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Abstract
Purpose: To propose a new reconstruction method for multidimensional MR
fingerprinting (mdMRF) to address shading artifacts caused by physiological
motion-induced measurement errors without navigating or gating.
Methods: The proposed method comprises two procedures: self-calibration and
subspace reconstruction. The first procedure (self-calibration) applies tempo-
rally local matrix completion to reconstruct low-resolution images from a subset
of under-sampled data extracted from the k-space center. The second procedure
(subspace reconstruction) utilizes temporally global subspace reconstruction
with pre-estimated temporal subspace from low-resolution images to recon-
struct aliasing-free, high-resolution, and time-resolved images. After reconstruc-
tion, a customized outlier detection algorithm was employed to automatically
detect and remove images corrupted by measurement errors. Feasibility, robust-
ness, and scan efficiency were evaluated through in vivo human brain imaging
experiments.
Results: The proposed method successfully reconstructed aliasing-free,
high-resolution, and time-resolved images, where the measurement errors were
accurately represented. The corrupted images were automatically and robustly
detected and removed. Artifact-free T1, T2, and ADC maps were generated
simultaneously. The proposed reconstruction method demonstrated robust-
ness across different scanners, parameter settings, and subjects. A high scan
efficiency of less than 20 s per slice has been achieved.
Conclusion: The proposed reconstruction method can effectively alleviate
shading artifacts caused by physiological motion-induced measurement errors.
It enables simultaneous and artifact-free quantification of T1, T2, and ADC
using mdMRF scans without prospective gating, with robustness and high scan
efficiency.
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1 INTRODUCTION

MR fingerprinting (MRF)1 is a novel framework for
quantitative imaging, offering rapid and simultaneous
multi-parameter mapping. Recently, multidimensional
MRF (mdMRF),2 has been developed for simultaneous
relaxation and diffusion quantification. The sequence
structure of mdMRF consists of multiple segments, each
starting with a preparation module (T1, T2, or diffusion
preparation), followed by continuous data acquisition,
and ending with a wait time. This sequence design makes
the signal sensitive to both relaxation and diffusion effects,
allowing for simultaneous quantification of relaxation
and diffusion. However, like conventional multi-shot (or
segmented) diffusion MRI techniques,3,4 mdMRF faces
a challenge due to inter-segment phase variation caused
by physiological motion, bulk motion, and eddy currents
during diffusion encoding. Furthermore, the utilization of
diffusion-preparation (DP) scheme5,6 for diffusion encod-
ing, in the absence of stabilizer gradients7,8 to maintain
high signal intensity, results in magnitude attenuation, as
well as intra-segment phase variation, in addition to the
above-mentioned inter-shot phase variation. The magni-
tude attenuation and phase variation can be viewed as
measurement errors that deviate from intended signal
evolutions, corrupting the diffusion-weighted images. As
these measurement errors are not taken into account in
the dictionary, shading artifacts arise in diffusion paramet-
ric maps, such as the ADC map. These shading artifacts
typically manifest as uneven and/or overestimated ADC
values.2

To address such artifacts, the original implementa-
tion of mdMRF employed peripheral pulsation gating9

as a prospective strategy to mitigate the impact of car-
diac pulsation on diffusion encoding, thereby reducing
measurement errors.2 Despite its initial effectiveness, this
approach comes with several limitations. First, it imposes
restrictions on sequence design flexibility since each
diffusion-prepared segment must align precisely with
the cardiac cycles. Consequently, the wait times between
segments are determined by peripheral pulsation gating,
which may not be optimal from a sequence optimization
point of view. Second, scan efficiency decreases due to
lengthened wait times resulting from skipped peripheral
pulsation gating. Third, reconstruction efficiency can
be significantly reduced as the dictionary needs to be
generated retrospectively after each specific scan. Last,
the method’s robustness decreases due to the potential
occurrence of failed pulsation gating. This is because the
optimal setting for peripheral pulsation gating is specific
to each individual, and the peripheral pulsation gat-
ing does not account for other types of motion, such as
cerebrospinal fluid pulsation and bulk motion. Motion

compensation10 can be used as an addition or alternative
approach to prospective gating. However, this increases
diffusion encoding duration time and leads to a decrease
of signal intensity due to T2 decay.11,12 Therefore, a ret-
rospective solution is highly desired to effectively address
the shading artifacts in mdMRF, to enable scans without
the need for prospective gating.

For conventional multi-shot diffusion MRI techniques,
which typically utilize a diffusion-weighting (DW) scheme
for diffusion encoding, followed by segmented EPI read-
out for data acquisition,13,14 many reconstruction methods
have been proposed to retrospectively address the issue
of inter-shot phase variation (or inconsistency). These
reconstruction methods can be divided into two categories
based on the reconstruction models used. The first cate-
gory is phase-corrected (PC) model-based reconstructions.
In this approach, inter-shot phase variation is charac-
terized by explicit phase maps, which are first obtained
and then used for PC model-based reconstructions.3,15–18

