome valence are pro-

gressively transformed into domain-general value signals to

drive learning.

Finally, we also explored the role of ongoing (persistent)

oscillatory phenomena and found that EEG power in the theta

and high-beta frequency bands was predictive of outcome

valence, consistent with previous reports.57–60 We also showed

that these oscillatory phenomena manifest largely at the level of

the human reward network, suggesting a possible modulating

role on learning and valuation.57,62 In line with this interpretation,

we revealed a tentative relationship between high-beta oscilla-

tions in the vmPFC and later VTA responses to positive outcomes

during reward learning.While this finding is consistent with the hy-

pothesis that dopamine modulates high-beta power in reward

processing,57 our broader spatiotemporal representations also

exhibited some disagreement with previous EEG-fMRI studies
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on oscillation modes,60,61 likely due to task differences (i.e.,

gambling tasks with highly surprising/unexpected outcomes vs.

scarcer unexpected outcomes [mostly negative] in our instru-

mental learning task). Future neuroimaging studies will be

required to reconcile these differences and directly address the

putative relationship between brainstem structures and oscilla-

tory phenomena during reward- and punishment-based learning.

Limitations of the study
At first sight, the early BOLD activations we found in the SN/VTA

in response to reward omissionmight seem in disagreement with

previous electrophysiology studies, which have shown that

dopamine neurons in the SN/VTA fire in response to unexpected

rewards and suppress their activity in response to unexpected

omission of rewards.6–8 This apparent discrepancy might be

explained by the nature of our learning task, in which reward

omissions (or negative outcomes in general) are the most unex-

pected/surprising type of outcome, as participants quickly

learned the relevant stimulus-reward associations. Indeed, prior

electrophysiology studies have also shown that dopaminergic

midbrain neurons respond to unexpected negative outcomes,

which has been interpreted as a salience signal.7,20,21,23 Our

study suggests that this salience signal (more typically found in

response to punishments) might extend to omission of rewards

as an early SN/VTA response, in line with the two-component

reward response proposed by Schultz.39

An important caveat in our study is that that the timing of the

cascade of constituent brainstem processes should be inter-

preted in relative (e.g., early vs. late) rather than absolute terms.

This is because scalp representations informing our fMRI anal-

ysis are derived mainly from the cortical target sites of these

subcortical neuronal representations. As such, the absolute

timing of our EEG components will be delayed relative to their

subcortical counterparts, as synaptic transmission times need

to be factored in. This is consistent with electrophysiological

studies showing that reward signals in cortical areas (e.g., PFC

and ACC) occur at a slower timescale (around 300–400 ms)

than in the SN/VTA.19,88–91 Despite this limitation, however, the

fusion of EEG-fMRI still allowed us to expose subcortical repre-

sentations that would normally be difficult to detect with stand-

alone fMRI, by exploiting the trial-by-trial covariation in their

responses with that of their cortical target sites.

Conclusions
In conclusion, here we demonstrated that leveraging the endoge-

nous variability in electrophysiologically derived measures of

outcome valence, to inform the analysis of simultaneously ac-

quired high-resolution fMRI data, can offer insights about the

spatiotemporal dynamics of the brainstem pathways involved in

learning. As such, our approach has the potential to open avenues

for the study of subcortical brain dynamics, thereby bridging the

gap between non-human animal and human studies. Critically,

our findings can also help improve our understanding of how hu-

mans learn to make adaptive choices in reward and punishment

contexts and ultimately how the mechanisms underlying those

choices are affected in mental disorders associated with disrup-

tions in learning and decision-making mechanisms (such as anx-

iety, depression, and drug addiction).
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Joana

Carvalheiro (joana.carvalheiro@glasgow.ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Behavioral and neuroimaging data is available upon request to the lead contact

d Original code for the linear discriminant analysis has been deposited at Zenodo and is publicly available. DOIs are listed in the

key resources table.

d Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participants
Thirty-one subjects participated in the experiment. Three were removed from the analysis for average performance below chance in

reward or punishment blocks (using myBinomTest function in MATLAB). The remaining 28 subjects (18 female and 10 male), aged

between 18 and 36 years (mean = 25 years, s.d. ± 5.2), were included in all subsequent analyses. All were right handed, had normal or

corrected-to-normal vision and reported no history of psychiatric, neurological or major medical problems, and were free of psycho-

active medications at the time of the study. This study used a mixed sample of male and female participants as we had no a priori

reason to predict differences between sexes. The study was approved by the College of Science and Engineering Ethics Committee

at the University of Glasgow (300210062) and informed consent was obtained from all participants.

