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Abstract: This article describes a fractal-based MIMO antenna for 5G mm-wave mobile applications
with micro-strip feeding. The proposed structure is a fractal-based spherical configuration that
incorporates spherical slots of different iterations on the patch, as well as rectangular slots on the
ground plane. These additions are meant to reduce patch isolation. The two-element MIMO antenna
has closely spaced antenna elements that resonate at multiple frequencies, 9.5 GHz, 11.1 GHz,
13.4 GHz, 15.8 GHz, 21.1 GHz, and 26.6 GHz, in the frequency range of 8 to 28 GHz. The antenna’s
broadest operational frequency range spans from 17.7 GHz to 28 GHz, encompassing a bandwidth of
10,300 MHz. Consequently, it is well-suited for utilization within the millimeter wave (mm wave)
application, specifically for the 5G new radio frequency band n258, and partially covers some other
bands X (8.9–9.9 GHz, 10.4–11.4 GHz), and Ku (13.1–13.7 GHz, 15.4–16.2 GHz). All the resonating
bands have isolation levels below the acceptable range of (|S12| > −16 dB). The proposed antenna
utilizes a FR4 material with dimension of 28.22 mm × 44 mm. An investigation is conducted to
analyze the effectiveness of parameters of the antenna, including radiation pattern, surface current
distributions and S parameters. Furthermore, an examination and assessment are conducted on the
efficacy of the diversity system inside the multiple input multiple output (MIMO) framework. This
evaluation encompasses the analysis of key performance metrics such as the envelope correlation
coefficient (ECC), diversity gain (DG), and mean effective gain (MEG). All antenna characteristics are
determined to be within a suitable range for this suggested MIMO arrangement. The antenna design
underwent experimental validation and the simulated outcomes were subsequently verified.

Keywords: fractal antenna; fifth generation (5G); multiple input multiple output (MIMO); millimeter
band (mm band); multiband; wideband

1. Introduction

The most recent and impressive development in cellular technology is the fifth-
generation (5G) wireless technology, which is anticipated to significantly enhance the
speed of wireless networks, among other notable improvements. Furthermore, the im-
plementation of 5G technology is expected to yield increased bandwidth and enhanced
antenna technology, hence facilitating the transmission of significantly larger volumes
of data through wireless systems [1,2]. The 5G New Radio (NR) incorporates various
frequency bands, including N257 (26.5–29.5 GHz), N258 (24.25–27.5 GHz), and N261
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(27.5–28.35 GHz), which are specifically designated for millimeter wave (mm wave) 5G
applications [3,4].The 5G wireless technology system comprises two primary components,
namely the core network and the radio access network. The core network is responsi-
ble for the handling of data and Internet connections in 5G wireless technology, while
the radio access networks, comprising 5G small cells and macro cells, play a crucial role
in the functioning of 5G wireless technology. Additionally, these networks facilitate the
connection between mobile devices and the core network. The clustering of 5G small
cells is necessitated by the limited propagation range of millimeter wave (mm-wave).
The smaller cells serve as a complement to the macro cells, which are utilized to provide
coverage over larger geographic areas [5].To broadcast and receive enormous amounts
of data concurrently, macro cells use MIMO antennas with numerous connections. As a
result, multiple individuals can connect to the network simultaneously. For the proper
functioning of a multiple input multiple output (MIMO) antenna system, certain conditions
must be met, including isolation between the antenna elements, diversity gain, envelope
correlation coefficient, and mean effective gain [6,7]. Nearly every single one of the designs
for MIMO antennas that have been published in the relevant body of scholarly research
only barely meets the minimum criteria of mutual coupling, which is very close to being an
acceptable value. Some of the techniques that can be used for the purpose of enhancing
the MIMO performance characteristics are as follows. The utilization of Characteristics
Mode Analysis (CMA) has been proposed as a means to enhance bandwidth [8–10].The
addition of rectangular-shaped slits and slots on both the patch surface and bottom plane,
in conjunction with the utilization of orthogonal polarization, leads to a substantial decrease
in mutual coupling [11]. The implementation of open-ended resonator slots on the patch,
T-shaped stubs on the bottom plane, and L-shaped slits on the feedline has been found to
enhance isolation, as reported in reference [12]. The patch’s I-shaped slot and the flawed
ground structure increase the bandwidth and reduce mutual coupling [13]. The design
incorporates a rectangle slot, two vertical slots on the bottom plane, and a square slot on
the surface of patch. In addition, a microstrip feed line with a tapered profile is utilized
to enhance bandwidth and isolation, as mentioned in references [14,15]. The combination
of elliptical slots on the patch and a T-shaped stub on the bottom plane can significantly
enhance the bandwidth and increase isolation, as stated in reference [16]. High isolation
is provided by rectangular and triangular stubs on the patch, flawed ground structure,
and orthogonal polarization [17]. DGS and dielectric layers increase the bandwidth and
isolation [18]. A monopole antenna is composed of a half-disk-shaped radiator and a
rectangular ground with a tapered microstrip feedline that increases bandwidth and mini-
mizes the interaction between adjacent antennas [19]. The implementation of an L-shaped
monopole and annular rings on the patch, along with a rectangular shaped slot on the
bottom plane, and the utilization of orthogonal polarization, have been found to effectively
mitigate mutual coupling, as reported in reference [20]. The use of the capacitively cou-
pled approach has been employed to enhance isolation, as indicated by reference [21]. A
cylindrical dielectric resonator with a two-layer substrate structure is utilized in order to
enhance envelope correlation and gain, as stated in reference [22]. The implementation
of a flower-shaped fractal, incorporating rectangular and circular slots inside the ground
plane, has been proposed as a means to mitigate isolation [23]. The utilization of a fractal
geometry of modified Sierpinski, incorporating a squared stub in the ground plane, has
been shown to offer improved bandwidth and isolation, as seen in reference [24]. Meta-
materials have been employed to achieve improved isolation, as indicated by previous
studies [25,26]. Shorting pins are also used for isolation enhancement [27]. A 5G-shaped
strip, including a modified G shape on the patch and a partial ground structure enhance
antenna bandwidth, ECC, and isolation [28]. The utilization of Sierpinski triangle fractal
geometry, coupled with a composite right/left back structure, offers improved isolation
and enhanced bandwidth [29].

