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A new framework for evaluating dust emission model development 

using dichotomous satellite observations of dust emission 

Abstract  

Dust models are essential for understanding the impact of mineral dust on Earth’s systems, human health, 

and global economies, but dust emission modelling has large uncertainties. Satellite observations of dust 

emission point sources (DPS) provide a valuable dichotomous inventory of regional dust emissions. We 

develop a framework for evaluating dust emission model performance using existing DPS data before 

routine calibration of dust models. To illustrate this framework’s utility and arising insights, we evaluated 

the albedo-based dust emission model (AEM) with its areal (MODIS 500 m) estimates of soil surface 

wind friction velocity (𝑢s∗) and common, poorly constrained grain-scale entrainment threshold (𝑢∗𝑡𝑠) 

adjusted by a function of soil moisture (H). The AEM simulations are reduced to its frequency of 

occurrence, P(𝑢𝑠∗ > 𝑢∗𝑡𝑠𝐻). The spatio-temporal variability in observed dust emission frequency is 

described by the collation of nine existing DPS datasets. Observed dust emission occurs rarely, even in 

North Africa and the Middle East, where DPS frequency averages 1.8%, (~7 days y-1), indicating extreme, 

large wind speed events. The AEM coincided with observed dust emission ~71.4%, but simulated dust 

emission ~27.4% when no dust emission was observed, while dust emission occurrence was over-
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estimated by up to 2 orders of magnitude. For estimates to match observations, results showed that grain-

scale 𝑢∗𝑡𝑠  needed restricted sediment supply and compatibility with areal 𝑢𝑠∗ . Failure to predict dust 

emission during observed events, was due to 𝑢𝑠∗ being too small because reanalysis winds (ERA5-Land) 

were averaged across 11 km pixels, and inconsistent with 𝑢𝑠∗ across 0.5 km pixels representing local 

maxima. Assumed infinite sediment supply caused the AEM to simulate dust emission whenever 

P(𝑢𝑠∗>𝑢∗𝑡𝑠𝐻), producing false positives when wind speeds were large. The dust emission model scales 

of existing parameterisations need harmonising and a new parameterisation for 𝑢∗𝑡𝑠 is required to restrict 

sediment supply over space and time. 

1. Introduction 

Atmospheric mineral dust has an important impact on many of Earth’s systems, human health, and global 

economies (Li et al., 2018; Pi et al., 2020; Tegen and Schepanski, 2018). The scale of this impact is, at 

least in part, prescribed by the location and environmental controls of the emission source (Ackerman, 

1997; Schepanski et al., 2012). Dust emission models have been developed over decades to resolve spatial 

patterns and trends of aeolian processes (emission, transport, and deposition) in the dust cycle (Shao et 

al., 2011)(Chen et al. 2017; Yuan et al. 2019). Dust emission models are crucial for simulation of aeolian 

processes at unsampled / unmonitored locations for comparison with indicators and benchmarks to 

understand the impact of management on environmental changes (Pi et al., 2020). Dust emission models 

are also essential for making hindcasts in palaeo-environmental reconstructions (Mahowald et al., 2010) 

and forecasts in dust-climate interactions in Earth System Models (ESMs). 

Global dust emission models were developed more than two decades ago (Marticorena and 

Bergametti, 1995) and have been rapidly adopted into large scale dust cycle models as part of ESMs, 

where their fidelity requires necessary compromise and simplification within their parameterisations 

(Raupach and Lu, 2004). These ESMs comprise a dust emission (production) module, a module 

describing horizontal and vertical transport of dust aerosol (advection scheme) and a module 

parameterising dust removal processes (dry and wet deposition). Dust emission and dust deposition 

processes are the critical factors which ultimately determines the net atmospheric dust concentration 

(Textor et al. 2006).  Accordingly, an accurate estimate of dust feedbacks on e.g., radiation and cloud 

formation processes requires an accurate representation of dust emission (Chappell et al. 2023a; Chappell 

et al. 2023b).  

Early dust emission models assumed the Earth’s surface was devoid of vegetation and did not change 

over time. That assumption has been partially alleviated with the use of lateral cover (Raupach, 1992; 

Raupach et al., 1993) but which only very crudely represents the aerodynamics of drag partition (Chappell 

et al., 2023a). Currently, two key simplifying assumptions remain: i) a grain-scale entrainment threshold 

remains constant within soil types and static over time; ii) an infinite supply of sediment for transport is 
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available everywhere. These assumptions cause ESMs to continually over-estimate dust in the atmosphere 

(Zender et al., 2003). Since ESMs focus on dust in the atmosphere, modelled atmospheric dust is reduced 

by comparison with observed dust optical depth (DOD).  

Importantly, DOD is not a direct measurement of dust emission magnitude or frequency, key 

components which together underpin the sediment transport equation (Wolman and Miller, 1960; Lee and 

Tchakerian, 1995). Rather, DOD measures the concentration of dust in a specific column of atmosphere 

at a given moment. Extended atmospheric residence of dust (days to weeks) can exacerbate bias away 

from dust emission, towards atmospheric dust (Schepanski et al., 2012). Consequently, synoptic 

circulation may increase concentrations within pressure systems, maintaining aerosol optical depth 

(AOD) over specific areas without any significant further emission (Schepanski et al., 2012). While the 

deficiencies in existing dust emission modelling are somewhat understood, the inconsistency of 

evaluating dust emission model performance against DOD conceals which critical factors need to improve 

to increase dust emission model fidelity. Notably, current uncertainties in CMIP6 models are larger than 

previous generations, providing a timely implication that as models develop, dust process 

parameterisations are becoming more uncertain as models develop (Zhao et al., 2022). For clarity, the 

preceding description is directed solely at dust emission modelling, and we do not dispute the utility and 

benefits of dust aerosol loading to calibrate ESMs. To isolate the performance of the dust emission 

modelling, we introduce a framework for evaluating dust emission models before the routine calibration 

of dust cycle models against DOD. 

Satellites observe atmospheric dust. Additional expert inspection of satellite imagery enables the 

identification of dust plumes and to trace over space-time the dust plumes to the location from which they 

were emitted. Consequently, this use of satellite observed dust emission point sources (DPS) is distinct 

from satellite observed optical depth in the atmosphere which are not related directly to dust emission. 

Dust emission typically occurs infrequently (e.g., Hennen et al., 2019), and in remote and inhospitable 

areas. Field measurements of dust emission rely either on a limited number of ground stations or 

serendipitous observations. For these reasons, satellite-based remote sensing is ideally positioned to 

monitor and identify the source of these emissions. Currently, automated approaches are not well-

established to accurately distinguish satellite observed DPS at the head of the plume. Therefore, DPS 

identification is performed by expert analysis, where an expert observer can study the shape of the plume, 

recognise any atmospheric opacity (clouds, smoke, dust, or fog) and precisely locate the dust emission. 

Consequently, DPS data currently represent the most robust set of dust emission observations from which 

to evaluate the performance of a global dust emission model (Johnson et al., 2011; Tegen et al., 2013; 

Laurent et al, 2010). 

The aim here is to demonstrate that dust emission models should be evaluated against observed dust 

emission data and ultimately provide correctly calibrated dust emission modules prior to inclusion in 

ESMs. We seek to evaluate the performance of global dust emission models against global dust emission 
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observations at appropriate scales. Our novel evaluation framework is based on two innovative 

approaches. The first approach collates nine extant observed DPS data from extant peer-reviewed studies 

into a new global dataset of dust emission sources (Baddock et al., 2009; Bullard et al., 2008; Eckardt et 

al., 2020; Hennen et al., 2019; Kandakji et al., 2020; Lee et al., 2012; Nobakht et al., 2019; Schepanski et 

al., 2007; von Holdt et al., 2017). These DPS data describe dust emissions occurring over a wider range 

of conditions (soil and vegetation types and climates) than previously considered in dust emission 

modelling of only desert type conditions. These DPS data describe dust emission dichotomously 

(presence=1) for studied areas at selected times. The second approach is to apply for the first time, 

established numerical weather forecasting dichotomous evaluations to dust emission predictions to 

evaluate dust emission model performance. We determine the coincidence in observed and modelled 

outcome at each DPS location for every day of the respective study duration. The second approach 

requires the novel use, in this field, of a contingency table to determine model performance through the 

respective number of daily ‘hits’ (Observed and Modelled dust), ‘misses’ (Observed dust, not Modelled), 

false positives (Modelled, not Observed dust), and correct negatives (no dust Observed or Modelled).  

To enable the use of these novel approaches with dust emission models we reduced the continuous 

dust emission models to the binary occurrence when modelled soil surface wind friction velocity (𝑢𝑠∗) 

exceeds the entrainment threshold (𝑢∗𝑡𝑠) adjusted by a function of soil moisture (H). This approach is 

emerging as a powerful new mechanism to overcome the poorly constrained dust frequency distribution 

and for calibrating dust emission models whilst dust emission parameterisations are improved (Hennen 

et al., 2022, 2023; Chappell et al., 2023a, b). Our analyses are here compared regionally, with dust 

emission model performance in different soil-climate environments (in dryland regions with a range of 

soil types, vegetation density and wind speeds; Figure 1), demonstrating how modelled and observed dust 

events coincide over time. These approaches enable us to identify how changes in dust emission model 

development improve dust emission model performance related to environmental controls, specifically 

variability when dust emission occurs due to the soil surface wind friction velocity exceeding the sediment 

entrainment threshold adjusted by soil moisture P(𝑢𝑠∗ > 𝑢∗𝑡𝑠𝐻) and dynamic erodibility of the soil. These 

analyses provide both i) a robust examination of contrasting dust emission model approaches and ii) 

critical information on the fidelity of wind friction velocity thresholds and sediment supply across dust 

source regions. These approaches will also improve the understanding of process representation in the 

dust emission modelling e.g., if a dust emission model consistently fails to reproduce a certain dust 

emission event, our approach identifies the need and provides a mechanism for how to improve the model. 

