
Transforming urban mobility with
internet of things: public bus fleet
tracking using proximity-based
bluetooth beacons

Olakunle Elijah1,2*, Sye Loong Keoh3*,
Sharul Kamal bin Abdul Rahim1, Chee Kiat Seow3, Qi Cao3,
Mohammad Adib bin Sarijari4, Noor Farizah Ibrahim5 and
Achmad Basuki6

1Wireless Communication Centre, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai,
Malaysia, 2Computer Engineering Department, Faculty of Engineering, Nile University of Nigeria, Abuja,
Nigeria, 3School of Computing Science, University of Glasgow, Glasgow, United Kingdom, 4Department
of Communication Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai,
Malaysia, 5School of Computer Sciences, Universiti Sains Malaysia, Penang, Malaysia, 6Informatics
Engineering Department, Faculty of Computer Science, Universitas Brawijaya, Malang, Indonesia

In today’s fast-pacedworld, efficient and reliable public transportation systems are
crucial for optimising time and reducing carbon dioxide emissions. However,
developing countries face numerous challenges in their public transportation
networks, including infrequent services, delays, inaccurate and unreliable arrival
times, long waiting time, and limited real-time information available to the users.
GPS-based systems have been widely used for fleet management, but they can be
a significant infrastructure investment for smaller operators in developing
countries. The accuracy of the GPS location can be easily affected by the
weather condition and GPS signals are susceptible to spoofing attacks. When
the GPS device is faulty, the entire location traces will be unavailable. This paper
proposes the use of Internet-of-Things (IoT)-enabled Bluetooth Low Energy (BLE)
systems as an alternative approach to fleet tracking for public bus service. The
proposed approach offers simplicity and easy implementation for bus operators
by deploying BLE proximity beacons on buses to track their journeys, with
detection devices using Raspberry Pi (RPi) Zero strategically placed at terminals
and selected stops. When the bus approaches and stops at the bus stops, the BLE
advertisements emitted by the proximity beacons can be reliably detected by the
RPi Zero. Experiment results show that the BLE signals can be detected up to 20m
in range when the RPi Zero is placed inside a metal enclosure. The location of the
bus is then sent to the cloud to estimate the arrival times. A field trial of the
proposed IoT-based BLE proximity sensing system involving two public bus
services in southern Malaysian cities, namely, Johor Bahru, Iskandar Puteri and
Kulai is presented. Based on the data collected, a bus arrival time estimation
algorithm is designed. Our analysis shows that there was a 5–10 min reduction in
journey time on public holidays as compared to a normal day. Overall, the paper
emphasises the importance of addressing public transportation challenges. It also
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describes the challenges, experience, and mitigation drawn from the deployment
of this real-world use case, demonstrating the feasibility and reliability of IoT-based
proximity sensing as an alternative approach to tracking public bus services.

KEYWORDS

bluetooth low energy (BLE), data analytic, estimated time of arrival (ETA), fleet tracking,
internet of things (IoT), public bus transport, smart transportation

1 Introduction

The efficient use of a public transportation system plays a
significant role in urban mobility. Some of the requirements for
Intelligent Transportation Systems (ITS) for urban mobility include
Automatic Vehicle Location (AVL), Estimated Time of Arrival
(ETA), Automatic Fare Collection (AFC), Automatic Passenger
Counters (APC), and fleet sensor onboard maintenance (Qureshi
and Abdullah, 2013; Boukerche and Wang, 2020). The AVL
provides real-time geographic locations to track fleets of vehicles
while the ETA provides real-time updates on the progress of
transportation services. The deployment of ITS for land
transports involves real-time tracking of bus fleets, displaying
ETA on panels at bus stations or through mobile apps,
interactive apps for commuters to find buses and the quickest
routes, and cashless payment options. Implementing such an
efficient public transport system brings numerous benefits,
including reduced reliance on private vehicles, thus leading to
lower carbon emissions, fewer accidents and decreased road
congestion and parking demand. Moreover, it contributes to
improved economic growth by enabling commuters to plan their
journeys more efficiently, reducing delays at bus stations and on
congested roads. In recent years, the transportation industry has
witnessed a revolution through various technological approaches,
including GPS-based systems (Alam et al., 2021; Taparia and Brady,
2021), and non-GPS-based systems.

In the GPS-based approach, a GPS tracking device is installed on
the bus to transmit its geographical coordinates and speeds to a
cloud server via cellular or satellite communication. The received
data is then analysed and displayed in real-time through a user
interface for passengers and transit authorities. Some of these
approaches rely on crowd-sourced GPS data (Lim et al., 2016;
Lohokare et al., 2017) from passengers. This approach offers a
high level of accuracy, simplicity, and affordability in terms of
installation cost. However, it also requires maintenance expenses
and lacks support for multiple data types.

Conversely, the non-GPS-based approach utilises alternative
technologies to determine the location of the bus fleet. These
technologies include Radio-Frequency Identification (RFID)
(Prinsloo and Malekian, 2016; Vinod and Mohan, 2018),
Bluetooth Low Energy (BLE) (Gunady and Keoh, 2019; Park and
Choi, 2021), cellular information (Song, 1994), IEEE 802.11p which
is also referred to as the Wireless Access in Vehicular Environments
(WAVE) (Gan et al., 2023). Most of these approaches are facilitated
by the adoption of the Internet of Things (IoT). The IoT is a network
of physical objects that are embedded with sensors, software, and
other technologies for the purpose of collecting and exchanging data
with other devices and systems over the Internet (Elijah et al., 2018).
IoT has the potential to improve efficiency, safety, and sustainability

in urban transportation. These include the use of IoT devices to track
the movement of vehicles and passengers, monitor traffic
conditions, and identify potential hazards. Some of the benefits
include the optimisation of traffic flow, reduction of congestion and
improvement of transportation services, smart parking, automated
fare collection, and automated passenger counters with less human
intervention. This can be achieved by the use of various sensors
deployed to collect information such as the bus’s location, speed,
direction, fuel level, and additional relevant data like passenger
counting, automatic fare collection, weather conditions, and road
conditions. The collected information is then transmitted to a
central cloud server using communication technologies such as
cellular networks, low power wide area networks (Sigfox,
LoRaWan, NB-IoT), or Wi-Fi. These IoT-enabled approaches
offer scalability as they can handle multiple types of data
compared to the GPS-based approach. Some of these
technologies have already been adopted in advanced countries
such as the United Kingdom, Germany, the United States of
America, and Singapore.