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Human Subjects N/A N/A

Software and algorithms

Custom computer code This manuscript https://doi.org/10.5281/zenodo.10203476

FSL University of Oxford https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

AFNI 3dClustSim National Institutes of Health https://afni.nimh.nih.gov/pub/dist/doc/

program_help/3dClustSim.html

MRIcroGL Chris Rorden https://www.nitrc.org/projects/mricrogl

EEGLAB v14.1.2. Delorme and Makeig https://sccn.ucsd.edu/eeglab/index.php

FieldTrip Donders Institute for Brain, Cognition

and Behavior

https://www.fieldtriptoolbox.org/

Presentation Neurobehavioral Systems https://www.neurobs.com/

Brain Vision Recorder Brain Products https://brainvision.com/products/recorder/

MATLAB MathWorks https://uk.mathworks.com/products.html?

s_tid=gn_ps

Other

MR-compatible EEG amplifier system BrainAmps MR-Plus, Brain Products N/A

Siemens 3-Tesla TIM Trio MRI scanner Siemens N/A
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METHOD DETAILS

Probabilistic reversal-learning task
The experiment consisted of 4 blocks of 80 trials each (320 trials in total). Two blocks involved rewards and the other two involved

punishments. Reward and punishment blocks were administered in alternated order and counterbalanced across participants.

Blocks were separated by a break. At the beginning of each block, subjects were shown a screen with two abstract symbols (the

same two abstract symbols were used in all blocks). Subjects were told that their goal was to seek the symbol with the highest reward

probability in reward blocks, and to avoid the symbol with the highest punishment probability in punishment blocks. They were also

informed that in the course of each block, the highest-probability symbol might shift to the other symbol and that they would have to

adjust their choices accordingly. In reward blocks, they could win 1 point or nothing; in punishment blocks, they could lose 1 point or

nothing. Subjects were told that they would receive a fixed payment for participation (£20), and that losses (points converted into £’s)

would be subtracted from that amount and wins added to that amount. They were also told that this additional amount would vary

between £10–50 and would be based on the outcome of a random subset of trials selected at the end of the experiment. No further

details regarding themapping between earned points and the final monetary payoff were given to the subjects. Every participant was

paid the same total amount (£40).

At the start of each block, a message highlighted whether it was a reward or a punishment block. Each trial began with the pre-

sentation of a central fixation cross for a random delay in the range 1–4 s (mean delay 2.5 s). To ensure alertness during the exper-

iment and minimize saccades, subjects were instructed to focus on the central fixation. The two symbols were then placed to the left

and to the right of the fixation cross for 1.25 s. During this time, subjects had to choose one of the symbols by pressing the left or right

button on a response box using their right index or middle finger, respectively. Next, the choice outcome was presented after a sec-

ond random delay in the range 1–4 s (mean delay 2.5 s). Trials, in which subjects did not respond within the 1.25 s of the stimulus

presentation, were followed by a ‘too slow’ message and were excluded from further analysis. To increase detection power and esti-

mation efficiency in the fMRI analysis, the sequence of these events and the timing of the two delay periods were optimised using

standard efficiency equations.92 Positive and negative outcomes were provided by displaying different arrows in the center of the

screen for 750 ms. Specifically, in reward blocks, we used upward and neutral arrows to respectively provide positive and negative

feedback, and in punishment blocks we used neutral and downwards arrows to respectively provide positive and negative feedback.

All arrows were normalised for perceptual load, by using the same pixel count and overall structure.