We propose this new approach to routinely evaluate dust emission model development particularly 

whilst the aeolian research community is tackling those two key simplifying dust emission model 

assumptions about threshold and sediment supply. We recognise that dust emission model developments 

may not be sufficiently rapid to keep pace with applications e.g., in ESMs whilst the dust emission models 

are poorly constrained. Consequently, we recommend our recently established approach to using DPS 
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data to calibrate dust emission model estimates and improve their performance before being used in the 

ESMs (Hennen et al., 2022; Hennen et al., 2023; Chappell et al., 2023a, b).  

2. Methods and Data 

2.1 Validation datasets  

We collated nine datasets from published studies across multiple dust emitting regions around the world 

(Fig. 1). This global satellite observed dust emission point source (DPS) dataset includes the location and 

timing of dust emission events from many but not all the major global dust producing drylands. For each 

study, satellite-derived data were acquired at regular intervals and subjectively inspected by an operator 

to identify the presence of dust plumes. Identification of elevated dust over a desert surface is particularly 

challenging in visible wavelengths, due to the spectral similarities of elevated dust and bare soil in the 

visible spectrum (Hsu et al., 2004). Therefore, images are typically converted into false colour 

composites, enhancing the image with spectral bands outside the visible wavelengths, specifically in the 

thermal infrared (TIR) bands (Lensky and Rosenfeld 2008; Miller 2003). Using these dust enhancement 

products, operators visually identify the point(s) where a dust plume originated and digitize each of these 

locations as a dust emission point source (DPS). The exception is North Africa (Schepanski et al., 2007), 

where the area of dust emission is observed sub-daily, within a 1° grid (i.e., frequency of local emission 

– maximum 1 per day). In this case, the centroid position within the grid box is taken as the dust emission 

source. The DPS identification protocol was the same for all DPS data sets. 

 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



6 
 

Figure 1. Global dust emission point sources (DPS), collated from 9 independent studies across 6 dryland 

environments. Each DPS was subjectively identified in either MODIS or SEVIRI data. Data includes 

>90,000 individual DPS datapoints, between 2001 – 2016. The DPS data are displayed as probability of 

observations per day normalised to 1° grid boxes where frequency is described by a minimum of one DPS 

observation per day (maximum = 0.43; details are provided in main text below). Source North America: 

(Baddock et al., 2009; Kandakji et al., 2020; Lee et al., 2012); North Africa: (Schepanski et al., 2007); 

Middle East: (Hennen et al., 2019); Namibia: (von Holdt et al., 2017), South Africa: (Eckardt et al., 2020), 

Central Asia: (Nobakht et al., 2021); Australia: (Bullard et al., 2008).     

   

The DPS data collection can be classified into two methodological groups, defined by the type of 

satellite data used. The majority (6 out of 9) of these studies used Moderate-resolution Imaging 

spectroradiometer (MODIS) multispectral imagery, which offers twice daily (daylight) imagery of the 

Earth’s surface from each (Aqua and Terra) NASA satellite. These passive optical sensors provide a 

maximum spatial resolution of 250 m (level 1), recording surface reflectance in 36 individual spectral 

bands ranging from 0.4 µm (near ultraviolet) to 14.4 µm thermal infra-red (TIR; NASA). Their sun-

synchronous orbits permit repeat observations at the same mean solar time, with Terra and Aqua 

spacecraft crossing the equator at 10:30 am and 1:30 pm (local time) respectively. For dust plume 

identification, a dust enhancement product is produced using brightness temperature differences (BTD) 

between a combination of visible bands (B1: v. red: 0.645 μm;, B3: v. blue: 0.470 μm; B4: v. green: 0.555 

μm), near infrared (NIR, B26: 1.375 μm) and TIR bands (B31: 11.03 μm and B32: 12.02 μm) to 

distinguish dust plumes from the surface and other atmospheric conditions (e.g., clouds, biomass burning) 

(Nobakht et al., 2019). These BTDs distinguish the elevated plume as a thermal anomaly from the desert 

surface below, the calculated value (dimensionless) is included as the red beam of an RGB false colour 

composite (FCC) image, with blue and green beams using visible bands B3 and B4 (Fig. 2a). 

(a) (b)  
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Figure 2. Dust enhancement products from a) MODIS, RGB bands = R: Dust enhancement  (Miller, 

2003), G: B4 (0.555 μm) and B: B3 (0.470 μm). Source (Nobakht et al., 2019). B) SEVIRI, RGB bands 

= Red (∆TBR (12.0µm – 10.8µm), Green (∆TBG (10.8µm – 8.7µm), and Blue B9 (10.8 µm). Source 

EUMETSAT.      

The three other datasets cover North Africa, the Middle East, and areas in southern Africa, using 

the Spinning Enhanced Visible and Infrared Imager (SEVIRI) aboard the Meteosat Second Generation 

(MSG) satellite. This satellite operates in a geostationary orbit, with a spatial resolution of 3 km at nadir 

and frequent repeat observation (15 minute)  ().  Atmospheric dust is identified within the narrow band 

thermal infrared (TIR) wavelengths (8.7 µm – 12.0 µm) by its spectral signature, like MODIS DPS 

(Ackerman, 1997; Banks et al., 2019, 2018; Volz, 1973). Atmospheric dust produces a distinctive 

reduction in thermal emissivity, when compared to clear sky conditions, across each of the TIR channels, 

with maximum absorption around 10.8 µm (Brindley et al., 2012; Sokolik, 2002). Again, the SEVIRI 

dust RGB product is rendered through BTDs, with red and green beams described through the d ifference 

between 10.8 µm and adjacent TIR bands 8.7 µm and 12.0 µm, while the blue beam is limited by the BT 

at 10.8 µm (Lensky and Rosenfeld, 2008). The physical basis for this approach is given by the spectral 

variability of the refractive index for mineral dust particles across the TIR (Ackerman, 1997). Due to the 

variability, the spectral difference of the indices differs for individual wavelength bands. Hence, 

calculated BTD indicate the presence of mineral dust aerosol. During dusty conditions, absorption in the 

10.8 µm channel is greater than the 8.7 µm and 12.0 µm channels, increasing BTD 12.0 µm – 10.8 µm 

and decreasing BTD 10.8 µm – 8.7 µm,  creating a distinctive pink coloration of dust plumes in the RGB 

images (Banks et al., 2018, 2019) while clouds appear as red or orange and land surface as cyan (Fig. 

2b). The thermal dust index essentially is sensitive to mineral dust aerosol due to the refractive index 

being spectrally variable. As the refractive index varies barely spectrally for soot, this index is not 

sensitive to soot aerosol such as from biomass burning. However, it shows a sensitivity to volcanic 

aerosols (Ackerman, 1997); due to the colour rendering these aerosols may appear in a red (ash), yellow-

greenish (SO2 gas) or yellow colour (ash + SO2 gas mixed), which can be clearly separated from the 

magenta colour indicating mineral dust aerosol (EUMETSAT RGB quick guides). 

Absorption across the TIR wavelengths due to water vapour reduces the cooling trend created by 

atmospheric dust, presenting a potential limitation for each method (Brindley et al., 2012). The presence 

of meteorological cloud or elevated dust emission from upwind sources can obscure prevent observation 

of the source of emission in a single image. Using SEVIRI’s high (15-minute) observation frequency, the 

observer will ‘back-track’ plume position and size in sequential images to identify the location of where 

it first appears, allowing clear delineation of overlapping plumes (Hennen et al., 2019). The fine spatial 

resolution (250 m) of MODIS data describe the plume in great detail, partially mitigating the limitation 

of overlapping plumes as the observer can identify individual plume shapes, (Baddock et al., 2009). 
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Spatial changes in surface condition (vegetation, geology) cause variations in surface TIR emissivity, 

potentially obscuring typical plume BTD profiles in RGB renderings (Banks et al., 2019, 2018; Banks 

and Brindley, 2013). Subjective interpretation can effectively mitigate many of these limitation scenarios, 

providing a better interpretation of plume dynamics than non-dynamic automated retrieval algorithms, 

which are constrained by the need to work in all surface and atmospheric conditions (Schepanski et al., 

2012).  

The ability of human operators to interpret plume shape and make decisions on potential false 

positives currently exceeds those of automated approaches, although not without caveats (Sinclair and 

LeGrand, 2019) but which do not account for our grid box aggregations (see section 3.3). Importantly, 

DPS studies typically determine specific criteria for determining an emission event, including i) the 

deflation surface is clearly identifiable at the head of emission plume; and ii) meteorological clouds or 

upwind dust emission plumes must not obscure the source of emission plume. Therefore, these data 

represent the cutting-edge of dust emission observations, allowing spatial verification by genuine 

emission events. These data represent a dichotomous account of dust emission, where only dust events 

are recorded DPS = 1. The absence of dust emission is not recorded. Consequently, there is an inherent 

bias in these data towards the occurrence of dust emission from observable events and in their quantitative 

analysis we must account for this bias using (weather forecast evaluation) statistics designed to handle 

this bias in dichotomous data (see section 3.3).  

Importantly, DOD data share many of the limitations that affect DPS observations. In particular, 

optically thin dust is detected in DOD, producing a bias towards large dust events like DPS. Commonly, 

ESM simulation calibration and/or performance evaluation is performed using ground-based AOD 

(AERONET) or satellite-based data. However, only few of the many AERONET ground-stations are 

located near to dust emission sources. Accordingly, validation of dust emission model results and DPS 

data with AERONET station data is inappropriate, due to their displacement from emission source 

dynamics and their reliance on transported/atmospheric dust.  In contrast, satellite derived DOD estimates 

are continuous, providing measurements across all global dust source regions (Ginoux et al., 2012). 