In many developing countries, e.g., Malaysia, public bus services
often suffer from a lack of real-time information, infrequent bus
schedules, unpredictable travel times, and safety concerns, though
there are some efforts to improve the Level of Service (LoS) through
increased service frequency, wider coverage for rural areas,
improved waiting facilities, etc (Bachok et al., 2015). In response
to these challenges, efforts are being made to introduce intelligent
public bus services aiming to encourage the use of public
transportation. Examples of such initiatives include the Smart
Selangor Bus Service provided by the Selangor state government
and Bas Muafakat Johor, a free bus service provided by the Johor
state government in Malaysia (Bernama, Accessed on 03 June 2023).
myBas (Causeway Link, 2023), a Malaysia government’s Stage Bus
Service Transformation (SBST) programme is launched to
standardise the operation, service level and management of the
public bus services in several states of Malaysia, in Johor alone the
government is expending RM150 million over 3 years to boost the
quality of stage bus services in Johor Bahru (the capital city of Johor)
and its nearby townships. These buses are well-equipped with a GPS
onboard, an e-payment system, a WiFi router to provide Internet
connectivity to the commuters and a mobile app for journey
planning. However, there are still some smaller bus operators
that are not part of the myBas ecosystem, especially in small
towns. Managing the fleet can be challenging and without
adequate funding from the government, the operators are
reluctant to invest in the infrastructure, i.e., GPS system on the
buses to improve their service offering. Given such a constraint, the
idea is to investigate the use of alternative approaches to GPS, i.e., by
using IoT technology, which is potentially lower in cost, easier to
deploy and yet sufficiently reliable to provide the basic fleet
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management needs to improve their bus services, so that they are at
least on par with the other major operators.

This paper presents an alternative approach to tracking the
location of buses without using a GPS device, offering an
innovative IoT-enabled Bluetooth approach as a potential solution
to collect bus location data based on proximity sensing. This work is
funded by ASEAN ICT Virtual Organisation (IVO) to improve the
urban mobility in developing countries. Bluetooth technology plays a
pivotal role in the IoT landscape, providing reliable and energy-
efficient connectivity for a diverse range of applications across various
industries such as healthcare (Cicceri et al., 2020; Tartarisco et al.,
2024), smart cities (Boukhechba et al., 2017), smart agriculture
(Maddikunta et al., 2021), industrial IoT (Gore et al., 2019),
wearable technology (Lo and Yohan, 2020), and smart home
devices (Amoran et al., 2021). Its versatility, low power
consumption, and widespread adoption make it a cornerstone in
the development of interconnected and smart ecosystems. BLE has
been widely used and deployed for presence sensing, e.g., Apple’s
AirTag, indoor positioning, e.g., Estimote’s Bluetooth beacons, as well
as proximity-based contact tracing (Trivedi and Vasisht, 2020; Ng
et al., 2021; Tang et al., 2021) during COVID-19 period. Our approach
aims to build smart infrastructure at the bus stop by embedding IoT
devices to perform sensing and information dissemination. The
first task is to sense the arrival of buses at the bus stop using
wireless proximity sensing and then transmit the location data to
the cloud. Proximity sensing using BLE is fast and accurate as it is
efficient to broadcast BLE advertisements periodically and no
communication handshake is required. A Raspberry Pi device is
installed at the bus stop to continuously scan for BLE
advertisements. As for the bus, a low-cost BLE beacon can be
easily attached to the dashboard so that it continuously emits BLE
advertisements. As there are many Raspberry Pi being installed at
multiple bus stops along the bus service route, this provides
redundancy to the proposed proximity-based fleet tracking
mechanism such that the sparse bus location data can still be
collected even though one of the Raspberry Pi devices is down. As
compared to a GPS approach, in the event that the GPS device is
faulty, the entire journey data of the bus becomes unavailable. In
the future, the Raspberry Pi installed at the bus stop can further
provide crowd-level sensing, bus arrival information display,
information exchange with the bus fleet, etc.

The proposed IoT-based fleet management for public bus system is
currently on trial and deployed on two bus services in Johor servicing
three cities in the state of Johor, Malaysia: Johor Bahru, Iskandar Puteri,
and Kulai, working with the bus operator and the respective city
councils to deploy IoT devices at bus stops and BLE beacons on
public buses. By utilising IoT technology and Bluetooth connectivity,
this research has shown the potential of an additional approach to
location tracking in a cost-effective manner for the local bus operators,
thus enabling them to provide improved stage bus services to their
passengers. The contributions of this paper are as follows.

• Design, implementation, and deployment of the proposed
IoT-based BLE proximity sensing for bus location tracking
in a real-world public stage bus service in Malaysia.

• Derive insights relating to the bus journey, duration between
bus stops, and traffic patterns based on the bus location data
collected to provide ETA for the bus services.

• Devise a base algorithm to compute the ETA based on the
historical journey time of the bus services, using the real-time
location data obtained from the proposed IoT-based
proximity sensing system to estimate the arrival times for
subsequent bus stops.

• Share the challenges, experiences, and lessons learnt from this
real-world deployment, discussing the deployment
architecture, power supply, reliability of IoT devices, and
efforts in engaging the relevant stakeholders.

The rest of the paper is structured as follows. Section 2 reviews
the related work on intelligent bus systems, specifically the GPS-
based and IoT-based fleet management systems. Section 3 presents
the proposed IoT-enabled BLE proximity sensing for bus location
tracking, its architectural design, implementation, deployment, and
field trials in Johor Malaysia. In Section 4, we provide a preliminary
analysis of the data collected, deriving insights on the journey
duration, and travel time between bus stops and propose a base
algorithm to compute the ETA based on this historical data. Finally,
we discuss the deployment challenges, and lessons learnt and
conclude the paper with future work in Section 5.

2 Related work

Bus tracking involves two distinct components: hardware and
software. The hardware aspect of bus tracking revolves around the
utilisation of IoT devices and GPS technology to monitor and track
the movement of buses in real-time. These hardware components,
such as GPS receivers and IoT sensors, are responsible for collecting
and transmitting location data, enabling accurate bus tracking.
Numerous designs have been proposed and implemented for bus
tracking systems. One such system involves installing GPS modules
on buses to transmit real-time bus locations to a central server.
Kumbhar et al. (2016) proposed a system that consists of GPS
transceivers that track the location of the bus, a central control unit
that uploads information about the bus, bus stops, and routes to the
database, and an interactive web-based application for remote users.
Sridevi et al. (2017) proposed a bus-tracking prototype system using
low-cost GPS sensor connected to an Arduino UNO board and
transmits location data to the cloud via GSM and/or Wifi. Sujatha
et al. (2014); Lim et al. (2016) on the other hand, proposed tracking
of buses through mobile phone GPS. By using in-built GPS on both
the passengers and bus drivers’ mobile phones, the bus location
information can be transmitted to a central server via GSM. This can
reduce the cost of installing GPS on every bus. However, there needs
to be a mechanism to incentivise the passengers onboard the bus to
share their location information and there is a potential privacy issue
in which the passenger’s location information is misused.

