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Highlights

• A novel ghost-cell method is proposed with high-order interpolation schemes for image points.

• Ghost-cell, level-set, and LES methods are combined for three-dimensional flows.

• The new method is validated for both laminar and turbulent flows.

• Both the ghost-cell and immersed boundary method are compared in the same numerical framework.

• Single- and two-phase flow benchmarks are considered from the literature.
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Abstract

This study presents the implementation of a tailored ghost cell method in Hy-

dro3D, an open-source large eddy simulation (LES) code for computational fluid

dynamics based on the finite difference method. The former model for studying

the interaction between an immersed object and the fluid flow is the immersed

boundary method (IBM) which has been validated for a wide range of Reynolds

number flows. However, it is challenging to ensure no-slip and zero gradient

boundary conditions on the surface of an immersed body. In order to deal with

this, a new sharp-interface ghost-cell method (GCM) is developed for Hydro3D.

The code also employs a level-set method to capture the motion of the air-water

interface and solves the spatially filtered Navier-Stokes equations in a Cartesian

staggered grid with the fractional step method. Both the new GCM and IBM

are compared in a single numerical framework. They are applied to simulate

benchmark cases in order to validate the numerical results, which mainly com-

prise single-phase flow over infinite circular and square cylinders for low- and

high-Reynolds number flows along with two-phase dam-break flows with a verti-

cal cylinder, in which a good agreement is obtained with other numerical studies

and laboratory experiments.

Keywords: Ghost-cell Method, Two-phase Flow, LES, Cartesian Grid,

Level-set Method
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1. Introduction1

There is a need for a reliable method for modelling hydrodynamic forces2

in many coastal and marine engineering applications, such as coastal erosion,3

renewable energy, and wave mitigation strategies. The availability of increasing4

computational resources and the development of Computational Fluid Dynam-5

ics (CFD) has made it possible to solve the Navier-Stokes equations with com-6

plex geometries together with interface calculation methods for simulating such7

problems. Traditionally there are four categories of numerical solutions: Di-8

rect Numerical Simulations (DNS), Reynolds-Averaged Navier-Stokes (RANS),9

Large Eddy Simulations (LES), and Detached Eddy Simulations (DES) where10

a LES model is used in the bulk of the flow and a RANS model is applied near11

the solid body. DNS produces highly accurate results although at a high com-12

putational cost rendering almost impossible the option of applying this solution13

to practical coastal and ocean engineering studies. In LES simulations only ed-14

dies larger than the grid size are resolved while the dissipative effect of smaller15

eddies is taken into account by the sub-grid scale (SGS) model [1].16

1.1. Overview of different methods for complex geometries in CFD17

Simulating fluid flow in the time domain with complex geometries is still a18

challenge. In the past boundary conforming methods have been adopted widely,19

such as body-fitted meshes or unstructured mesh methods. In body-fitted meth-20

ods with overlapping grids, interpolation techniques are used to interpolate the21

solution from one grid to the other. An overset grid method is an example of a22

body-fitted method applicable to complex geometries with moving bodies. In an23

overset grid method, at least two mutually overlapping grids are used [2–4]. For24

example, a structured body-fitted grid attached to a moving sphere is overset25

on a Cartesian grid [5].26

Compared to body-fitted grid methods, the Cartesian grid methods typically27

require less memory and CPU time [6]. A number of Cartesian grid methods28
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have been published over the years. One of them is the immersed boundary29

method (IBM). This family of numerical schemes are an alternative to conven-30

tional body-conforming grid methods for modelling the interaction between a31

viscous fluid and a solid body. These methods permit the use of direct FFT32

(fast Fourier transform) solvers for the pressure and also have the advantage33

that they do not require a body-conforming grid of fluid cells at each time step34

(body-fitted methods). Thus they also decrease the computational time since35

it is no longer necessary to generate a new grid at every time step. Associated36

with this, these techniques also eliminate grid-interpolation errors.37

There is a major difference between IBMs and body-fitted methods. In the38

latter, the local orientation of the grid conforms to the direction of the boundary39

of the fluid domain, which is not the case in IBMs [7]. Mainly there are two40

subcategories for this technique: continuous (or diffuse) and discrete (sharp)41

methods [8]. Additionally, depending on the way boundary conditions are im-42

posed on the surface of the immersed body one can distinguish both continu-43

ous (diffuse) and discrete (sharp) immersed boundary methods (IBM), ghost-44

cell methods (GCM), cut-cell methods (CCM) and hybrid Cartesian/immersed45

boundary methods (HCIBM).46

1.1.1. Continuous/direct forcing (or diffuse-interface) IBM methods47

In this approach, a continuous forcing term is added to the Navier-Stokes48

equations before being discretized. Original formulations of this approach can49

be found in [9] where the author studied cardiac flows. With this technique, the50

main advantage is that these schemes are independent of the spatial discretiza-51

tion and can be inserted directly into a Navier-Stokes solver. The disadvantage,52

though, is that these methodologies create a diffuse boundary between the fluid53

and the solid. This means that the boundary condition on the immersed sur-54

face is not exactly enforced at the location of this interface but within a small55

neighbouring region. Here the velocity boundary condition was applied through56

a regularized delta function forcing term in the momentum equations. This in-57
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terpolation function is a spreading operator that distributes the force from La-58

grangian boundary points to Eulerian grid cells. It acts as a filter that smooths59

out the IBM force defined at the interface over a volume with a thickness of a60

few grid cells.61

Another set of early examples is the ones [10, 11] applied to elastic bound-62

aries that are modelled through a smooth external forcing term added to the63

continuous momentum equation. This term also modifies a certain bounded64

volume surrounding the fluid-structure interface. Later, this was extended to65

simulate flow past rigid bodies, as noted, for example, in the works of [12] and66

[13], in which they modelled the forcing terms of the immersed boundaries by67

feedback techniques. In [14] rigid boundaries are approximated by highly stiff68

elastic boundaries. Additional examples can be found in the works of [15–17].69

The main advantage is that it can be easily implemented by adding source terms70

to the Navier-Stokes equations without major adjustment. On the other hand,71

the boundary conditions are diffused over the operational area of the forcing72

terms, which reduces numerical accuracy.73

Uhlmann [18] noticed that certain sharp-interface direct forcing IBMs pro-74

duced large pressure oscillations, and therefore he integrated the direct forcing75

technique into the regularized delta function formulation of Peskin [19]. The76

resulting diffuse-interface IBM and variants of it have been applied to many77

computations of turbulent flows with many suspended particles (see for exam-78

ple [20, 21]).79

1.1.2. Discrete forcing (sharp-interface) IBM methods80

The discrete (sharp) method aims to increase accuracy by modifying the dis-81

cretization scheme of the Navier-Stokes equations or reconstructing the forcing82

terms in such a way that wall boundary conditions are satisfied creating a sharp83

interface between the fluid and solid boundary. Nonetheless, in this family of84

methods, performance is dependent on the spatial discretization scheme. In85

[22] and [23] it is proposed a reconstruction scheme for the solution at the fluid86

nodes in close proximity to the surface of the immersed body. In their work,87
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the IBM force is defined as the term that is needed to make the velocity at the88

forcing points equal to the desired velocity.89

This second-order accurate approach works well for bodies that are largely90

aligned with the grid line and so far has been applied to simulate a number of91

different flow situations with satisfactory results [6, 24]. Another example worth92

mentioning stemming from [23] is the algorithm published in [25] where pressure93

boundary conditions are included to help enforce mass conservation constraints94

through a least-square interpolation scheme on a collocated grid. However, it95

is ambiguous how to select the reconstruction direction, especially in the case96

of complex geometry. This problem can be tackled by interpolating along the97

normal line to the fluid-solid interface which was applied in the work of [26–98

29]. Further bibliography where a forcing term is either explicitly or implicitly99

inserted into the Navier-Stokes equations can be found in [30–36].100

1.1.3. Other Cartesian methods: ghost-cell, cut-cell and hybrid methods101

It has also been experimented with reconstructing the solution on ghost cell102

nodes (fluid cells inside the immersed body) as can be seen in the work of [23].103

With this approach, a set of boundary conditions can be totally enforced and104

create a sharp interface between the fluid cells and the immersed body. Some105

publications that also employ the ghost-cell approach are [26, 33, 37, 38]. In [33]106

the proposed scheme uses a bilinear reconstruction procedure that is reduced to107

the one-dimensional linear one when there are no available points in the vicinity108

of the boundary to support the two-dimensional stencil.109

One reference article is the work in [39] for simulating incompressible viscous110

flow past three-dimensional immersed bodies. It employs ghost cells for enforc-111

ing boundary conditions on the surface of the immersed body (immersed bound-112

ary). The Navier-Stokes equations are discretized using a cell-centered, collo-113

cated (non-staggered) arrangement of the primitive variables. In this scheme,114

the forcing term is absent in the momentum equations and the pressure and115

shear stress forces around the immersed body are calculated. The Navier-Stokes116
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equations are advanced in time using the fractional step method. Other recent117

examples can be found in [40–43].118

Cut-cell methods (CCM) form another sub-class of Cartesian grid methods119

that improve upon classical stair step methods. In cut-cell methods, Cartesian120

cells intersecting with the boundary are cut by the boundary, and the discrete121

mass and momentum conservation laws are also applied to the cut cells, see for122

example [44–48].123

The algorithm presented in [26] is an example of a hybrid Cartesian/immersed124

boundary method. The approach presented in that article eliminates the pre-125

viously discussed ambiguities associated with interpolation along grid lines but126

its applicability is restricted to flows with immersed boundaries that are aligned127

with one coordinate direction (e.g., two-dimensional or axisymmetric shapes).128

In such cases, the solution reconstruction is greatly simplified as it needs to be129

performed in two-dimensional planes.130

1.2. The contribution and novelty of this study131

The objective of the present study is to present a LES-based two-phase flow132

model with a further enhanced ghost-cell method, which will be referenced later133

as GCM, for simulating boundary force interactions between fluid and solid134

surfaces. The scheme for capturing the free surface is a version of the level-135

set method (LSM) using the re-initialization algorithm and the WENO scheme136

for computing field derivatives. The main purpose of this work is to present137

validation results from a range of numerical benchmarks for CFD solvers to138

assess the reliability of the newly developed GCM and compare it to the direct139

forcing IBM in the same numerical framework Hydro3D. While the LES, GCM140

and LSM have been presented separately in other numerical studies for flow141

simulations, they have rarely been combined. Implementing a GCM model in142

a finite difference code allows for fast and reliable simulations that evaluate143

hydrodynamic forces on structures. The current IBM presents a discrepancy144

between the predicted IBM force and the combined forces of pressure and shear145
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stress. One of the key improvements of the GCM model is that it manages146

to predict a sharp interface between a solid body and the surrounding fluid.147

Additionally, other major enhancements are its robustness in high Reynolds148

flows and the convergence speed toward a steady-state solution.149

Another important point to highlight is the capability of defining several lay-150

ers of ghost points for several kinds of cross-sections. Thus the overall accuracy151

of pressure and velocity gradients is improved since higher-order differencing152

and interpolation schemes can be applied. Additionally, when using multiple153

layers of ghost cells, there is no need to define velocity ghost cell outside the154

fluid in order to guarantee that at least, the velocity ghost cell is located in the155

pressure cell face or halfway between two neighbouring pressure ghost cells [7].156