However, as DOD measures the total column of atmospheric dust, it is difficult to distinguish between 

transported (aged) and freshly emitted (new) dust plumes. Consequently, DOD is also not consistent with 

DPS and dust emission model results (Chappell et al, 2023a, b). 

We do not use DOD estimated from satellite observations here because the spatio-temporal 

variation in the dust emission processes is not directly represented. The DOD concentrations are only 

partly related to emission processes, as a product of emission frequency and magnitude. However, 

residence time is critical, as near surface winds and size-dependant deposition rates continually alter 

plume composition following emission event. Furthermore, automated DOD (Deep Blue product) 

collection processes are well known (cf., Ginoux et al., 2012 end paragraph 46) to be predominantly 
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constrained to highly reflective areas (e.g., sand), with reduced reliability over water and vegetated 

surfaces. 

2.2 Albedo-based dust emission model (AEM) 

We calculated the albedo-based dust emission (AEM) daily at 500 m across Earth following the 

established approach (Chappell and Webb, 2016; Chappell et al., 2023a, b; Hennen et al., 2022; 2023). 

Estimates of sediment transport Q (g m-1 s-1) are used to simulate dust emission. The Q were calculated 

for a given particle diameter (d), soil moisture (w), wind speed at height h (Uh), and albedo (ω) as 

𝑄(𝑑, 𝑤, ω, 𝑈ℎ) = {𝑐 𝜌𝑎𝑔 𝑢𝑠∗3 (ω,𝑈ℎ) (1 + 𝑢∗𝑡𝑠 (𝑑)𝐻(𝑤)𝑢𝑠∗(ω, 𝑈ℎ ) ) (1 − (𝑢∗𝑡𝑠(𝑑)𝐻(𝑤)𝑢𝑠∗(ω, 𝑈ℎ ) )2)0, 𝑢𝑠∗ ≤ 𝑢∗𝑡𝑠(𝑑)𝐻(𝑤), , 𝑢𝑠∗ > 𝑢∗𝑡𝑠(𝑑)𝐻(𝑤), (Eq.1) 

where ρa is air density (1.23 kg m-3), g is gravitational acceleration (9.81 m s-2), c is a dimensionless fitting 

parameter (set to 1), and 𝑢∗𝑡𝑠(𝑑) is threshold wind friction velocity (m s-1). The soil surface wind friction 

velocity 𝑢𝑠∗ is the momentum remaining after the removal of momentum by roughness elements at all 

larger scales (topography, vegetation). The entrainment threshold 𝑢∗𝑡𝑠  (Marticorena and Bergametti, 

1995) is described and explained in detail in standard workflows (Darmenova et al., 2009). The H(w) is 

a function which adjusts 𝑢∗𝑡𝑠 when soil moisture (w) inhibits entrainment following Fécan et al. (1999). 

The above equation 1 describes how the magnitude of sediment transport is calculated and adjusted by 

the frequency of occurrence (0 or 1) i.e., 𝑢𝑠∗ > 𝑢∗𝑡𝑠𝐻 .  

We used a robust direct estimation of the coupled parameter 𝑢𝑠∗ /𝑈ℎ  with an estimation 

uncertainty of 0.0027 m s-1 (Chappell and Webb, 2016): 

𝑢𝑠∗𝑈ℎ = 0.0311 (𝑒𝑥𝑝 −𝜔𝑛𝑠 1.1310.016 ) + 0.007,       (Eq. 2) 

where 𝜔𝑛𝑠  is the normalised and rescaled albedo (𝜔) translated and scaled (𝜔𝑛) from a MODIS range 

(𝜔𝑛min=0, 𝜔𝑛max=35) for a given illumination zenith angle (ϴ=0°) to that of the calibration data (a=0.0001 

to b=0.1) using the following rescaling equation (Chappell and Webb, 2016): 𝜔𝑛𝑠 = (𝑎−𝑏)(𝜔𝑛(𝜃)−𝜔𝑛(𝜃)𝑚𝑎𝑥 )(𝜔𝑛(𝜃)𝑚𝑖𝑛−𝜔𝑛(𝜃)𝑚𝑎𝑥 ) + 𝑏.           (Eq. 3) 

Shadow is the complement of waveband (𝜆 ) dependent albedo, 1 − 𝜔𝑑𝑖𝑟(0°,   𝜆)  and the spectral 

influences due to e.g., soil moisture, mineralogy and soil organic carbon, were removed by normalizing 

(Chappell et al., 2018) with the directional reflectance viewed and illuminated at nadir 𝜌(0°,   𝜆): 𝜔𝑛 = 1−𝜔𝑑𝑖𝑟 (0°,   𝜆)𝜌(0°,   𝜆) = 1−𝜔𝑑𝑖𝑟 (0°)𝜌(0°) .        (Eq. 4) 

This approach can be implemented with any type / scale of albedo measurement. Here the approach was 

implemented by making use of the available MODIS black sky albedo to estimate 𝜔𝑛, and the shadow is 
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normalized by dividing it by the MODIS isotropic parameter fiso (MCD43A1 Collection 6, daily at 500 

m) to remove the spectral influences:   𝜔𝑛(0°) = 1−𝜔𝑑𝑖𝑟 (0°,𝜆)𝑓𝑖𝑠𝑜 (𝜆) = 1−𝜔𝑑𝑖𝑟 (0°)𝑓𝑖𝑠𝑜 .        (Eq. 5) 

The fiso is a MODIS parameter that contains information on spectral composition as distinct from 

structural information (Chappell et al., 2018). Theory, field and laboratory-based measurements 

demonstrate the structural information is waveband independent (Chappell et al. 2007; Jacquemoud et al. 

1992; Pinty et al. 1989). The normalization of MODIS data using this parameter and that of MODIS Nadir 

BRDF-Adjusted Reflectance (NBAR) is similarly sufficient to remove the spectral content using all bands 

examined (Chappell et al., 2018). In practice, we calculated 𝜔𝑛 using MODIS band 1 (620-670 nm). 

Notably, this approach will work with albedo from ground measurements (Ziegler et al., 2020) monitored 

from airborne and satellite remote sensing, or modelled prognostically in energy-driven ESMs. 

Consequently, this approach enables the simulation of dust in a past or future climate. To retrieve the 𝑢𝑠∗ 

as a function of Uh, the daily maximum wind speed at h=10 metres above soil surface is provided by 

ECMWF Climate Reanalysis, ERA5-Land hourly wind field data at 11 km spatial resolution (Muñoz 

Sabater, 2019). 

Dust emission flux F (<10 µm; kg m-2 s-1) is calculated as: 𝐹𝐴𝐸𝑀 (𝑑) = ∑ (1 − 𝐴𝑓)(1 − 𝐴𝑠 )𝑀𝑄(𝑑)10(13.4 %𝑐𝑙𝑎𝑦 −6.0)𝑑  with 0% < clay% <20%.  (Eq. 6) 

The clay% was restricted to 20%, consistent with previous work (Marticorena and Bergametti, 1995) 

which, when applied in a regional model calibrated to dust optical depth showed reasonable results 

(Woodward, 2001). We calculated 0.1<d<10 µm and adjusted the mass in the assumed global, tri-modal, 

log-normally distributed source modes by M=0.87 following Zender et al. (2003). In each pixel, the 

coverage of snow (As) and whether the soil surface is frozen (Af) is used to reduce dust emission and is 

obtained from daily ERA5-Land model data. Unlike existing dust models, the use of 𝜔𝑛𝑠  to dynamically 

estimate 𝑢𝑠∗  removes the need for vegetation indices and fixed vegetation coefficients to determine 

effective aerodynamic roughness (Hennen et al., 2022; 2023; Chappell et al., 2023a, b). Furthermore, as 𝑢𝑠∗is spatially explicit, it is unnecessary to pre-condition dust emission by applying a preferential dust 

source mask (i.e., positive bias in areas perceived to have more erodible soils (e.g., surface depressions)).  

Here we use a new approach to tackle the inconsistency of evaluating dust emission model 

performance against dust optical depth. By using satellite observed dust emission point source (DPS) 

frequency this approach enables us to investigate the impact for dust emission modelling of the 

assumptions that the soil surface is smooth and covered with an infinite supply of loose erodible material 

which when mobilised by sufficient 𝑢𝑠∗  causes transport and dust emission. This (energy-limited ) 

assumption is rarely justified in dust source regions, where the soil surface is rough due to soil aggregates, 

rocks, or gravels, sealed with biogeochemical crusts, or loose sediment is largely unavailable. This new 
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approach has enabled the dust emission model to be calibrated by replacing the frequency distribution of 

these traditional approximations of threshold and sediment supply, with the frequency distribution from 

DPS data (Hennen et al., 2022; 2023; Chappell et al., 2023a, b). For clarity, here we do not calibrate the 

AEM using the DPS data but use a similar approach. First, we calculated the DPS probability of 

occurrence P(DPS>0), a first order approximation of the probability of sediment transport P(Q>0), which 

is directly proportional to the probability of dust emission P(F>0) at those locations. Next, we equated 

the study durations to the frequency that 𝑢𝑠∗ exceeds 𝑢∗𝑡𝑠 adjusted by 𝐻: 𝑃(𝐷𝑃𝑆 > 0) ≈ 𝑃(𝐹 > 0) ∝ 𝑃(𝑄 > 0) = 𝑢𝑠∗ > 𝑢∗𝑡𝑠𝐻 {10.      (Eq. 7)  

During each simulation, the correct response 𝑃(𝐹 > 0) {10 depends on the correct 𝑢∗𝑡𝑠𝐻 obtained from 

the DPS data. 