On the other hand, the software aspect focuses on processing the
collected data and employing predictive algorithms to estimate the
bus’s time of arrival at various stops along its route. By analysing
historical data, traffic patterns, and other relevant factors, the
software algorithms can generate reliable predictions for
passengers, allowing them to plan their journeys more efficiently.
In Amita et al. (2016), a bus travel time prediction model was
developed using Artificial Neural Network (ANN) and GPS data
obtained for a 17.4 km route in Delhi, India with 43 bus stops. The
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result showed that ANN outperformed the linear regression model.
In Lin et al. (2013), the bus arrival time was predicted using ANN
and hierarchical ANN based on GPS data and automatic fare
collection (AFC) system data for an 8.1 km route in Jinan, China
with 15 bus stops. In a more recent study, Han et al. (2020)
introduced the GPS position calibration method to help increase
arrival accuracy using Long Short-Term Memory (LSTM) models.
The results of their experiment demonstrated good accuracy in both
peak-time and off-peak-time prediction as compared to other
traditional methods.

A study by Gunady and Keoh (2019) proposed the use of BLE
proximity beacons for bus tracking and estimation of arrival time as
an alternative to using a GPS device. This study focused on a single
route with 37 bus stops and demonstrated an alternative to GPS for
collecting, analysing, and disseminating bus transport information.
However, the evaluation was limited to the accuracy of beacon
detection by RPi 3 devices installed at the bus stops and the proposed
method of ETA estimation was based on the historical speed of the
bus. The concept of smart bus stops involves deploying smart
devices to provide services such as passenger counting, wireless
connectivity, USB charging, bike rental, air conditioning, taxi
hailing, tourist information, news, advertisements, weather
forecasts, surveillance, and more. Leveraging the IoT, Jalaney
and Ganesh (2020) predicted the bus arrival time using the data
gathered from the vehicles stored in a cloud server. The proposed
method showed that accurate appearance time under different
traffic conditions can be predicted using the bus and route with
different parameters such as average speed, number of
passengers, rush hour information, and number of bus stops.
In a different study by Desingu et al. (2023) that analysed arrival
time using historic and real-time route data, beacons were
installed on all the busses and the best stops to estimate the
arrival time. The captured data were then analysed using machine
learning models to predict the arrival schedule and at the same
time, allow the commuters to access the running status of the
buses. The study revealed that IoT solutions like beacons can be
leveraged with prediction algorithms to produce a dynamic
prediction.

Wi-Fi has been proposed as a method to perform passenger
counting, including the counting of the origin and destination
(O-D) of public transit passengers (Algomaiah and Li, 2022). A
Wi-Fi detector was installed in the bus to detect passengers,
assuming that they each carry a mobile phone. The number of
passengers is estimated based on the MAC Address of the mobile
phones. The proposed approach was able to recognise 78.7% of
the total passengers as well as to detect their boarding and
alighting activities. However, the use of Wi-Fi is affected by
the dynamic change of MAC IDs operated by some smartphones.
Similarly, Dunlap et al. (2016) used Bluetooth andWi-Fi to tackle
the O-D counting and advocated that although Wi-Fi has a
longer detection range, it adds a significant amount of spatial
uncertainty to the data. Hence, Wi-Fi data are much noisier than
Bluetooth data. The findings suggest that for onboard transit
passenger detection, Bluetooth may provide more useable data,
but passengers may have turned off their Bluetooth. Kostakos
et al. (2013) proposed passenger sensing using Bluetooth and
showed that it achieved almost 80% accuracy of the daily
fluctuation of actual passenger flows. These studies have

shown the wide usage of wireless technologies for object and
passenger sensing.

Motivated by the increasing deployment of smart bus stops and
the use of IoT technology, the state-of-the-art survey has shown the
feasibility and viability of using proximity sensing approaches for fleet
tracking on a small scale. In this paper, we propose a data collection
and analytic framework for public bus services based on BLE
proximity sensing and scale up the solution for deployment in a
real-world setting, i.e., trials on multiple bus services, spanning
multiple cities in Johor, Malaysia. This further demonstrates the
feasibility of using the IoT-based BLE proximity sensing as an
alternative to the GPS-based system. The experience drawn from
the real-world deployment of such a large-scale field trial in a
developing country like Malaysia, involving the public bus operator
and city councils is valuable. Despite the many challenges faced, this
paper also highlights the solutions and strategies for mitigating both
the technical and soft challenges encountered during the deployment.

3 Methods

3.1 Proposed IoT-based fleet tracking and
analytic framework

This paper proposes a fleet data collection and analytic framework
for public bus services using IoT. The aim is to investigate the
feasibility of deploying low-cost IoT devices at bus stops to equip
them with smart infrastructure for fleet tracking, passenger
information display, and crowd detection in the future. Such an
IoT infrastructure is important to enabling fast deployment of bus
fleet tracking and passenger information systems, allowing the
passengers to obtain live location of the buses and their ETA,
hence reducing waiting time. Figure 1 illustrates the proposed
system for tracking the location of public buses along their service
route using BLE proximity sensing. Instead of installing a GPS device
and 3G data connectivity on each bus, a BLE beacon (i.e., Estimote
iBeacon) that periodically broadcasts Bluetooth advertisement in a
specified interval is placed and attached to the dashboard of the bus.
When the bus passes by a bus stop that is equipped with a BLE
detection device (i.e., Raspberry Pi (RPi)) that continuously scans for
the beacon signal in the vicinity, it is able to detect the arrival of the
bus at the bus stop. The RPi will then send the bus location data and
the timestamp to the cloud-based data analytic service to estimate the
arrival time of the bus at subsequent bus stops toward the destination.

As we are proposing an alternative approach to fleet tracking
using an IoT-based BLE system, some of its advantages as compared
to a GPS-based system onboard the bus are described as follows.

• GPS devices are significantly more expensive than a BLE
beacon to be installed on the bus. A reliable GPS device is
3x the price of a BLE Estimote Beacon.

• The accuracy of the GPS location can be easily affected by the
weather conditions though the location data logged is much
more granular. As for BLE, the detection is based on the
distance between the bus and the BLE detection device.

• GPS signals are susceptible to spoofing (Chauhan and Gao,
2021; Chu et al., 2022), thus rendering the inaccurate
computation of ETA.
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• By investing in building the infrastructure of bus stops, the city
councils can further deploy additional smart city applications
such as crowd-level detection, information display, and
surveillance at bus stops in the future.

Although the use of the proposed IoT-enabled BLE system has
some advantages there are some disadvantages which are described
as follows.

• It requires and relies on adequate Infrastructure to be in place.
For example, all the bus stops need to be equipped with RPi
and power supply. This may lead to higher complexity
and cost.

• The BLE’s range is significantly shorter than the GPS. Hence
can only be used where high-precision short-range
applications are required. This makes it suitable for transit
stations.

Hence, the choice of application of the proposed IoT-enabled
BLE system is based on the trade-off between precision, range,
infrastructure needs, cost, and energy consumption.

