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Abstract   

Aging leads to increased response latencies but the underpinning cognitive and neural mechanisms re-

main elusive. We modelled older and younger adults’ response time (RT) data from a 2-choice flanker 

task with a diffusion drift model (DDM) and employed multi-shell diffusion weighted magnetic reso-

nance imaging and spectroscopy to study neurobiological predictors of DDM components thought to 

govern RTs: drift rate, boundary separation and non-decision time. Microstructural indices of fractional 

anisotropy (FA), diffusivities and the restricted signal fraction (FR) from the Composite Hindered and 

Restricted Model of Diffusion (CHARMED) were derived from white matter pathways of visuo-

perceptual and attention networks (optic radiation, inferior and superior longitudinal fasciculi, fornix) and 

estimates of metabolite concentrations [N-acetyl aspartate (NAA), glutamate (Glx), γ- aminobutyric acid 

(GABA), creatine (Cr), choline (Cho) and myoinositol (mI)] were measured from occipital (OCC), anteri-

or and posterior cingulate cortices (ACC, PPC). Ageing was associated with increased RT, boundary sepa-

ration, and non-decision time. Differences in boundary separation but not non-decision time mediated 

age-related response slowing. Regression analyses revealed a network of brain regions involved in top-

down (fornix FA, diffusivities in right SLF) and bottom-up processing (mI in OCC, AD in left optic radi-

ation) and verbal intelligence as significant predictors of RTs and non-decision time (NAA in ACC, AD 

in the right ILF, creatine in the OCC) while fornix FA was the only predictor for boundary separation. 

Fornix FA mediated the effects of age on RTs but not vice versa. These results provide novel insights into 

the cognitive and neural underpinnings of age-related slowing.  

 

1. Introduction  

One of the best-established findings in aging research concerns the slowing of response speed (Salthouse, 

1979) that can be observed in a wide range of tasks involving simple decision-making to more complex 

executive functioning with spatial-perceptual discrimination being disproportionally affected (Ratcliff et al 

2007; Verhaegen & Cerella. 2008).  

Age-related slowing is often accompanied by a lengthening of the speed accuracy trade-off (SAT) which 

refers to the trade-off that occurs between responding as timely and as accurately as possible when com-

pleting a time-pressured cognitive task. Greater SATs in aging are thought to occur due to older adults 
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adopting a more cautious response strategy that favours response accuracy over speed (Starns & Ratcliff, 

2010). In contrast, younger adults typically make faster responses which may be at greater risk of errors 

(Der & Deary, 2005). It is commonly thought that the change to a more cautious response strategy at the 

cost of slower reaction times (RT) arises due to an age-related decline in sensorimotor functions leading 

to a distrust in being able to provide a correct response.  

Impairments in sensorimotor functions may affect both bottom-up sensory and top-down decision-

making and motor execution processes (Singh et al., 2013). According to the sensory degradation hypoth-

esis (Hurley et al., 1998; Zalewski, 2015), age-related deterioration in sensory functions results in noisier 

sensory input and hence longer perceptual processing time for effectively interpreting a stimulus. This in 

turn increases overall RTs or the likelihood of an incorrect response if RT is not lengthened (Basak & 

Verhaeghen, 2011). Indeed, age-related perceptual decline has been observed at some of the lowest levels 

of visual processing such as visual contrast, even in those with intact visual acuity and an absence of visu-

al impairment (Delahunt et al., 2008, Elliott et al., 1990, Govenlock et al., 2009).  

In addition, the “slowed motor response” hypothesis proposes that age-related increases in RTs emerge 

from a slowing of top-down decision-making and motor generation and execution processes (Bashore et 

al, 2015; Falkenstein et al 2006). This view is backed up by evidence from electroencephalogram studies 

suggesting that older people are most compromised at the interface of translating a stimulus input into a 

response output (Bashore et al, 2015; Kubo-Kawai & Kawai, 2010).  