2.3 Dichotomous testing  

At each of the satellite derived DPS (dust emission point sources) we used the AEM to predict dust 

emission, daily across the entire time period. The AEM dust emission at these locations were converted 

to dust emission occurrence (0 = no dust; 1 = dust) for comparison with the DPS using dichotomous tests. 

Dichotomous tests are used where the prediction and observation variable contain a maximum of two 

distinct outcomes. This categorical verification is used in numerical weather forecasting, typically for 

specific meteorological events (e.g., tornado, rain, or snow), where the verification question is “Did/Will 

this event occur?” In each instance, observation and simulation will provide a binary response, (i.e., 1 = 

Yes it will/did occur, 0 = No it did not / will not occur), these responses can be compared in a contingency 

table, where the responses are categorised as either Hit (observation=1, simulation=1), Miss 

(observation=1, simulation=0), False Positive (observation=0, simulation=1) or a Correct Negative 

(observation=0, simulation=0; Table 1). We simulate the presence or absence of dust emission at each 

DPS location for every day of observation, aggregated at 1° resolution, where if any of the DPS (observed 

or simulated) locations produces dust (Eq. 7), then that grid box scores 1 on that day. Dichotomous 

statistics compare the coincidence of these ones. Nan (not-a-number) boxes describe lost data due to 

remote sensing issues (cloud mask, bright pixel mask) are excluded from the analysis. For clarity the 

number per region are described in the results. Aggregating these 1° grid boxes overcome discrepancies 

in the precision of precisely locating the dust emission point source associated with different operators 

(Sinclair and LeGrand, 2019). These grid boxes also overcome the broader issue that the sample support 

of individual DPS data are too small for tolerable within and between class variance (Gotway and Young, 

2002). 
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Table 1: Contingency table describing the frequency of occurrences in the observations and simulations. 

The joint distribution boxes (Hit, False Positive, Miss, Correct Negative) compare the binary responses 

of the observations and simulations. The totals describe the marginal distribution for either observation 

or simulation and are independent of each other.    

 Modelled Yes Modelled No Total 

Observed Yes ‘Hit’ ‘Miss’ ‘Hit’ + ‘miss’ 

Observed No False positive Correct negative False positive + Correct negative 

Total ‘Hit’ + false positive ‘Miss’ + correct negative Grand total 

We use P(𝑢𝑠∗ >𝑢∗𝑡𝑠𝐻) to describe the relative conditions of each grid box, with ‘windier’ locations 

providing a larger probability of exceeding threshold. We chose this metric over mean 𝑢𝑠∗  as dust 

emission is expected to be a rare event and would obscure the diversity in extreme wind conditions within 

the long-term mean. 

3. Results 

3.1 Satellite observed dust emission point source (DPS) frequency 

The frequency of satellite observed dust emission point source (DPS) data and albedo-based dust emission 

model (AEM) estimates were calculated for DPS locations in 6 global dryland regions (using 9 studies). 

Table 2 describes regional DPS observations as probabilities, where the total number of opportunities are 

calculated by the number of DPS locations, multiplied by the number of days (minus the number of 

missing data – see Methods section). A total of 37,352 unique DPS locations were identified across the 

nine studies, covering 1,945 unique 1° grid boxes. By applying Eq.7, a total of 59,688 dust emissions 

were identified. Missing data are defined as the number of days that the grid cell is unable to produce a 

forecast. That is, each of the DPS points within a given cell on a given day, each produce a null value due 

to a missing parameter in the model on that day. This is typically caused by masking in the MODIS daily 

imagery (due to cloud) preventing a description of surface roughness. On average, 34.4% of data was 

missing across the nine regions, with North Africa producing the fewest (18.9%), and Central Asia 

producing the most (54.5%). Corresponding missing data were removed from both modelled and 

observed data to maintain consistency in results. 

   

Table 2. Dust event frequency data from dust point source (DPS) locations observed in nine separate 

studies. Data describe the relative probability of occurrence during dust emission P(F>0) point source 

(DPS) observation and from albedo-based dust emission model (AEM) forecasts at the same location and 

time period, identified in the same way (Eq. 7).  

 
Sensor Years Total days (A) 

Dust grids 

(B) 

*Missing 

data  

Dust 

events 

DPS 

P(F>0) 

AEM 

P(F>0) 
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(C x 104) (D) D/((A.B) - C) 

N. Africa 

Schepanski 
SEVIRI 

 2006-

2010 
1825 927 31.9 36490 0.0266 0.18 

Middle East 

Hennen 
SEVIRI 

2006-

2013 
2921 431 37.5 16781 0.0190 0.42 

Central Asia 

Nobakht 
MODIS 

2003-

2012 
3652 398 79.2 5201 0.0079 0.22 

Namibian Coast 

vonHoldt 
MODIS 

2005-

2015 
4016 36 4.9 697 0.0073 0.76 

SW. USA 

Lee 
MODIS 

2001-

2009 
3286 13 1.7 69 0.0028 0.50 

Australia 

Bullard 
MODIS 

2003-

2006 
1460 54 1.9 148 0.0025 0.32 

SW. USA 

Baddock 
MODIS 

2001-

2009 
3286 12 1.3 56 0.0021 0.46 

South Africa 

Eckardt 
SEVIRI 

2006-

2016 
4017 26 3.1 135 0.0018 0.12 

SW. USA 

Kandakji 
MODIS 

2001-

2016 
5843 48 11.5 189 0.0011 0.45 

*Missing data describes number of simulations (daily grid box) lost due to missing albedo data. 

 

Overall, DPS observations show dust events to be rare. The regional maximum probability in North 

Africa was only 0.027, ~10 dust days y-1 per 1° grid box (Table 2). In other regions, the probability of 

dust emission varies, with the Middle East producing the second largest (0.019; ~7 days y-1 per 1° box), 

followed by Central Asia (0.008; ~3 days y-1 per 1° box), and the Namibian coast in Southern Africa 

(0.007; ~3 days y-1 per 1° box). Each of the North American, Australian and South Africa regions produce 

probabilities >0.003 (~1 day y-1 per 1° box), with the smallest probability of 0.001 (<1 day y-1 per 1° box) 

in the arid south-west USA (Kandakji).  

Simulated AEM estimates P(F>0) is between 1 and 2 orders of magnitude greater than observations 

in each region. Comparing DPS with P(F>0) shows that the relative order between regions differed. North 

Africa produced the second smallest probability of AEM dust emission (0.18; ~65 days y-1 per 1° box), 

with interior South Africa (Eckardt) producing a smaller probability (0.12; ~44 days y-1 per 1° box). The 

Namibian Coast produced the largest AEM dust emission probability (0.76; ~256 days y-1 per 1° box), 

followed by North American regions (0.46–0.5; ~168–183 days y-1 per 1° box), the Middle East (0.42; 

~153 days y-1 per 1° box), Australia (0.32; ~117 days y-1 per 1° box), and Central Asia (0.22; ~80 days y-

1 per 1° box). 
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3.2 Categorical dust emission model performance 

The performance of the albedo-based dust emission model (AEM) is assessed through the coincidence of 

simulated and observed occurrence (or lack) of dust emission. These results are described globally in 

Table 3, where all results from all regions are collated into a contingency table describing the proportion 

of each of four outcomes (see Table 1 for outcome descriptions). Dust emission observations account for 

only 1.8% of all possibilities (grid boxes multiplied by days). In comparison, the AEM over-predicts the 

frequency of dust emission by an order of magnitude relative to the DPS observations, producing dust 

emission 28% of the time. The model and observations agree 71.4% of the time, including 0.6% where 

both model and observations produce dust (‘hits’), and 70.8% of the time when neither predicts dust  

emission (‘correct negatives’). During the remaining 28.6% of the time, the model predicts dust 27.4% of 

the time when no dust emission was observed (‘false positives’) and fails to predict dust emission 1.2% 

of the time when dust emission was observed (Table 3).    

 

Table 3. Categorical statistics for albedo-based dust emission model (AEM) simulations (F>0) when 

compared to all satellite observed dust emission point sources (DPS) combined. 

 Modelled Yes Modelled No Total 

Observed Yes 0.6 1.2 1.8 

Observed No 27.4 70.8 98.2 

Total 28 72 100 

The variation in modelled dust emission frequency between global regions is explained by the 

varying cumulative distribution functions (empirical) of wind shear velocity (𝑢𝑠∗) conditions at the soil 

surface (Fig. 3). In Figure 3, the probability of dust emission is defined by the intersection of the 

distribution of 𝑢𝑠∗  conditions and the entrainment threshold adjusted by the soil moisture function 

(approximated for the visualisation as 𝑢∗𝑡𝑠𝐻 = 0.2 m s-1 ; vertical black line), where all simulations greater 

than the varying thresholds generate dust emission (i.e., F>0). In each case, 𝑢𝑠∗ is influenced by the 

roughness 𝑢𝑠∗/𝑈ℎ and surface wind speed (𝑈ℎ). The results show a range of conditions between each of 

the regions. Along the Namibian coastline (von Holdt) 𝑢𝑠∗ is distinctly larger than all other regions (mean 

0.23 m s-1). In contrast, South African (Eckardt) dust sources have predominantly small 𝑢𝑠∗ (mean 0.11 

m s-1; Fig. 3a). In the arid south-west of North America, average 𝑢𝑠∗ remains consistent across each of 

the three regions (0.19 m s-1), and marginally greater than Australia and the Middle East (each ~0.17 m 

s-1). Despite producing the same mean, the frequency at which North American regions exceed threshold 

varies. These regional data suggest that the Chihuahuan Desert (Baddock), produces a larger proportion 

of 𝑢𝑠∗ conditions at extreme values (small and large values of 𝑢𝑠∗), whereas the Southern High Plains 

(Kandakji and Lee) produce a larger frequency closer to the mean. Along with South Africa, 𝑢𝑠∗ 
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conditions in Central Asia (mean = 0.14 m s-1) and North African (mean = 0.13 m s-1) are the smallest, 

with 𝑢𝑠∗ values proportionally smaller than the collective global distribution (dashed black line).   