The bus location data collected from this research will then be
fed into a machine learning model trained using nonlinear
regression techniques, i.e., decision tree regressor, random
forest regressor and k-nearest neighbors regressor, as well as
other methods using Artificial Neural Network (ANN) (Phon-
Amnuaisuk et al., 2023) and Multi-Layer Perceptron (Xu et al.,
2023) to refine the prediction engine, thus increasing the
accuracy of the estimation of bus arrival time. The initial
exploration shows that ANN has the capability of capturing
the journey duration and temporal dynamics of the traffic
environment from this dataset, producing a reasonable
estimation of the journey duration.

3.2 Bus location tracking using BLE

Bluetooth Low Energy (BLE) is a power-conserving sub-
technology of Bluetooth, designed for devices and machines that
are connected to the Internet. Due to the low maintenance cost and
long-lasting battery life, it is a popular technology that is being
widely used for pervasive computing and IoT applications in recent
years. BLE devices when set at 0 dBm (decibels/milliwatts) output
power could produce a detection range of up to 50 m. Any Bluetooth
device, such as a RPi will be able to determine within the set range of
the BLE, whether there are devices within the proximity.

Our proposed system uses BLE proximity sensing in order to
detect whether a bus is 1) stationary at the parking bay of the bus terminal
2) stopping at the bus stop, or 3) passing through a bus stop along its
service route. When the bus is detected at the bus stop, the location
information together with a timestamp are sent to the cloud service and
this triggers real-time estimation of bus arrival time for all subsequent bus
stops along the bus service route. The ETA service will query a predictive
model trained based on past historical journey time between bus stops to
estimate the arrival time at subsequent bus stops in real-time.

The Estimote BLE beacon is placed inside the dashboard of the
bus, broadcasting BLE advertisements using iBeacon protocol. The
Estimote beacon can be configured to adjust the broadcasting power,
the maximum range of broadcast, and the advertising interval. We
advocate that themaximum range of ≈ 70 m is used, to ensure that the
BLE beacon can be picked up by the BLE detection device. A RPi
device can be used as the BLE detection device installed at bus stops
and bus terminals. It is programmed to periodically scan and discover
BLE devices in proximity. There is a white list that contains the MAC
addresses of all the Estimote BLE beacons deployed on the buses, and
it is updated daily from the cloud server. This allows for the RPi to
filter out non-relevant BLE devices, and only discover buses plying the
route that stops at and/or passes by the bus stops.

FIGURE 1
Architecture of Public Bus Fleet Tracking using BLE in Johor Malaysia.
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3.2.1 BLE beacon detection at bus terminal
A RPi device must be mounted at the bus terminal to detect the

departure of the bus. The RPi maintains a list of detected beacons
(also the buses) at the parking bays; If it discovers that the BLE
beacon signal is no longer detected, this implies that the bus has left
the bus terminal. As the BLE detection can be inconsistent due to
interference, a single non-detection does not necessarily mean that
the bus has departed. Therefore, when there are three consecutive
non-detection of the BLE beacon, RPi assumes that the bus has left
the bus terminal. Subsequently, the RPi sends the location of the bus
(i.e., the coordinates of the bus terminal) to the cloud-based analytic
server, as the last known location of the bus. This would in turn
trigger the prediction of bus ETA based on the bus’s departure time
at the bus terminal.

3.2.2 BLE beacon detection at bus stop
Typically, the bus stops at bus stops to pick up passengers and

to allow for passengers to alight. As the bus is stationary for about
1–2 minutes at the bus stop, this allows for the RPi to accurately
pick up the BLE advertisement emitted by the Estimote BLE
beacon in the bus, and upon successful detection, sends the
location of the bus stop (pre-set in the RPi) to the cloud-based
analytic service for processing. In the case that the bus stays at the
bus stop for a longer period of time, as the RPi scans for the
beacons continuously, it will send the bus location to the cloud
service for every detection of BLE advertisement from the bus. In
this way, the system is aware that the bus is still at the bus stop, and
the ETA to the next stop will be updated accordingly and
accurately until the bus leaves the bus stop.

It is possible that RPi detects buses in the opposite direction of
travel and this would have an adverse effect on the ETA if the bus is
mistakenly classified as plying the opposite service route. This can be
mitigated by first checking the travel direction of the detected bus,
i.e., by checking whether the ETA of the last stop for that particular
service route is known. If the ETA for the destination is not known,
this implies that the bus is traveling in the opposite direction.

3.3 Field trial and deployment in Johor
Malaysia

In partnership with Johor Public Transport (Pengangkutan
Awam Johor) (PAJ) and three city councils in Johor Malaysia,
namely, Johor Bahru (MBJB), Iskandar Puteri (MBIP) and Kulai
(MPKu), we have deployed the proposed IoT-based fleet tracking
and analytic framework for two bus routes serviced by PAJ, i.e., P-
411 (Kulai 5 Larkin Sentral) and P-211 (Taman Universiti 5
Larkin Sentral).

3.3.1 Bus routes (P-411 and P-211)
Both P-411 and P-211 service the Larkin Sentral bus terminal

in Johor Bahru to Kulai and Taman Universiti respectively as
shown in Figure 2. These buses are free bus services for Malaysian
citizens. Larkin Sentral is one of the main bus terminals for long-
distance express bus service to other cities in Peninsular Malaysia.
Both P-411 and P-211 routes travel via the main trunk road; for P-
411, the distance between Kulai and Larkin Sentral is 31 km and
the typical journey time is approximately 45–60 min. There are
approximately 31 bus stops along the P-411 bus route in each
direction, including the terminal stations. Currently, there is only
one bus plying this route with a daily frequency of five trips in each
direction.

As for P-211, the route distance between Taman Universiti and
Larkin Sentral is 22.3 km. There are 26 bus stops in each direction of
travel, including the bus terminals. There are 16 bus stops that serve
both P-411 and P-211, as both routes overlap from Skudai to Larkin
Sentral as indicated in the grey area on the map in Figure 2.
Currently, there are two buses plying the P-211 route with a
daily frequency of 14 trips in each direction. Each journey takes
around 35–45 min in duration.

3.3.2 BLE detection device (RPi Zero)
The first version of the BLE detection device used RPi 3 with a

4G USB dongle, unfortunately, due to the global shortage of RPi

FIGURE 2
Bus routes of P-411 and P-211 in Johor Malaysia.
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Model 3 and the high power consumption of RPi 4, we decided to
scale down the device’s capability to use a RPi Zero which consumes
less power. Essentially, the BLE detection device only runs the BLE
signal scanning, sends HTTP requests to log bus location data, and
periodically sends the device status to Thingsboard using MQTT.
Hence, the computational need is very minimal. The BLE detection
device consists of RPi Zero connected to a Quectel LTE
(EC20 CEFHLG) USB dongle for Internet connectivity.