The objective of this research work is to design a novel fractal geometry-based compact
MIMO antenna that could be able to support multiple wireless communication systems
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including mm-wave 5G with superior diversity performance, improved isolation, and
broader impedance bandwidths at multiple bands. The suggested antenna is a two-port
wideband multiple input multiple output antenna that is constructed with fractal geometry
and has a defective ground construction. Therefore, the novel aspects of our work include
its multiband characteristics as well as its wide bandwidth while maintaining good mutual
coupling. The suggested antenna has resonant frequencies of 9.5 GHz, 11.1 GHz, 13.4 GHz,
15.8 GHz, 21.1 GHz, and 26.6 GHz, an impedance bandwidth of −10 dB that covers 1000,
1000, 600, 800, and 10,300 MHz, a maximum isolation of −48.37 dB, an ECC of 0.004, a size
of 28.22 mm × 44 mm, and an excellent diversity gain across the entire band.

New fractal antenna geometry, miniaturized size, multiband operation, enhanced
operating bandwidth, desirable radiation patterns, high isolation, and superior diversity
characteristics are the findings obtained by the prescribed two-port MIMO radiator.

The work proposal outlined in this document is presented in the following sections:
The technique for designing the reference antenna is addressed in Section 2, subsequent to
which the outcomes and analysis are presented in Section 3. A comparison with previous
research is provided in Section 4, and the paper concludes with Section 5.

2. Antenna Design

This section focuses on the design and description of the antenna that has been
proposed. Figure 1 illustrates the schematic representation of the design procedure.
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Figure 1. Design process. (a) Conventional spherical patch antenna; (b) fractal spherical patch
antenna; (c) MIMO antenna; (d) MIMO antenna with DGS.