In contrast, the diffuse-interface IBM blurs the solid-fluid interface and it might157

suffer from reliability issues at high Reynolds numbers.158

The new GCM presented here brings the following advantages to the table159

compared with diffuse-interface IBM schemes:160

(i) natural characterization of the boundary layer;161

(ii) improved accuracy and reliable readings of combined forces of pressure162

and shear stress compared with the former diffuse-interface IBM scheme;163

(iii) prediction of a sharp interface between a solid body and the surrounding164

fluid;165

(iv) higher convergence speed towards a steady state solution than the former166

IBM model;167

In addition, the new ghost-cell method presented here distinguishes itself168

from other sharp-interface IBM and ghost-cell schemes in:169

(i) use of a tailored optimization algorithm to find the image point;170

(ii) combination of a regularized delta function for interpolating velocities and171

a tailored hp-interpolating scheme for estimating pressure;172
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(iii) several layers of ghost points are defined to increase the overall accuracy173

of pressure and velocity gradients;174

The remainder of the paper is organised as follows. The mathematical model175

and numerical implementation are described in Section 2. Next, benchmark val-176

idation results for laminar and turbulent single- and two-phase flows are shown177

and compared against other numerical simulations and laboratory experimental178

data in Section 3. Finally in Section 4 the main findings are summarized and a179

conclusion is included.180

2. Numerical Framework181

In this section, the numerical implementation of the fluid solver is presented182

along with the turbulence, free-surface and hydrodynamic force models.183

2.1. Fluid Solver184

The governing equations of the fluid model are the spatially-filtered Navier-185

Stokes equations:186

∂ui

∂xi

= 0 (1)

187

∂ui

∂t
+

∂ (uiuj)

∂xj

= −
1

ρ

∂p

∂xi

+
∂

∂xj

(

ν
∂ui

∂xj

)

+D
sgs

i − gi (2)

where equation (1) is the filtered continuity equation and equation (2) depicts188

the filtered momentum equation, both written in tensor notation. Velocity189

component ui ∀i = 1, 2, 3 denotes the three-dimensional Cartesian velocity190

components at their respective cell face center acting on the direction of the191

ith Cartesian axis. p is the filtered pressure, and ρ and ν are the filtered fluid192

density and kinematic viscosity. Finally, gi denotes the Cartesian component of193

gravitational acceleration and the filtered term D
sgs

i = ∂
∂xj

(

νsgs
∂ui

∂xj

)

indicates194

additional sub-grid scale stresses that have been calculated taking into account195

the Wall Adaptive Local Eddy-viscosity (WALE) model [49].196
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2.1.1. Spatial Discretization197

The filtered Navier-Stokes equations are discretized following a finite differ-198

ence approach implemented on a three-dimensional uniform Cartesian staggered199

grid for pressure p and velocity components ui. As shown in figure 1, on a200

two-dimensional staggered grid, scalar quantities like pressure and viscosity are201

evaluated at the black circles, or in other words, the cell centres of the pressure202

grid depicted by the mesh of blue squares. In this way, their derivatives and203

velocities are calculated at the face centres of the blue squares.204

The convective terms from (2) are approximated with a 4th-order central205

difference scheme (CDS) instead of using an upwind or blended scheme to avoid206

numerical dissipation. On the other hand, diffusive terms on the Navier-Stokes207

equation are discretised with a 2nd-order central difference scheme. Further208

details are available in [50].209

2.1.2. Temporal Discretization210

The time advancing scheme chosen for Hydro3D-GCM is the fractional step211

method, first proposed by [51] and further developed by [52], which was imple-212

mented by [53] in Hydro3D.213

In Figure 1 the black circles represent pressure cell centres at the centre of214

the blue cells and the red squares at the centre of the vertical faces represent the215

cell centres for velocity component u1, whereas the green triangles at the centre216

of the horizontal faces represent the cell centres for velocity component u3. In217

the first fractional method, the convective and diffusive terms are estimated218

using the equation below:219

u∗

i −ul−1

i

∆t
= −αl

(

∂uiuj

∂xj

)l−1

− βl
(

∂uiuj

∂xj

)l−2

− αl 1
ρ

∂p
∂xi

+αl ∂
∂xj

(

∂ul−1

i

∂xj

)

+ αlDsgs
n − αlgi

(3)

220

where index l−1 indicates field values of the previous time step. Coefficients221

α and β denote the parameters for the Runge-Kutta and Crank-Nicolson time-222

advancing schemes. βl is usually 0.5 for the each l-th stage of the Runge-Kutta223
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Figure 1: Cartesian grid representing the discretization of a continuous fluid domain into

Eulerian Cells.

method and coefficient αl is defined as:224

αl =



















1
3 if k = l + 1

1
2 if k = l + 2

1 if k = l + 3

(4)

where k is the intermediate time step of the Runge-Kutta scheme. The time225

step, ∆t is kept fixed and a safety parameter known as the Courant-Friedrichs-226

Lewy (CFL) coefficient is calculated at the end of each time iteration to check227

that the time step is small enough to ensure a good numerical solution. The228

CFL is evaluated with the equation below:229

CFL = ∆t

(

|
umax

∆x
|+ |

vmax

∆y
|+ |

wmax

∆z
|+ 2ν

(

1

∆x2
+

1

∆y2
+

1

∆z2

))

(5)

where umax, vmax and wmax are the maximum Cartesian velocites.230

Finally, in order to obtain a divergence-free (solenoidal field) velocity vector231

and comply with the continuity equation, the Pressure Poisson Equation (PPE)232

is solved through a multi-grid algorithm. In [54] it is explained how such equa-233

tion stems from the continuity equation and a pseudo-pressure, ps, is obtained234
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by solving:235

∂

∂xi

(

1

ρ

∂ps

∂xi

)

=
1

αl∆t

∂u∗

i

∂xi

(6)

which allows to calculate pressure and velocity corrections and update both236

fields before proceeding to the next time iteration in the fractional step method237

scheme as:238

ul
i = u∗

i − αl∆t
1

ρ

∂ps

∂xi

(7)

239

pl = pl−1 + ps −
ναl∆t

2

∂

∂xi

(

∂ps

∂xi

)

(8)

240

In the present study, a 2:1 reduction in grid cell size between neighbouring241

sub-domains is imposed on the staggered computational grid to achieve local242

mesh refinement (LMR) in critical areas. The calculation of ghost cell pres-243

sures is achieved by adjusting the coarse pressure gradients at the coarse-fine244

interface to those computed for neighbouring fine cells, thereby coupling the245

pressure fields. The calculation of ghost velocities tangential and normal to the246

non-matching interface is also done in a consistent manner during the prolonga-247

tion and restriction iteration of the multigrid algorithm for solving the pressure248

Poisson Equation. Further details can be found in [55].249

2.2. Turbulence Model250

Since SGS tensor D
sgs

i depends on the magnitude of velocity gradients,251

then it is necessary to consider velocity gradients in different directions us-252

ing the WALE model which captures the underlying physics of shear Sij =253

1
2

(

∂ui

∂xj
+

∂uj

∂xi

)

and rotation Ωij = 1
2

(

∂ui

∂xj
−

∂uj

∂xi

)

effects with fluid responsible254

for turbulence effect.255

Tensor Sij denotes a rate-of-strain tensor of the resolved turbulent scale by256

the mesh and Ωij is the vorticity tensor of the resolved scale of the eddies as257

well. The proposed turbulent viscosity follows the equation below:258

νsgs =
µsgs

ρ
= ∆sgs

(

Sd
ijS

d
ij

)
3

2

(

SijSij

)
5

2 +
(

Sd
ijS

d
ij

)
5

4

(9)
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where ∆sgs = Cw∆h is the sub-grid length scale. Here, Sd
ij is defined as the259

traceless symmetric part of the square of the velocity gradient tensor:260

Sd
ij =

1

2

(

∂ui

∂xj

∂ui

∂xj

+
∂uj

∂xi

∂uj

∂xi

)

−
1

3
δij

∂ui

∂xk

∂uk

∂xj

=
1

2

(

g2ij + g2ji
)

−
1

3
δijg

2
kk (10)

where g2kk = gikgkj and δij is the Kronecker symbol. For a good compromise261

coefficient Cw usually takes the value of 0.325 that corresponds to a Smagorinsky262

coefficient of Cs = 0.1.263

The advantages of the WALE method over Smagorinsky-based methods are264

the independence from the distance to the wall and the WALE method also265

takes into account the local shear strain and rotation rates. Additionally, the266

eddy viscosity goes naturally to zero in the vicinity of the wall so neither an267

adjustment nor damping function is needed to compute wall-bounded flows. It268

is also worth noting that this model produces zero eddy viscosity in the case of269

pure shear. Thus it is possible to reproduce the laminar to turbulent transition270

through the growth of linear unstable modes. Furthermore, since Sd
ijS

d
ij = 0271

accounts for the rotation of the flow, this model gives more weight to this effect272

instead of shear since it creates more turbulence. For pure shear flows there273

is no rotation, so this term Sd
ijS

d
ij = 0, capturing the behaviour for theoretical274

cubic decay of the eddy viscosity near the wall. Therefore this model does not275

generate turbulence in the laminar zone where there is only shear. Another276

convenient advantage is that WALE is invariant to any coordinate transforma-277

tion of rotation and translation. Since only local information is needed, it is278

not required test-filtering operations and knowledge of the closest points in the279

mesh grid. Thus it is suitable for complex geometries.280

2.3. Free-Surface Model281

To model the effect of the water surface motion the level-set method (LSM)282

proposed by [56] and later improved in [57] was chosen for its simplicity. A283

detailed numerical implementation in Hydro3D of the algorithms is described284

in [58–60]. The air-water interface moves with the fluid particles and a pure285
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advection equation is used to model this:286