While conducting a site survey along the bus service routes, we
discovered that all the bus stops in Malaysia are not equipped with a
continuous power supply. It is observed that only approximately
50% of the bus stops have lights installed which are powered by
tapping on the adjacent street lighting pole’s power supply. This
means that there is no electricity to power the RPi Zero during the
day, and the electricity is only available at night from 19:00 p.m. to
07:00 a.m. for 12 hours. Consequently, we have designed a system
that uses 12V/7.2A lead acid batteries to provide power supply to the
RPi Zero during the day. When the electricity is available at night,
the batteries are charged for 12 hours till the next morning.
Figure 3A shows the circuit diagram to tap on the power supply
from the street lighting or bus stop to charge the batteries at night.

A metal box enclosure (25 cm × 30 cm x 12 cm) with a weight of
2.5 kg is used to house the battery charging system, RPi Zero, SD
card, and mobile data SIM, to protect the circuitry from heat and
rain in tropical weather. In addition, there are safety and vandalism
concerns raised by the city council officers and they suggested that
the deployed system must be secured, and locked to prevent any
tampering and theft. Figure 3B illustrates the metal enclosure
deployed in the field.

We also tested the ability of RPi Zero when housed inside themetal
enclosure to detect the BLE signals emitted by the BLE beacon. This is
important as the metal enclosure would slightly obstruct the signal
detection, thus reducing the range of the BLE signal by RPi Zero. It is

noted that for a distance of 5–40 m when the bus is stationary or
moving at a slow speed, the BLE signals can be detected satisfactorily.

3.3.3 Installation of BLE detection devices (RPi
Zero)

As there are 31 stops and 26 stops for P-411 and P211
respectively study, numerous site surveys were conducted to
identify suitable locations to install the BLE detection devices
(RPi Zero in a metal enclosure). The locations are chosen based
on the following considerations.

• Power Supply—Most of the bus stops tap on the electricity
from the adjacent street lighting to light up the bus stop at
night. In cases where there are no lighting at the bus stops, the
nearby pedestrian overhead bridge was considered as the next
alternative for energy sources as it is lit up at night too. The
locations were chosen based on the availability to tap on the
electricity at night to charge the batteries in order to power the
BLE detection device.

• Bus Terminal—All bus terminals must have a BLE detection
device installed as they serve as the departure point of the bus
service.

• Shelter—Most of the bus stops are sheltered and this ensures
that the BLE detection devices are not exposed to direct
sunlight and rain, though the metal enclosure is water-proof.

• Crowd Level—Popular bus stops serving as passenger hubs
were chosen to ensure the safety of the BLE detection devices.
This helps prevent potential vandalism as the bus stop is busy
most of the time. In the future, the passenger information
display can be integrated with the installed BLE detection
device (RPi Zero) to show the bus arrival information.

• Road Traffic—More BLE detection devices are installed at the
congested road segment, so that the traffic congestion can be

FIGURE 3
(A) circuit diagram for tapping the power supply from the bus stop to charge batteries (B) metal enclosure for the battery charging system and RPi
Zero.
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tracked, thus providing a finer granularity of the journey
time data.

Once the bus stops had been identified, formal approval was
sought from the respective city councils. Installation was done
together with the electrician and contractor of the city councils
to ensure safety. Figure 4 shows the location of the RPi Zero installed
and in operation. Ten BLE detection devices are installed at bus
stops that are served by both P-411 and P-211. The bus terminal
stations, namely, Kulai, Taman Universiti and Larkin Sentral were
first installed, together with the subsequent bus stops after the
terminal station. Note that only the Larkin Sentral bus terminal
has a continuous power supply for 24 h. With the RPi Zero installed,
we are able to track the departure of the buses from the terminals
and their arrival time at the destination, thus collecting data on their
entire journey duration for analysis.

As shown in Figure 5A, our team of engineers spent a few
weeks installing the battery charging system and RPi Zero for BLE
detection along the bus service routes. The installed RPi zero will

also start the BLE signal detection and automatically connect to
the Internet. The RPi Zero can also be accessed remotely via the
Real VNC service. The metal enclosures are installed and attached
to the highest possible location to prevent vandalism from the
public.

3.3.4 Estimote BLE beacon and installation on bus
fleet

Off the shelf, Estimote BLE beacons are used and placed on the
dashboard of the bus fleet. The Estimote beacon is developed based
on Bluetooth 4.2 LE standard, with a range of up to 100 m (330 feet)
and output power between −20 and +4 dBm in 4 dB steps. It is
powered by two AA batteries and it supports both Eddystone and
iBeacon protocols. In this deployment, the Estimote beacon is
configured to transmit the BLE advertisement every 100 ms with
the highest transmission power of 4 dBm. Without any obstruction,
the signals can be detected up to 70 m in range. As shown in
Figure 5B, three buses have been installed with an Estimote beacon
each on its dashboard.

FIGURE 4
Map of the BLE detection devices (RPi zero) installed along P-411 and P-211 routes in Johor Malaysia.
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Table 1 shows the preliminary recorded BLE RSSI detected by
the RPi Zero without the metal enclosure box based on the
distance of the BLE beacon from the RPi Zero, and when the
RPi Zero was placed inside the metal enclosure box. It is observed
that the RSSI signal slightly weakened when it is placed inside a
metal enclosure and when the distance is greater than 20 m. It is
noted that an RSSI < −90 dBm means that the signal is extremely
weak, at the edge of what a receiver can receive. With the metal
enclosure, this effectively reduced the range of detection to just
under 20 m.

3.3.5 Software system architecture
Figure 6 shows the software system architecture of the deployed

system in Johor. RPi Zero is used as the BLE detection device as
mentioned previously, and the NodeJS Noble Bluetooth library is
used for detecting BLE signals. A cron job is scheduled to run every
10 minutes to monitor the RPi Zero, and whether the following
processes are running.

• NodeJS BLE signal detection is running.
• 4G LTE Internet connectivity is up.
• Gather the RPi Zero temperature and send it to the
Thingsboard.

As the NodeJS BLE signal detection process is running
continuously, the successful detection of the bus approaching or
stopping at the bus stops will be sent to the cloud. The information
logged includes < timestamp, bus stop location (lat, long), BLE MAC
address, bus ID> . The ETA computation is implemented onHeroku
Cloud based on PHP Laravel framework and the location data is
stored in ClearDB database. In addition, the RPi Zero periodically
sends a heartbeat and logs the CPU temperature reading to
ThingsBoard using MQTT protocol. This enables the monitoring
of the RPi Zero devices, ensuring that it is operational. A mobile app
and a simple passenger information dashboard have been
implemented to enable passengers to check the ETA of buses at
bus stops. ETA data is pulled from the Heroku Cloud. The collected
data is then used to perform data analytics to analyse the trip
duration of the bus services at different times of the day. The next
step is to use the collected data to develop a machine learning or
deep learning model to perform ETA prediction.