It is plausible that both sensory degradation and motor noise contribute to a slowing of decision-making 

processes in ageing. However, the analysis of overall RTs or SATs alone, does not allow for a separation 

of the distinct cognitive components that may contribute to age-related slowing.   

Sequential-sampling models (Heitz , 2014; Stafford et al 2020), such as Ratcliff’s drift diffusion model 

(DDM) can be applied to RT data from choice RT tasks to estimate parameters that map distinct cogni-

tive components involved in decision making. The DDM approach has been employed by several studies 

to clarify the cognitive underpinnings of older adults’ slowed RTs and SATs (see for review Theissen et al 

2021).  

According to the DDM, sensory input provides information that accumulates over time. This infor-

mation fluctuates randomly between two thresholds: a lower threshold representing an incorrect response 
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choice and an upper threshold representing the correct response choice (Figure 1). When the accumulat-

ed information, after some time, crosses one of these thresholds, it triggers the corresponding response. 

The main components of the DDM, that control the time it takes to reach one of these thresholds, i.e., 

the response time, include the speed of information uptake (drift rate) (Figure 1 blue), the distance be-

tween the thresholds, that reflects the degree of conservatism regarding the response criterion (boundary 

separation) (Figure 1 green), and the time required for non-decisional processes including sensory-

perceptual encoding and motor response execution (non-decision time) (Figure 1 red). If the boundary 

separation decreases (while keeping drift rate non-decision time constant), the response time becomes 

shorter, but the likelihood of making an error increases. Conversely, if the boundary separation increases 

(again with drift rate and non-decision time held constant), the response times lengthens, but the likeli-

hood of making an error decreases. Thus, according to Ratcliff’s DDM model, the distance between the 

thresholds, i.e., the boundary separation value, determines the length of the SAT.  

Indeed, in the literature higher boundary separation values and longer non-decision times have been re-

ported consistently in older compared with younger individuals while differences in drift rates were found 

to be moderated by task type (e.g. episodic versus semantic memory) and difficulty (Theisen et al 2021; 

Rabbitt, 1979).  

 

 

Figure 1. The drift diffusion model (DDM) of response time. Upper and lower lines ‘Response A’ (correct) and 
‘Response B’ (incorrect) denote the different responses in a 2-choice task (for example, left or right key press). Reac-
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tion times (RT) are fit to the DDM to return an estimate of non-decision time (t) (red) reflecting perceptual and 
motor processing time, boundary separation value (a) (green), reflecting the distance between the two response cri-
terion thresholds for A or B that reflects the amount of information that needs to be accumulated to trigger a re-
sponse, and drift rate (v) (blue) reflecting the efficiency of the drift process. Information is thereby assumed to ac-
cumulate in a random walk-like diffusion process (grey wiggly line) that commences at the starting point toward one 

of the two response boundaries. Adapted from Kühn et al (2011). 

 

To date only a few studies have investigated the neurobiological underpinnings of age-related differences 

in DDM parameters (Forstmann et al., 2011, Kühn et al., 2011; Madden et al., 2020,;Monge et al., 2017, 

Yang et al., 2015). Magnetic resonance imaging (MRI) studies have found age-related increases in bound-

ary separation to be associated with reduced striatal activity (as measured with the blood oxygen level de-

pendent (BOLD) signal) (Kühn et al., 2011) and with reduction in fractional anisotropy (a diffusion ten-

sor imaging (DTI) based measurement of fiber directionality/coherence)  in white matter connections 

between the striatum and the pre-Supplementary Motor Area (preSMA) (Forstman et al (2011).  Other 

studies have linked age-related increases in non-decision time (Madden et al., 2010; Madden et al 2020) 

and in drift rate (Meerestein, Mullin & Madden, 2023) to differences in the BOLD signal in fronto-

parietal regions. These findings are consistent with evidence suggesting that reductions in fronto-parietal 

activity may underpin age-related slowing in simple and choice RT tasks and in SAT (Bugg et al., 2006, 