∂ϕ

∂t
+ ui

∂ϕ

∂xi

= 0 (11)

where variable ϕ is a signed distance between the fluid particle and free287

surface or air-water interface. ϕ is evaluated at the cell centers of the pressure288

grid:289

ϕ(x⃗c, t) = ϕ(xc1, xc2, xc3, t) = ϕ(xc, yc, zc, t) = ϕ(i, j, k, t) (12)
290

∀i = 1, 2, 3, ..., N1; ∀j = 1, 2, 3, ..., N2; ∀i = 1, 2, 3, ..., N3

where integers N1, N2, N3 are the number of cells in the direction of the291

Cartesian axes OX1, OX2, OX3. Field variable ϕ is positive for the water phase292

and negative for the air phase.293

ϕ(xci, t) =



















ϕc < 0, if xci ∈ Ωgas

ϕc = 0, if xci ∈ Γgas−liquid

ϕc > 0, if xci ∈ Ωliquid

(13)

where ϕc is an arbitrary value of ϕ(xci, t) depending if the time t and Carte-294

sian coordinates (xci) ∀ i = 1, 2, 3 place the fluid particle in a gas medium,295

Ωgas, a liquid environment, Ωliquid or the interface between both, Γgas−liquid.296

The spatial derivatives of field variable ϕ are evaluated through a high-297

order accurate scheme that avoids spurious oscillations using the weighted non-298

oscillatory scheme (WENO) [61]. This scheme is 5th-order accurate for polyno-299

mial functions and employs a 4 cell stencil. If an upwind advection scheme is300

employed, its cell centered derivatives are:301

∂ϕ

∂xi

=



















∂ϕ
∂xi

−

if ui > 0

∂ϕ
∂xi

+
, if ui < 0

0, otherwise

(14)

∀i = 1, 2, 3

where ∂ϕ
∂xi

−

and ∂ϕ
∂xi

+
represent the left and right biased stencil, respectively.302

Additional guidance on how to evaluate these derivatives can be found in [50].303
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A third-order Runge-Kutta scheme is used to march in time advection equation304

(11):305

ϕl = ϕl−1 −∆t

(

u1
∂ϕl

∂x1
+ u2

∂ϕl

∂x2
+ u3

∂ϕl

∂x3

)

(15)

Here, all velocities and derivatives ui,
∂ϕ
∂xi

∀i = 1, 2, 3 are evaluated at the cell306

centrer coordinates xci of the pressure grid.307

A Heaviside function is used to avoid discontinuities in fluid properties. This308

technique allows for a smooth exchange of properties between fluid phases within309

a transition region of width 2ϵ = 4∆h where ∆h is the maximum grid spacing.310

The Heaviside function is formulated as:311

H(ϕ) =



















0 , if ϕ < −ϵ

1
2

(

1 + ϕ
ϵ
+ 1

π
sin

(

πϕ
ϵ

))

, if |ϕ| < ϵ

1 , if ϕ > ϵ

(16)

Thus, physical phase properties vary according to the value of the Heaviside312

function:313

ρ = ρg +H(ϕ) (ρl − ρg) (17)

314

µ = µg +H(ϕ) (µl − µg) (18)

where subscripts l, g indicate liquid and gas phases. Both phases are assumed315

to be a continuous medium treated as a fluid. Therefore, pressure and velocities316

at the interface and transition region are solved with the algorithms discussed317

in previous sections. In order to ensure convergence the ϕ gradient norm is318

kept as close as possible to 1 by solving the re-initialization equation within the319

transition region [62]320

∂ϕ

∂t∗
+ s (ϕ0) (|∇ϕ− 1|) = 0 (19)

where ϕ0 = ϕ(x, t = 0) and t∗ is an artificial time determined by the grid size321

multiplied by a safety factor of value less than one, similar to the CFL coefficient.322

Another term in the previous equation, s (ϕ0), is known as the smoothed signed323
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function, which is defined as:324

s (ϕ0) =
ϕ0

√

ϕ2
0 + (|∇ϕ|ϵr)

2
(20)

This re-initialization is applied throughout the transition zone within several325

iterations steps ϵr
∆t∗

, where ϵr represents one grid spacing. This technique is only326

applied in computational cells lying on the interface, thus there is no need to327

solve this partial differential equation for the whole domain.328
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2.4. Hydrodynamic Forces Model329

This section explains the principal ideas of a sharp-interface model account-330

ing for the interaction of fluid forces on submerged solid bodies. Such model331

is based on the ghost-cell method and has been implemented into Hydro3D. In332

the former IBM scheme, the diffuse immersed boundary forcing term is replaced333

by an implicit force implied by interpolation of velocity and pressure to Eule-334

rian fluid cells inside the immersed object in order to impose no-slip boundary335

conditions. These fluid cells inside the solid where the boundary conditions are336

applied are also known as ghost cells. The resulting effect of this implicit force337

creates a sharp interface between the fluid and the solid. The total force on the338

body is evaluated with a surface integral. A pseudo-code describing the steps339

to be taken at each time step is presented below and a flow chart can be found340

in figure 2. The steps of this approach can be summarized as:341

(a) Calculate an intermediate velocity u∗

i for each Eulerian fluid cell using342

information from the previous time step through equation (3).343

(b) Ensure divergence-free velocity field by solving the pressure Poisson equa-344

tion (6).345

(c) Apply equations (7) and (8), and evaluate new velocity and pressure fields346

ul
i for the current time iteration l using the updated pressure gradient.347

(d) Apply no-slip wall boundary conditions at the fluid cells inside the solid348

body and close to its surface using the newly developed ghost-cell tech-349

nique mentioned in 2.4.1, similar to [23, 27, 39].350

(e) Calculate force F on the surface s of the solid body with details in 2.4.2351

as:352

Fl =

∫

S

(

−pI+ µ
(

∇u+ (∇u)
T
))

· ndS (21)
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Figure 2: Hydro3D flow chart of a time loop.
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2.4.1. Ghost cell treatment353

Among other modifications, an algorithm was coded to automatically select354

a variable number of ghost layers inside the immersed object sweeping a path355

defined by the outermost immersed markers of its cross-section. The main idea356

consists of selecting a set of ghost cells, that is, the Eulerian fluid cells inside357

the immersed body. After that, the mirror point with respect to the body358

surface is calculated. These ghost cells will need to be assigned ui flow fields359

that cancel the respective mirror field values if one wants to apply a no-slip360

boundary condition for the velocities on the surface of a fixed body as described361

by this relationship:362

ugh
i = −ub

i (22)

Where upper index gh denotes field values in the ghost cell (fluid Eulerian363

cell inside the immersed body) and b indicates the respective field values for the364

mirror image point b in figure 3. In order to find values of ub
i , fluid velocity at365

the mirror point location, a delta function interpolation scheme is applied:366

ub
i =

ni
∑

ig

nj
∑

jg

nk
∑

kg

uig,jg,kg
i δ

(

x⃗ig,jg,kg
i,j,k − X⃗b

i,j,k

)

∆hi,j,k (23)

where δ is the delta function operator and ∆hi,j,k = 3

√

dxidxjdxk is the367

homogeneous grid spacing in the three Cartesian directions. x⃗ig,jg,kg
i,j,k and X⃗b

i,j,k368

are the coordinates of the fluid cells and mirror point b in figure 3, respectively.369

For a certain stencil of a delta function, the sets mi,mj ,mk of cell centres370

along the Cartesian axis are defined, with each set having ni, nj , nk number of371

cell centres along the horizontal, transversal and vertical Cartesian directions,372

respectively:373

mi = igb − deps, igb −Θ+ 1, igb −Θ+ 2, ..., igb +Θ

mj = jgb − deps, jgb −Θ+ 1, jgb −Θ+ 2, ..., jgb +Θ

mk = kgb − deps, kgb −Θ+ 1, kgb −Θ+ 2, ..., kgb +Θ

(24)

Here, the set of indexes igb, jgb, kgb denote the address of mirror point b in374

the i− th respective Cartesian grid; while Θ is half of the grid cells in which a375

support interval is defined for the selected delta function.376
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Figure 3: Cartesian grid representing the inter-phase (yellow line) between Eulerian cells of

a single-phase fluid (filled circles, triangles and squares) and Lagrangian ghost cell of the

immersed body (hollow circles, triangles and squares).

Figure 4: Cartesian grid representing the stencil for interpolation scheme hp.

In figure 3 the black hollow circles depict pressure ghost cell centres at the377
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centre of the blue cells. The red hollow squares at the centre of the vertical faces378

represent the ghost cell centres for velocity component u1. The green hollow379

triangles at the centre of the horizontal faces represent the ghost cell centres for380

velocity component u3.381

The location of each marker is given by the indexes of the cell faces down-382

stream. This allows for easy implementation of the ghost-cell method since each383

marker is associated with the closest pressure and velocity cell faces.384

On the other hand, in order to apply zero-gradient boundary conditions on385

the body surface, the ghost cell value for pressure will be equal to the pressure386

magnitude at the mirror point:387

pgh = pb (25)

where index b referes to point b in figure 4. In order to estimate the value of388

pressure at the mirror point a tailored hp interpolation scheme was chosen and389

it was applied to a stencil k = c, d, e, f of N = 4 cell centres, equally spaced390

forming a square, as it is shown in figure 4. Thus, the equation below shows the391

general equation to estimate pressure values at the mirror point.392

pb =
12
∑

q=1

βqαq (26)
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where the coeffients βq and αq have the following expressions:393

βq=1,4,7,10 =

















β1 = pflc

β4 = pfld

β7 = pfle

β10 = pflf

(27)

βq=2,5,8,11 =

















β2 =
∂pfl

c

∂x

β5 =
∂p

fl

d

∂x

β8 =
∂pfl

e

∂x

β11 =
∂p

fl

f

∂x

(28)

βq=3,6,9,12 =

















β3 =
∂pfl

c

∂z

β6 =
∂p

fl

d

∂z

β9 =
∂pfl

e

∂z

β12 =
∂p

fl

f

∂z

(29)

αq=1,4,7,10 =

















α1 = ϕ̂1(η̂, ξ̂)

α4 = ϕ̂4(η̂, ξ̂)

α7 = ϕ̂7(η̂, ξ̂)

α10 = ϕ̂10(η̂, ξ̂)

(30)

αq=2,5,8,11 =

















α2 = ∆xϕ̂2(η̂, ξ̂)

α5 = ∆xϕ̂5(η̂, ξ̂)

α8 = ∆xϕ̂8(η̂, ξ̂)

α11 = ∆xϕ̂11(η̂, ξ̂)

(31)

αq=3,6,9,12 =

















α3 = ∆zϕ̂3(η̂, ξ̂)

α6 = ∆zϕ̂6(η̂, ξ̂)

α9 = ∆zϕ̂9(η̂, ξ̂)

α12 = ∆zϕ̂12(η̂, ξ̂)

(32)

where pflk ,
∂p

fl

k

∂x
and

∂p
fl

k

∂z
are the filtered pressure and the horizontal and verti-394

cal derivatives, respectively, evaluated at fluid cell centres k = c, d, e, f surround-395

ing the mirror point b of figure 4. ∆x and ∆z indicate the grid spacing along the396
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horizontal and vertical directions. Variables ϕ̂q(η̂, ξ̂) with q = 1, 2, 3, ..., 12 are397

polynomial shape functions defined in Appendix A while elemental coordinates398

η̂ and ξ̂ are defined as:399

η̂ = −1 + (1− (−1))
Xb

1 − nx1

nx2 − nx1
(33)