The design process begins by initially developing a conventional single-element an-
tenna in the form of a spherical patch. Subsequently, a fractal technique is applied to the
patch, and the design is expanded to include a MIMO configuration consisting of two
elements. The primary objective of this paper is the use of mm wave frequencies for 5G
applications by establishing a MIMO antenna with a rectangular defection in the ground
plane. The antenna is designed and simulated using HFSS 15.0 software. The antenna is
28.22 × 44 × 1.6 mm3 and has a simple construction. An economical FR4 substrate material
is used to manufacture the antenna. The subsequent parts will cover the stepwise design
process, optimization, and the accompanying results.
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2.1. Single Antenna Design Evolution Steps

Figure 2a depicts a fractal structure used to design a sole antenna element. A spherical
patch of radius A is utilized as the basis structure in step 1 (0th iteration), and its dimensions
are determined using Equation (1).

ae =
1.8412×Vo

2× 3.14× fr ×
√
εr

(1)

where Vo is the free space speed of light; εr is the dielectric constant of material.
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Step 2 involves scaling the base structure by a factor of one-third (first iteration),
resulting in 5 small circles with radius A1. One central circle is then taken out of the 5 small
circles, leaving 4 circles in total. Iteration 2 (step 2) is achieved by repeating the previous
iteration’s steps on the remaining 4 circles, which entails dividing the 4 circles once more
into 5 small circles of radius (A2), removing one center circle from each of the 5 small
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circles, and leaving 16 circles in total. In the case of step 3 (iteration 3), the remaining
16 circles are then further divided into 5 smaller circles of radius (A3), and once again the
one center circle is eliminated from each of the 5 smaller circles, leaving a total of 64 circles.
Table 1 shows the method used to calculate the radiuses A1, A2, and A3. Due to fabrication
limitations and the intricate structure, additional iterations are not possible.

Table 1. Calculation of radius A1, A2 and A3.

Radius A1 Radius A2 Radius A3

N1 = Number of circles
= 5ˆ1

N2 = Number of circles
= 5ˆ2

N3 = Number of circles
= 5ˆ3

L1 = Scaling factor
L1 = (1/3)ˆ1 = 0.333

L2 = Scaling factor
L2 = (1/3)ˆ2 = 0.111

L3 = Scaling factor
L3 = (1/3)ˆ3 = 0.037

A1 = 0.333 × 9.31
= 3.10 mm

A2 = 0.111 × 9.31
= 1.03 mm

A3 = 0.037 × 9.31
= 0.344 mm

Once the patch structure has been created, then, using Equation (2), the size of the
microstrip feedline is determined. The suggested single antenna element’s dimensions are
listed in Table 2.

Fw=
7.48H

e(Z0×
√

(εr+1.41
87 )

− 1.25t (2)

Table 2. Dimensions of single-element antenna.

Parameters Values Parameters Values

LS 28.22 mm FL 11.007 mm

WS 28.22 mm FW 2.99 mm

A 9.31 mm

The S-parameters are analyzed in order to understand more about the antenna’s
performance. Figure 2b displays the single-antenna iteration stages and scattering param-
eter results and Table 3 displays the findings of various iteration studies regarding the
effect of their findings. The graphic makes it abundantly evident that an increase in the
number of iterations will result in an increase in both the bandwidth and the bands. For
the 0th iteration, the proposed antenna employs a patch with a circular form as depicted
in step 1 of Figure 2a. The circular geometry of the antenna facilitates the presence of
numerous resonant modes, each associated with a distinct frequency band. In the context
of the initial iteration, the antenna demonstrates resonance at three distinct frequencies,
specifically 9 GHz, 18.8 GHz, and 26.4 GHz, as shown in Table 3. Furthermore, when a
single slot (1st iteration) is applied to the patch, as depicted in step 2 of Figure 2a, the
antenna exhibits resonance at three distinct multiband frequencies: 9.3 GHz, 21.7 GHz,
and 26.2 GHz. The resonance behavior of the antenna changes due to slot loading on
the surface of the radiating patch. This may be due to the possible changes in surface
current distributions, as a result of which, the electric and magnetic field distribution alters
leading to changes in the resonant behavior of the antenna with the generation of additional
resonances. The additional resonances in conjunction with main resonance of the initial
patch results in a broader bandwidth in comparison to the initial iteration. For the 2nd
iteration, the resonance occurs at four different frequencies below a level of −10 dB S11.
As a result, the iteration is carried out for the next step (iteration 3), which results in an
antenna that resonates for five frequencies while increasing bandwidth. The conclusion
that can be drawn from this is that the antenna configuration for the third iteration gives
balanced outcomes in the form of resonating frequencies and bandwidth.
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Table 3. Iteration effect on single element antenna.