At any one point in the course of the experiment, one of the two symbols was associated with a ‘high’ reward/punishment prob-

ability of 0.7 (that is, good/bad symbol) and the other symbol had a reward/punishment probability of 0.3 (that is, bad/good symbol).

Participants were not informed about the exact probabilities assigned to each symbol and they were told to learn to choose the good

symbol and avoid the bad symbol through trial and error by taking into account the outcome of their choices in every trial. Reversals

were introduced by changing the contingencies of the symbols, that is the symbol with the highest reward/punishment probability

symbol was assigned the lowest reward/punishment probability, and vice-versa for the other symbol. Reversals were programmed

to occur every 20 ± 2 trials, and they occurred three times per block. To familiarise participants with the task, participants were asked

to complete an online version of the taskwith one reward and one punishment block, 60 trials each, on the day before the experiment.

An additional practice was completed before they entering the scanner, to ensure that participants understood the probabilistic na-

ture of the task.

EEG data acquisition
EEG was collected simultaneously with the fMRI data using an MR-compatible EEG amplifier system (BrainAmps MR-Plus, Brain

Products) and recorded using Brain Vision Recorder (Brain Products) with a 5-kHz sampling rate. Data were filtered online with a

hardware band-pass filter of 0.016–250 Hz. The EEG cap included 63 Ag/AgCl scalp electrodes which were localized according

to the international 10–20 system, and an electrocardiogram electrode, which was positioned along the paravertebral line. All elec-

trodes had in-line 10 kU surface-mount resistors to ensure subject safety, which was further guaranteed by bundling and twisting all

leads for their entire length. We lowered the input impedance for each electrode to <50 kU. The acquisition of EEG andMRI data were

synchronized (Syncbox, Brain Products) and MR-scanner triggers were recorded separately for the subsequent offline removal of

MR gradient artifacts. Scanner pulses were lengthened to 50 ms via an in-house built pulse stretcher. Experimental event codes

and participants’ responses were synchronized, and recorded simultaneously, with the EEG data through the Brain Vision Recorder

software. Subjects were positioned inside the scanner by ensuring that electrodes Fp1 and Fp2were aligned with the isocenter of the

MR scanner.93 The ribbon cable connecting to the EEG amplifiers at the back of the bore was secured to a cantilever beam to mini-

mize scanner vibration artifacts. The helium pumps of theMRI scanner was switched off during acquisition, to minimise EEG artifacts

in the high-frequency ranges.

MRI data acquisition
ASiemens 3-Tesla TIM TrioMRI scanner with a 12-channel head coil was employed for the fMRI acquisition. Because the focus of our

studywas the brainstem, we acquired T2*-weighted echo planar images (EPI) with coverage limited to themidbrain and upper portion

of the pons while subjects were performing the task. This coverage also included part of the prefrontal cortex, striatum and globus

pallidus, thalamus, insula, and amygdala (among other regions) (see Figure S2A). A total of 30 slices were acquired with an
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interleaved-ascending order for each T2*-weighted EPI volume, with an isotropic resolution of 2 mm. Other imaging parameters

included the following: TR, 2000 ms; TE, 30 ms; flip angle, 77�; field of view, 216 3 216mm; matrix, 108 3 108 mm. A whole-brain

EPI with similar parameters was acquired for registration purposes. Using a 32-channel coil, we acquired a partial coverage high-

resolution T2-weighted structural scan (T2-weighted 3D SPACE, isotropic voxel size, 0.75 mm) and a high-resolution T1-weighted

structural scan (isotropic voxel size, 1 mm), which were used to optimise co-registration to brainstem structures (see below).