ξ̂ = −1 + (1− (−1))
Xb

3 − nz1
nz2 − nz1

(34)

with pair (Xb
1, X

b
3) being the location in the y-plane of mirror point b while400

intervals [nx1, nx2] and [nz1, nz2] define the bounding box of the 4 point stencil401

along the horizontal and vertical directions, as shown in figure 4 by the set of k402

points k = c, d, e, f .403

2.4.2. Force calculation in GCM404

Further details of how to evaluate the surface integral in the force calculation405

(21) can be found in figures 5 and 6. The pressure force along the OX axis acting406

on an elemental surface spanning markers pk−1 and pk, separated a distance lnds,407

reads:408

Trapezoidal rule:409

F p
x = 0.5 (pk−1 + pk) lnds∆y sin (β) (35)

410

Simpson’s rule:411

F p
x =

1

6

(

pk−1 + 4pk− 1

2

+ pk

)

lnds∆y sin (β) (36)

The pressure force along the OZ axis acting on an elemental surface spanning412

markers pk−1 and pk, separated a distance lnds, reads:413

Trapezoidal rule:414

F p
z = 0.5 (pk−1 + pk) lnds∆y cos (β) (37)

415
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Simpson’s rule:416

F p
z =

1

6

(

pk−1 + 4pk− 1

2

+ pk

)

lnds∆y cos (β) (38)

In the equations above, ∆y is the spacing between the cross-sections along417

the span-wise direction, OY while angle β is the slope between the markers pk418

and pk−1.

Figure 5: Pressure force calculation.

419

In figure 6 vectors t and n are the tangent and normal unit vectors to the420

surface of the immersed body. This work follows the convention of the normal421

vector pointing outside of the immersed body surface.422

The shear stress force along the OX axis acting on an elemental surface423

spanning markers pk−1 and pk, separated a distance lnds, reads:424

Trapezoidal rule:425

F τ
x = 0.5 (τk−1 + τk) lnds∆y cos (β) (39)

426

Simpson’s rule:427

F τ
x =

1

6

(

τk−1 + 4τk− 1

2

+ τk

)

lnds∆y cos (β) (40)
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The shear stress force along the OZ axis acting on an elemental surface428

spanning markers pk−1 and pk, separated a distance lnds, reads:429

Trapezoidal rule:430

F τ
z = 0.5 (τk−1 + τk) lnds∆y sin (β) (41)

431

Simpson’s rule:432

F τ
z =

1

6

(

τk−1 + 4τk− 1

2

+ τk

)

lnds∆y sin (β) (42)

Here, τ is defined as:433

τk = −µ
∂
(

(u⃗k + w⃗k) · t⃗
)

∂n
(43)

where variable µ is the dynamic viscosity. Using a second-order approxima-434

tion for the derivatives we have this relationship:435

τk = −µ
∂
(

(u⃗k + w⃗k) · t⃗
)

∂n
= µ

(

u+
k − û+

k

2y+
+

w+
k − ŵ+

k

2y+

)

= µ

(

u+
k

y+
+

w+
k

y+

)

(44)

for obtaining the equation above it was assumed that the velocity fields u436

and w inside the immersed take mirror values from the fluid cells outside the437

body due to the ghost cell method. This implies:438

u+
k = −û+

k (45)

439

w+
k = −ŵ+

k (46)

where û and ŵ are the velocity values inside the body that mirror the re-440

spective field values outside.441

2.4.3. Comparison with other IBMs442

The new enhanced GCM presented here brings the following advantages443

compared with diffusive IBM schemes:444
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Figure 6: Shear stress force calculation.

• natural characterization of the boundary layer and therefore reliable as-445

sessment of combined forces of pressure and shear stress;446

• prediction of a sharp interface between a solid body and the surrounding447

fluid;448

Additionally the new ghost cell method presented here distinguishes itself449

from other sharp IBM schemes in:450

• use of a tailored optimization algorithm to find the image point resembling451

the means scheme [63];452

• use of a regularized delta function for interpolating velocities at the image453

point while a hp interpolating scheme is applied to the pressure field;454

• use of bilinear interpolation when the previous schemes yield values above455

(bellow) the local maxima (minima) of the interpolation stencil;456

• multiple layers of ghost points are defined increasing the overall accuracy457

of pressure and velocity gradients;458
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3. Numerical Validation Benchmarks459

This section is dedicated to explain in detail how the new GCM model imple-460

mented in Hydro3D is validated. Looking at previous works, a few benchmarks461

are selected to ensure reliable predictions of drag and lift forces for both low-462

and high-Reynolds number single- and two-phase flows. It is worth mentioning463

that both the ghost-cell method and the IBM are implemented in the same nu-464

merical framework so that we can assess the performance of both methods. The465

predicted results are compared with available experimental measurements and466

other numerical results to demonstrate the capability of the proposed method.467

3.1. Fixed circular cylinder in low Reynolds number flows, RE = 40468

For this simulation a circular cylinder is facing a single-phase flow with a469

Reynolds number RE = UD
ν

= 40, in which U is the inlet velocity, D is the470

diameter of the cylinder and ν is the kinematic viscosity. In figure 7 bellow is471

the sketch depicting the setup of the computational domain and the location of472

the cylinder. The finest mesh resolution is D
∆h

= 40, or in other words, there473

are 40 cells across the cylinder diameter. Additionally, the time step chosen is474

∆t = 0.005 s to guarantee that the total CFL number will not be above 1 or475

cause numerical instabilities. The top and bottom surfaces of the computational476

domain are treated as no-slip walls, which run parallel to the fluid flow and are477

far away from the body. On the other hand, for the north and south boundaries478

(frontal and rear sides) of the domain (they are the largest boundaries, which479

are perpendicular to the cylinder axis) periodic boundary conditions have been480

applied. The west and east boundaries are modelled as an inlet and outlet,481

respectively. For the inlet Dirichlet conditions are applied since the velocity is482

prescribed as U = 0.4 m/s with a kinematic viscosity equal to ν = 1
100 m2/s.483

For the outlet, a convective boundary condition is applied as484

ul
i = uo

i −∆tU∞

uo
i − ugh

i

∆xi

(47)

where uo
i is the fluid velocity at the outlet, ugh

i is the velocity in the first485
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ghost layer of the outlet and U∞ is the mean stream-wise velocity at the plane486

where the outlet is located.

Figure 7: Schematic of the computational setup with local mesh refinement regions A and B.

The dimensions are given in terms of the cylinder diameter D.

487

Figure 7 shows regions A and B. In region A the grid spacing is ∆h = 0.05488

m and the mesh resolution is D
∆h

= 20 while in region B the grid spacing489

is ∆h = 0.025 m and the mesh resolution is D
∆h

= 40. Table 1 summarizes490

published results by other researchers along with the results obtained using the491

IBM and ghost-cell method.492

Mainly, Table 1 compares drag and wake length for a circular cylinder for493

RE = 40 between authors from the literature, the standard IBM and the ghost494

cell method for a mesh resolution of D
∆h

= 40 and time step ∆t = 0.005 s. For495

such a low value of Reynolds number, there is no vortex shedding downstream,496

so the lift coefficients are negligible. Also, the prediction of the drag values from497

both the IBM and GCM agree with previous numerical results [32, 33, 38, 64].498

One can also see in Table 1 that the wake length downstream of the cylinder499

predicted by the GCM also agrees with the data in the literature.500

In figure 8 the reader can find a comparison between the predicted pressure501

values around a cylinder with the GCM and the numerical results obtained by502

[38]. Figure 9 also compares the numerical results of the skin friction coefficient503

from the same author against the GCM.504
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Results Cavg
d Lw/D

Tseng and Ferziger (2003)[38] 1.53 2.1

Ye et al. [32] 1.52 2.27

Kim et al. [33] 1.51 -

Dias and Majundar [64] 1.54 2.69

Cheny and Botella (2010) [65] 1.56 2.26

IBM 1.60 -

GCM 1.56 2.20

Table 1: Drag and wake length for a circular cylinder at RE = 40.

Figure 8: Pressure coefficient comparison around a circular cylinder facing a single-phase flow

with RE = 40.

Figure 9: Skin-frction coefficient comparison around a circular cylinder facing a single-phase

flow with RE = 40.

28



3.2. Fixed circular cylinder in low Reynolds number flows, RE = 100505

For this simulation, a circular cylinder is facing a single-phase flow with a506

Reynolds number of 100. The same computational setup shown in Figure 7 is507

used here, in which region A the grid spacing is ∆h = 0.05 m and the mesh508

resolution is D
∆h

= 20 while in region B the grid spacing is ∆h = 0.025 m509

and the mesh resolution is D
∆h

= 40. In this way, there are 40 cells across the510

cylinder diameter. Additionally, the time step chosen at first was 0.005 s to511

guarantee that the total CFL number will not be above 1 and is low enough to512

not cause numerical instabilities. The boundary conditions are the same as in513

the previous case.514

The results for the drag coefficient value predicted by other authors are515

around 1.35. In figure 10 bellow one can find that the average value for the drag516

coefficient achieved with the proposed GCM is 1.33 using delta functions for517

interpolating velocities and a hp scheme for interpolating pressure values. When518

comparing this against the IBM model with a spreading operator that modifies519

the boundary layer around the cylinder, the average drag value is Cd = 1.43,520

considerably larger and less accurate. One reason for this might be due to the521

fact that the IBM creates a blurry interface between the fluid and the solid,522

modifying the boundary layer that ultimately determines the strength of the523

fluid forces interacting with the circular cylinder. Figure 11 compares the lift524

predictions which reasonably agree with data found in published literature. One525

interesting feature when observing both drag and lift predictions in figures 10526

and 11 is that the GCM reaches the steady state much faster than the IBM527

method. Thus, when it comes to moving structures the GCM might be more528

reliable. Figures 12 and 13 compare the total hydrodynamic force computed529

with the GCM and the pressure and skin friction components of these forces.530

Table 2 shows the comparison of average drag, root mean square of lift and531

Strouhal number coefficient predictions for a circular cylinder at RE = 100532

between different methods available in the literature. The predicted results533
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obtained from the standard IBM and the ghost cell method are for a mesh534

resolution of D
∆h

= 40 and time step ∆t = 0.005 s.

Figure 10: Comparison for prediction of drag coefficient, Cd, for a circular cylinder and

RE = 100 with a mesh resolution of D
∆h

= 40 and a time step of ∆t = 0.005 s. The blue

line is the immersed boundary method and the red line indicates the ghost cell method both

using the phi2 delta function as an interpolation scheme for velocities and the hp interpolation

scheme for pressure.