Parameters Bandwidth (MHz) fr (GHz) S11 (dB)

0th iteration 400, 5400, 3800 9, 18.8, 26.4 −19.6, −24.2, −23.5

1st iteration 1200, 5200, 3800 9.3, 21.7, 26.2 −23.8, −26.2, −23.4

2nd iteration 1000, 700, 5500, 3700 9.2, 10.6, 18.8, 26.6 −24.7, −12.1, −24.5, −23.7

3rd iteration 1000, 700, 200, 5500, 3800 9.2, 10.6, 16.3, 21.5, 26.7 −26.8, −12.4, −10.8, −28.6, −25.5

Figure 3 illustrates the gain of a single antenna. It is evident from the figure that the
suggested antenna attains a maximum gain of 8.46 dB. Figure 4 illustrates the simulated E
and H plane radiation patterns of the single element patch antenna operating at frequencies
of 9.2 GHz, 21.5 GHz, and 26.7 GHz. The antenna exhibits partly omnidirectional radiation
characteristics with multiple lobes at higher operating bands resonating at 21.5 GHz and
26.7 GHz.
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2.2. Two-Element MIMO Antenna Design

Figure 5 shows the modified two-port MIMO antenna with 44 × 28.22 mm2 substrate
dimensions. In order to create a dual-port MIMO antenna, two separate investigations
are undertaken with the objective of attaining optimal outcomes. Initially, the focus of
the study is on optimizing the spacing between two antenna elements. Subsequently, the
antenna is examined in three distinct orientations, labeled as I, II, and III.
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2.2.1. Distance Optimization

The two antennas are placed at distances of D = 2 mm, 4 mm, and 6 mm. The graphical
depiction of the fluctuation in reflection coefficient and transmission coefficient can be
observed in Figure 6a–c, while the summarized results are presented in Table 4. At a
distance of 4 mm, the antenna exhibits resonance at frequencies of 9.7, 16.3, 18.8, and
21.4 GHz. These resonant frequencies are accompanied by increased bandwidths of 3100,
600, and 10,100 MHz, respectively, as compared to the bandwidth achieved at distances of
2 mm and 6 mm. The maximum level of isolation attained for a distance (D) of 4 mm is
−40 dB. In comparison, for diameters of 2 mm and 6 mm, the maximum isolation levels are
−38.9 dB and −38.6 dB, respectively. This shows that at D = 4 mm, the antenna provides
better results.
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Table 4. MIMO distance variation analysis.

Parameters Bandwidth (MHz) fr (GHz) S12 (dB)
(Max. Isolation)

D = 2 mm 3100, 400, 10,000 9.2, 16.3, 18.9, 21.3 −38.9

D = 4 mm 3100, 600, 10,100 9.7, 16.3, 18.8, 21.4 −40

D = 6 mm 2800, 600, 9900 9.1, 16.5, 18.9, 21 −38.6
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2.2.2. Analysis of Orientation

In a MIMO system, the orientation of antennas can significantly influence the isolation
between them. The isolation between antennas is the degree to which their signals interfere
with one another. Several decoupling mechanisms can result in varying degrees of isolation
at various orientations. The proposed antenna employs the spatial diversity decoupling
technique. Basically, spatial diversity is accomplished by using antennas that are physically
separated. When these antennas are oriented differently, they sample distinct spatial signal
paths, reducing the likelihood that fading or interference will simultaneously affect both
antennas. In the case of orientation I, the two elements of the antenna are situated in
close proximity to one another, with a specific separation distance of 4 mm, as depicted in
Figure 7a. During this configuration, the antenna offers improved bandwidth and enhanced
isolation. According to Figure 8a–c, the antenna resonates at frequencies of 9.7, 16.3, 18.8,
and 21.4 GHz, with three bands encompassing the frequency ranges of 8 to 11.1 GHz, 16 to
16.5 GHz, and 17.9 to 28 GHz, with a maximum isolation of −40 dB.
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As depicted in Figure 7b, the design of orientation II involves the inversion of an-
tenna II position, while the position of antenna I remains intact. The antenna resonant
frequencies and bandwidths in this particular orientation can be deduced from the data
presented in Figure 8a–c. It is evident that the antenna resonates at frequencies of 10.3 GHz,
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16.4 GHz, 18.8 GHz, and 21.5 GHz, with corresponding bandwidths of 3000 MHz, 600 MHz,
and 9900 MHz. The maximum level of isolation attained is −38.74 decibels. As indicated
in Figure 7c, both antennas are turned 90 degrees for orientation III. The antenna exhibits
resonance at two specific frequencies, namely 8.2 and 19.2 GHz, with a maximum attain-
able isolation of −37.21 dB. Upon doing a comparative analysis of the outcomes from all
three orientations, it is evident that orientation I exhibits superior performance in terms
of bandwidth and isolation when compared to the other two orientations. Summarized
results of all three orientations are presented in Table 5. Orientation I is commonly regarded
as the most suitable design for a MIMO antenna.
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Table 5. MIMO orientation analysis.