Typically, the explicit phase maps are estimated from
low-resolution images acquired by an extra navigator14,16

or self-navigator reconstructed from the densely sampled
k-space center for each shot.3,15,17,18 The second category
is low-rank (LR) model-based reconstructions, which
is a relaxed and linear model implicitly characterizing
inter-shot phase variation and exploring data correla-
tion across all shots.4,8,19 Specifically, in LR subspace
reconstruction, a subspace is pre-estimated from extra
calibration data.8 While in LR matrix completion, the sub-
space and coefficient images are jointly estimated during
reconstruction iterations.4,19 LR model-based reconstruc-
tion is considered more robust than PC model-based
reconstruction because the former does not rely on the
accurate estimation of explicit phase maps.20 However, all
these reconstruction methods cannot be directly applied
to mdMRF due to the following reasons: (1) mdMRF
data involve not only phase variation but also magnitude
attenuation, making PC model-based reconstructions
inapplicable; (2) the structured LR method proposed in
Ref. 4 and the locally LR (LLR) method21 used in Ref. 19
rely on the assumption of spatially smooth phase modu-
lations between shots. However, whether this assumption
can be extended to mdMRF data involving both mag-
nitude attenuation and phase variation has not been
investigated; (3) the LR method proposed in Ref. 4 requires
lifting data to construct a Hankel structured matrix fol-
lowed by matrix completion, which is both computation-
and memory-consuming. It is particularly unsuitable for
mdMRF, which employs time-resolved image reconstruc-
tion (i.e., an image is reconstructed for each timepoint
associated with each TR); (4) the LR method used in Ref. 8
requires extra real-time calibration data to pre-train a
temporal subspace, significantly reducing scan efficiency.
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In this work, we propose a new reconstruction method,
to retrospectively address shading artifacts in mdMRF
scans without the need for prospective gating or navigator.
The proposed method reconstructs aliasing-free, time-
resolved, and high-resolution images, where the mea-
surement errors are accurately represented in the
reconstructed images. To the best of our knowledge, the
proposed method is the first reconstruction method for
multi-shot and/or multi-segment diffusion MRI data
where both magnitude attenuation and phase variation are
presented. The proposed method, termed self-calibrated
subspace reconstruction, is essentially a data-driven LR
model-based reconstruction but without the need for extra
calibration data acquisition. It consists of two procedures:
self-calibration and subspace reconstruction. In Proce-
dure 1 (self-calibration), we reconstruct aliasing-free,
time-resolved, and low-resolution images from a subset
of imaging data extracted from the k-space center. The
low-resolution images include non-corrupted images,
as well as images corrupted by measurement errors. To
achieve this, we perform segment-wise matrix completion,
that is, matrix completion22 for each segment (containing
96 images). To distinguish this strategy from global LR23

and LLR,21,24 we term it “temporally local matrix comple-
tion.” Here, global LR is commonly used in dynamic imag-
ing,23 and LLR represents spatially local low rank. In each
segment, the accumulated phase during diffusion encod-
ing resulting from physiological motion, bulk motion, and
eddy currents causes and determines the measurement
errors within that segment.7,25 Since randomly occurring
motions between segments are uncorrelated, the accu-
mulated phases show no correlation between segments,
resulting in uncorrelation of the measurement errors
between segments. Consequently, this significantly weak-
ens the global low-rank assumption. On the other hand,
the measurement errors are caused and determined by the
accumulated phase during diffusion encoding and con-
strained within each diffusion-encoded segment, without
affecting the neighboring segments. As a result, the sig-
nals in each segment can be approximated by a temporally
local low-rank subspace. Therefore, we employ tempo-
rally local matrix completion instead of temporally global
matrix completion for this procedure. Notably, temporally
local matrix completion does not require an assumption
of spatially smooth phase modulations between segments,
unlike the LR methods used in Refs 4,19. In Procedure 2
(subspace reconstruction), we perform temporally global
subspace reconstruction.26 In this step, the temporal
subspace is estimated from the low-resolution images
reconstructed in the Procedure 1. It allows us to recon-
struct aliasing-free, time-resolved, and high-resolution
images, where the measurement errors are accurately
represented in the reconstructed images, from the highly

under-sampled imaging data. We choose temporally
global subspace reconstruction for this procedure because
it enables exploration of global data sharing, that is,
exploring data correlation across all segments. This signif-
icantly enhances the quality of the reconstructed images,
particularly for the SNR. After the reconstruction pro-
cess, we apply a customized outlier detection algorithm
to automatically detect and remove the corrupted seg-
ments caused by measurement errors. By removing those
corrupted segments in the mapping step (pattern match-
ing), we can generate artifact-free T1, T2, and ADC maps
simultaneously.

2 METHODS

2.1 Self-calibrated subspace
reconstruction

A sequence diagram of the mdMRF is illustrated in
Figure 1 in Ref. 2 For data acquisition, one k-space read-
out is acquired for each time point (associated with each
TR), resulting in a highly under-sampled k-space. Spiral
trajectories with golden-angle rotation across time points
are employed for k-space sampling, creating an incoherent
sampling pattern.