Jackson et al., 2012, Madden et al., 2004, Monge et al., 2017). They also accord with well-documented 

evidence of structural and functional changes in fronto-parietal and striatal networks with age (Olesen et 

al., 2003; Raz et al., 2003) that are thought to be important for attention control and decision making 

(Macpherson et al., 2014; Markett et al., 2015). In summary, the findings from DDM based studies sug-

gest that age-related increases in RTs and SAT may be driven by non-decision related sensorimotor de-

cline (non-decision time) and by longer processing times required before a decision threshold can be 

reached (boundary separation). They further suggest that age-related neural decline in fronto-parietal and 

striatal decision-making networks contribute to the differences in DDM components in ageing. However, 

the precise cognitive and neurobiological mechanisms that underpin age-related increases in DDM pa-

rameters and response slowing remain unknown. 

The aim of the present study was to further elucidate the cognitive and neurobiological substrates of age-

related slowing in visual-perceptual discrimination using an Eriksen flanker choice test (Eriksen & Erik-
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sen, 1974). The Eriksen flanker task is a classic response inhibition task that involves the presentation of a 

target arrow flanked by distractor arrows, which are either congruent with the directional response to the 

target, i.e., a left or right key press, incongruent (pointing into the opposite direction), or neutral. Younger 

(n = 25, age range = 18-29 years) and older participants’ (N = 25, age range = 62-80 years) RT data from 

the flanker tasks were modelled to derive SAT and DDM parameters. Correlation coefficients between 

RTs, SAT, and DDM-derived parameters were calculated and mediation analysis (Hays et al., 2012) was 

used to identify those DDM component(s) that accounted for the shared variation in RTs and SAT 

across both groups. Gray matter metabolic and white matter microstructural measurements were derived 

from key regions of interest (ROIs) within visual-perceptual and decision-making networks and hierarchi-

cal regression analyses were conducted to identify neurobiological brain predictors of cognitive compo-

nents. 

For this purpose, we employed multi-shell high angular resolution diffusion imaging (msHARDI) (Desco-

teaux, 1999) to quantify white matter microstructural properties and magnetic resonance spectroscopy 

(MRS) to measure gray matter metabolite concentrations. These modalities were chosen because it is well 

established that microstructural properties of white matter brain connections, that allow the efficient 

communication within and between brain networks, deteriorate with advancing age and contribute sig-

nificantly to cognitive decline including response slowing in ageing (Kuznetzova et al 2016). Most studies 

that have investigated age effects on white matter microstructure employed diffusion tensor imaging 

(DTI) and have consistently found reduced fractional anisotropy (FA) and increased mean diffusivity 

(MD), axial diffusivity (AD) and radial diffusivity (RD) in older relative to younger participants (Burzyn-

ska et al., 2010; de Groot et al., 2015). Age-related decline of white matter microstructure occurs across 

the whole brain but is particularly apparent in fronto-parietal and limbic regions (Charlton et al., 2010) 

and correlates with age-related differences in processing speed, episodic memory, and executive functions 

(Kerchner et al., 2012; Kuznetsova et al., 2016).  

Here we studied the microstructure of the following white matter pathways that connect visual and atten-

tion network regions and are known to be involved in top-down and/or bottom-up visual perceptual 

processing and attentional functioning:  the optic radiation, that connects the lateral geniculate nucleus 
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with the primary visual cortex in the occipital lobe and is important for bottom-up visual sensory process-

ing (Schurz et al., 2014); the inferior longitudinal fasciculus (ILF), that connects occipital and anterior 

temporal cortices and is involved in bottom-up visual-perceptual object, face, and place processing; the 

fornix, the main output tract of the hippocampus to other limbic and cortical regions, that mediates 

mnemonic and complex visual discrimination functions (Lech et al 2016); and the superior longitudinal 

fasciculus (SLF), that connects parietal with prefrontal cortices, notably the right SLF being the crucial 

white matter pathway of the top-down right-lateralized attention-executive network (De Schotten et al., 

2011). White matter microstructural properties of these tracts were not only characterised with DTI met-

rics (FA, MD, RD, AD) but also with the restricted signal fraction FR, a proxy index for axonal density, 

from the Composite Hindered and Restricted Model of Diffusion (CHARMED) (Assaf & Basser, 2004). 