Parameters Bandwidth (MHz) fr (GHz) S12 (dB)
(Max. Isolation)

Orientation I 3100, 600, 10,100 9.7, 16.3, 18.8, 21.4 −40

Orientation II 3000, 600, 9900 10.3, 16.4, 18.8, 21.5 −38.74

Orientation III 2700, 9800 8.2, 19.2 −37.21

2.2.3. Analysis of MIMO Antenna with Defective Ground Structure

Defective ground construction is added to improve the isolation between the antennas.
The DGS is utilized within the ground plane, which consists of a single vertical rectangular
slot of 1 mm width, as depicted in Figure 9. The reflection coefficient parameters are plotted
in Figure 10a. The near-field coupling effects between MIMO antennas are mitigated by
the inclusion of a slot, as evidenced by the transmission coefficient curves depicted in
Figure 10b. It is noteworthy that there is an enhancement in the maximum level of isolation,
increasing from −40 dB to −52.72 dB within the antenna’s components. Consequently,
deployment of the slot in ground plane resulted in an approximate 12 dB increase in
isolation. Summarized results of MIMO and MIMO with DGS are presented in Table 6.
Figure 11 illustrates the radiation efficiency of the proposed multiple input multiple output
(MIMO) antenna. The first band, ranging from 8.2 to 10.4 GHz, exhibits a maximum
radiation efficiency of 72%. In the second band, spanning from 16.1 to 16.5 GHz, the highest
radiation efficiency reaches 55%. Lastly, the third band, covering the frequency range of
18.1 to 28 GHz, has a maximum radiation efficiency of 73%.

The effects of current distribution at 9.7 GHz, 18.8 GHz, and 21.4 GHz are shown
in Figure 12. One port of the MIMO antenna must be excited while the other port is
terminated so that the distribution of surface currents can be studied. Hence, port one is
stimulated while port two of the proposed antenna is terminated. The observation may
be made that in Figure 9, there is a prominent distribution of high current within the
initial radiating patch via port 1. Conversely, the surface current near port 2 experiences a
decrease. The observed phenomenon definitely signifies a decrease in the level of mutual
coupling between two antennas.
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Table 6. MIMO and MIMO DGS analysis.

Parameters Bandwidth (MHz) fr (GHz) S12 (dB)
(Max. Isolation)

MIMO 3100, 600, 10,100 9.7, 16.3, 18.8, 21.4 −40

MIMO DGS 2200, 400, 9900 9.7, 16.3, 18.8, 21.4 −52.72
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3. Results and Discussion

To ensure the credibility of the acquired outcomes, an antenna is fabricated on a
substrate composed of FR4 material. The frontal and lateral perspectives of the constructed
antenna are illustrated in Figures 13a and 13b, respectively.
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The fabrication procedure is carried out using the EP-42 Auto PCB prototype machine.
Connectors are used to attach the designed antenna to the ZNB- 40 VNA in order to
determine its transmission and reflection coefficients. The measured results snapshot
taken from VNA is displayed in Figure 14a. The suggested antenna’s radiation pattern is
measured in an anechoic room utilizing a reference horn antenna as the transmitter, as seen
in Figure 14b.