Figure 1 shows a flowchart of the proposed recon-
struction method, consisting of two procedures split into
five total steps. Procedure 1 (Steps 1–3) reconstructs
aliasing-free, time-resolved, and low-resolution images. A
set of data (dc) is extracted from the k-space center (e.g.,
2.5-fold resolution reduction relative to the original reso-
lution) of the under-sampled imaging data (du) (Step 1),
and then a sliding window (e.g., size= 5, temporal reso-
lution= 30 ms) is used to form a denser under-sampled
central k-space (̂dc) (Step 2). Temporally local matrix
completion, which performs matrix completion for each
segment separately, is used to reconstruct aliasing-free
and low-resolution images (m̂c) from ̂dc (Step 3). Next,
Procedure 2 (Steps 4 and 5) reconstructs aliasing-free
and high-resolution images. A temporally global sub-
space (V) is estimated by performing singular value
decomposition (SVD) and truncation (e.g., within 1%
approximation error) on the low-resolution images m̂c in
k-t domain (Step 4). Finally, temporally global subspace
reconstruction is used to reconstruct high-resolution
images (m̂), from highly under-sampled imaging data
du (Step 5).

In Procedure 1, the reconstruction model of temporally
local matrix completion is:

m̂c = argmin
mc

‖
‖
‖

̂dc −𝛀FScmc
‖
‖
‖

2

2
+ 𝜆l

Ns∑

s=1

‖
‖mc,s‖‖∗ (1)
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F I G U R E 1 Flowchart of proposed self-calibrated reconstruction method, consisting of two mainprocedures split into five steps.
Procedure 1 (self-calibration) reconstructs aliasing-free, time-resolved, and low-resolution images using temporally local matrix completion
from a subset of imaging data extracted from the k-space center (Steps 1–3). Procedure 2 (subspace reconstruction) reconstructs aliasing-free,
time-resolved, and high-resolution images using temporally global subspace reconstruction (Steps 4 and 5), where the temporal subspace is
estimated from the low-resolution image reconstructed in Procedure 1.

where Sc is the low-resolution coil sensitivity estimated
from fully sampled data by combining ̂dc along the time
dimension, as in Refs 2,27, and F and 𝛀 denote Fourier
encoding in the spatial domain and under-sampling mask
in k-t domain, respectively. mc is the low-resolution image
series (x-t domain) to be reconstructed, and mc,s is a por-
tion of mc corresponding to the s-th segment. Ns is the
number of segments and 𝜆l is the regularization parame-
ter. || ⋅ ||∗ is the nuclear norm of a matrix, which is defined
as the sum of all singular values of the matrix and used as
a convex relaxation of the number of non-zero eigenvalues
(i.e., rank), to enforce low rank of the matrix. Fast iter-
ative shrinkage thresholding (FISTA) algorithm28 is used
to solve the problem. The reconstructed low-resolution
images m̂c is used for estimation of the temporally global
subspace V by performing SVD on m̂c in the following step.

In Procedure 2, the reconstruction model of temporally
global subspace reconstruction is:

̂U = argmin
U

‖
‖du − ΩFSUVH‖

‖

2
2 + 𝜆u(U) (2)

where S is the high-resolution coil sensitivity estimated
from fully sampled data by combining du along the time
dimension, as in Refs 2,27. U denotes the coefficient
images to be reconstructed, that is, image series in

spatial-SVD compressed temporal domain.29 Aliasing-free
and high-resolution images m̂ (x-t domain) can be finally
formed by ̂UVH .  denotes the additional sparsity con-
straint and 𝜆u is regularization parameter. Nonlinear
conjugate gradient (NLCG) algorithm30 was used to solve
the problem.

2.2 Measurement errors detection
and removal

Using the proposed reconstruction method, aliasing-free,
high-resolution, and time-resolved images, includ-
ing those corrupted by measurement errors (involving
magnitude attenuation and phase variation), can be
reconstructed. These corrupted segments, that is, the
diffusion-encoded segments containing corrupted images,
can be automatically detected using a customized outlier
detection algorithm. Our customized outlier detection
algorithm is based on the observation that phase variation
is apparent in the first few images (∼20 images, from 0 to
120 ms after diffusion preparation) immediately following
diffusion preparation in the corrupted segments. In con-
trast, phase errors are negligible in the rest images (∼76
images, from 120 to 576 ms after diffusion preparation)
within those segments.
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F I G U R E 2 Measurement error detection using our customized outlier detection algorithm. (A) For each diffusion encoded segment of
the reconstructed images, two unit-magnitude exponential phase maps (ms

1 and ms
e) are extracted from the first and the last images,

respectively. These maps are then utilized to calculate the energy of the phase map difference (Es) in Step 1. The calculation formula is shown
and the unit-magnitude exponential phase maps from a corrupted segment are showcased on the left side. Subsequently, as illustrated on the
right side, the diffusion encoded segments are iteratively clustered into two groups: one for corrupted segments (Ωcorr) and the other for
non-corrupted segments (Ωnoncorr), based on their Es using a threshold (Ethresh) in Step 2. The value of Ethresh is determined and updated by
multiplying the average value in Ωnoncorr by a coefficient 𝜂 (e.g., 2.5) in each iteration. The segments with phase difference energies higher
than Ethresh are clustered into the corrupted group Ωcorr, while the segments with phase difference energies lower than Ethresh are clustered
into the non-corrupted group Ωnoncorr. (B) After convergence (e.g., 10 iterations) of the algorithm, the phase difference energies of all
segments are plotted with the outliers (corrupted segments) marked by red pentagrams. The threshold Ethresh is indicated by a red dashed line
on the plot. The x-axis represents the number of segments, while the y-axis displays the values of the normalized phase difference energies.