FR is thought to be a valuable metric to quantify in this context, as it has been shown to be more sensi-

tive than DTI indices and has been suggested as a potential biomarker for axonal microstructure changes 

(De Santis et al., 2017) which are well-established in aging.  

Furthermore, ageing is also known to be associated with changes in concentrations of metabolites that are 

important for healthy neuronal functioning.  More specifically, older compared with younger adults show 

reduced concentrations of N-acetyl aspartate (NAA) (Lu et al., 2004), an estimate of neuronal density and 

function, and of glutamate/glutamine (Glx) and γ- aminobutyric acid (GABA), the major excitatory and 

inhibitory neurotransmitters in the brain ((Rae et al., 2014; Stagg & Rothman, 2013). In addition, ageing 

has been found to be associated with increased concentrations of creatine (Cr), choline (Cho) and myo-

inositol (mI), that have been linked to inflammation, demyelination, and glia cell proliferation (Glanville 

et al., 1989; Zeisel & da Costa, 2009). Such age-related related differences in metabolites have been ob-

served in many brain regions including the occipital, frontal, and anterior and posterior cingulate cortices 

(Chiu et al., 2014; Gruber et al., 2008; Haga et al., 2009; Gao et al., 2013; Marjańska et al., 2017; Pit-

chaimuthu et al., 2017; Porges et al., 2017; Simmonite et al., 2019). Here we measured concentrations of 

NAA, Glx, GABA, creatine, choline and mI in the following three cortical ROIs: the occipital cortex 

(OCC), the anterior cingulate cortex (ACC) and the posterior parietal cortex (PPC). These ROIs were 

selected as they form key regions of visual perception and attention networks that mediate bottom-up 

and top-down processing streams  with OCC being involved in primary visual processing (Pitchaimuthu 
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et al., 2017), PPC mediating sensory-perceptual integration (Chiu et al., 2014) and ACC playing a key-role 

in decision-making by means of error signalling and event rewarding (Weerasekera et al., 2020). 

In this way we were able to characterise age-related metabolic and microstructural differences in key 

structures of the visual and attentional networks and assess whether these brain differences were predic-

tive of differences in RT, SAT, and DDM parameters. Based on above summarized findings, we hypothe-

sized that aging would be associated with increases in RT, SAT, boundary separation, and non-decision 

time as well as with reductions in NAA, GABA, Glx, FA and FR and increases in choline, myoinositol, 

glutamate, MD, RD and AD in all grey matter ROIs and white matter pathways.  We further hypothe-

sized, that age-related metabolic and microstructural differences in both bottom-up sensory processing 

areas (OCC, optic radiation, ILF) and top-down motor execution areas (SLF, fornix, ACC, PPC) would 

account for differences in overall RTs, and in non-decision time, as the latter reflects both sensory and 

motor execution processes. In contrast, only regions involved in top-down decision-making (SLF, fornix, 

ACC, PPC) were expected to predict differences in SAT and boundary separation. No specific hypothe-

ses regarding drift rate were generated given the ambiguity of findings in the literature. 

 

1. Methods  

2.1 Participants  

Participants were recruited from the School of Psychology community participant panel at Cardiff Uni-

versity and consisted of younger (aged 18-29) and older (aged 62-80) adults. Twenty-five participants were 

recruited into each group, all of whom provided informed written consent prior to taking part in the 

study in accordance with the Declaration of Helsinki (Cardiff University School of Psychology Ethics 

committee reference 18.06.12.5313; NHS Research Ethics committee REC reference 18/WA/0153). All 

participants were cognitively healthy, i.e., had a Montreal Cognitive Assessment (MOCA) score � 26. 