Figure 3b shows the distribution of 𝑢𝑠∗ conditions during observation periods (locations and days 

with observed dust only). These data determine the proportion of ‘hits’ (coinciding observed and 
simulated dust) by P(𝑢𝑠∗>𝑢∗𝑡𝑠𝐻). With a greater proportion of 𝑢𝑠∗ values and a 𝑢∗ts threshold of 0.2 m s-

1 approximated for the visualisation (vertical black line), the north American regions generate a high 

probability (0.97-0.99) of ‘hits’. In contrast, North Africa, Central Asia, South Africa, and the Namibian 

Coast all produce ‘hit’ probabilities below 0.5, due to the smaller frequency of large 𝑢𝑠∗ conditions. The 

Middle East (0.55) and Australia (0.84) have larger probabilities but continue to ‘miss’ a significant 

proportion of observed dust events. These results show that a large proportion of the observations (up to 

79% in North Africa) occur during 𝑢𝑠∗ conditions below the fixed threshold, with all regions except North 

America (see Lee and Baddock datasets) producing a minimum observed 𝑢𝑠∗ below the fixed threshold. 

Some 𝑢𝑠∗ are so small as to be extremely unlikely to produce dust and indicate that some wind speeds at 

the scale of 11 km pixel are inadequate.   

To demonstrate the impact of 𝑢∗ts on the probability of dust emission, we consider the adjustment 

of regional 𝑢∗ts to match global DPS frequency P(𝑢𝑠∗all  > 𝑢∗𝑡𝑠𝐻) = 0.018, where 𝑢𝑠∗all  is the ECDF of 𝑢𝑠∗ conditions at all locations during all days (black dashed line in Fig. 3a). Figure 3a shows that the 

global combined distribution of 𝑢𝑠∗ conditions would require 𝑢∗ts = 0.36 m s-1 (red dashed vertical line). 

We compared the intersections of each ECDF at 𝑢∗𝑡𝑠𝐻 = 0.2 m s-1 (approximated for the visualisation; 

black vertical line) with that at 𝑢∗𝑡𝑠𝐻 = 0.36 m s-1 (red dashed vertical line) to illustrate the differences 

for percentage ‘hits’ (Fig. 3b). The ‘hits’ reduced in all regions, produced a maximum reduction of 55% 

in Australia (84% with 𝑢∗𝑡𝑠𝐻 = 0.2 m s-1, to 29% with 𝑢∗𝑡𝑠𝐻 = 0.36 m s-1), and a minimum reduction of 

20% in North Africa (21% to 1%). North America produces the largest percentage of ‘hits’ (57% – 71%), 

while all observed events are missed in South Africa (‘hit’ = 0%).  All other regions reduce the proportion 

of ‘hits’ below 10%. Overall, during all observed dust events (black dashed ECDF; Fig. 3b), 𝑢𝑠∗ < 𝑢∗𝑡𝑠 

68% of the time, indicating wind speeds are too small over two thirds of the time when we know dust 

emission has occurred (i.e., DPS > 0). 
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Figure 3. Empirical cumulative distribution functions (ECDF) of satellite observed dust emission point 

sources (DPS) from 9 studies across 6 dryland regions compared to MODIS (500 m pixels) albedo-derived 

wind friction velocity (𝒖𝒔∗) estimated using ERA5-Land (11 km pixels) wind speed at 10 m height. The 

vertical black line approximates (for the visualisation) the actual model entrainment threshold (𝒖∗𝐭𝐬 ) used 

fixed over space (for given soil types) and static over time. The distribution of 𝒖𝒔∗ either side of the black 

line (𝒖∗𝐭𝐬) represents the probability of modelled dust emission during (a) all modelled days during the 

duration of the respective study, (b) observed days, including only modelled 𝒖𝒔∗ conditions at locations 

and days where DPS emissions were observed. Red dashed line describes the theoretical 𝒖∗𝐭𝐬  required to 

omit 98% (blue horizontal line) of occurrences from the global combined distribution of 𝒖𝒔∗ conditions 

(black dashed line), matching the observed frequency of the 9 regional studies (combined) (Table 3).    

3.3 Dust emission model variability at a local (1°) scale 

The ECDF analysis in Figure 3 indicates an underestimation of 𝑢𝑠∗ conditions most of the time during 

observed dust events. Consequently, 68% of known dust events are not modelled. Regionally, this value 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



17 
 

varies depending on the range of 𝑢𝑠∗ conditions during observed events (Fig. 3b). Figure 4a describes 

Pobs (𝑢𝑠∗ > 𝑢∗𝑡𝑠𝐻) during observed dust events at a 1° grid box. By considering only days which are known 

to produce dust, these data describe how well the model captures blowing dust conditions, where perfect 

performance would produce 1 in each box. Therefore, Figure 4a identifies spatial patterns in model 

performance within regions, elucidating spatial variability in 𝑢𝑠∗ conditions during known dust emission 

events (i.e., every grid box is dark red in Fig. 4a). The variability in grid box Pobs is independent of 

regional conditions, instead elucidating spatial patterns in 𝑢𝑠∗ conditions during known dust emission 

events.  

During observed days, Pobs is consistently large (>0.8) across North America, and the southerly 

reaches of Australia including the Lake Eyre Basin, the Simpson and Strzelecki Deserts to the south (Fig. 

4a). Across North Africa, Pobs remains generally small, increasing in the north (0.4–0.6) along the 

Mediterranean coast, and decreasing to a minimum (<0.2) in the south and east. The Bodele Depression 

is not evident as a hotspot because of its unique dust producing mechanism which are not represented in 

the AEM (see Discussion section for more details). In the Middle East, Pobs is large (>0.6) across large 

areas of the Arabian Peninsula, including Mesopotamia in the north, the Red Sea Coast in the west and 

Oman to the south. Iran has large variability, with Pobs (<0.2) in the north-east, increasing Pobs (>0.6) in 

the Sistan Basin to the east, along the Makran Coast to the south and on the shores of the Caspian Sea to 

the north. Central Asia produces the largest variability, peaking (Pobs >0.8) in the Gobi Desert (China) in 

the east, the Kara-Kum Desert and Aral Sea area (Kazakhstan) to the west, while many central areas, 

including the Taklamakan Desert, produce small Pobs. In the Namib Desert, along the Namibian Coast, 

Pobs peaks (>0.6) to the north, while inland Pobs reduces significantly (<0.2). In the interior of southern 

Africa, Pobs is generally small (<0.4), with a peak (>0.6) in the south-eastern extent of the Kalahari Desert.  

For comparison, Figure 4b describes Pall (𝑢𝑠∗ > 𝑢∗𝑡𝑠𝐻) during all days at each 1° grid box. These 

data include observed events which comprise only a small proportion (<1.8%) of all days (Table 3). 

Accordingly, these results reveal how likely the model is to create false positive dust events, where a good 

model performance would produce very small Pall values (i.e., zero false positives / grid box = white; Fig. 

4b). Here, large spatial variability in Pall occurs across Australia, and North America and the Middle East. 

Pall remains consistently small (<0.4) in North Africa, and parts of north-east Iran, Central Asia, and South 

Africa. Pall peaks (>0.8) in the Namib Desert (Namibia), western Arabian Plateau (Saudi Arabia), 

Mesopotamia (Iraq / Syria), Makran Coast (Iran), Sistan Basin (Iran/Afghanistan) and discrete parts of 

the Kara-Kum (Kazakhstan), Taklamakan (China), and Gobi (China) Deserts.  
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Figure 4. Maps describing the probability of dust emission 𝑷(𝒖𝒔∗ > 𝒖∗𝒕𝒔𝑯) at a 1º grid resolution, during 

(A) observed days and locations where dust point source (DPS) emissions were observed, and (B) all days 

and locations during the length of the respective study. The difference (C) in ∆𝑷 between observed and 

all days describes the relative difference in 𝒖𝒔∗ conditions during each period. Red grid boxes describe 

positive ∆𝑷, meaning winds are larger during DPS dust events than during all modelled days. Blue grid 

boxes describe negative ∆𝑷, indicating winds are slower during DPS events than during all modelled 

days. Light blue, yellow, and orange grid boxes described neutral ∆𝑷, indicating none, or very little, 

discernible difference between wind conditions during DPS events and all modelled days.  