Figure 15a,b display the reflection and transmission coefficients, both measured and
simulated. The antenna under consideration exhibits resonances at frequencies of 9.5 GHz,
11.1 GHz, 13.4 GHz, 15.8 GHz, 21.1 GHz, and 26.6 GHz, accompanied by corresponding
S11 (dB) of−32.15,−11.95,−13.3,−17.0,−33.2, and−26.14, respectively. These resonances
cover the frequency bands of 8.9–9.9 GHz, 10.4–11.4 GHz, 13.1–13.7 GHz, 15.4–16.2 GHz,
and 17.7–28 GHz. Furthermore, the antenna demonstrates enhanced impedance band-
widths of 1000 MHz, 1000 MHz, 600 MHz, 800 MHz, and 10,300 MHz, respectively, within
these frequency ranges. The maximum isolation between the two antennas is −48.37 dB.
In the case of simulated findings, the antenna exhibits resonance at 9.7, 16.3, 18.8, and
21.4 GHz, accompanied by reflection coefficients of −20.04 dB, −12 dB, −31.9 dB, and
−32.3 dB, respectively. The frequency ranges for the covering bands in the simulation are
as follows: 8.2–10.4 GHz, 16.1–16.5 GHz, and 18.1–28 GHz. The corresponding impedance
bandwidths for these bands are 2200 MHz, 400 MHz, and 9900 MHz, respectively. The
simulation results demonstrate a maximum isolation of −52.72 dB. The observed discrep-
ancies in resonant frequencies, as determined by measurements and simulations, might be
attributed to several factors, including manufacturing imperfections, the SMA connectors,
and disparities between the actual substrate and its modeled counterpart.

Figure 16 displays the radiation pattern in the vertical (E) and horizontal (H) fields
planes at frequencies of 9.5, 21.1, and 26.6 GHz, as both simulated and measured. The
E plane is also known as the XZ plane with a phi angle of 0 degrees, and the YZ plane with
a phi angle of 90 degrees is known as horizontal plane. The antenna under consideration
demonstrates a virtually omnidirectional radiation pattern at a lower resonant frequency
of 9.5 GHz. However, at higher resonant frequencies of 21.1 GHz and 26.6 GHz, lobes are
observed in both the horizontal (H) and vertical (E) planes. The presence of multi-reflection
in the measuring environment may lead to observed differences and inconsistencies be-
tween the reported measured outcomes and simulated outcomes. Overall, the suggested
antenna has a consistently stable pattern.
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3.1. Analysis of Diversity Performance

Multiple parameters, such as the envelope correlation coefficient, the diversity gain,
and the mean effective gain, are used to assess the efficacy of the proposed MIMO antenna.

3.1.1. Envelope Correlation Coefficient

The evaluation of the ECC serves as a crucial metric for quantifying the degree of
isolation achieved between the different elements of the antenna system. One of these
two methods mentioned below can be utilized in order to carry out the computation of
ECC based on the parameters of the antenna. The initial approach entails employing the
far field emission patterns of the antenna components [23]. The second method, which is
comparatively less difficult and requires fewer computational resources, involves employ-
ing S parameters [9]. The second methodology is commonly employed for high-efficiency
MIMO antennas, making the method based on S parameters the favored choice. The
acceptable threshold for the value of ECC should be below the 0.05 level. Equation (3)
utilizes S-parameter methodologies for MIMO systems consisting of two elements [9].
Figure 17 illustrates the simulations and measurable curves associated with the MIMO
antenna system that is given in this research. The antenna’s ECC consistently remains
below 0.05 across its entire operational bandwidth.

ECC =

∣∣∣S*
11S12 + S*

21S22

∣∣∣2(
1− |S11|2 − |S21|2

)(
1− |S12|2 − |S22|2

) (3)

3.1.2. Diversity Gain

The usefulness of diversity can be measured by an indicator called diversity gain,
which is calculated using Equation (4) [24]. At a significance level of 1% and employing
maximal ratio combining, the attainment of a diversity gain of 10 represents the maximum
level. In order to ensure practical applicability, it is recommended that the parameter DG
exceed a value of 9.99 dB. Throughout the entire range of operational frequencies, as shown
in Figure 18, the diversity gain (DG) of this antenna remains within the permitted limit.

DG = 10
√

1− ECC2 (4)
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3.1.3. Mean Effective Gain

The measurement of the power received by the diversity antenna in relation to the
power received by an isotropic antenna in a fading environment is known as MEG (Mean
effective gain) [30]. Equation (5) is used for carrying out the calculation, and the corre-
sponding graph is presented in Figure 19.