Participants also completed MRI screening prior to the study, excluding any participants with MRI con-

traindications such as metallic or electronic bodily implants, some dental work and some tattoos, subject 

to radiographer assessment. Individuals with visual impairments, such as visual field loss or glaucoma 

were also excluded from the study. Table 1 summarises participants’ demographic information as well as 
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their mean performance on cognitive and visual screening tasks. Both groups were comparable with re-

gards to sex, handedness, years of education, and visual acuity. All participants had normal or corrected 

normal visual acuity with Snellen Fractions � 1. The young group performed slightly better on the Test 

of premorbid functioning UK version (TOPF-UK) (Wechsler et al., 2011), which involves reading out a 

list of irregular words, and provides an estimate of verbal intelligence.  

 

Table 1. Demographic and baseline cognitive scores for younger and older adults. Mean and standard devia-

tion (SD) for younger and older adults’ performance. MOCA = Montreal cognitive assessment, TOPF-UK = test of 

premorbid functioning, UK-edition. 

 

 Younger Mean (SD) Older Mean (SD) t(49)-value 

(p-value) 

Age 21.56 (2.76) 68.36 (6.1) 34.8 (< 0.001) 

Sex Male (8) Female (17) Male (12) Female (13) - 

Handedness Left (1) Right (24) Left (4) Right (21) - 

Years of education 16.08 (2.3) 15.64 (4.3) 0.45 (0.66) 

MOCA score 28.84 (1.25) 29.04 (1.1) 0.58 (0.56) 

Visual acuity (Snellen fraction) 1.91 (0.18) 1.77 (0.3) 1.8 (0.08) 

TOPF-UK score 60 (6.43) 64.72 (4.5) 3.0 (0.004) 

 

 

2.2 Materials & Procedure 

2.2.1 Cognitive and visual testing  

Testing was conducted at Cardiff University Brain Research Imaging Centre (CUBRIC), during one visit 

lasting approximately 2 hours. Participants completed a visual acuity task and flanker task on a computer 

which is described in detail below. The task was presented on a 15” screen (1440 x 900 native resolution) 

and responses were recorded using a wireless keypad. The flanker task was written by LR using PsychoPy 

psychophysics software (Peirce, 2009) for Python (v1.85.6) following the original methodology of the 

Attention Network Task (ANT) (Fan et al., 2002) unless otherwise stated. Visual acuity was assessed us-

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2023. ; https://doi.org/10.1101/2023.11.15.567204doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.15.567204
http://creativecommons.org/licenses/by-nd/4.0/


 

 
10 

ing the Freiburg Visual Acuity and Contrast Test (FRACT; Bach, 1996). Participants viewed the screen 

from a distance of 2m (as recommended by test manufacturers) and responded to circular stimuli, where 

the target was a ‘gap’ in the circle. Stimuli was reduced in size for each correct trial to achieve a Snellen 

fraction measure of visual acuity. 

Reaction times (RTs) were recorded using a modified Attention Network Test (ANT) flanker task (Fan et 

al., 2002), and speed accuracy trade-off and DDM parameters were calculated using these RTs. The modi-

fied ANT stimuli consisted of five horizontal arrows presented on the screen in which participants were 

instructed to attend to the central arrow as the target. Central arrows were flanked by horizontal lines 

(neutral condition), arrows facing in different directions to the target (incongruent condition), or arrows 

facing in the same direction as the target (congruent condition).  During this version of the ANT, stimuli 

were presented in the same central position on the screen following the presentation of a fixation cross. 