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral analysis
To compare participants’ performance and response times between reward and punishment contexts, we averaged the percentage

of "correct" choices (i.e., choice of the stimulus with high-probability of reward and low-probability of punishment) and response

times for each subject (n = 28 subjects) and performed paired t-tests (normality assumption confirmed with Shapiro-Wilk,

p > 0.14). To test whether switch choices, response times and update of expected value (see section below for a description of

the reinforcement-learning model used to estimate expected values) were affected differently by positive and negative outcomes,

and whether this effect differed between reward and punishment contexts, we conducted repeated-measures ANOVAs with

outcome valence (positive and negative) and context (reward and punishment) as within-subject factors to test the outcome

valence 3 context interaction. For this, we a) extracted the percentage of switch choices away from the symbol that led to positive

and negative outcomes (i.e., whether participants chose the opposite symbol in the next trial), b) averaged response times in trials

that followed positive and negative outcomes, and c) calculated the absolute difference between the expected values on trials that

followed positive and negative outcomes and the current trial (i.e., the extent to which participants updated the value of their choice

after receiving positive or negative outcomes).

Reinforcement-learning algorithms
We used a standard reinforcement-learning algorithm to estimate trial-by-trial choice values using each subject’s behavioral

responses.

Specifically, each pair-stimulus value, orQ-value, was initialized to zero, and for each trial, t, within that pair of stimuli, the value of

the chosen stimulus (say A was chosen) was updated according to:

QA ðt + 1Þ=QAðtÞ+a�dðtÞ; (Equation 1)

where d was the prediction error:

dðtÞ= rðtÞ � QA ðtÞ; (Equation 2)

where rðtÞ was 1 for wins, 0 for neutral outcomes, and �1 for losses. The learning rate, a, was given by:

a =

�
a+; if dðtÞ> 0
a�; if dðtÞ< 0

; (Equation 3)

where a+ and a� were the learning rates for positive and negative prediction errors, respectively.

The probability of choosing one stimulus over another (say A over B) was given by the softmax equation:

PAðtÞ= e½QAðtÞ�b�

e½QAðtÞ�b� +e½QBðtÞ�b� ; (Equation 4)

where the b parameter, or inverse temperature, reflects the noise in choice selection.

Model fitting involved estimating the values of the free parameters (a+, a–, and b) that best accounted for the respective trial-by-trial

choices in each context, usingmaximum likelihood estimation and a constrained non-linear optimization procedure (as implemented

in fmincon in MATLAB) separately for each subject. To assess the goodness of fit, we compared the choice probabilities predicted by

the reinforcement-learning model using the softmax procedure to subjects’ behavioral choices by binning P (Equation 4) into 10 bins

(bin size of 0.1) and calculating for each bin the fraction of trials in which subjects actually chose one of the stimulus (Figure S1A). Trial-

by-trial Q-values obtained in Equation 1 were extracted for the behavioral analysis described above.

EEG data preprocessing
EEG data was preprocessed offline using MATLAB (Mathworks). EEG signals recorded inside an MR scanner are contaminated with

gradient and ballistocardiogram (BCG) artifacts due to magnetic induction on the EEG leads. We first removed the gradient artifacts.

To correct for gradient artifacts, we built artifact templates from sets of 80 consecutive functional volumes centered on each volume

of interest, and subtracted these from the EEG signal. This process was repeated for as many times as there were functional volumes

in our datasets.We subsequently applied a 10-msmedian filter to remove any residual spike artifacts. Next, we band-pass filtered the

data by applying a 0.5-Hz Butterworth high-pass filter to remove slow direct current drifts and a 40 Hz Butterworth low-pass filter to

remove higher frequency noise. All data were downsampled to 1000Hz.
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To remove eye blinks, we asked participants to perform an eye movement calibration task inside the scanner before the main

experiment during which they were instructed to blink repeatedly several times while a central fixation cross was displayed in the

center of the computer screen. We recorded the timing of these events and used principal component analysis to identify linear com-

ponents associated with eye-blinks, which were subsequently removed from the broadband EEG data collected during the task.45,94