The customized outlier detection algorithm involves
two steps. As shown in Figure 2A, in Step 1, two
unit-magnitude exponential phase maps (ms

1 and ms
e)

are extracted from the first and last images of each
diffusion-encoded segment and used to calculate the
energy of the phase map difference (Es). Specifically,
Es = ‖

‖ms
1 −ms

e
‖
‖

2
2. In Step 2, the diffusion-encoded seg-

ments are iteratively clustered into two groups: corrupted
segments (Ωcorr) and non-corrupted segments (Ωnoncorr),
based on their Es using a threshold (Ethresh), which is
updated by multiplying the average value of Es in Ωnoncorr
by a coefficient 𝜂 (2.5 was used in this study) in each itera-
tion. The segments with phase difference energies higher
than Ethresh are clustered into the corrupted group Ωcorr,
while the segments with phase difference energies lower
than Ethresh are clustered into the non-corrupted group
Ωnoncorr. As showcased in Figure 2B, after convergence
(10 iterations were used), the phase difference energies
of all segments are plotted with the outliers (corrupted
segments) marked by red pentagrams. The threshold

Ethresh is indicated by a red dashed line on the plot. The
x-axis represents the number of segments, while the y-axis
displays the values of the normalized phase difference
energies.

Due to both magnitude attenuation and phase varia-
tion in the corrupted images, conventional phase correc-
tion alone is not applicable in mdMRF. A straightforward
correction strategy – removal, was adopted, and the dictio-
nary was truncated to exclude corrupted segments. Pattern
matching1 was then performed between the truncated dic-
tionary and the corrected images to simultaneously gener-
ate T1, T2, and ADC maps, as well as the proton density
(M0) map.

2.3 Simulation experiments

Given the complexities of realistic scenarios where poten-
tial sources such as physiological motion, bulk motion,
eddy currents, and other system imperfections, we used
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images reconstructed from mdMRF data to simulate a set
of 2D mdMRF images, consisting of 28 segments with 96
images per segment (2688 total images), with the follow-
ing parameters: FOV 300× 300 mm2; matrix size 192× 192;
resolution 1.5× 1.5 mm2; slice thickness 5 mm. Measure-
ment errors (i.e., magnitude attenuation and phase vari-
ation) occurred in six random segments. The forward
process was simulated to acquire highly under-sampled
(48-fold) and multi-channel k-space using nonuniform
fast Fourier transform (NUFFT) and coil sensitivity encod-
ing with a set of coil sensitivity maps of 32 channels.
White Gaussian noise with a SD of 0.01 relative to the sig-
nal intensity in the k-space center (averaged in the time
dimension), was added to the k-space data for both real
and imaginary components.

In the comparison experiment for Procedure 1, tem-
porally local matrix completion was compared to its
alternative, temporally global matrix completion. For the
latter, cases with various ranks (small, 5; intermediate, 15;
large, 35) were used. A low resolution of 3.75× 3.75 mm2

(2.5-fold resolution reduction relative to the original
resolution) was used and 𝜆l = 5 × 10−3 for both meth-
ods. To evaluate their performance in subsequent steps,
temporally global subspace reconstruction was fixed for
Procedure 2 to reconstruct high-resolution images, and
ADC maps were also quantified by pattern matching after
measurement error detection and removal.

In the comparison experiment for Procedure 2, tem-
porally global subspace reconstruction was compared
to its alternative, temporally local subspace reconstruc-
tion, which estimates a temporal subspace from the
low-resolution images (by performing SVD and trunca-
tion within 1% approximation error on the low-resolution
images) and performs subspace reconstruction for each
segment separately, while temporally local matrix com-
pletion was fixed for Procedure 1 to reconstruct the
low-resolution images. To maintain noise distribution
for clear visualization in the interest of comparison, the
additional sparsity constraint 𝜆u was set to 0. The nor-
malized RMS error (NRMSEs) relative to reference was
calculated for the reconstructed images of all competing
methods.

2.4 In vivo brain imaging

In vivo brain imaging was performed as part of an insti-
tutional review board (IRB) approved study. Five healthy
volunteers were recruited following written informed con-
sent. One volunteer (Subject 1) was scanned for a fea-
sibility experiment and a scan efficiency experiment.
The other four volunteers (Subjects 2–5) were scanned
for a robustness experiment with different scanners and

varied imaging settings (varied b-values for diffusion
encoding).

In the feasibility experiment, Subject 1 was scanned
on a 3T MAGNETOM Prisma scanner (Siemens Health-
ineers, Erlangen, Germany) equipped with a 32-channel
head coil. Two mdMRF scans were performed (with and
without peripheral pulsation gating, respectively), with
the following parameters: TI (21 ms) for T1 preparation;
TE (30, 50, 65 ms) for T2 preparation; b-values (300, 700,
1000 s/mm2) with three encoding directions for diffu-
sion preparation; SSFP with constant flip angles of 10
degrees for data acquisition; single-shot spiral trajectory
with an under-sampling factor of 48 was used for each
time point (associated with each TR, TR= 6 ms); FOV
300× 300 mm2; resolution 1.5× 1.5 mm2; slice thickness
5 mm. Twenty-eight segments, each with 96 images, were
acquired. The scan time was 26 s for both scans. A conven-
tional MRF scan31 and a single-shot EPI-based diffusion
MRI scan were performed to obtain reference relaxation
(T1 and T2) and ADC maps, respectively.