Participants viewed the screen from a seated position, 400mm from the computer screen. Participants 

were instructed to maintain focus on the central fixation point of the screen and respond as quickly and 

accurately as possible. In accordance with the original study (Fan et al., 2002), these stimuli subtended 

3.08° of visual angle. Fixations were presented for a random variable length of time between 400-1600ms 

and target stimuli were presented for a maximum of 1700ms. Participants completed 96 trials (32 trials 

per condition) in each block, for a duration of 5 blocks. Between blocks, participants were instructed to 

rest for 30 seconds, before being given a 5 second count-down into the following block. The entire task 

totalled 480 trials and took approximately 12-15 minutes to complete.  

 

2.2.2 Speed accuracy trade-off (SAT) calculation 

Speed accuracy trade-off (SAT) was calculated from RTs using the linear integrated speed accuracy score 

(LISAS; Vandierendonck, 2017) method, which combines RT and proportion of error in a linear manner, 

according to the formula (Equation 1).  

 

��� � ��� � 
���

�
�
 � 
�� 

 
 

(1) 
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Where RTj is the mean RT, PEj is the proportion of errors, SRT is the participants’ overall RT standard 

deviation, and SPE is the participants’ overall standard deviation for the proportion of errors.  

To assess correlations between RT, SAT, and DDM indices, Spearman’s Rho correlation coefficients 

were calculated between these measurements. Linear mediation analysis was then used to test for the indi-

rect effects of DDM mediator variables on the direct effects of SAT on mean RT. The significance of 

indirect and direct effects was assessed with a 95% confidence interval based on bootstrapping with 5000 

replacements.  

 

2.2.3 Drift diffusion modelling (DDM)  

DDM parameters were calculated using the EZ DDM model (Wagemakers et al., 2007) which was incor-

porated into an in-house R based custom script. Raw RT and accuracy data for each participant for con-

gruent, neutral and incongruent trial conditions were input into the script in R Studio (v 1.1.463). The 

script first calculated means and variances of correct RTs. Incorrect trials were not included in the re-

mainder of the analysis (average retained trials = 469). Following this, the script calculated DDM parame-

ters using the equation provided in Wagenmakers et al., (2007) under the assumption that trial-to-trial 

variability was zero and the starting point of each decision process was equidistant from the response 

boundaries (Schmiedek et al., 2007). This resulted in average estimates for non-decision, boundary separa-

tion and drift rate for each participant. Details of the mathematical basis for the EZ model can be found 

in Wagenmakers, Van der Maas & Grasman (2007).   

 

2.2.2 Magnetic Resonance Imaging (MR) Imaging and Spectroscopy  

2.2.2.1 MR data acquisition 

All MR data were acquired on a Siemens 3 Tesla (T) Magnetom Prisma MR system (Siemens Healthcare 

GmbH, Erlangen) fitted with a 32-channel receiver head coil at CUBRIC. A 3D, T1-weighted magnetiza-

tion prepared rapid gradient-echo (MP-RAGE) structural scan was acquired for each participant (TE/TR 

= 3.06/2250ms, TI = 850ms, flip angle = 9deg, FOV = 256mm, 1 x 1 x 1mm resolution, acquisition time 

= ~6min). The MPRAGE was used as anatomical reference for the placement of MRS region of interest 

voxels. 
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MRS was used to acquire frequency spectra to quantify metabolites of Glx, GABA, NAA, choline, crea-

tine and myoinositol. Single voxel proton spectra were obtained from voxels of interest placed in the oc-

cipital cortex (OCC, voxel measuring 30 x 30 x30 mm3), the posterior parietal cortex (PPC, voxel measur-

ing 30 x 30 x 30 mm3) and the anterior cingulate cortex (ACC, voxel measuring 27 x 30 x 45mm). The 

OCC voxel was placed above the tentorium cerebelli, avoiding scalp tissue in order to prevent lipid con-

tamination to the spectra. The PPC voxel was placed with the posterior edge against the parieto-occipital 

sulcus, and the ventral edge of the voxel above and parallel to the splenium. Finally, the ACC was placed 

directly dorsal and parallel to the genu of the corpus callosum. In each voxel, a spectral editing acquisition 

(MEGA-PRESS, Mescher et al., 1998) was performed, involving applying an additional pulse symmetri-

cally about water resonance, providing ‘on’ and ‘off’ editing pulses which allow for the subtraction of 

peaks which may mask GABA in the spectra (TE/TR = 68/2000ms, 168 averages, acquisition time = 

~12 min per voxel). Manual shimming was performed before all MRS scans to ensure water-line width of 

20Hz or lower, in order to obtain accurate peaks in the spectra (Figure 2).  