MEGi = 0.5 {1−
k

∑
j=1

∣∣Sij
∣∣2} (5)
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where i designates the particular antenna under consideration and k specifies the total
number of antennas. In this particular scenario, the value of k corresponds to 2 for the
two-port antenna. Consequently, we have

MEG1 = 0.5
{

1− |S11|2 − |S12|2
}

MEG2 = 0.5
{

1− |S21|2 − |S22|2
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According to reference [31], the ratio of MEG1/MEG2 for the suggested two-port
element antenna should be less than 3 dB in order to obtain excellent diversity performance.
The validation of the MEG readings being less than 1.2 dB can be observed from Figure 16.
The performance data for the suggested antenna are shown in Table 7. The outcomes
indicate that the antenna exhibits favorable diversity properties, making it highly suitable
for millimeter wave applications.

Table 7. MIMO diversity performance.

Parameters Value

ECC <0.004

Diversity gain >9.99 dB

Mean effective gain <1.2 dB

4. Comparison with Prior Research Works

Table 8 presents a comprehensive comparison between the proposed multiple input
multiple output (MIMO) antenna and previous studies in terms of bandwidth, bands,
isolation, envelope correction coefficient (ECC), and diversity gain.

According to the data shown in Table 8, it can be observed that the proposed antenna
demonstrates the ability to operate over many frequency bands, while also improving the
bandwidth with commendable envelope correction coefficient (ECC) and diversity gain.
While the findings of [9] demonstrate similar characteristics with slightly higher bandwidth,
the MIMO antenna proposed in this study exhibits lower ECC and greater value in terms
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of multiband features compared to the structure described in the literature [9]. The antenna
under consideration in this study offers enhanced system capacity and MIMO performance
compared to the antenna configuration described in [9].

Table 8. MIMO antenna comparison with other prior work.

Ref Bandwidth
(MHz)

No. of
Port

No. of
Band

Element
Spacing

(mm)
Isolation ECC Diversity

Gain Range

[9] 400, 400,
11,000 2 3 - −32.3, −35.4,

−27.23, −28.44 <0.05 ---- Sub 6 GHz and
mm Range (5G)

[13] 1069, 1430 2 2 10.13 −27 <0.0020 ---- mm Range (5G)

[15] 6400 2 1 - −35.8 <0.005 >9.99 mm Range (5G)

[16] 7900 2 1 - <−18 <0.01 >9.96 C Band and
X Band

[17] 1900, 5500 2 2 4.3 <−34, <−22.2 <0.0001,
<0.0002 >9.99 mm Range (5G)

[18] 8700 2 1 - < −30 <0.05 >9.99 mm Range (5G)

[21] 500, 1800,
800, 1000 4 4 10 ---- <0.06 >9.99 mm Range (5G)

[22] 1000 2 1 6 <−25 <0.002 ---- mm Range (5G)

[25] 821, 1630 2 2 8.8 <−16 0.0002,
0.005 >9.98 Sub 6 GHz and

mm Range (5G)

[26] 6000 2 1 3 <−24 <0.0013 >9.99 mm Range (5G)

[28] 200, 600, 1000 2 3 3.3 >15 <0.04 >9.5 Sub 6 GHz (5G)

[29] 1000, 500, 800 4 3 3.85 <−20 <0.01 10 Sub 6 GHz (5G)

Proposed
1000, 1000,

600, 800,
10,300

2 5 4
−31.4,−22.8,
−26.8, −22,
−24.4

<0.004 >9.99 X, Ku Band and
mm Range (5G)

5. Conclusions

The present work provides a description of a low-profile two-port MIMO antenna
constructed using DGS. The paper introduces an antenna consisting of a single element.
The integration of a single antenna into a two-port multiple input multiple output (MIMO)
configuration enhances its performance, and a comprehensive analysis of its performance
characteristics is conducted. A rectangular defect in the ground plane is also integrated into
it to increase the antenna’s performance. As a result, 8.37 dB improvement in the isolation
between the two antenna elements is achieved. When compared to comparable research
documented in the existing body of literature, the MIMO DGS antenna under evaluation
stands out due to its wide bandwidth, good isolation, minimum ECC, compact design, and
cost-effectiveness. As a result, this antenna design demonstrates promising characteristics
that make it a feasible option for use in the millimeter-wave 5G range’s n258 band, X band,
and Ku band.
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