To deal with BCG artifacts in our data, we adopted a conservative approach which removed only a small number of BCG compo-

nents (between 1 and 4) using principal component analysis in order to avoid removing physiologically relevant signals with more

aggressive removal pipelines. Instead, we relied on our multivariate discriminant analysis, which was specifically designed to tolerate

small residual artifacts that are not systematically aligned to experimental events of interest. Specifically, by integrating signals

across sensors our discrimination procedure finds a low dimensional space that is orthogonal to any artifact residuals.95 BCG prin-

cipal components were extracted after the data were low-pass filtered at 4 Hz to extract the signal within the frequency range where

most of the BCG power residues. Then, subject-specific principal components were determined based on the number of compo-

nents that achieved the best discrimination (average number of components across subjects: 3.4) on a single-trial classifier for

reward-positive vs. punishment-negative outcomes within the interval 100–600 ms post-outcome onset. The sensor weightings cor-

responding to the derived subject-specific principal components were projected onto the broadband (original) data and subtracted

out. Comparison of the spectral profile of our EEG-fMRI data after artifact removal, with that of an EEG stand-alone dataset collected

in our lab during administration of the same task (where no gradient or BCG artifacts are present), confirmed that the EEG-fMRI data

was of sufficient quality to proceed with all the analyses below (see Figures S1C and S1D).

Single-trial EEG analysis
We applied a single-trial multivariate discriminant analysis, combined with a sliding window approach94,96,97 to discriminate between

positive and negative outcome trials in the EEG data locked to the time of choice outcome in reward and punishment contexts. Data

were concatenated across the two blocks in each context, resulting in one analysis for reward and one for punishment. This method

estimates, for predefined time windows, an optimal linear combination of EEG sensor weights (i.e., a spatial filter) which, applied to

themultichannel EEG data [xðtÞ], yields a one-dimensional projection [i.e., a discriminant component yðtÞ] that discriminates between

positive and negative outcomes:

yðtÞ=wTxðtÞ=
XD
i = 1

wixiðtÞ; (Equation 5)

where D represents the number of channels, indexed by i, and T indicates the transpose of the matrix. We applied this method to

identifyw for short (60 ms) overlapping time windows centered at 10 ms increments, between�100 and 850 ms relative to the onset

of the choice outcome. This procedure was repeated for each subject, time window, and reward ad punishment contexts separately.

When applied to an individual trial, spatial filtersw can produce ameasurement of the discriminant component amplitude for that trial.

When separating between positive and negative outcomes, the discriminator was designed to map the component amplitudes for

one outcome type to positive values and those of the other outcome type to negative values. Here, we mapped the positive outcome

trials to positive values and the negative outcome trials to negative values, but note that this mapping is arbitrary.

We used this approach to identify all timewindows yielding successful discrimination performance in the outcome period and used

the resultant single-trial component amplitudes, yðtÞ, to construct parametrically modulated BOLD predictors for our fMRI analysis

(see fMRI analysis section). To quantify the performance of the discriminator for each time window, we computed the area under a

receiver operating characteristic (ROC) curve (i.e., the Az value), using a leave-one-out-trial cross-validation procedure.98 Specif-

ically, for every iteration, we used N-1 trials to estimate a spatial filter w, which was then applied to the remaining trial to obtain

out-of-sample discriminant component amplitudes y for positive- and negative-outcome trials and compute the Az. The linearity

of our model also allows computing scalp projections of the relevant discriminating components resulting from Equation 5 by esti-

mating a forward model for each component:

a =
Xy

yTy
(Equation 6)

where the EEG data X and discriminating components y are now in a matrix and vector notation, respectively, for convenience (i.e.,

both X and y now contain a time dimension). Equation 6 describes the electrical coupling of the discriminating component y that ex-

plains most of the activity in X. Strong coupling indicates low attenuation of the component y and can be visualised as the intensity of

vector a. The resulting scalp topographies were used to identify time windows with largely distinct spatial profiles, which is indicative

of distinct neural networks.

fMRI preprocessing
We discarded the first 5 EPI volumes in each block before data processing and statistical analysis to allow for magnetisation equil-

ibration, and the remaining 290 volumes were used for the statistical analyses. Prior to the preprocessing, data from the two blocks

within each context (reward or punishment) were concatenated for consistency with the way the EEG data were analyzed and to

maximise power in our subsequent EEG-informed fMRI analysis, which included the full range of trial-wise amplitude estimates of
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the relevant EEG components. To concatenate the data, we first normalised the data intensity for each block. Then, we transformed

an exemplar EPI in each block to an exemplar EPI from the first block in each context (using linear registration) and the resulting trans-

forms were applied to all EPIs (to transform EPIs from different blocks to the same space). EPIs across the two blocks within each

context were then concatenated, resulting in one dataset for the reward context and another dataset for the punishment context (580

volumes in each dataset). Head motion parameters were estimated for each block using the MCFLIRT tool99 and then concatenated

for each context.