A multi-shell diffusion MRI sequence was also conducted using a high angular resolution diffusion 

(HARDI) weighted echo-planar imaging (EPI) sequence (TE/TR = 73/ 4100ms, FOV = 220x220mm, 

isotropic voxel size 2mm3, 66 slices, slice thickness 2mm, acquisition time ~15 min, 2 x 2 x 2mm resolu-

tion). Five diffusion weightings were applied along gradient directions: b = 200 s/mm2 (20 directions), b= 

500 s/mm2 (20 directions) b = 1200 s/mm2 (30 directions), b=2400 s/mm2 (61 directions), b =4000 

s/mm2 (61 directions). 12 unweighted (b0) volumes were acquired, interspersed throughout diffusion-

weighted scans. In addition, a diffusion reference sequence was acquired for later blip-up blip-down anal-

ysis to correct for EPI distortion (Bodammer et al., 2004) in which a diffusion weighting of b=1200 

s/mm2, and 12 un-weighted (b0) images were acquired interspersed throughout the sequence (Figure 1). 

Multi-shell diffusion weighted imaging data were acquired to fit the diffusion tensor and the Composite 

Hindered and Restricted Model of diffusion (CHARMED) (Assaf & Basser, 2005) to gain microstructural 

maps of fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (L1), 

and restricted signal fraction (FR). 

2.2.2.2 MR analysis 
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MRS data were analysed using Totally Automatic Robust Quantification in NMR (TARQUIN) version 

4.3.11 (Reynolds, Wilson, Peet & Arvanitis, 2006) in order to determine estimated concentrations of other 

metabolites of interest (Choline, NAA, Glx, Creatine, Myoinositol). To ensure data quality, metabolites 

were excluded if the Cramer Rao Lower Bound (CRLB) was above 20% as recommended (Stagg & 

Rothman, 2013). MEGA-PRESS data were analysed using GANNET (GABA-MRS Analysis Tool) ver-

sion 3.0 (Edden et al., 2014). Estimated metabolite values were corrected to account for cerebrospinal 

fluid (CSF) voxel fraction, and water reference signal was corrected to account for differing water content 

of CSF, grey matter and white matter. All metabolites were quantified using water as a concentration ref-

erence and were expressed as concentration in millimoles per unit (mM).  

Two-shell HARDI data were split by b-value (b=1200, and b=2400 s/mm2) and were corrected for dis-

tortions and artifacts using a custom in-house pipeline in MATLAB and Explore DTI (Leemans et al., 

2009). Correction for echo planar imaging distortions was carried out by using interleaved blip-up, blip-

down images. Tensor fitting was conducted on the b=1200 s/mm2 data, and the two compartment ‘free 

water elimination’ (FWE) procedure was applied to improve reconstruction of white matter tracks close 

to ventricles (Pasternak et al., 2009) and to account for partial volume contamination due to CSF which is 

particularly apparent in older age (Metzler-Baddeley et al., 2012). Data were fit to the CHARMED model 

(Assaf & Basser, 2005) which involved the correction of motion and distortion artefacts with the extrapo-

lation method of Ben-Amitay et al., (2012). The number of distinct fibre populations in each voxel (1, 2 

or 3) was determined using a model selection approach (De Santis et al., 2014) and FR maps (Assaf & 

Basser, 2005) were then extracted by fitting the CHARMED model to the DWI data, with an in-house 

script. This resulted in FA, MD, RD, AD and FR maps. 