4 Results

This section presents the analysis of the data collected from the
10th of April to the 4th ofMay, 2023. Specifically, it provides insights

FIGURE 5
(A) Installation of BLE Detection Devices at Various Sites in Johor Malaysia, (B) Estimote BLE Beacons Installed on the Dashboard of Bas Muafakat
Johor fleet.
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on the travel duration per trip, the journey time between bus stops,
average travel duration per day, reliability of RPi zero, and cost-
benefit analysis. In addition, based on the results, an approach to
compute the ETA at the bus stops is proposed based on the data
collected.

4.1 Journey duration

Figure 7 shows the journey duration for P-211 and P-411 routes
derived using Equation (1).

TD k( ) � A k( ) −D k( ) (1)
where TD(k) is the travel duration for bus k, A(k) is the arrival time
of bus k and D(k) is the departure time for bus k.

In the current deployment, the P-211 has two buses: bus 32 and
bus 31 plying the route while the P-411 has only bus 34. For buses 31
and 32 on P-211 route, the journey from Taman Universiti to Larkin
Sentral is considered as route 8 while the reverse direction is
considered as route 9. As for P-411 route serviced by bus 34,
route 6 indicates the journey from Kulai to Larkin Sentral while
the reverse direction is denoted as route 7. It is observed that there is
no data logged for bus 32 after April 20th, upon checking with the
bus operator, it was sent to the workshop for servicing. Similarly, the
arrow in the graph for bus 31 and 34 indicates the downtime of the
buses as they were not running due to repair and servicing (Note that
a replacement bus was put into service by the bus operator, however,
there was no BLE beacon installed on the replacement buses). It is
observed that the consistently low travel duration for all the trips on

21st April was due a public holiday. In general, the analysis
conforms to the traffic patterns in that early hours trips between
6:00 a.m. to 7:00 a.m. were fast and smooth, while the trip duration
was longer during the afternoon peak hours from 15:00 p.m. to 19:
00 p.m.

4.2 Performance of on-time departure

The bus terminal stations have daily scheduled trips and each bus
station is equipped with a BLE detection device such that when the
BLE signals on the bus cannot be detected, this indicates that the bus
had departed the terminal station. The proposed system enables the
transport management agency and bus operators to monitor the on-
time performance of bus departures and track the movement of buses.
For instance, a daily analysis of data from Figure 7 shows that there is a
maximum delay of 12 min with an average delay of 4 min. Such early
departures or delays will impact the ETA of the buses and these
irregularities need to be accounted for. With only 32% on-time
departure in a day, the on-time performance of the public transit
system must be improved. From the analysis, 11% of early departures
and 57% of delayed departures were also observed for P-211.

4.3 Average daily trip duration

The trip duration varies throughout the day as the traffic
condition changes throughout the day. Figures 8A,B show
example instances of journey duration of all the scheduled trips
of P-211:route 9 and P-411:route 6 respectively. It is observed that

TABLE 1 RSSI recorded by RPi Zero without and with Metal Enclosure.

Distance Without metal closure RSSI (dBm) With metal closure RSSI (dBm)

10–20 −84 −79

20–40 −84 −98

40–60 −87 −98

60–100 −96 −92

FIGURE 6
The system architecture of the IoT deployment.
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the average daily travel duration for P-211:route 9 on 20th April is
41 min 51 s. While for P-411:route 6, the average journey duration is
48 min and 8 s. The average travel duration AD is determined using
Equation (2)

AD � ∑N
i TD k( )
N

(2)

where N is the total number of trips.
The travel duration per trip varies throughout the day. The

variation is a result of increasing passenger count and traffic
conditions at different times of the day. Hence, the use of the

average daily travel duration to predict the ETA will lead to
inaccurate results.

We further analysed the effect of public holidays on the journey
duration. Figures 9A,B show the statistics of journey duration on a
public holiday and non-holiday for routes P-411 and P-211,
respectively. For P-411, there was a significant reduction in
journey time on public holidays by approximately 10 min as
compared to a normal day. The results show that on a typical day,
the average journey time is around 51–52 min, while on a public
holiday, it is observed that all trips made throughout the day
regardless of the travel direction (either route 6 or route 7) were

FIGURE 7
Derived journey duration for P-211 (bus 31 and 32) and P-411 (bus 34)

FIGURE 8
Average daily trip duration for (A) P-211 and (B) P-411 on 20th April.
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consistently between 39–43 min. Traffic conditions appeared to be
rather smooth.

As shown in Figure 9B, for P-211, there was only a reduction of
5 min on a public holiday, which was an average of 35 min for the
entire journey. This is logical as the routes of P-211 and P-411
overlap for 14 km between Skudai and Larkin Sentral, in which they
split to travel to Taman Universiti and Kulai respectively.

4.4 Estimation of bus arrival time

With the BLE detection devices installed at bus stops, the
proposed system is able to derive the travel duration between
two consecutive bus stops using Equation (3).

tdi,j k( ) � aj t( ) − di k( ) (3)
where tdi,j(k) is the travel duration between bus stop i to the next bus
stop j, aj(t) is the arrival time at bus stop j and di(k) is the departure
time from bus stop i.

The use of average speed of the bus based on previous stops was
used to determine the ETA in Gunady and Keoh (2019). The use of
historical average speed may not reflect the current situation as the
bus speed can change due to congestion or delays. Hence, to
overcome this problem, the following method is adopted.

• Step 1: The travel duration for all the routes was first analysed
by taking the historical average duration between each bus
stops and the routes with the shortest travel duration per trip
were determined using Equation (1).

• Step 2: The shortest travel duration per trip was selected for
each route. Then the travel duration tdi,j(k) between the bus
stops along the routes was computed using Equation (3). The
sum of the tdi,j(k) is set as the default ETA for the journey.

• Step 3: The average tdi,j(k) computed in step 2 was set as the
default travel time ttj between each bus stop for the selected route.

ttj � tdi,j (4)

• Step 4: At every bus stop, the arrival time tj, that is, the time
the RPi detects the arrival of the bus is recorded and sent to the
server.

• Step 5: The time difference dj = tj − ttj is computed and added
to the default ETA in step 2 in order to compute the current
ETA as follows.

ETA � ∑
m

j�1
ttj +∑

m

j�1
dj (5)

where m is the number of bus stops in a route.

• Step 6: The step 3 to step 5 is repeated until the bus arrives at
the final bus terminal.