Figure 11: Comparison for prediction of lift coefficient, Cl, for a circular cylinder and RE =

100 with a mesh resolution of D
∆h

= 40 and a time step of ∆t = 0.005 s. The blue line is the

immersed boundary method and the red line indicates the ghost cell method both using the

phi2 delta function as an interpolation scheme for velocities and the hp interpolation scheme

for pressure.
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Figure 12: Comparison for prediction of drag coefficient, Cd, for a circular cylinder and

RE = 100 with a mesh resolution of D
∆h

= 40 and a time step of ∆t = 0.005 s. Represented

in the red line is the total force coefficient from GCM while the green and black lines indicate

the pressure and skin friction components of the total force, respectively.

Figure 13: Comparison for prediction of lift coefficient, Cl, for a circular cylinder and RE =

100 with a mesh resolution of D
∆h

= 40 and a time step of ∆t = 0.005 s. Represented in the

red line is the total force coefficient from GCM while the green and black lines indicate the

pressure and skin friction components of the total force, respectively.

535

Tables 3 and 4 shows the values for drag, lift and vortex-shedding coeffi-536

cients for several time steps: ∆t = 0.005, 0.0025, 0.00125 s and mesh resolutions:537

D/∆h = 40, 60, 80. With this information, a temporal and spatial convergence538
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Results Cavg
d Crms

l Str

Lai and Pesking (2000)[14] 1.447 0.330

Kim et al. (2001) [33] 1.330 0.320

Tseng and Ferziger (2003) [38] 1.420 0.290

Shu et al. (2007) [66] 1.383 0.350

Liu et al. (1998) [67] 1.350 0.339 0.165

Uhlmann (2005) [68] 1.501 0.339 0.169

Yang et al. (2009) [69] 1.393 0.335 0.165

Cheny and Botella (2010) [65] 1.32 - 0.170

Kara et al. (2012) [70] 1.360 0.340 0.164

Kara (2013) [71]: interface forcing 1.431 0.310 0.166

Kara (2013) [71]: solid forcing 1.367 0.338 0.165

IBM phi2 1.432 0.342 0.163

GCM u phi2 / p hp 1.327 0.295 0.165

Table 2: Drag, lift and Strouhal coefficients predictions for a circular cylinder at RE = 100.

∆t[s] Cavg
d Crms

l Str

0.00500 1.327 0.295 0.165

0.00250 1.302 0.328 0.166

0.00125 1.284 0.250 0.166

Table 3: Comparison of predictions from the ghost cell method for a circular cylinder

and RE = 100 with a mesh resolution of D
∆h

= 40 and different time steps ∆t =

0.00125, 0.00250, 0.00500 s.

study was performed. For the time convergence case, the mesh resolution was539

kept at D/∆h = 40. For this case, a nearly first-order trend was found for the540

drag values. It is worth noticing that when the time step is halved by a second541

time, the change in the value of the average drag coefficient is multiplied by542

a factor smaller than 1. This fact reflects that as the time step decreases, the543

error also decreases for the given mesh, which is an indicator that the simulation544
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is converging in time. On the other hand, when the spatial convergence study545

was carried out at a constant time-step, ∆t = 0.00125 s, looking again at the546

red line in figure 15 the spatial convergence for the GCM was slightly above547

first-order. This means that numerical results converge faster when decreasing548

fluid cell size than when decreasing the time step. It was noted that a first-order549

spatial convergence is observed although a higher-order scheme is used for the550

advection. This degradation of convergence has also been reported in recent551

works of IBM for high-order methods [72], which depends on the regularity of552

the solution across the fluid-solid interface.553

Figure 14: Time convergence study for a circular cylinder facing a single-phase flow of RE =

100.

In order to justify the selection of the domain height, an additional sensibility554

analysis was carried out. Table 5 briefly presents the main variations in the force555

coefficients.556

In figure 16 the contour plot shows the horizontal velocity field outside and557

inside the cylinder when using the GCM that employs a delta function interpola-558

tion for velocities and hp shape function scheme for pressure interpolation. The559
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D
∆h

Cavg
d Crms

l Str

40 1.284 0.250 0.166

60 1.341 0.263 0.164

80 1.369 0.213 0.164

Table 4: Comparison of predictions from the ghost cell method for a circular cylinder and

RE = 100 with different mesh resolutions of D
∆h

= 40, 60, 80 and time step ∆t = 0.00125 s.

Figure 15: Spatial convergence study for a circular cylinder facing a single-phase flow of

RE = 100.

Domain Height [m] ∆t [s] Cavg
d Crms

l Str

8 0.005 1.327 (+0.0%) 0.295 (+0.0%) 0.165 (+0.0%)

12 0.005 1.388 (+4.5%) 0.283 (−4.1%) 0.164 (+0.1%)

16 0.005 1.395 (+5.1%) 0.281 (−4.8%) 0.164 (+0.1%)

Table 5: Comparison of predictions from the ghost cell method for a circular cylinder and

RE = 100 with a mesh resolution of D
∆h

= 40 and different computational domain heights.

mesh resolution is D
∆h

= 40 and the time step used is ∆t = 0.005 s. Highlighted560

in deep blue downstream the cylinder is the wake where negative velocities and561
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Figure 16: u1 velocity profile for simulation time 200 s of a circular cylinder facing a flow at

RE = 100.

(a) (b)

(c)

Figure 17: The following figures represent time-averaged fluid fields of a circular cylinder

facing a flow at RE = 100. a) Time-averaged horizontal velocity. b) Time-averaged vertical

velocity. c) Time-averaged cross-flow shear stress.

re-circulation effects can be observed. Also, depicted in deep blue the frontal562

cells inside the cylinder show how the ghost layers take the opposite values of563

the velocities in the fluid outside the cylinder. On the other hand, the rear cells564
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inside the cylinder only have a light blue shade because the fluid velocity outside565

is close to zero and the interpolation using delta functions predicts conservative566

values for the mirror velocities. Additionally, in Figures 17a and 17b it can be567

seen the average horizontal and vertical velocities indicate that the fluid solution568

is rather symmetric. This can also be seen by looking at the cross-flow shear569

stress in Figure 17c.570

Figures 18 and 19 show the comparison of the IBM and GCM employing571

several interpolations schemes for predictions. Both IBM and GCM use delta572

functions for interpolating velocities. The most accurate drag prediction with573

the GCM is the one with the hp shape function for estimating pressure in the574

ghost cells, shown in red colour, closely followed by bilinear least squares. When575

using the delta function the pressure force and overall fluid force acting on the576

surface of the cylinder are significantly underestimated. Both schemes of the577

GCM for interpolating pressure yield similar maximum lift coefficients. The578

bilinear scheme tends to slightly predict higher values than when selecting the579

hp shape function. On the other hand, when choosing the delta function the580

maximum lift coefficient is lower than the one predicted by the hp scheme.581

3.3. Fixed squared cylinder in low Reynolds number flows, RE = 100582

A square cylinder in a single-phase flow with a Reynolds number of 100 is583

considered here. Figure 20 shows the computational setup along with regions584

A and B, in which region A the grid spacing is ∆h = 0.05 m and the mesh585

resolution is D
∆h

= 20 while in region B the grid spacing is ∆h = 0.025 m and586

the mesh resolution is D
∆h

= 40. For this benchmark a time step ∆t = 0.005587

s was tested using both the hp interpolation scheme for pressure and the delta588

function for interpolating velocities.589

Figures 21 and 22 show the predicted time series of the drag and lift coeffi-590

cient values obtained from both GCM and IBM. The results are quite close to591

the value of Cd = 1.5 found in the literature for the proposed GCM while the592

standard IBM yields much higher values for the drag and lift coefficients. As593
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Figure 18: Comparison for prediction of drag coefficient, Cd, for a circular cylinder and

RE = 100 with a mesh resolution of D
∆h

= 40 and a time step of ∆t = 0.005 s. In a blue

line, it is depicted the IBM prediction. The other colours indicate the GCM results using

a delta function for interpolating velocities and several schemes for interpolating pressure:

bilinear-least-squares in green, hp shape function in red and delta function in black.

Figure 19: Comparison for prediction of lift coefficient, Cl, for a circular cylinder and RE =

100 with a mesh resolution of D
∆h

= 40 and a time step of ∆t = 0.005 s. A blue line depicts

the IBM prediction. The other colours indicate the GCM results using a delta function for

interpolating velocities and several schemes for interpolating pressure: bilinear-least-squares

in green, hp shape function in red and delta function in black.

in the previous case, the GCM also reaches the steady state faster. The results594

for average drag, root mean square lift and Strouhal number are summarized in595
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Table 6.596

Method RE Cavg
d Crms

l Str

Breuer et al. (2000) [73] 100 1.360 0.190 0.139

Berrone et al. (2010) [74] 100 1.460 - 0.144

Dash el al. (2020) [75] 100 1.460 0.184 0.144

Kara. interface forcing (2013) [71] 100 1.470 0.200 0.137

Kara. solid forcing (2013) [71] 100 1.390 0.190 0.138

Sohankar et al. (1998) [76] 100 1.477 0.156 0.146

Robichaux et al. (1999) [77] 100 1.53 0.154

Darekar and Sherwin (2001) [78] 100 1.486 0.186 0.146

Sharma and Eswaran (2004) [79] 100 1.4936 0.1922 0.1488

Singh et al. (2009) [80] 100 1.51 0.16 0.147

Sahu et al. (2009) [81] 100 1.4878 0.188 0.1486

Sen et al. (2011) [82] 100 1.5287 0.1928 0.1452

IBM phi2 100 1.829 0.257 0.137

GCM u phi2 / p hp 100 1.549 0.204 0.148

Table 6: Comparison of drag, lift coefficients and Strouhal number predictions for a square

cylinder at RE = 100 between different methods in the literature. The present results obtained

from the standard IBM and the ghost-cell method are for a mesh resolution of D
∆h

= 40 and

time step ∆t = 0.005 s.

Figure 20: Schematic of the computational setup with local mesh refinement regions A and

B. The dimensions are given in terms of the square cylinder width D.

.597
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Figure 21: In blue: drag coefficient curves for the IBM scheme. In red: the ghost cell method

using delta functions for velocity interpolation and a hp scheme for pressure. The mesh

resolution is D
∆h

= 40, the time step used is ∆t = 0.005 s and RE = 100.

Figure 22: In blue: lift coefficient curves for the IBM scheme. In red: the ghost cell method

using delta functions for velocity interpolation and an hp scheme for pressure. The mesh

resolution is D
∆h

= 40, the time step used is ∆t = 0.005 s and RE = 100.