The difference between Pobs and Pall (∆𝑃 Eq. 8; Fig. 4c) describes how distinct the 𝑢𝑠∗ conditions 

are in each grid box during each period: ∆𝑃 =  𝑃𝑜𝑏𝑠(𝑢𝑠∗(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ) > 𝑢∗𝑡𝑠 𝐻) −  𝑃𝑎𝑙𝑙(𝑢𝑠∗(𝑎𝑙𝑙) > 𝑢∗𝑡𝑠 𝐻)     (Eq. 8) 

assuming (for simplicity and consistent with the approximation for previous visualisations) 𝑢∗𝑡𝑠𝐻 = 0.2 

m s-1. Those ∆𝑃 values close to 0 indicate no, or very small, differences in 𝑢𝑠∗ conditions, indicating that 

the AEM does not recognise a difference in the probability of 𝑢𝑠∗ exceeding threshold. These conditions 

occur across large parts of the Sahara Desert, Central Asia, where small 𝑢𝑠∗ conditions continue (Pobs and 

Pall <0.2). In parts of the Arabian Peninsula (including northern Mesopotamia), ∆𝑃 remains small as 𝑢𝑠∗ 

conditions continue to exceed threshold most of the time (Pobs and Pall>0.6). Positive ∆𝑃 indicates an 

increase in 𝑢𝑠∗ during observed dust emission days compared to all days. These conditions occur in most 

dust sources in Australia, North America, Western Arabian Peninsula (Jordan, north-west Saudi Arabia), 
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where 𝑢𝑠∗ conditions are large during dust events (Pobs >0.8) and smaller during all days (Pall <0.4). The ∆𝑃 remains positive in south-eastern Kalahari Desert, Central Iran, and the Mediterranean coast of North 

Africa where smaller 𝑢𝑠∗ conditions during observed dust events (Pobs 0.4 – 0.8), remain distinctly larger 

than on all days (Pall <0.2). Negative ∆𝑃 indicates larger 𝑢𝑠∗ during all days compared to observed days. 

These conditions occur throughout the Namib Desert, the coast of the Arabian Gulf (Saudi Arabia), the 

Makran Coast and Dasht-e-Lut Desert (Iran), where 𝑢𝑠∗ conditions exceed threshold most of the time (Pall 

>0.8) and are relatively small during observed dust events (Pobs <0.6). Discrete areas of the Kara-Kum, 

Taklamakan, and Gobi Deserts also produce negative ∆𝑃, as large peaks in 𝑢𝑠∗ conditions (Pall >0.8) 

during all days, exceed those on observed days (Pobs <0.6). 

3.4 Diagnostic dust emission model performance relative to dust emission observations 

The P(𝑢𝑠∗  >𝑢∗𝑡𝑠𝐻) during DPS events describes the model accuracy in either the 𝑢𝑠∗  conditions known to 

have created dust emission (i.e., DPS = 1) or the correct dust entrainment threshold (Fig. 4a; top row 

in Table 4). By plotting the combinations of these occurrences, we can understand which meteorological 

events are best described by dust emission models and / or where the dust entrainment threshold is poorly 

constrained.  In common with other dust emission models, the AEM has no description of the spatio-

temporal variation in soil erodibility and assumes an infinite sediment supply at all locations. 

Consequently, whenever 𝑢𝑠∗  > 𝑢∗𝑡𝑠𝐻 the AEM simulates dust emission. During DPS observations, by 

comparing P(𝑢𝑠∗  >𝑢∗𝑡𝑠𝐻) with all modelled days (Fig. 4b), we can determine areas where sediment 

supply is poorly described by an infinite sediment availability i.e., no difference in P(𝑢𝑠∗  > 𝑢∗𝑡𝑠𝐻) between 

observed days and all days (top left and bottom right in Table 4) or comparing P(𝑢𝑠∗  > 𝑢∗𝑡𝑠𝐻)  is larger 

during all days than during DPS observations (bottom left in Table 4). 

Where there is no clear separation in 𝑢𝑠∗ conditions during observed events and all days, we can 

interpret these results in two ways, depending on the P(𝑢𝑠∗ > 𝑢∗𝑡𝑠𝐻). If that P is large during both periods 

(bottom right in Table 4), the model will correctly simulate dust most of the time during DPS observations 

(‘hits’ are large). In this case, dust producing 𝑢𝑠∗ conditions are well described, but the lack of erodibility 

parametrisation means dust emission will continue to be simulated beyond those days observed in the 

DPS data (‘false positives’ are large). If that P is small (top left in Table 4), dust-producing 𝑢𝑠∗ conditions 

are not well described (‘hits’ are small) and are therefore not distinguished from all day events during 

observed DPS days (‘false positives’ remain small).  

 

Table 4: Description of categorical albedo-based dust emission model (AEM) outputs due to varying 

probabilities of 𝑢𝑠∗ > 𝑢∗𝑡𝑠𝐻 during observed DPS dust days and all days. Colours indicate the symbology 

applied to 1° grid boxes in Figure 4. 

 P(𝑢𝑠∗ > 𝑢∗𝑡𝑠 𝐻) on observed days (DPS known to occur) 
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Small Large 

P
(𝑢 𝑠∗ >  𝑢 ∗𝑡𝑠𝐻) o

n
 a

ll
 d

ay
s 

S
m

al
l 

Neutral ∆𝑷 𝑢𝑠∗ conditions on observed (DPS) and all days are 

small and not distinguishable from each other 

 

Few ‘hits’ 

• Wind field data unable to replicate dust 

producing winds at DPS locations 

 

Few ‘false positives’ 

• Alterations to 𝑢∗𝑡𝑠𝐻 will not differentiate the 

proportion of ‘hits’ and false positives.  

 

Positive ∆𝑷 𝑢𝑠∗ conditions on observed (DPS) days are 

distinctly larger than on all days  

 

Many ‘hits’ 

• Wind field correctly simulates us* conditions 

associated with dust emission  

 

Few ‘false positives’ 

• 𝑢∗𝑡𝑠𝐻   appropriate for ambient wind 

conditions.  

L
ar

g
e 

Negative ∆𝑷 𝑢𝑠∗ conditions on observed (DPS) days are 

distinctly smaller than on all days  

 

Few ‘hits’ 

• Wind field data unable to replicate dust 

producing winds at DPS locations 

 

Many ‘false positives’ 

• 𝑢∗𝑡𝑠𝐻   inappropriate for ambient wind  

conditions.  

• Frequent modelled dust beyond observed days 

as sediment supply assumed to be infinite.  

 

Neutral ∆𝑷 𝑢𝑠∗ conditions on observed (DPS) and all days are 

large and not distinguishable from each other 

 

Many ‘hits’ 

• Wind field correctly simulates 𝑢𝑠∗ conditions 

associated with dust emission  

 

Many ‘false positives’ 

• Alterations to 𝑢∗𝑡𝑠𝐻  will not differentiate the 

proportion of ‘hits’ and false positives.  

• Modelled dust continues beyond observed days 

as assumption of infinite sediment supply.   

 

 

4. Discussion  

The collective dust emission frequency from nine separate studies demonstrate that dust emission is a rare 

event (on average 1.8% of all space-time occurrences; Table 3) indicating extreme conditions (e.g., large 

wind speeds) even in the more readily recognised dust emission areas (e.g., the Sahara Desert, the Arabian 

Peninsula; <100 days y-1). Notably, an independent study using the Multiangle Imaging 

Spectroradiometer (MISR) also found spatially patchy dust plume distribution, with frequency of <135 

days y-1(Yu et al. 2018). In comparison, the albedo-based dust emission model (AEM) simulations 
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estimate dust emission frequency 28% of the time. This AEM over-estimation is consistent with the need 

for ESMs to be globally tuned down by several orders of magnitude to match dust optical depth (Zender 

et al., 2003). The AEM over-estimation particularly in North Africa has considerable implications for 

ESMs because they are “…generally tuned to fit the observations in a given part of the world and often 

this tuning is done with observations from North Africa” (Huneeus et al., 2011; p.7809). Consequently, 

the ESMs are very likely to be simulating dust emission too frequently, with too little intensity and with 

reduced diversity in the contributing dust with different mineralogy from other regions (Chappell et al., 

2023a, b). These results confirm earlier findings that dust emission models must first be calibrated against 

DPS data before being calibrated against dust optical depth (Chappell et al., 2023a, b). 

Notably, the over-estimation remains despite the AEM model using a calibration of wind friction 

against aerodynamic roughness (Chappell and Webb 2016; Webb et al. 2020) Chappell et al., 2023a, b). 

There are two components of this AEM over-estimation that we think need to be considered: (i) it is 

systematic across dryland dust sources across Earth; (ii) the disparity is in total frequency and daily 

coincidence of observed and simulated emission. Without considering both components synchronously, 

it will be difficult for dust emission model developments to determine if the dust emission model 

simulated the correct frequency by chance (i.e., same frequency on different days), and under which 

environmental conditions the model performs. 

The AEM coincides with DPS occurrences (observed and not observed) 71.4% of the time. 

However, during observed dust events, the AEM only coincides with DPS events 0.6% of the time. Since 

the AEM provides a realistic (calibrated) representation of 𝑢𝑠∗, these results suggest that the inconsistency 

in modelled and observed frequencies is due to a combination of three broad factors: (1) discrepancies in 

the formulation of the entrainment threshold adjusted by soil moisture (𝑢∗𝑡𝑠𝐻); (2) incompatible scales in 

dust emission modelling e.g., the grain-scale 𝑢∗ts is incompatible with the areal 𝑢𝑠∗ (MODIS 500 m) and 

areal wind speed at a larger scale (ERA5-Land; 11 km), and (3) the inadequate assumption of an infinite 

supply of loose, erodible sediments. Each of these three main factors can be interpreted by comparing the 

conditions which exceed entrainment threshold P(𝑢𝑠∗ > 𝑢∗𝑡𝑠𝐻) during observed DPS days, to all days 

(Table 4) at multiple scales including, regional (Fig. 3) and local (Fig. 4). We should also not exclude a 

possible bias in the DPS data towards few (detectable) large magnitude events and away from smaller 

magnitude, larger frequency occurrences below the detectable limit of these DPS observations. However, 

there is limited quantitative information available, and we raise awareness of these sources of uncertainty 

below. 

4.1 Discrepancies in the formulation of entrainment threshold (𝒖∗𝒕𝒔𝑯) 

By using dichotomous descriptions of dust emission frequency, we provide an assessment of model 

performance which emphasises the coincidence of events rather than just a comparison of total frequency. 