Pre-processing of the MRI data was performed on each concatenated dataset using the FEAT tool of the FSL software (FMRIB

Software Library)100 and included slice-timing correction, high-pass filtering (>100 s), and spatial smoothing (with a Gaussian kernel

of 3mm full width at half maximum). Brain extraction of the structural and functional images was performed using the Brain Extraction

tool (BET). Registration of EPI images to standard space (Montreal Neurological Institute, MNI) was optimised to improve the regis-

tration of data with a limited FOV,101 by using a whole-brain EPI and high-resolution structural images (T2-and T1-weighted) across

different steps (see Figures S2B and S2C). Specifically, an exemplar EPI image was first registered to the whole-brain EPI (that

matched the functional data in terms of contrast and resolution), the whole-brain EPI was registered to the T2w structural image,

and the T2w structural image was registered to the T1w structural image, using linear registration (FLIRT command in FSL99) in all

steps. The three resulting transforms were concatenated into a single transform to avoid image degradation through multiple trans-

forms, so that in the end we had a single transform (EPIs transformed into T1w space). To have EPIs in the MNI space, T1w images

were transformed into MNI space using Non-linear Image Registration Tool (FNIRT command in FSL102) with a 10 mm warp resolu-

tion, and the resulting transform was combined with the transform from EPIs to T1-W space, and then applied to all EPIs.

fMRI analysis
Statistical analyses of functional data were performed using amultilevel approach within the framework of a GLM, as implemented in

FSL (using the FEAT module103):

Y = Xb+ e = b1X1 + b2X2 +.+ bNXN + e (Equation 7)

where Y represents the timeseries (with T time samples) for a voxel and X is a T3N design matrix where the columns correspond to

the different regressors included in the design convolvedwith a canonical hemodynamic response function. b is aN31 column vector

of regression coefficients (i.e., betas or parameter estimates) and e a T31 column vector of residual error terms.

A first-level analysis was performed to analyze each subject’s individual contexts (with the two blocks in that context concate-

nated, as described above). For each subject, we performed a GLM analysis for the reward context and another GLM for the pun-

ishment context, using the same framework in both (see below). To combine data across subjects within each context, a group-level,

mixed-model was used (FLAME 1), treating participants as a random effect.104 A full list of significant peaks for each GLM and

contrast can be found in the supplementary material.

Standard fMRI analysis — GLM 1
We first performed a conventional fMRI analysis aimed at identifying differences in brainstem responses to positive and negative out-

comes within reward and punishment contexts. Specifically, we set one GLM for the reward context and other GLM for the punish-

ment context, both locking at the time of outcome we included two boxcar regressors of interest with a duration of 750ms – to match

the duration of the outcome stimulus – for each regressor event: (1) an unmodulated regressor for positive outcomes (all event am-

plitudes set to 1), and (2) an unmodulated regressor for negative outcomes (all event amplitudes set to 1). In addition, we included an

unmodulated regressor of no interest at the time of stimulus presentation (that is, choice phase), an unmodulated regressor for all

missed trials, an unmodulated regressor for the concatenation point for the two blocks within the context, and six nuisance regres-

sors, one for each of the head motion parameters (three rotations and three translations). Contrasts were performed at first-level be-

tween the two unmodulated regressors of interest for positive and negative outcomes (positive > negative and negative > positive)

and then combined at group-level.