Figure 23 presents a snapshot of the streamwise velocity field when using598

the ghost-cell method that employs a delta function interpolation method for599

velocities and hp shape function scheme for pressure interpolation. It can be600

seen that the ghost-cell method is able to deal with the sharp interface of the601

square cylinder and both the vortex shedding in the wake and the flow field602
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Figure 23: u1 velocity profile for simulation time 200 s of a square cylinder facing a flow at

RE = 100.

around the square cylinder corner are well captured.603

Tables 7 and 8 show the values for drag, lift and vortex-shedding coeffi-604

cients for several time steps: ∆t = 0.005, 0.0025, 0.00125 s and mesh resolutions:605

D/∆h = 40, 60, 80. With this information, a temporal and spatial convergence606

study was performed. For the time convergence case, the mesh resolution was607

kept at D/∆h = 40. For this case, a first-order trend was found for the drag608

values. In figure 24 the red line shows a rate of convergence of 1 for the drag609

coefficient of the square cylinder using the GCM. The black dash and dash-dot610

lines show theoretical convergence rates of 1st and 2nd order, respectively. In a611

similar manner, when the spatial convergence study was carried out at a con-612

stant time-step, ∆t = 0.00125 s, looking again at the red line in figure 25 the613

spatial convergence for the GCM was first-order.614

3.4. Fixed circular cylinder in turbulent flows, RE = 3900615

In this case, a circular cylinder with a width of T = 4 m is facing a single-616

phase flow with a Reynolds Number, RE = 3900. The size of the computational617
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Figure 24: Time convergence study for a square cylinder facing a single-phase flow of RE =

100.

Figure 25: Spatial convergence study for a square cylinder facing a single-phase flow of RE =

100.
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∆t [s] Cavg
d Crms

l Str

0.00500 1.549 0.206 0.148

0.00250 1.506 0.197 0.149

0.00125 1.485 0.185 0.149

Table 7: Comparison of predictions from the ghost cell method for a square cylinder and RE =

100 with a mesh resolution of D
∆h

= 40 and different time steps ∆t = 0.00125, 0.00250, 0.00500

s.

D
∆h

Cd Crms
l Str

40 1.485 0.185 0.149

60 1.545 0.172 0.148

80 1.576 0.171 0.148

Table 8: Comparison of predictions from the ghost cell method for a square cylinder and

RE = 100 with different mesh resolutions of D
∆h

= 40, 60, 80 and time step ∆t = 0.00125 s.

domain and the location of the cylinder follow the same settings as in Figure618

7. The grid size and time step chosen were D
∆h

= 40 and ∆t = 0.005 s. The619

inlet Dirichlet condition is applied on the west boundary of the computational620

domain, since the velocity is prescribed as U = 1 m/s with a kinematic viscosity621

equal to ν = 1
3900 m2/s and a density ρ = 1 kg/m3. The east boundary is set622

as an outlet with zero gradient conditions applied to the pressure and velocity623

fields. Top and bottom boundaries are considered as no-slip walls while in the624

south and north lateral boundaries, periodic conditions are enforced. The flow625

at such Reynolds number is categorized under the lower sub-critical range of626

flow where the bulk of the flow remains laminar beyond separation and the627

transition to turbulent flow takes place in the free shear layer in the wake of628

the cylinder where turbulent eddies are shed periodically. As a result, this case629

presents different scales simultaneously, making a numerical simulation of this630

flow very challenging. With increasing Reynolds number, the three-dimensional631

wake behind the immersed cylinder becomes more chaotic.632

In order to capture turbulent structures an algorithm using the Q-criteria633
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[83] was coded and the computational domain was defined with a width T = 4634

m along the OY axis in order to capture three-dimensional turbulence effects.635

Thus the frontal area to consider is A = DT = 4 m2. To simulate an infinite636

cylinder, periodic boundary conditions were employed in the spanwise direction.637

Results C̄d Crms
l Str L

D

Experiments of Norberg (1987) [84] 0.990±0.05 0.10±0.05 - -

Experiments of Lourenco and Shih (1993) [85] 0.99 - 0.220 1.19

Experiments of Ong and Wallace (1996) [86] - 0.215±0.005 -

Experiments of Norberg (2003) [87] - 0.083 0.209 -

Experiments of Parnadeau et al. (2008) [88] - - 0.208 1.5

LES DM of (Park et al. 2006) [89] 1.040 - 0.212 1.370

LES DM1 of (You and Moin 2006) [90] 1.010 - 0.224 -

LES WALE of (Ouvrard et al. 2010) [91] 1.020 - 0.221 1.220

VMS-LES WALE of (Ouvrard et al. 2010) [91] 0.940 - 0.223 1.560

LES of Meyer (2010) [92] 1.070 - 0.210 0.83

LES of Lysenko (2012) [93] 1.180 0.44 0.190 0.90

LES od Rajan et at. (2016) RUN6 [94] 1.050 - 0.214 1.211

LES (Case 4) of Jiang and Cheng (2021) [95] 1.032 0.217 0.211 1.230

LES H3D-IBM of Kara (2013) [71] 1.10 0.39 0.210 0.850

LES H3D-IBM IBM with 1 MDF iteration 1.209 0.114 0.211 -

LES H3D-IBM IBM with 3 MDF iterations 1.194 0.111 0.205 -

LES GCM ppe-f-gh2 1.075 0.35 0.217 -

Table 9: Comparison of drag and lift coefficients predictions for a circular cylinder at RE =

3900 between authors from the literature, the standard IBM and the ghost cell method for a

mesh resolution of D
∆h

= 40 and time step ∆t = 0.005 s.

638

In Figures 26 and 27 one can visualize the evolution of drag and lift force639

coefficients. The drag force calculated in Hydro3D with the ghost-cell method640

takes into account the pressure and shear stress around the immersed object.641
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Figure 26: Cd curve for a circular cylinder facing a flow of RE = 3900 using the ghost-cell

method with a delta function interpolation method for velocities and hp shape function scheme

for pressure interpolation for time step ∆t = 0.005 s and mesh grid resolution D
∆h

= 40.

Such force is divided by ρU2A
2 in order to obtain a dimensionless drag coefficient642

Cd. Here ρ denotes density, U is the inlet velocity and A is the cylinder frontal643

area. Table 9 compares results from a comprehensive list of numerical and644

physical experiments against the IBM and GCM schemes. When it comes to the645

GCM, the steady-state region compares well with other predicted values found646

in the literature, such as in [96] where Cd = 1.1. While the GCM performs647

reasonably well, the IBM shows a clear deviation from the expected values in648

the literature for the drag force value.

Figure 27: Cl curve for a circular cylinder facing a flow of RE = 3900 using the ghost-cell

method with delta function interpolation method for velocities and hp shape function scheme

for pressure interpolation for time step ∆t = 0.005 s and mesh grid resolution D
∆h

= 40.

649
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Figure 28: u1 velocity profile for a circular cylinder facing a flow at RE = 3900. The version

of the ghost-cell method uses a delta function interpolation method for velocities and a hp

shape function scheme for pressure interpolation. The mesh resolution is D
∆h

= 40 and the

time step used is ∆t = 0.005 s.

Figure 29: u1 velocity profile for a circular cylinder facing a flow at RE = 3900 predicted by

a diffuse interface IBM scheme using a delta function interpolation for velocities. The mesh

resolution is D
∆h

= 40 and the time step used is ∆t = 0.005 s.

In Figure 28 features a snapshot of the horizontal velocity u1 where an650

alley of vortices is present downstream of the cylinder. In this figure, one can651

also check that the GCM is working properly inside the cylinder since the first652
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Figure 30: Representation of turbulent structures using the Q- criteria for a circular cylinder

facing a flow at RE = 3900. The version of the ghost-cell method is a delta function inter-

polation method for velocities and hp shape function scheme for pressure interpolation. The

mesh resolution is D
∆h

= 40 and the time step used is ∆t = 0.005 s.

ghost layers the velocity has an opposite sign to the velocity of the fluid cells653

outside the cylinder. The version of the GCM uses a delta function interpolation654

scheme for velocities and a tailored hp interpolation method for pressure. On655

the other hand, the velocity field predicted by the IBM is presented in Figure656

29. This picture shows that inside the cylinder the velocity has a homogeneous657

pattern close to zero in value. This leads to subsequent errors when evaluating658

velocity gradients during the stage for predicting the effects of the convective659

and diffusive terms in the fluid cells close to the solid surface.660

Also related to the velocity field predicted by the GCM, Figure 30 shows661

coherent turbulent structures using the Q-criteria for a circular cylinder facing662

a flow at RE = 3900.663

The mean and turbulence statistics of the flow obtained from the ghost-664

cell method are analyzed and presented in Figures 31 − 36. The results were665

calculated over a time window spanning T = D/U∞ = 50− 82 s, a period that666

corresponds with the end of the transient phase, at T = 50 s and subsequent 7667

full oscillations of the lift coefficient Cl. The time step was kept fixed at a value668

of 0.005 s to ensure a CFL under 0.7.669
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Mean velocities and turbulent Reynolds stresses from simulations using the670

GCM are compared against numerical results of [97] and also against experi-671

mental results published by [85] and [86]. In [85] hot-wire measurements were672

recorded in the down-stream region spanning from X/D = 3 to X/D = 10 while673

in [85] the near wake was studied. On the other hand, the numerical experi-674

ments from [97] come from a B-spline-based method. Overall, in the figures675

one can see that the predictions of turbulence statistics from the GCM are in676

reasonable agreement with both other experimental and numerical studies.677

In general, the numerical results show a U -shaped patterns for the stream-678

wise velocity in Figure 32, while the profile observed in the experiments resem-679

bles a V -shape instead inside the region close to the cylinder, at X/D = 1.06,680

where flow re-circulation is significant. However, the present simulations do681

show a V -shape profile in the re-circulation zone edge at X/D = 1.54. But the682

size of the re-circulation zone is smaller in the physical experiments.683

The largest differences between the GCM and the numerical experiments of684

[97] are in the down-stream region between x/D = 6 and x/D = 10, where there685

is a coarser mesh in the present simulation.

Figure 31: Velocity profile normalized with the inlet velocity on the center line of the wake

region behind a circular cylinder at RE = 3900.

686

3.5. 3D dam-break flow with a vertical barrier687

The next set of numerical results depicts another case to study the collapse of688

a three-dimensional column of water and subsequent interaction with a vertical689
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Figure 32: Streamwise velocity profile normalized with the inlet velocity at 3 checkpoints on

the re-circulation region behind a circular cylinder at RE = 3900.

Figure 33: Streamwise velocity profile normalized with the inlet velocity at 3 checkpoints on

the wake region behind a circular cylinder at RE = 3900.

Figure 34: Vertical velocity profile normalized with the inlet velocity at 3 checkpoints on the

re-circulation region behind a circular cylinder at RE = 3900.
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Figure 35: Profile of fluctuating velocities normalized with the square inlet velocity at 3

checkpoints on the wake region behind a circular cylinder at RE = 3900.