In the robustness experiment, two subjects (Subjects
2 and 3) were scanned on the 3T MAGNETOM Prisma
scanner as described above, and two subjects (Subjects 4
and 5) were scanned on a 3T MAGNETOM Vida scan-
ner (Siemens Healthineers, Erlangen, Germany) equipped
with a 44-channel head coil. All mdMRF scans were
acquired without pulsation gating, with the following
b-values: 300, 700, 1000 s/mm2 (Subjects 2 and 4); 100,
400, 800 s/mm2 (Subject 3); and 700, 1000 s/mm2 (Sub-
ject 5). Other imaging parameters were the same as in the
feasibility experiment.

We selected six bilateral brain regions of interest (ROIs)
on each subject for quantitative analysis (see Figure S1 for
details). In addition, Subject 1 was scanned for a scan effi-
ciency experiment (see Supporting Information Section B
for details).

The proposed reconstruction method was imple-
mented in MATLAB R2021b (MathWorks, Natick, MA).
In the proposed reconstruction, the regularization param-
eters were 𝜆l = 5 × 10−3 in Procedure 1 and 𝜆u = 4 × 10−3

in Procedure 2. The reconstruction time was∼40 min (Pro-
cedure 1:∼30 min; Procedure 2:∼10 min) using a worksta-
tion with the following specifications: 128 GB RAM; Intel
CPU (Xeon Gold 5118) with 24 cores running at 2.30 GHz;
and CPU parallel computing (10 workers, Procedure 1).

3 RESULTS

3.1 Simulation experiments

In Figure 3, the first and second rows show the recon-
structed low-resolution images using different methods
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F I G U R E 3 Simulation experiment for Procedure 1 (self-calibration) of the proposed reconstruction method. Temporally local matrix
completion (fourth column) is compared to its alternative, temporally global matrix completion in cases with various ranks (first–third
columns). The low-resolution images reconstructed using these competing methods are shown (first and second rows). The high-resolution
images reconstructed using temporally global subspace reconstruction are also shown (third and fourth rows). Both magnitude and phase
(unit: radians) images are shown, as well as normalized RMS error (NRMSEs) of the competing methods relative to the reference (fifth
column). The ADC maps (unit: 10−6 mm2/s) quantified from these high-resolution images (after measurement error detection and removal)
are also shown (fifth row), as well as the error maps (sixth row). The red solid boxes highlight the measurement errors (magnitude
attenuation and phase variation), and the red arrows point out the shading artifacts, which appear as uneven and overestimated ADC values.
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in Procedure 1, and the third and fourth rows show the
high-resolution images reconstructed by temporally global
subspace reconstruction, where the temporal subspace is
estimated from the low-resolution images corresponding
to the same column. The fifth row shows the quantified
ADC maps from the high-resolution images correspond-
ing to the same column, and the sixth row shows the
error maps.

When a small rank (=5) is used, temporally global
matrix completion fails to recover signal components asso-
ciated with small singular values, such as measurement
errors indicated by solid red boxes in the fifth column
of the first and second rows. These signal components
of measurement errors are not represented by the tem-
poral subspace estimated from the low-resolution images
and, consequently, are not recovered in the high-resolution
images (third and fourth rows, first column). Note that
the failed recovery of measurement errors does not imply
an accurate reconstruction of the high-resolution images.
The errors persist in the under-sampled k-space data and
finally affect the high-resolution image reconstruction,
leading to shading artifacts (highlighted by the red arrow,
sixth row, first column).

When a large rank (=35) is used, the low-resolution
images partly recover the measurement errors, but suffer
from heavy aliasing artifacts (first and secnd rows, third
column). These aliasing artifacts significantly impact the
temporal subspace, leading to aliasing artifacts in the
reconstructed high-resolution images (third and fourth
rows, third column). The presence of these aliasing

artifacts reduces the sensitivity and robustness of
measurement error detection. Consequently, the ADC
map continues to exhibit shading artifacts, as indicated
by the red arrow (sixth row, third column). Moreover,
these aliasing artifacts tend to make the shading artifacts
severer in the ADC map.

When an intermediate rank (=15) was used, the recon-
structed images demonstrated a balance between recov-
ering measurement errors and reducing aliasing artifacts
(second column). Note that fine-tuning an optimal case so
that measurement errors are accurately recovered while
aliasing artifacts are eliminated remains challenging. The
ADC map still exhibits shading artifacts (highlighted by
the red arrow, sixth row, second column).

In contrast, temporally local matrix completion suc-
cessfully recovers signal components corresponding to
small singular values in the low-resolution images (first
and second rows, fourth column), as well as in the
high-resolution images (third and fourth rows, fourth
column), along with minimum NRMSEs. The measure-
ment errors were automatically detected and removed by
a customized outlier detection algorithm, leading to an
artifact-free ADC map (fifth row, fourth column).