Figure 10A illustrates an example of ETA computation based on
the analysed data collected from the RPi. The tt1 is the derived travel
duration from the bus terminal to bus stop A, while tt2 is the derived
travel duration from bus stop A to B, tt3 is for bus stop B to C and so
on and so forth. t1 is the time the RPi detected the bus and d1 = t1 −
tt1 is the time difference between the t1 and tt1. The sum of the tt1
and d1 is used to compute the ETA at each bus stop. An example is
shown in Figure 10B. The bus departs from Larkin Terminal at 18:
15 p.m. and ETA at the Kulai Terminal is 18:53 p.m. based on the
derived travel time from Step 1. At the next bus stop Skudai, the RPi
detects the arrival of the bus at 18:35 p.m. The travel duration is
20 min instead of 17 min default time. Hence a delay of 3 min is
added to the ETA. This is repeated for subsequent bus stops until the
bus arrives at the Kulai Terminal station. Hence, a total delay of
6 min was added to the ETA.

4.5 Temperature and reliability of RPi zero

Throughout the first month of deployment, the RPi Zero CPU
temperature reading ranged from 40°C to 57°C, and typically the
temperature is at its peak between noon to 4 p.m. This is evident and
illustrated in Figures 11A,B. All the metal enclosures are installed
under the shelter and they are not exposed to direct sunlight. It is
observed that the temperature of RPi Zero of the Larkin Sentral
Terminal Bus Terminal has a higher temperature with an average of
49.9°C than the rest of the installed devices. This could be due to the
topography of the area.

FIGURE 9
Journey Duration on Normal Day vs. Public Holiday for (A) P-411 and (B) P-211.
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The other aspect of monitoring is to assess the reliability of RPi
Zero as it is important that they are operational 24/7 to facilitate fleet
tracking. As shown in Figure 11A, the reliability of RPi Zero is
excellent when there is a continuous power supply or at least 12 h of
uninterrupted power supply. There were only two occasions of
system downtime logged by Larkin Sentral (with a 24-h power
supply), and one instance of downtime for Arked Kulai (12-h power
supply).

However, as can be seen in Figure 11B, when the power supply is
intermittent, for example, there were only 5 hours of power supply at
night at AEON Taman Universiti bus stop, it was not able to fully
charge the batteries and hence resulting in the continuous down
time during the day time. This rendered the RPi Zero useless as the

bus services are only available between 6:00 a.m. and 7:15 p.m. and
the majority of the time the RPi Zero was not operational. In another
scenario at the Faculty of Architecture UTM, although the power
supply is supposed to be continuous for 12 hours at night, it turns
out that there was a power shutdown during some weekends thus
resulting in a low battery level. Consequently, even though the 12-h
power supply resumed after the weekend, it was not sufficient to
fully charge the batteries and hence resulted in partial operations of
RPi Zero during the day. As can be seen in the figure, the RPi Zero
was down daily between 14:00 p.m. - 15:00 p.m. until the power
supply resumed at 19:00 p.m. As these locations are not able to
provide a reliable power supply, we advocate that the RPi Zero
devices be relocated to other bus stops.

FIGURE 10
(A) Computation of ETA based on Data Collected from BLE Detection Devices (RPi Zero) (B) An Example of the Computed ETA for Route P-411.

FIGURE 11
Temperature of RPi Zero and system up time of (A) Larkin sentral and Arked Kulai (B) AEON Taman Universiti and UTM
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4.6 Cost benefits analysis

In this work, the main federal trunk road is served by numerous
bus services as they are bringing people from smaller cities like
Kulai, Taman Universiti, Pontian, Gelang Patah, Taman Selesa Jaya,
Pulai, Senai, etc., to the main capital city of Johor Bahru for work,
business, leisure, tourism and vice versa. Hence, with the BLE
detection devices installed at the bus stops along this road are
the most optimal as many of these buses can also be tracked
without additional cost. As shown in Figure 12, in the current
deployment, two bus routes (P-411 and P-211) can be fully tracked,
this can be extended to 12 other bus services where approximately
28%–81% of the BLE detection devices installed currently overlap
with the extended service routes. In particular, Bus No 229, 13, and
T30 operated by three different operators serve a similar route to P-
411, except that its final destination is to Johor Bahru (JB) Sentral
instead of Larkin where the last BLE detection point is at UDA bus
stop. This means that 15/21 (71%) installed BLE detection devices
between Kulai and UDA can be used for tracking these bus services.
Additionally, Bus No 2 plying Air Hitam and Larkin Sentral can be
tracked by all the BLE detection devices installed for P-411 route as
part of the service overlaps with the entire P-411 route. This means a
utilisation of 80% of the installed BLE detection devices. However,
additional BLE detection devices need to be installed between Kulai
and Air Hitam. As for Johor Premium Outlet (JPO) route and Senai
Airport route (AA1), 57% and 48% of the installed BLE detection
devices can be used respectively.

As we present the IoT-based tracking system as an alternative
approach to bus fleet tracking, when comparing the proposed
approach with the GPS-based approach in terms of cost, our
approach appears to incur a lower recurring cost though the
initial installation cost is higher. From the literature, an entry-
level GPS installation costs around US$99 - US$150 (Some
service providers offer free installation but with higher monthly
subscription cost). Usually, the provider will charge around US$20 -
US$35 per month per vehicle. On the other hand, our deployment
requires a BLE beacon to be installed per vehicle, i.e., US$24 and the
battery can be replaced using two AA batteries. As for the BLE

detection device installation cost, it is approximately US$450 per
site, details are as follows.

• RPi Zero and 4G dongle, US$150
• Battery Charging System in a Metal Enclosure, US$300

Assuming that the bus service frequency is every 30 min
operating from 6:00 a.m. to 10:00 p.m. With 12 service routes,
there would be 48 buses required to run the half-hourly service
schedule. Table 2 shows the initial cost incurred for the first 2 years
of operation respectively. Although our approach requires a
significantly higher initial cost for the installation of BLE
detection devices at bus stops (assuming that our approach
needs to increase the number of sites from the current 21 bus
stops to 40 bus stops to cover all the 12 bus service routes
completely). The monthly recurring cost for the BLE-based
approach mostly consists of the Internet data cost for each BLE
detection device, and the cloud server cost, while for GPS-based
approach the service provider charges a fixed fee per bus.
Consequently, the monthly recurring cost for the GPS-based
approach is an additional US$740 per month as compared to
our BLE-based approach. As shown in Figure 13, the cost incurred
for GPS-based and BLE-based becomes parity in Year 2, and the
accumulated additional cost of GPS-based approach increased
drastically. However, we recognised that the BLE-based system
would require timely maintenance and replacement of hardware as
well as batteries due to degradation over time. At the moment,
there are no electricity charges incurred as the city councils have
kindly provided the power supply from the street lighting at
night only.

5 Discussion

5.1 Deployment challenges

The challenges faced in the deployment of the proposed systems
in the Johor deployment and field trials are discussed in this section.

FIGURE 12
Extension of BLE-based system to cover additional bus service routes.