EEG-informed fMRI analysis of activations in each component — GLM 2
In this analysis, we exploited the EEG single-trial-variability in three discriminating components of outcome valence to build EEG-

informed fMRI regressors. Specifically, we used the resulting trial-by-trial amplitude estimates of yðtÞ (Equation 5) for each outcome

type (positive and negative), averaged across each of the three time windows. We replaced the two unmodulated outcome regres-

sors in GLM 1 with these parametric regressors, resulting in a total of six regressors of interest. Because negative outcomes were

mapped to negative y-values in the single-trial EEG analysis (i.e., more negative y’s are indicative of a stronger response to a negative

outcome), we flipped the sign of the y-values in the negative outcome regressors to better facilitate the interpretation of our contrasts.

We set one GLM for the reward context and other for the punishment context. In each GLM, first-level contrasts were performed

between positive and negative outcomes regressors (positive > negative and negative > positive) within each component. The

rest of the design was identical to GLM 1.
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EEG-informed fMRI analysis of activations across components — GLM 3
Because GLMs 2 included the trial-by-trial amplitude estimates of for all the three components, it reports activations in one compo-

nent that are not explained by variance in other components. However, it is possible that some brain areas show sustained and similar

activation across components, and therefore it is not captured by theGLM2. To capture these putative "common" activations, we set

separate GLMs for each component (that is, a total of six GLMs— three for the reward context and three for the punishment context).

The design and contrasts were identical to GLM 2.

Regions of interest and corrections for multiple comparisons
Our analyses focused on the substantia nigra-ventral tegmental area (SN/VTA) complex, raphe nucleus (RN) and locus coeruleus

(LC), brainstem subregions which have been implicated in reward and/or punishment learning. To build masks for these brainstem

subregions, we used the Brainstem Navigator Atlas.105 The SN/VTA mask was built from adding probabilistic bilateral masks for SN

and VTA thresholded at 0.35 (total voxels: 320, 2mm isotropic). The RN mask was built from adding probabilistic bilateral masks for

the dorsal raphe nucleus, caudal-rostral linear raphe andmedian raphe (total of 151 voxels, 2mm isotropic). As some of these RN are

very small (RN nuclei vary between 12 and 98 voxels, 2mm isotropic), we did not apply a threshold on top of the original masks (other-

wise some of the nuclei would be missed). For the LC mask, we used probabilistic bilateral LC masks from the probabilistic atlas in

Tona et al.,106 as the LCmasks in Brainstem Navigator Atlas, even unthresholded, would result only in 30 voxels, which did not reach

the minimum size (128 voxels) to run simulations for multiple comparisons correction (see below).

To control for false-positive rates, we determined cluster extent thresholds that were corrected for multiple comparisons by using

3dClustSim107 in each of our brainstem masks and whole-brain (to cover our entire field-of-view). This method runs 10,000 Monte

Carlo simulations that take into account the brain search volume and the degree of smoothing of the data to compute a cluster-

size threshold for a given voxel-wise p value threshold, which we set at 0.01 (Z score = 2.3) for all analyses, such that the probability

of surviving the threshold is p < 0.05. Across 5000 permutations, the 3dClustSim simulations determined the cluster sizes of 5 voxels

for SN-VTA, 4 voxels for RN and 5 voxels for LC, and 21 voxels for thewhole brain.We therefore used these results to derive corrected

thresholds for our statistical maps and to select the clusters that showed overlapwith ourmasks and survived the corrected threshold

for the respective mask. As some clusters could extend beyond the brainstem, we additionally applied a brainstem mask (Harvard-

Oxford subcortical structural atlas in FSL) to include only voxels that fell within the brainstem (for all reported clusters, their peak co-

ordinates were originally located in the brainstem).

Psychophysiological interaction analysis
We extracted time-series data from individual clusters from each brainstem subregion of the three outcome-locked windows of in-

terest, which served as seed regions (that is, physiological regressor). To extract the time-series data from subject-specific clusters,

we back-projected the identified clusters at the group level in standard space into each individual’s EPI space by applying the inverse

transformations estimated during registration (see fMRI preprocessing section). As psychological regressor, we used the stay/switch

choice in the next trial (collapsed across positive and negative outcomes), to model the strength of association between BOLD ac-

tivity in brainstem clusters and other brain areas at the time of the outcome with the choice in the next trial. When participants chose

the same stimulus in the next trial, we set the psychological regressor amplitude to 1 (stay) and when they chose the other stimulus in

the next trial, we set the psychological regressor amplitude to �1 (switch).