Figure 4 shows high-resolution image reconstructions
(first row) using temporally global subspace reconstruc-
tion and its alternative (temporally local subspace recon-
struction), along with quantified ADC maps and error
maps relative to ADC reference (second row). The tem-
porally global subspace reconstruction shows superior
image quality with higher SNR (along with lower NRMSE)

F I G U R E 4 Simulation experiment for Procedure 2 (subspace reconstruction) of the proposed reconstruction method. Temporally
global subspace reconstruction (first column) is compared to its alternative, temporally local subspace reconstruction (second column). Both
magnitude and phase (unit: radians) of the reconstructed images are shown (first row), as well as normalized RMS error (NRMSEs) relative
to the reference (third column). The apparent diffusion coefficient maps quantified from these reconstructed images (after measurement
error detection and removal), as well as the error maps, are shown (second row). The red arrows point out the shading artifacts.
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compared to temporally local subspace reconstruction.
The high-SNR images provide robust error detection and
thus artifact-free ADC maps. In contrast, the low-SNR
images of temporally local subspace reconstruction reduce
the sensitivity and robustness of measurement error detec-
tion, leading to shading artifacts in the quantified ADC
map (highlighted by the red arrow, second row, fourth
column).

3.2 In vivo brain imaging

Figure 5A shows the first and the last reconstructed images
of two representative diffusion-encoded segments, one
non-corrupted and the other corrupted by measurement
errors. The corrupted segments exhibit measurement
errors (both magnitude attenuation and phase variation)
in the first ∼20 images (0–120 ms after diffusion prepara-
tion). The first and last images of the 20th segment are
shown for example (top right, highlighted by red dashed

boxes). In contrast, there are no measurement errors in
each non-corrupted segment, with the first and last images
of the 17th segment shown for example (top left, high-
lighted by green dashed boxes). The signal evolution curve
in Figure 5B visualizes these measurement errors corre-
sponding to a voxel (pointed out by a blue square and high-
lighted by a blue arrow in Figure 5A, third column), with
magnitude attenuation as signal void and phase variation
as fluctuation at the beginning of the corrupted segments.
The measurement errors occur at random locations spa-
tially and temporally, affecting only a few segments. As
depicted in Figure 2B, the random occurrence of phase
variation leads to high phase difference energies randomly
distributed, clearly identified as outliers.

Figure 6 shows the T1, T2, and ADC maps generated
from an mdMRF scan without peripheral pulsation gating,
using the proposed reconstruction method. Before the cor-
rection, there were severe shading artifacts (overestimated
ADC values) in the ADC map (third column, first row).
After correction, shading artifacts are alleviated, resulting

F I G U R E 5 Reconstructed images by the proposed self-calibrated subspace reconstruction. (A) Images corresponding to four
representative time points (the first and the last images of the non-corrupted and corrupted segments, respectively), as pointed out by the
small green and red solid boxes in the signal evolution curve. Both magnitude (first row) and phase (second row, unit: degree) images are
shown. (B) The signal evolution curve along time points (TR) corresponds to a voxel as pointed out by the blue arrow in the reconstructed
images. The solid and hollow arrows point out the magnitude attenuation and phase variation in the corrupted segments, respectively.
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F I G U R E 6 T1, T2, and ADC maps were acquired by mdMRF scan without peripheral pulsation gating, using the proposed
self-calibrated subspace reconstruction. Before the correction, there are severe shading artifacts (overestimated ADC values) in the ADC map
(first row). After correction, the artifacts are alleviated (second row). The reference is shown as well (third row).

in improved ADC accuracy (third column, second row)
which is closer to the reference (third column, third row).
For more details regarding the cause of shading artifacts,
please see Figure S2. T1 and T2 maps are unaffected by the
measurement errors and consistent before and after cor-
rection; however, T2 values in the mdMRF-generated T2
map are slightly higher compared to the reference.

Figure 7 shows the T1, T2, and ADC maps generated by
an mdMRF scan with peripheral pulsation gating, using
the proposed reconstruction method. Although prospec-
tive gating was used, there are still severe shading artifacts
(overestimated ADC values) in the ADC map before cor-
rection (third column, first row) due to failed peripheral
pulsation gating. After correction, the shading artifacts are

alleviated (third column, second row) and the ADC values
are closer to the reference (third column, third row).

Figure 8 shows the quantitative analysis for the six
brain ROIs. In the non-corrected cases both with and with-
out peripheral pulsation gating, the average ADC values
(third row) are significantly biased (overestimated, blue
bar), while in corrected cases the ADC values are more
accurate (red bar) compared to the reference (yellow bar).
The average T1 values (first row) are highly consistent
before and after correction for mdMRF scans both with
and without peripheral pulsation gating and are consis-
tent with the reference. Similarly, the average T2 values
(second row) are highly consistent before and after correc-
tion for mdMRF scans both with and without peripheral
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F I G U R E 7 T1, T2, and ADC maps acquired by mdMRF scan with peripheral pulsation gating, using the proposed self-calibrated
subspace reconstruction. Before the correction, there are severe shading artifacts (overestimated ADC values) in the ADC map (first row).
After correction, the artifacts are alleviated (second row). The reference is shown as well (third row).

pulsation gating, but slightly (∼10 ms) higher than the
reference.

Figure 9 shows the ADC maps generated by mdMRF
scans without peripheral pulsation gating using the pro-
posed reconstruction method for multiple subjects, scan-
ners, and with varied imaging settings (diffusion encoding
b-values). In each ADC map, the red point indicates the
shading artifact (uneven and overestimated ADC values)
location with the corresponding ADC value shown beside.
In each case, severe shading artifacts exist in the ADC
map before correction (first row) with overestimated ADC
values. Note that these shading artifacts typically exhibit
spatial variation across different cases, indicating that
the measurement errors are inconsistent and difficult to

predict. After correction (second row), shading artifacts
are alleviated in terms of visual inspection and measured
ADC values.