Figure 36: Reynolds shear stress normalized with the square inlet velocity at 3 checkpoints

on the wake region behind a circular cylinder at RE = 3900.

square cylinder with an edge length D = 0.12 m. The computational set-up is690

defined in Figure 37 following the experiments and simulations from [98] and691

all the boundaries are treated as no-slip walls except the top surface that is692

modelled as an outlet to the atmosphere. Also, the column of water is held693

in place by a virtual barrier that vanishes during the first time step of the694

simulation. The mesh resolution is D/∆h = 24, the time step is 5× 10−5 s and695

the ϵ parameter for the level-set method is set to 0.5∆h, which means that the696

transition from the water to the air phase is within one grid spacing ∆h.697

In this study, the force acting on the cylinder is plotted in Figure 38 and698

compared with the laboratory experiments conducted at the University of Wash-699
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Figure 37: Initial location and dimensions of the water column and vertical barrier as shown

in [98].

ington [98]. Overall, the simulation results agree with the physical experiments,700

but the force predicted by the ghost-cell method shows some minor oscillations701

during the water column impact on the square cylinder. As in the previous702

turbulent benchmarks, the sub-grid scale model chosen is the Wall Adaptive703

Local Eddy-Viscosity, aka WALE, with coefficient Cw = 0.325 and no major704

change was observed when changing this parameter. However, it was observed705

that decreasing the ϵ parameter, which governs the air-water transition in the706

level-set method, helps to mitigate these force oscillations. Additionally, Figure707

39 shows results of the predicted horizontal velocity for a probe located at a708

point x = 0.754 m from the west wall and at a height of 0.024 m from the709

bottom wall. Here the pattern of numerical results reasonably agrees with the710

physical experiments although there is some offset. The reason for this may711

be due to the pressure solver and the LSM do not manage to achieve complete712

convergence of the numerical solution when the maximum number of iterations713

is reached. Another source of error might be the fact that the GCM is not fully714
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mass-conservative. This last source of error is heavily influenced by the mesh715

resolution. Thus, it may be possible to obtain better simulations for the velocity716

field by decreasing the cell size. Unfortunately, by doing this, the time step also717

needs to be decreased, which leads to an increase in the computational resources718

needed to perform this kind of simulation with such a small cross-sectional area719

of the immersed solid.720

In figure 40 one can see some snapshots of the air-water interface for several721

time steps. The interface is represented by a contour plot showing an iso-722

surface where the fluid density is 500 kg/m3. As time passes by it is easily723

noticeable how the column of water collapses and impacts against the vertical724

square cylinder.725

Figure 38: Comparison between predicted force by the GCM and experimental data [98].

4. Conclusion726

In this work, a new ghost-cell model has been developed and validated for727

single- and two-phase flows. The novelties introduced in Hydro3D are high-728

fidelity simulations by means of employing a finite difference open-source code729

that uses both delta functions and hp interpolation schemes for enforcing the730

boundary conditions of the GCM. It also has the capability of handling large ge-731

ometries of solid bodies defined across several subdomains in parallel computing.732

733
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Figure 39: Predicted velocities by the GCM near the probe location [98].

It is worth mentioning that both sharp and diffuse interface methods for734

complex geometries are compared in a single numerical framework. When com-735

paring the new model implemented in Hydro3D, based on the GCM, against the736

former IBM model, both methods predict similar drag force coefficient values737

for low Reynolds numbers. However, for high Reynolds number flow the IBM738

starts to over-predict the drag force coefficient. Additionally, the GCM tends to739

reach a steady state much faster than the IBM method. Thus, when it comes to740

moving structures the GCM may be more reliable. One reason for these effects741

may be related to the fact that the IBM creates a diffuse interface between the742

fluid and the solid, modifying the boundary layer that ultimately determines743

the strength of the fluid forces interacting with the circular cylinder.744

The GCM has also been applied for two-phase dam-break flows with a verti-745

cal cylinder. It was observed a dependency of small drag force oscillations with746

the value of the ϵ parameter which governs the air-water transition in the level-747

set method. When decreasing ϵ the force oscillations also decrease. Another748

limitation of the proposed GCM is that the velocity field near the immersed749

solid starts to show discrepancies with physical experiments when the mesh res-750

olution is small. This typically implies that the cross-section of the solid is small751

in size compared with the mesh cell size. The reason for this source of error may752
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(a) Water surface at time t = 0.0 s. (b) Water surface at time t = 0.25 s.

(c) Water surface at time t = 0.3 s. (d) Water surface at time t = 0.4 s.

(e) Water surface at time t = 0.6 s. (f) Water surface at time t = 0.75 s.

Figure 40: Evolution of the water surface in the dam-break case with a vertical cylinder.
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be that the pressure solver and the LSM do not manage to achieve complete753

convergence of the numerical solution. Another explanation is the fact that the754

GCM is not fully mass conservative although it is possible to circumvent this755

issue by decreasing the cell size.756

It has been shown that Hydro3D with enhanced GCM can be used as a757

design tool to assess turbulent structures and load forces on both immersed and758

piercing structures. Future work will be focused on validating the GCM for759

moving objects in turbulent interfacial flows.760
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Appendix: third order polynomial elements773

A standard rectangular region Â is defined in x̂ ∈ [−1, 1] and ŷ ∈ [−1, 1].774

In here a series of polynomials are tailored. These polynomials would be later775
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used to assemble a shape function to interpolate within region Â.776

p1(x̂, ŷ) = a1 + b1x̂+ c1ŷ + d1x̂
2 + e1ŷ

2 + f1x̂ŷ + g1x̂
2ŷ + h1x̂ŷ

2 + i1x̂
3 + j1ŷ

3 + k1x̂
3ŷ + l1x̂ŷ

3

p2(x̂, ŷ) = a2 + b2x̂+ c2ŷ + d2x̂
2 + e2ŷ

2 + f2x̂ŷ + g2x̂
2ŷ + h2x̂ŷ

2 + i2x̂
3 + j2ŷ

3 + k2x̂
3ŷ + l2x̂ŷ

3

p3(x̂, ŷ) = a3 + b3x̂+ c3ŷ + d3x̂
2 + e3ŷ

2 + f3x̂ŷ + g3x̂
2ŷ + h3x̂ŷ

2 + i3x̂
3 + j3ŷ

3 + k3x̂
3ŷ + l3x̂ŷ

3

p4(x̂, ŷ) = a4 + b4x̂+ c4ŷ + d4x̂
2 + e4ŷ

2 + f4x̂ŷ + g4x̂
2ŷ + h4x̂ŷ

2 + i4x̂
3 + j4ŷ

3 + k4x̂
3ŷ + l4x̂ŷ

3

p5(x̂, ŷ) = a5 + b5x̂+ c5ŷ + d5x̂
2 + e5ŷ

2 + f5x̂ŷ + g5x̂
2ŷ + h5x̂ŷ

2 + i5x̂
3 + j5ŷ

3 + k5x̂
3ŷ + l5x̂ŷ

3

p6(x̂, ŷ) = a6 + b6x̂+ c6ŷ + d6x̂
2 + e6ŷ

2 + f6x̂ŷ + g6x̂
2ŷ + h6x̂ŷ

2 + i6x̂
3 + j6ŷ

3 + k6x̂
3ŷ + l6x̂ŷ

3

p7(x̂, ŷ) = a7 + b7x̂+ c7ŷ + d7x̂
2 + e7ŷ

2 + f7x̂ŷ + g7x̂
2ŷ + h7x̂ŷ

2 + i7x̂
3 + j7ŷ

3 + k7x̂
3ŷ + l7x̂ŷ

3

p8(x̂, ŷ) = a8 + b8x̂+ c8ŷ + d8x̂
2 + e8ŷ

2 + f8x̂ŷ + g8x̂
2ŷ + h8x̂ŷ

2 + i8x̂
3 + j8ŷ

3 + k8x̂
3ŷ + l8x̂ŷ

3

p9(x̂, ŷ) = a9 + b9x̂+ c9ŷ + d9x̂
2 + e9ŷ

2 + f9x̂ŷ + g9x̂
2ŷ + h9x̂ŷ

2 + i9x̂
3 + j9ŷ

3 + k9x̂
3ŷ + l9x̂ŷ

3

p10(x̂, ŷ) = a10 + b10x̂+ c10ŷ + d10x̂
2 + e10ŷ

2 + f10x̂ŷ + g10x̂
2ŷ + h10x̂ŷ

2 + i10x̂
3 + j10ŷ

3

+ k10x̂
3ŷ + l10x̂ŷ

3

p11(x̂, ŷ) = a11 + b11x̂+ c11ŷ + d11x̂
2 + e11ŷ

2 + f11x̂ŷ + g11x̂
2ŷ + h11x̂ŷ

2 + i11x̂
3 + j11ŷ

3

+ k11x̂
3ŷ + l11x̂ŷ

3

p12(x̂, ŷ) = a12 + b12x̂+ c12ŷ + d12x̂
2 + e12ŷ

2 + f12x̂ŷ + g12x̂
2ŷ + h12x̂ŷ

2 + i12x̂
3 + j12ŷ

3

+ k12x̂
3ŷ + l12x̂ŷ

3
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In order to assemble a shape function, these polynomials need to have certain777

properties:778

p1(−1,−1) = 1,
p1
∂x

(−1,−1) =
p1
∂y

(−1,−1) = p1(+1,−1) =
p1
∂x

(+1,−1) =
p1
∂y

(+1,−1) = 0

p2
∂x

(−1,−1) = 1, p2(−1,−1) =
p2
∂y

(−1,−1) = p2(+1,−1) =
p2
∂x

(+1,−1) =
p2
∂y

(+1,−1) = 0

p3
∂y

(−1,−1) = 1, p3(−1,−1) =
p3
∂x

(−1,−1) = p3(+1,−1) =
p3
∂x

(+1,−1) =
p3
∂y

(+1,−1) = 0

p4(+1,−1) = 1, p4(−1,−1) =
p4
∂x

(−1,−1) =
p4
∂y

(−1,−1) =
p4
∂x

(+1,−1) =
p4
∂y

(+1,−1) = 0

p5
∂x

(+1,−1) = 1, p5(−1,−1) =
p5
∂x

(−1,−1) =
p5
∂y

(−1,−1) = p5(+1,−1) =
p5
∂y

(+1,−1) = 0

p6
∂y

(+1,−1) = 1, p6(−1,−1) =
p6
∂x

(−1,−1) =
p6
∂y

(−1,−1) = p6(+1,−1) =
p6
∂x

(+1,−1) = 0

p7(+1,+1) = 1, p7(−1,+1) =
p7
∂x

(−1,+1) =
p7
∂y

(−1,+1) =
p7
∂x

(+1,+1) =
p7
∂y

(+1,+1) = 0

p8
∂x

(+1,+1) = 1, p8(−1,+1) =
p8
∂x

(−1,+1) =
p8
∂y

(−1,+1) = p8(+1,+1) =
p8
∂y

(+1,+1) = 0

p9
∂y

(+1,+1) = 1, p9(−1,+1) =
p9
∂x

(−1,+1) =
p9
∂y

(−1,+1) = p9(+1,+1) =
p9
∂x

(+1,+1) = 0

p10(−1,+1) = 1,
p10
∂x

(−1,+1) =
p10
∂y

(−1,+1) = p10(+1,+1) =
p10
∂x

(+1,+1) =
p10
∂y

(+1,+1) = 0

p11
∂x

(−1,+1) = 1, p11(−1,+1) =
p11
∂y

(−1,+1) = p11(+1,+1) =
p11
∂x

(+1,+1) =
p11
∂y

(+1,+1) = 0

p12
∂y

(−1,+1) = 1, p12(−1,+1) =
p12
∂x

(−1,+1) = p12(+1,+1) =
p12
∂x

(+1,+1) =
p12
∂y

(+1,+1) = 0

In fact, these properties can be used to formulate four systems of equations779

to obtain polynomial coefficients am, bm, cm, dm, em, fm, gm, hm, im, jm, km, lm780