This assessment distinguishes simulations associated with dust emission events, from simulations of dust 
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emission on all days, to provide a powerful description of dust emitting conditions from those on all days. 

Our results show that modelled dust emission occurs regularly i.e., 𝑢𝑠∗  > 𝑢∗𝑡𝑠𝐻 where and when no dust 

emission is observed (27.4% of all simulations; Table 3). These findings form the alluring suggestion 

that dust emission model performance can be improved by matching 𝑢∗𝑡𝑠𝐻 to the correct global frequency 

of observed dust emissions (globally = 1.8%; 𝑢∗𝑡𝑠𝐻 = 0.36 m s-1). However, reducing the number of ‘false 

positives’ in this way will systematically reduce the proportion of correct observations (i.e., ‘hits’) in all 

regions by as much as 55% (Australia), with only 1% of all observations in North Africa correctly 

simulated. An alternative solution might appear to adjust 𝑢∗𝑡𝑠 𝐻  to maximise the number of 

‘hits’ P(𝑢𝑠∗ 𝑜𝑏𝑠  > 𝑢∗𝑡𝑠𝐻) = 1 and globally would require a fixed 𝑢∗𝑡𝑠𝐻  = 0.006 m s-1. However, this 

alternative will increase the proportion of ‘false positives’ to 99.9%. Neither of these approaches are 

recommended for the reasons described.    

Despite the rarity of dust observations (occurring only 1.8% of the time; Table 3), the ECDF data 

show that dust emission events rarely represent extreme 𝑢𝑠∗ conditions (𝑃(𝑢𝑠∗ 𝑜𝑏𝑠) =< 𝑃(𝑢s∗ 𝑎𝑙𝑙 ); Fig. 

3), because in most cases there is no distinct difference in 𝑢𝑠∗ conditions between observed days and all 

days. These results demonstrate that there is no reasonable basis to calibrate model performance through 

an adjustment to a fixed global threshold (𝑢∗𝑡𝑠𝐻 ). Whilst this may seem axiomatic to some, the 

assumption of global and fixed 𝑢∗𝑡𝑠 has endured for more than two decades since dust emission models 

were first developed. In contrast, a threshold varying in space-time responding to erodibility dynamics 

should improve model performance in areas where there is a clear positive change in frequency of 

occurrence (i.e., top right in Table 4; 𝑢𝑠∗ 𝑜𝑏𝑠 > 𝑢s∗ 𝑎𝑙𝑙 ). Our regional results 

indicate that this condition ( 𝑢𝑠∗ 𝑜𝑏𝑠 > 𝑢s∗ 𝑎𝑙𝑙 ) occurs in North America and Australia, where the 

AEM identifies an increased mean 𝑢𝑠∗  during observed DPS events (Fig. 3). In both regions, dust 

emission occurs during the passage of large frontal systems (Rivera Rivera et al., 2009; Strong et al., 

2011) in response to cyclonic activity. The ability to accurately model these synoptic conditions would 

allow 𝑢∗𝑡𝑠𝐻  to be adapted (increased) to reduce the number of ‘false positive’ simulations without 

negatively affecting the model’s ability to simulate ‘hits’. However, calibration of 𝑢∗𝑡𝑠𝐻 in this way is 

also not recommended because it fundamentally tunes the model response to those specific conditions. It 

would not enable modelling to be physically-based in responding to a changing environment which is 

essential for use in understanding past and future climate projections. 

4.2 Incompatible scales in dust emission modelling 

By describing the ECDFs of 𝑢𝑠∗ during observed days and locations (Fig. 3b), a new understanding 

emerges assuming that the coupled property, wind friction velocity normalised by wind speed (𝑢𝑠∗/𝑈ℎ) 

is well constrained, by being calibrated against aerodynamic wind tunnel measurements (Chappell and 

Webb, 2016). Wind speeds used in the AEM are too small to enable 𝑢𝑠∗ to exceed 𝑢∗𝑡𝑠𝐻 during roughly 
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2 out of 3 observed events Pobs (𝑢𝑠∗  > 𝑢∗𝑡𝑠𝐻) = 0.6. For example, North American DPS are from 

predominantly barren parts of the region and show little variation in 𝑢𝑠∗/Uh, either spatially or temporally 

(Hennen et al., 2022). This characteristic of DPS data extends globally, with most dust emission point 

sources coinciding with barren conditions (𝑢𝑠∗/Uh > 0.028) which do not change much, most of the time 

(standard deviation less than 0.002) either within or between the few years of measurements available. In 

these locations, variation in 𝑢𝑠∗ conditions of the DPS locations is created mainly by variation in Uh. 

Accordingly, when a dust event is observed but 𝑢𝑠∗ does not exceed 𝑢∗𝑡𝑠𝐻, we assume that the AEM has 

not correctly simulated the associated dust-producing wind conditions at that location. In the text which 

follows, we elaborate on regional conditions and AEM performance given these assumptions. 

North Africa produces the smallest probability of dust-producing winds during observed dust events 

(P=0.2; Figure 4a). However, there is large spatial variability in P, with larger values along the 

Mediterranean coast and western Africa (P>0.4) than inland, where eastern parts of the Sahel have P<0.2. 

Dust emission in the north of the region occurs through cyclogenesis and associated formation of fronts 

(Schepanski et al., 2009). Specifically, Sharav cyclones (also named Mediterranean cyclones), track 

across the Mahgreb region towards the eastern Mediterranean Basin (Caton Harrison et al., 2021; 

Knippertz and Todd, 2012). These conditions are often associated with an active warm front, characterised 

by pronounced dust uplift (Schepanski et al., 2009). Saharan Depressions are also found anticyclonically 

over Western Africa, where they ultimately transit north and east into a Mediterranean cyclone 

(Schepanski and Knippertz, 2011). These synoptic scale meteorological conditions are described well in 

the AEM, with a distinct change in 𝑢𝑠∗ (increasing P) during observed dust events compared to all days 

(Fig. 4c, top right in Table 4). 

In parts of the Sahel, dust emission is associated with mesoscale meteorological drivers, including 

the diurnal break-down of the nocturnal low-level jet (LLJ) (Schepanski et al., 2009) and sudden increase 

in wind speeds at the leading edge of cold-pool density currents, formed from deep moist convection 

(Knippertz and Todd, 2012; Lawson, 1971). Figure 4a shows that neither of these conditions are 

frequently identified in the AEM, with P<0.2 during observed events. These small P values very likely 

arise from our use of ERA5-Land global wind field data (11 km pixels; daily maximum winds) which, 

like most global modelled wind field data, will struggle to describe episodic, mesoscale events such as 

LLJs and cold pooling (Fan et al., 2020; Caton Harrison et al., 2021). Instead, these wind data describe a 

single spatial mean value per 11 km pixel, which is subsequently used to form 𝑢𝑠∗ which is then compared 

to 𝑢∗𝑡𝑠𝐻 (at the grain scale without adjustment). The problem with this mean value is not that it is provided 

at 11 km, but that the spatial mean wind is derived from the 40 m ‘blending’ height. When that 11 km 

spatial mean value is provided by ERA5-Land at the 10 m height it is assumed that the aerodynamic 

roughness length is static over time and fixed over space (for a given land cover type; see technical 

ECMWF details). Our AEM used maximum daily ERA5-Land wind speeds to increase the chance of 

simulating dust-producing winds. However, maximum values still describe the spatial mean across the 11 
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km pixel, during that period. If peak wind speeds occur suddenly and/or in only a portion of an 11 km 

pixel, the mean pixel value will not capture the magnitude of those peak wind conditions at a given point 

dust source. Consequently, no distinct change in peak 𝑢𝑠∗  conditions can be identified during local 

(discrete) or sudden dust emission events, as demonstrated by the parity in P(𝑢𝑠∗ >𝑢∗𝑡𝑠𝐻) during observed 

dust events and all days (Neutral ∆𝑃 – Fig. 4c). These results indicate that the (ERA5-Land) downscaling 

of wind using simplifying assumptions about aerodynamic roughness is limiting our ability to tackle sub-

grid scale heterogeneity in wind fields and related applications in dust emission e.g., impact of wildfires 

on mineral dust emission (Menut et al., 2022). For clarity, we do not interpret this to mean that we should 

use finer resolution information. That will not tackle the sub-grid scale heterogeneity. We interpret this 

to mean that the downscaling of the wind field aerodynamic roughness needs to be improved. 