Table 1 shows the average and standard deviation of
ADC values on the six ROIs across five subjects (Sub-
jects 1–5). Notably, the average ADC values quantified
by non-corrected mdMRF are over-estimated when com-
pared to the reference. The over-estimation percentages
are as follows: WM-Frontal left 54.24%, WM-Frontal
right 45.40%, GM-Putamen left 83.94%, GM-Putamen
right 24.63%, WM-Parietal left 21.45%, WM-Parietal right
24.01%. The large difference in the over-estimation per-
centage of GM-Putamen between left and right implies
asymmetrical shading artifacts on ADC maps quantified
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F I G U R E 8 Graphics showing the average T1, T2, and ADC values for six regions of interest (ROIs) as highlighted in Figure S1. Each
graphic shows the comparison before (blue bar) and after (orange bar) correction, for the cases without (non-gated) and with (gated)
peripheral pulsation gating, as well as the reference (yellow bar).

F I G U R E 9 ADC maps generated by mdMRF without peripheral pulsation gating, using the proposed self-calibrated subspace
reconstruction, among different subjects and under variant imaging settings (different scanners and b-value combinations for diffusion
encoding). In each case, severe shading artifacts occur in the ADC map before correction (top row) and can be alleviated after correction
(bottom row). The red solid point overlayed on the ADC map points out the location of shading artifacts that appear as overestimated ADC
values (top row), or the case after correction (bottom row), with the ADC value shown beside.
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T A B L E 1 Average and SD of ADC values on six ROIs across five subjects.

Brain regions Non-corrected Corrected Reference

WM-Frontal Left 1200± 395 620± 97 778± 25

Right 1060± 253 630± 115 729± 48

GM-Putamen Left 1260± 839 570± 236 685± 88

Right 840± 309 480± 175 674± 61

WM-Parietal Left 940± 222 570± 57 774± 69

Right 940± 373 650± 184 758± 63

Note: The unit is 10−6 mm2/s.
Abbreviations: GM, gray matter; ROI, region of interest; WM, white matter.

by non-corrected mdMRF. In comparison, the average
ADC values quantified by corrected mdMRF are closer
to the reference. However, the average ADC values
quantified by corrected mdMRF are lower when com-
pared to the reference. The reduction percentages
are as follows: WM-Frontal left 20.31%, WM-Frontal
right 13.58%, GM-Putamen left 16.79%, GM-Putamen
right 28.78%, WM-Parietal left 26.36%, WM-Parietal
right 14.25%.

The results of the scan efficiency experiment are shown
in Figure S3, showing that mdMRF scans along with the
proposed reconstruction method achieve a minimum scan
time of less than 20 s per slice, generating artifact-free T1,
T2, and ADC maps.

4 DISCUSSION

This work proposes a new reconstruction method for
mdMRF that can retrospectively alleviate shading artifacts
caused by physiological motion-induced measurement
errors. The primary physiological motion involves brain
pulsation through cardiac pulsation.32 The proposed
method enables mdMRF scans without the need for
prospective gating methods (e.g., peripheral pulsation
gating). Aliasing-free, high-resolution, and time-resolved
images, where the measurement errors are accurately
represented, can be reconstructed. The high-quality
reconstructions enable robust detection and removal
of diffusion-weighted segments, leading to artifact-free
T1, T2, and ADC maps simultaneously. The feasibility
and robustness of the method have been demonstrated
across various scanners and imaging parameters for five
subjects, achieving a high scan efficiency of less than
20 s per slice.

The original mdMRF implementation using periph-
eral pulsation gating has a tradeoff between scan efficiency
and method robustness due to the delay time between
pulsation trigger and diffusion preparation in each

diffusion encoded segment. If the delay time is too long, it
can lead to skipped gating for the next segment, increas-
ing scan time. On the other hand, if it is too short,
brain pulsations can impact diffusion preparations, caus-
ing measurement errors and shading artifacts. Figure 7
shows an example of failed peripheral pulsation gating
resulting in shading artifacts despite gating being used. A
balanced delay time is subject-specific and challenging to
fine-tune. Additionally, peripheral pulsation gating can-
not deal with other types of physiological motion (e.g.,
CSF pulsation) and bulk motion. The proposed method
eliminates the need for peripheral pulsation gating and
effectively address these issues. It also enables artifact-free
ADC quantification in failed gating cases, as demonstrated
in Figure 7.