with m = 1, 2, 3, ..., 12.781
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It is convenient to express the polynomial in the following form782

p1 =
1

4
(x̂, ẑ)−

3

8
(x̂, ẑ)−

3

8
(x̂, ẑ) + 0 + 0 +

1

2
(x̂, ẑ) + 0 + +

1

8
(x̂, ẑ) +

1

8
(x̂, ẑ)−

1

8
(x̂, ẑ)−

1

8
(x̂, ẑ) = 0

p2 =
1

8
(x̂, ẑ)−

1

8
(x̂, ẑ)−

1

8
(x̂, ẑ)−

1

8
(x̂, ẑ) + 0 +

1

8
(x̂, ẑ) +

1

8
(x̂, ẑ) + +

1

8
(x̂, ẑ) + 0−

1

8
(x̂, ẑ) + 0 = 0

p3 = −
1

8
(x̂, ẑ)−

1

8
(x̂, ẑ) +

1

8
(x̂, ẑ) +

1

8
(x̂, ẑ) + 0 +

1

8
(x̂, ẑ)−

1

8
(x̂, ẑ) + +

1

8
(x̂, ẑ) + 0−

1

8
(x̂, ẑ) + 0 = 0

p4 =
1

4
(x̂, ẑ) +

3

8
(x̂, ẑ)−

3

8
(x̂, ẑ) + 0 + 0−

1

2
(x̂, ẑ) + 0 +−

1

8
(x̂, ẑ) +

1

8
(x̂, ẑ) +

1

8
(x̂, ẑ) +

1

8
(x̂, ẑ) = 0

p5 = −
1

8
(x̂, ẑ)−

1

8
(x̂, ẑ)−

1

8
(x̂, ẑ) +

1

8
(x̂, ẑ) + 0−

1

8
(x̂, ẑ) +

1

8
(x̂, ẑ) + +

1

8
(x̂, ẑ) + 0 +

1

8
(x̂, ẑ) + 0 = 0

p6 =
1

8
(x̂, ẑ)−

1

8
(x̂, ẑ) +

1

8
(x̂, ẑ)−

1

8
(x̂, ẑ) + 0−

1

8
(x̂, ẑ)−

1

8
(x̂, ẑ)−+

1

8
(x̂, ẑ) + 0 +

1

8
(x̂, ẑ) + 0 = 0

p7 =
1

4
(x̂, ẑ) +

3

8
(x̂, ẑ) +

3

8
(x̂, ẑ) + 0 + 0 +

1

2
(x̂, ẑ) + 0 +−

1

8
(x̂, ẑ)−

1

8
(x̂, ẑ)−

1

8
(x̂, ẑ)−

1

8
(x̂, ẑ) = 0

p8 =
1

8
(x̂, ẑ)−

1

8
(x̂, ẑ)−

1

8
(x̂, ẑ) + 0−

1

8
+

1

8
(x̂, ẑ) + 0 +

1

8
(x̂, ẑ) + 0 +

1

8
(x̂, ẑ) +−

1

8
(x̂, ẑ) = 0

p9 =
1

8
(x̂, ẑ) +

1

8
(x̂, ẑ)−

1

8
(x̂, ẑ) + 0−

1

8
−

1

8
(x̂, ẑ) + 0−

1

8
(x̂, ẑ) + 0 +

1

8
(x̂, ẑ) + +

1

8
(x̂, ẑ) = 0

p10 =
1

4
(x̂, ẑ)−

3

8
(x̂, ẑ) +

3

8
(x̂, ẑ) + 0 +−

1

2
(x̂, ẑ) + 0 + 0 +

1

8
(x̂, ẑ)−

1

8
(x̂, ẑ) +

1

8
(x̂, ẑ) +

1

8
(x̂, ẑ) = 0

p11 = −
1

8
(x̂, ẑ)−

1

8
(x̂, ẑ)−

1

8
(x̂, ẑ) + 0 +

1

8
−

1

8
(x̂, ẑ) + 0 +

1

8
(x̂, ẑ) + 0 +

1

8
(x̂, ẑ) + 0 +

1

8
(x̂, ẑ) = 0

p12 = −
1

8
(x̂, ẑ) +

1

8
(x̂, ẑ)−

1

8
(x̂, ẑ) + 0 +

1

8
+

1

8
(x̂, ẑ) + 0−

1

8
(x̂, ẑ) + 0 +

1

8
(x̂, ẑ) + 0−

1

8
(x̂, ẑ) = 0

783

A representation of each shape function ϕ̂q is presented in the next pages784

in figure 41. If all these renderings of shape functions were added together, the785

horizontal plane z = 1 would be the end result. In order to check the accuracy786

of the interpolation, figure 42 shows the outcome of adding the surfaces defined787

by these shape functions.788

These series of shape functions have the following properties:789

(a) ϕ̂1

(

η̂, ξ̂
)

is only equal to 1 at
(

η̂, ξ̂
)

= (−1,−1) and is equal to zero in all790

the other nodes;791

(b) ϕ̂2

(

η̂, ξ̂
)

partial derivative
∂ϕ̂2(η̂,ξ̂)

∂x
is only equal to 1 at

(

η̂, ξ̂
)

= (−1,−1)792

and is equal to zero in all the other nodes;793
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(a) Shape function ϕ̂1 (b) Shape function ϕ̂2 (c) Shape function ϕ̂3

(d) Shape function ϕ̂4 (e) Shape function ϕ̂5 (f) Shape function ϕ̂6

(g) Shape function ϕ̂7 (h) Shape function ϕ̂8 (i) Shape function ϕ̂9

(j) Shape function ϕ̂10 (k) Shape function ϕ̂11 (l) Shape function ϕ̂12

Figure 41: (a) 3D rendering of shape function φ̂1 (x̂, ŷ) = p1 (x̂, ŷ). (b) 3D rendering of shape

function φ̂2 (x̂, ŷ) = dx · p2 (x̂, ŷ). (c) 3D rendering of shape function φ̂3 (x̂, ŷ) = dy · p3 (x̂, ŷ).

(d) 3D rendering of shape function φ̂4 (x̂, ŷ) = p4 (x̂, ŷ). (e) 3D rendering of shape function

φ̂5 (x̂, ŷ) = dx · p5 (x̂, ŷ). (f) 3D rendering of shape function φ̂6 (x̂, ŷ) = dy · p6 (x̂, ŷ). (g)

3D rendering of shape function φ̂7 (x̂, ŷ) = p7 (x̂, ŷ). (h) 3D rendering of shape function

φ̂8 (x̂, ŷ) = dx · p8 (x̂, ŷ). (i) 3D rendering of shape function φ̂9 (x̂, ŷ) = dy · p9 (x̂, ŷ). (j)

3D rendering of shape function φ̂10 (x̂, ŷ) = p10 (x̂, ŷ). (k) 3D rendering of shape function

φ̂11 (x̂, ŷ) = dx · p11 (x̂, ŷ). (l) 3D rendering of shape function φ̂12 (x̂, ŷ) = dy · p12 (x̂, ŷ).
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(c) ϕ̂3

(

η̂, ξ̂
)

partial derivative
∂ϕ̂3(η̂,ξ̂)

∂y
is only equal to 1 at

(

η̂, ξ̂
)

= (−1,−1)794

and is equal to zero in all the other nodes;795

(d) ϕ̂4

(

η̂, ξ̂
)

is only equal to 1 at
(

η̂, ξ̂
)

= (+1,−1) and is equal to zero in all796

the other nodes;797

(e) ϕ̂5

(

η̂, ξ̂
)

partial derivative
∂ϕ̂5(η̂,ξ̂)

∂x
is only equal to 1 at

(

η̂, ξ̂
)

= (+1,−1)798

and is equal to zero in all the other nodes;799

(f) ϕ̂6

(

η̂, ξ̂
)

derivative
∂ϕ̂6(η̂,ξ̂)

∂y
is only equal to 1 at

(

η̂, ξ̂
)

= (+1,−1) and is800

equal to zero in all the other nodes;801

(g) ϕ̂7

(

η̂, ξ̂
)

is only equal to 1 at
(

η̂, ξ̂
)

= (+1,+1) and is equal to zero in all802

the other nodes;803

(h) ϕ̂8

(

η̂, ξ̂
)

partial derivative
∂ϕ̂8(η̂,ξ̂)

∂x
is only equal to 1 at

(

η̂, ξ̂
)

= (+1,+1)804

and is equal to zero in all the other nodes;805

(i) ϕ̂9

(

η̂, ξ̂
)

partial derivative
∂ϕ̂9(η̂,ξ̂)

∂y
is only equal to 1 at

(

η̂, ξ̂
)

= (+1,+1)806

and is equal to zero in all the other nodes;807

(j) ϕ̂10

(

η̂, ξ̂
)

is only equal to 1 at
(

η̂, ξ̂
)

= (−1,+1) and is equal to zero in all808

the other nodes;809

(k) ϕ̂11

(

η̂, ξ̂
)

partial derivative
∂ϕ̂11(η̂,ξ̂)

∂x
is only equal to 1 at

(

η̂, ξ̂
)

= (−1,+1)810

and is equal to zero in all the other nodes;811

(l) ϕ̂12

(

η̂, ξ̂
)

partial derivative
∂ϕ̂12(η̂,ξ̂)

∂y
is only equal to 1 at

(

η̂, ξ̂
)

= (−1,+1)812

and is equal to zero in all the other nodes;813
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