4.3 Inadequate assumption of infinite supply of fine sediments 

The AEM over-estimated the frequency of dust emission at all DPS sites. However, it also failed to  

simulate all of the observed dust emission events. The dichotomous statistics demonstrate that AEM dust 

emission occurs predominantly when no observation was made (27.4% of the time; Table 3). At these 

dust sources, P(𝑢𝑠∗ > 𝑢∗𝑡𝑠𝐻) is large all the time (bottom row in Table 4). As the AEM has no description 

of the availability of dry, loose material to generate sediment transport (soil erodibility), it will produce 

dust emission whenever 𝑢𝑠∗  conditions are large enough to exceed 𝑢∗𝑡𝑠  (many false positives). The 

entrainment threshold is exceeded more frequently in areas where the prevailing wind speeds remain 

frequently large. Our results show large daily P(𝑢𝑠∗ > 𝑢∗𝑡𝑠𝐻) across Mesopotamia, the Sistan Basin (Iran 

/ Afghanistan) and the Namibian Desert (Fig. 4b), where dust emission is simulated >80% of the time in 

response to frequent large winds. These occur in the north-westerly Shamal winds of Mesopotamia (Bou 

Karam Francis et al., 2017; Yu et al., 2016), the Sistan winds in eastern Iran (Rezazadeh et al., 2013) and 

the Berg winds across the Namibian coast (von Holdt et al., 2017). The DPS observations peak in some 

of these regions, yet continue to occur infrequently, with P(DPS>0) less than 0.3. With sufficient 𝑢𝑠∗ to 

initiate dust emission 80% of the time, the scarcity of observations indicates an absence of erodible 

material. Despite an assumed infinite supply of loose material in the model, dryland environments are 

well-known to be supply-limited (Bullard et al., 2011; Klose et al., 2019; Parajuli et al., 2014; von Holdt 

and Eckardt, 2018; Zender, 2003). Ephemeral processes, and the preferential transposition of fine 

materials are often considered key in the episodic nature of dust emission (Rashki et al., 2017). In supply-

limited areas, once these fine materials are deposited, there exists a finite period of increased dust 

emission potential. During the intervening periods, supply is either exhausted or protected from erosive 

winds by the formation of biogeophysical crusts (Vos et al., 2020) or surface ‘armouring’. Accordingly, 

dust source areas, like the Sistan Basin, Tigris-Euphrates Basin (Syria/Iraq), and the Kuiseb River 

catchment (Namibia), where ephemeral or fluvial systems (with variable flow rates) occur, will tend to 

be limited by the production of fine materials (von Holdt and Eckardt, 2018). While the impact caused by 
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the simplistic model assumption of infinite sediment supply, is most apparent in frequently windy areas, 

our results (27.4% ‘false positive’ simulations) suggest that the mismatch between the assumption and 

the DPS observations of dust emission occurs in all dryland areas (Fig. 4b). 

 

4.4 Uncertainties in evaluating dust emission models 

Several sources of uncertainty are associated with the evaluation of dust emission estimates including the 

use of dust emission point source (DPS) data in this work. The uncertainties surrounding DPS data are 

known but largely unquantified as we develop this new framework for the evaluation of dust emission 

model development. We provide a description of these DPS uncertainties below which includes the 

rationale for new and additional work to support this new framework. First, we place the uncertainties of 

this new framework into the broader context of how dust emission models are currently evaluated and 

how much (total) uncertainty is known and quantified with dust emission modelling itself. This ensures 

that the value of this new framework is appreciated.  

At the largest ESM scale, the dust emission model itself is not evaluated, the dust cycle model is 

evaluated against dust optical depth. This approach assumes that there is no global spatio-temporal bias 

in the dust emission model (Huneeus et al., 2011; p.7809). Recent evidence indicates that at this global 

scale that assumption is not valid and uncertainty in the dust emission model was largely unrecognised 

and much larger than expected (Chappell et al., 2023a, b). Recent work using global DPS data to calibrate 

the AEM has provided the first quantitative estimate of dust emission model uncertainty (Chappell et al., 

2023a). At the regional scale, numerical weather prediction models are typically evaluated using dust 

optical depth (LeGrand et al. 2023). Despite being at a fine spatio-temporal resolution, this approach also 

does not enable the dust emission model itself to be evaluated. At the field scale, active dust concentration 

measurements are used. Whilst this approach brings the evaluation closer to the dust emission process, 

uncertainty remains as to the difference between proximal and distal dust being measured. Therefore, it 

seems reasonable to conclude that we have very poor constraints on dust emission model uncertainty 

across these different scales.  

For our new framework, we have described the methodologies for establishing dust emission point 

source (DPS) data which include protocols for consistent and repeatable identifications. The 

reproducibility issues raised by earlier studies of DPS data (e.g., Sinclair and LeGrand, 2019) are avoided 

here with our use of 1° grid cells. The difference between previous approaches and our approach is similar 

to the way in which incompatible spatial data are combined (Gotway and Young, 2002). By using large 

1° grid cells we have many samples of dust emission observations across relatively few cells, which 

adequately represents the within-class variance. Without this large support size, the large number of 

samples would be spread over very many smaller cells reducing the number of samples per cell which 

would increase the within-class variance and hamper the ability to reliably detect difference. In other 
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words, uncertainties associated with individual DPS identifications (or ground-based dust optical depth 

measurements) are reduced considerably by our 1° grid cell aggregated approach. 

Uncertainty in validity DPS data focusses on how they represent the magnitude and frequency of 

dust emissions. Hennen et al. (2019; Figure 2) assigned a level of confidence (to their SEVIRI DPS data 

of the Middle East) which serves as a useful basis for discussing these sources of uncertainty. Here, low 

confidence levels are primarily indicative of difficult observation conditions, including the presence of 

meteorological clouds, and night-day temperature differences (Brindley et al., 2016).  

Level 1 data have the greatest confidence ascribed to them. The DPS data associated with MODIS 

are sun-synchronous which exclude dust emissions during the night. Similarly, reduced land surface 

‘skin’ temperature, and night-time atmospheric temperature inversion reduced thermal contrast during 

nighttime conditions, potentially precluding a portion of SEVIRI DPS events at night (Hennen et al., 

2019). However, we did not filter the daily wind speed maxima used in the albedo-based dust emission 

to be sun-synchronous. Whilst night-time dust observations are omitted from MODIS DPS, they are 

included in SEVIRI DPS. Across the global DPS dataset this reduces the possibility of a systematic bias. 

Level 2 and 3 confidence in DPS data are associated with partial cloud cover close to the dust 

emission source, where upwind dust emission activation does not obscure the observed emission surface 

. The detection of these level 3 emissions typically occurs downwind of other dust plumes, or within 

challenging surface conditions, where DPS identification requires meticulous monitoring of dust plume 

evolution through sequential images (Hennen et al., 2019). The MODIS DPS data are unable to provide 

this plume tracking and are very likely to be biased away from these types of dust. However, across the 

global DPS data the mixture of MODIS and SEVIRI data is unlikely to include a systematic bias. 

Furthermore, counting dust emission events in the model above a small threshold emission flux may help 

bound the bias in the DPS data. For each of these different levels of confidence, we have been unable to 

find any information in the literature on the magnitude of any potential bias in DPS data. 

5. Conclusions 

Several new insights for model performance have arisen from this work with implications for the 

prospects of dust emission modelling. Satellite observed dust emission point source (DPS) data 

aggregated to be compatible with the scale of dust emission model simulations, demonstrate that dust 

emission is rare, even in areas where there are many more dust sources in the region (e.g., North Africa, 

Middle East). Notwithstanding recent improvements in dust emission modelling using the albedo-based 

approach, the AEM currently over-estimates dust emission occurrence by several orders of magnitude. 

We describe elsewhere how these over-estimates are reduced by calibration with DPS data. 

Our AEM over-estimation of dust emission is globally systematic, which we interpret here to be due 

to (i) the consistent difference between the scale of the wind friction velocity (using MODIS albedo at 
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500 m) and the scale of wind field data (using ERA5-Land at 11 km pixels) and (ii) estimates of wind 

speed (downscaled from 40 m to 10 m height) based on land surface roughness values static over time 

and fixed over land cover classes. Similarly, we know that the entrainment threshold is derived at the 

grain scale which is incompatible with those areal estimates of wind and wind friction velocity. 

Furthermore, the long-standing dust emission modelling assumption of an infinite supply of dry, loose 

and available sediment is evidently unreasonable and causing some of the discrepancy between dust 

emission modelling compared with DPS data.  

Our results demonstrate that the following future improvements in dust emission modelling will be 

most effectively tackled in an integrated approach because of the interaction between magnitude and 

frequency of sediment transport and dust emission, by: 

 

• evaluating how various atmospheric conditions are represented by DPS data, by conducting DPS 

studies across a wider range of dust source types in alternate dust source regions. This work may 

usefully include an attempt to quantify the bias in DPS data. 

• overcoming the current incompatibility of grain-scale entrainment threshold with one which is area-

weighted and varies over space-time with soil surface conditions. Applying linear scaling of the 

normalised shadow data before those normalised shadow data are calibrated to the wind friction 

velocity will overcome the long-standing non-linearity in sediment transport and dust emission 

modelling. 

• improving the parametrisation of sediment supply / availability by spatially area-weighting, changing 

over space, and scaling linearly for consistency with other model data. 

 

Our results suggest that routine evaluation of dust emission model performance should be against 

dust emission measurements for which we now have a large database of satellite observed dust emission 

point source (DPS) data. We emphasise in our evaluation, the important difference between dust emission 

observations and atmospheric dust concentrations and the role each type of data plays in identifying model 

performance. Rather than evaluate developments in dust emission model parameterisation by assessment 

against dust in the atmosphere (e.g., dust optical depth), we recommend that evaluations of global dust 

emission modelling improvements are made first against global dust emission point source data. Dust 

emission model fidelity will then be described by the coincidence in space and time with those dust 

emission observations. In due course, we expect this new approach to re-balance dust emission modelling 

towards the skill of dust emission schema. As new data sources emerge, and emission schema develop 

this new evaluation approach will benefit the dust modelling research community, by avoiding enduring 

modelling deficiencies through objective critical re-evaluation.    
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Graphical abstract. Probability of occurrence for global albedo-based dust emission model (AEM) 
simulations with occurrence (AEM > 0) or no occurrence (AEM ≤ 0) compared with global satellite dust 
emission point sources (DPS) observed (DPS > 0). Dust emission which did not occur was not recorded 
(DPS ≤ 0; dichotomous). 
 

 
 

Highlights 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



35 
 

Satellite-observed dust emissions (DPS) are rare (1.8%) even in North Africa 

Albedo-based dust emission model (AEM) coincided 71% with DPS data 

The AEM simulated dust emission 27% when no dust emission was observed  

Incompatible scales and crude model assumptions caused false positives 

DPS provide consistent and reproducible framework for dust emission model development  
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