The proposed method removes the measurement
errors by making them visible or detectable and sub-
sequently removing them in the mapping step. How-
ever, conventional reconstruction methods used in MRF
are not applicable. NUFFT reconstruction1,33 fails to
detect these measurement errors due to severe aliasing.
Dictionary-based low-rank subspace reconstruction27,34,35

does not account for measurement errors in the dictio-
nary, making the measurement errors invisible in recon-
structed images. In contrast, the proposed reconstruction
method can reconstruct images where the measurement
errors are accurately represented in some corrupted seg-
ments. This is because it is a data-driven LR subspace
reconstruction that can adaptively estimate the tempo-
ral subspace to represent both the signals and measure-
ment errors. Notably, the proposed reconstruction method
differs from other data-driven LR subspace reconstruc-
tion methods proposed for MRF36 as it does not require
a fully sampled k-space center, offering greater flexibil-
ity and scan efficiency. The reason we employ tempo-
rally local matrix completion instead of temporally global
matrix completion is that the randomly occurred motions
between segments are uncorrelated, resulting in uncorre-
lation of the measurement errors between segments. This
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significantly weakens the global low-rank assumption.
Similar observations have been reported in other stud-
ies regarding only the inter-shot phase variation.8,18,37 On
the other hand, the measurement errors are determined
by the accumulated phase during diffusion encoding,7,25

and are constrained within each diffusion-encoded seg-
ment, without affecting the neighboring segments. Thus,
the signals in each segment can be approximated by a local
low-rank subspace. Employing low-resolution images in
Procedure 1 offers several benefits: (1) the small size of
low-resolution data reduces the computation burden of
matrix completion, resulting in approximately three-fold
reduction in computation time compared to using origi-
nal (high-resolution) data; (2) the non-Cartesian (spiral)
sampling used by mdMRF naturally enables denser sam-
pling in the central k-space, improving the conditions
for matrix completion, thereby enhancing image qual-
ity and reducing the number of iterations. Note that the
low-resolution images reconstructed in Procedure 1, as
well as the high-resolution images reconstructed using the
alternative method (temporally local subspace reconstruc-
tion) in Procedure 2, can also be used to identify mea-
surement error-corrupted images. However, we choose to
use the high-resolution images reconstructed in Proce-
dure 2 by temporally global subspace reconstruction. This
choice is based on their superior image quality, which
ensures automatic and robust detection of measurement
errors.

One major limitation of the proposed self-calibrated
subspace reconstruction method is its still high com-
putation burden, although the self-calibration strategy
has been used. The offline reconstruction process takes
∼40 min, with Procedure 1 requiring around 30 min and
Procedure 2 taking around 10 min. However, the use of
GPU-based NUFFT implementation and spiral trajectories
with denser central k-space sampling can help accelerate
the reconstruction process. Another minor limitation is
the compromised temporal resolution, which increases
from 6 to 30 ms due to the use of a sliding window
(size= 5) to ensure sufficient signal recovery and achieve
aliasing-free image reconstruction in the self-calibration
step using temporally local matrix completion. Although
a sliding window may reduce quantification sensitivity,38

a window size of five is sufficient for accurate T1, T2,
and ADC mapping in mdMRF. T2 values generated by
mdMRF are a little higher than the reference. This could
be due to different signal modeling, as the reference scan,
that is, conventional MRF,31 only considers T1 and T2 in
the dictionary simulation. The ADC values quantified by
mdMRF in the corrected case are lower than the refer-
ence. This difference may be due to the different types of
pulse sequences used (SSFP used in mdMRF and EPI used
in reference). Additional physical and image priors such

as signal sparsity in spatial and/or temporal dimensions,39

LLR,19,21,24 structured low rank,40,41 patch-based
low rank,42 and virtual conjugate coils,43,44 can be
incorporated to further improve image reconstruc-
tion, especially to improve the condition in Procedure
1. Another limitation is the removal strategy used for
measurement error correction, which sacrifices a part of
the collected data. However, the randomized wait times
help mitigate the motion’s impact by introducing incoher-
ence between motions and diffusion encodings, resulting
in only a few segments being corrupted by measurement
errors. Future optimization or randomization of prepa-
ration modules could further enhance this incoherence,
although it has not been explored in this work.

5 CONCLUSIONS

This study presents a new reconstruction method for
mdMRF that can retrospectively alleviate shading arti-
facts caused by measurement errors due to physiological
motions etc. The proposed reconstruction method recon-
structs aliasing-free, time-resolved, and high-resolution
images, where the measurement errors are accurately
represented in some corrupted segments. By adopting
the proposed reconstruction method, mdMRF scans now
eliminate the need for peripheral pulsation gating. This
advancement brings several advantages, including the
preservation of sequence design flexibility, enhanced
method robustness, and improved scan and reconstruction
efficiency.
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Figure S1. M0 map from the reference (conventional mag-
netic resonance fingerprinting) scan. Six brain regions of
interest (highlighted by red squares) are overlayed on the
M0 map.
Figure S2. A detailed visualization of artifact analysis.
The first and second rows show the first image of cor-
rupted segments, specifically the 12th, 16th, 20th, 21st, and
26th segments. Areas exhibiting magnitude attenuation
and phase variation are marked by red boxes. The third and
fourth rows show ADC maps quantified with and with-
out correction (data removal) using our proposed method.
Each column corresponds to ADC maps quantified using
a different number of segments.
Figure S3. Results of multidimensional MR Fingerprint-
ing scan without peripheral pulsation gating, using the
proposed self-calibrated subspace reconstruction, with the
use of different segment numbers (19, 28, and 37). The
corresponding scan time is also shown (17, 26, and
37 s). (A) Apparent diffusion coefficient (ADC) maps are
acquired using a different number of segments. In each
ADC map, a red point is overlayed indicating a represen-
tative location, and the number beside shows the corre-
sponding ADC value (unit: 10−6 mm2/s). (B) The mini-
mum number of segments and scan times needed to gen-
erate artifact-free ADC maps. Seven cases are tested and
counted.
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