Frontiers in The Internet of Things frontiersin.org14

Elijah et al. 10.3389/friot.2023.1255995

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2023.1255995


5.1.1 Unavailability of electrical power
Amajor challenge faced is the availability of an adequate electric

power supply for the RPi Zero at some of the bus stops. Some of the
bus stops only had a scheduled power supply from 19:00 p.m. to 07:
00 a.m. This implies a lack of power for the RPi Zero during the day.
In order to mitigate this situation, we carried out a power
consumption analysis for the RPi Zero and concluded that it is
possible to use of a dual battery system to power the RPi Zero during
the day, while tapping on the 12-h power supply at night to charge
the batteries. Our deployment shows that this is sustainable to
ensure that the BLE detection is operational. In the future, we
will investigate the cost-effectiveness of deploying solar panels for
RPi Zero.

The intermittent power supply will typically lead to some
services on the RPi Zero to be unavailable, e.g., when the
battery’s voltage drops below 6V, this will not be sufficient to
power the 4G dongle even though the RPi Zero is still running.
Without Internet connection, the bus location data though the BLE
signal was detected by the RPi Zero, it cannot be sent to the cloud.
Consequently, this may lead to intermittent inaccuracy of the bus

ETA. However, once the bus is detected at the next bus stop, the
location data updates will resume. In this case, although the Internet
was down for the RPi Zero, once the power supply resumes, the
Internet connectivity will also recover, this means that all the bus
detection data logged on the RPi Zero can be sent to the cloud in a
batch. This ensures that the bus location data is not lost, and they are
valuable as the dataset for training the journey duration prediction
model.

5.1.2 Reliability of Raspberry Pi
The reliability of the RPi Zero plays an important role in the

success of the proposed system. The RPi Zero must be operational
during the day, and the BLE detection and Internet connectivity
must be up at all times. We observed that there were instances
where the RPi Zero was down due to a power cut, but it recovered
automatically once the power supply resumed. While deploying
the RPi Zeros in the field, we have created cron jobs to send heat-
beats to Thingsboard to continuously monitor the RPi Zero’s
operational status, a daily restart is triggered to reset any
transient software or BLE fault and Internet connectivity issue.

TABLE 2 Comparison of cost of fleet tracking for the first two years (GPS-based and BLE-based).

Items (GPS-Based) Cost
(US$)

Items (BLE-based) Cost
(US$)

Installation of GPS on bus fleet
(48 buses x US$99)

4,752 Installation at bus stops (40 sites x US$450) 18,000

Monthly recurring cost of GPS data for
2 years

(48 x US$20 × 24 months)

23,040 BLE beacons (48 buses x US$24) 1,152

Monthly recurring cost (Internet and Server) for 2 years (Internet Data: US$3 per month for 40 bus
stops, Server cost: US$100 per month)

5,288

Total 27,792 Total 24,440

FIGURE 13
Cost Analysis of GPS-based vs. BLE-based Approaches.
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The advantage of the system is that even though one RPi Zero is
down, the subsequent RPi Zero if not down can still track the
traveling bus as the system is only losing one data point in the fleet
tracking. Unlike GPS devices, if it is down the entire fleet location
information will be lost. We have built-in sufficient redundancy
such that coarse location tracking can at least be guaranteed. For
example, if the RPi Zero at the bus terminal is down, this means the
system is not aware that the bus has departed the terminal; however,
we have installed the RPi Zero at the next stop after the bus terminal
such that when such a situation occurs, the next bus stop RPi Zero is
able to detect the bus and trigger the computation of ETAs of the bus
journey.

5.1.3 Coordination with the stakeholders
There was a significant coordination effort that had to be done to

seek permission from the city councils in Johor to facilitate the
installation of BLE detection device (RPi Zero) at the bus stops, as
this is under the purview of the city councils’ infrastructure team.
Additionally, many site surveys had to be done to find a suitable
location for the installation, e.g., the availability of the power supply
and to minimise the exposure to heat and rain. Safety is also a
concern raised by the city councils as the installation should be
compliance with the safety at the bus stops to prevent any accidents
and hazards. As there were significant amount of vandalism of
public infrastructures reported by the city councils, they advised that
the metal box enclosure be secured and installed at a location that is
not easily reachable. Overall, the city councils were very supportive
of the deployment of the proposed system.

5.2 Conclusions and future work

In this paper, we have demonstrated the IoT-based BLE
proximity sensing as a low-cost and reliable alternative approach
to fleet tracking by working closely with the various stakeholders
such as the city councils and the bus operators. Our engagement
with the stakeholders show that there is an interest from the bus
operators to explore the use of IoT-based fleet management
technologies, while for the city councils they are interested in
how IoT can be used to transform conventional bus stops into
smart infrastructure. The main contribution of this paper is to
showcase the deployment of the proposed IoT-based fleet
management platform in a real-world setting in the southern
cities of Malaysia, involving two public bus service routes
spanning three cities in Johor. The findings from this work show
that IoT-enabled BLE system is a viable solution for tracking,
providing accurate ETA, and effective public transport
management solutions for transport agencies. The results show
that using BLE for proximity sensing is very efficient and
reliable, as the detection of BLE advertisements is fast. From the
data collected, we first devised an ETA algorithm based on the
historical data. Traffic patterns between bus stops and the bus
service routes are derived by analysing the bus journey duration,
average daily trip and the on-time performance of the bus service.
One notable observation is that the journey duration on public
holidays are 15%–18% faster than normal workdays, and this can be
a unique feature to be used for journey duration predictionmodeling
using machine learning in the future. The real-world deployment

also provided insights into the practical challenges of implementing
an IoT application in the real environment as compared to a lab
setting. Experiences in addressing these challenges have been shared,
thus providing various mitigation strategies to be adopted to ensure
the smooth operation of the IoT applications deployed.

As this is only the first step towards transforming urbanmobility
using IoT, based on the data collected, a machine learning model for
journey duration prediction will be trained and deployed to predict
the ETA based on the real-time location detected. With accurate
machine learning prediction, it is anticipated that the number of
BLE detection devices to be mounted at bus stops could be optimised
in order to minimise operating costs in the future. Secondly, with the
RPi Zero deployed at the bus stop, there is now some form of
computational capability and Internet connectivity available at the
bus stops; the next step is to integrate a passenger information
display at the bus stop using low-cost E-Ink paper display to indicate
the bus ETA. Though a mobile app has been developed, the
passenger information display at the bus stops seems to be more
convenient. Thirdly, the use of wireless technologies such as
Bluetooth and Wi-Fi can be further exploited to perform
passenger counting in an unintrusive manner. Information on
the crowd level at the bus stops as well as onboard the bus is
important to help bus operators to optimise their operations and
achieve their service level agreement. Lastly, the proposed IoT-based
BLE proximity sensing system will be expanded and deployed in
various other cities in Indonesia and Malaysia, with an aim to truly
transform the transport systems for the benefit of people relying on
public transport by providing them easy access to buses, thus
increasing the use of public transport in general.
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