The PPI analyses thus included the following regressors during the outcome phase: (1) an unmodulated regressor for choice

outcome (all event amplitudes set to 1), (2) the physiological regressor (time-series in the EEG-fMRI derived clusters), (3) the psycho-

logical regressor (stay/switch choice in the next trial) and (4) the interaction regressor (physiological3 psychological). The rest of the

design was identical to GLM 1/2/3. Correction for multiple comparisons was performed on the entire fMRI field-of-view using the

procedure described above (Z > 2.3, minimum 21 voxels).

Associations between individual brainstem nuclei activity and switch/stay behavior
To test whether the BOLD activity in the individual brainstem nuclei identified in the EEG-fMRI analysis predicted stay/switch

behavior, we performed single-trial GLMs for each block in the reward and punishment contexts (4 GLMS in total). Each GLM

included separate regressors for each individual trial (resulting in 80 regressors per GLM) and six nuisance regressors (one for

each of the head motion parameters). We then extracted the single-trial BOLD estimates from the clusters identified in the EEG-

fMRI analysis, for either negative or positive outcomes, as predictors of binary choice in the next trial (stay was coded as 1 and switch

as 0) in generalized linear-mixed effects models with binomial distribution (logit function). Subject ID was included as random effect.

Time-frequency decomposition analysis
Weextracted time-frequency information at the single-trial level from a cluster of four EEG electrodes (CP1, CP2, P1 and P2), appear-

ing consistently on the scalp topographies of all EEG components identified in our main task (Figure 2). Specifically, we computed

time-frequency representations in the theta (3.5 - 8 Hz) and high-beta (25 - 36 Hz) range using the multitaper approach108 as imple-

mented in the Fieldtrip package.109 with a sequence of orthogonal Slepian tapers, a sliding fixed window length of 400 ms, and fre-

quency smoothing of ± 4 Hz. The multitaper method can be better suited for estimating frequency representations characterised by
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low signal to-noise ratio, as is the case with oscillatory signals in the higher frequency range.110 We applied this method on outcome-

locked data in the range �500 ms before to 1200 ms after the outcome onset.

At each time point and frequency layer we computed percentage change in power relative to a 400 ms pre-stimulus baseline.

Thus, we considered task-relevant changes in power with respect to the pre-stimulus baseline, rather than absolute power. The ef-

fects of outcome valence (positive vs. negative) and context (reward vs. punishment) on theta and high-beta power were tested using

separate linear-mixed effect models (LMMs). Dependent variables for the two LMMs were single-trial theta and high-beta power

(averaged over time); valence (positive outcomes coded as 1 and negative outcomes as 0) and context (reward coded as 1 and pun-

ishment as 0) were fixed-effect factors and subject IDwas included as a random factor. The valence3 context interaction was initially

included in the models but subsequently removed, as it was not significant in either of the two analyses (p > 0.15).

EEG power-informed fMRI analysis
We also performed a separate EEG-informed fMRI analysis using the power estimates obtained in the analysis above, whereby we

followed the same pipeline as in our main analysis. Specifically, we built four parametric regressors corresponding to the single-trial

oscillatory power between 200 and 525ms (to overlap with the time range of our original analysis) in the theta and high-beta bands for

separate positive and negative outcomes (as confounders, we included categorical regressors for stimulus and outcome presenta-

tion, concatenation point of the data and motion regressors), within each context (separate GLMs for reward and punishment con-

texts). We included the power from the two frequency bands in the same GLM, as they were not highly correlated at the single-trial

level (0.08 < average r < 0.14) and would additionally allow us to report activations unique to each frequency band. These parametric

regressors were demeaned by subtracting the mean (theta or high-beta) oscillatory power within each valence condition from the

single-trial power estimates for the corresponding valence. Similarly to our main analysis, we tested the contrasts

positive > negative, and vice-versa, within each context and applied the same cluster correction method/threshold when reporting

the results.
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