Whole brain tractography was then performed with the dampened Richardson-Lucy (dRL) spherical 

deconvolution method (Dell’Acqua et al., 2010). Tractography was performed on the b=2400 s/mm2 data 

to provide better estimation of fibre orientation (Vettel et al., 2012). The dRL algorithm extracted peaks 

in the fibre orientation density function (fODF) in each voxel using a step size of 0.5mm. Streamlines 

were terminated if directionality of the path changed by more than 45 degrees using standardised in-

house processing pipeline at CUBRIC. Manual fibre reconstructions were performed in ExploreDTI 

v4.8.3 (Leemans et al., 2009). Tracts of interest were manually drawn on direction encoded colour FA 
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maps in native space. ILF reconstruction was obtained according to protocol by Hodgetts et al. (2015) 

and Wakana et al. (2007). The SLF was subdivided into three subdivisions, the SLF1, 2 and 3 which were 

delineated according to protocol by De Schotten et al., (2011). The SLF was subdivided based on the dis-

tinct contributions of each tract to different functions of attention and executive processing; the SLF 1 

being associated with spatial functions and goal-directed attention (De Schotten et al., 2011; Parlatini et 

al., 2017), the SLF2 being associated with orienting attention and integration of dorsal and ventral atten-

tion networks (Nakajima et al., 2019), and the SLF 3 being associated with reorienting of spatial attention 

(De Schotten et al., 2011; Nakajima et al., 2019). The fornix was reconstructed by locating the body of the 

fornix bundle according to Metzler-Baddeley et al. (2011), and the optic radiation was delineated by plac-

ing a seed region on the white matter of the optic radiation lateral to the lateral geniculate nucleus in the 

axial plane (Thompson et al., 2014) (Figure 2). 

 

 

 

 

 

 

 

 

 

 

Figure 2. White matter tracts, microstructural maps and location of spectroscopy voxels for measurements 

of interest. ACC = anterior cingulate cortex, ILF= inferior longitudinal fasciculus, PPC = posterior parietal cortex, 

OCC= occipital cortex, SLF = superior longitudinal fasciculus. 

 

2.2.3 Statistical Analysis 

Statistical analyses were conducted in R-studio (v 1.1.463), SPSS version 27 (IBM) and the PROCESS 

computational tool for mediation analysis version 4.3 (Hayes, 2012). Data were assessed for normality 
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with the Kolmogorov-Smirnov test and were either analyzed with non-parametric tests or were rank-

transformed before conducting parametric testing if they did not fulfill normality. Multiple comparisons 

were corrected for False Discovery Rate (FDR) to mitigate the likelihood of Type 1 error by employing 

the Benjamini-Hochberg procedure at 5% (Benjamini & Hochberg, 1995).  All reported p-values were 

two-tailed.  

Group differences in rank-transformed DDM parameters, SAT, accuracy, RT, and variance were assessed 

using independent t-tests. Tractography outcome measures (FA, MD, RD, AD, FR) and metabolite out-

come measures (GABA, NAA, Glx, Myoinositol, Choline, Creatine) were compared between older and 

younger control groups by conducting non-parametric Mann Whitney U tests.  

Hierarchical linear regression models were carried out for RT, SAT, and each EZ DDM parameter as 

dependent variables. Age and TOPF-UK score, the two variables that differed between the groups, were 

entered into the model first, followed by all metabolic and microstructural measurements in a stepwise 

fashion. Regression analyses were conducted on rank-ordered variables to account for non-normality of 

the data.  

Following this, Pearson correlations on rank-transformed data were conducted between age, brain predic-

tors and DDM parameters and the directionality of these relationships were explored with mediation 

analyses. 

 

3. Results 

 

3.1 Group differences in visual acuity  

No significant differences were found in visual acuity between older and younger age groups 

(F(1,49)=1.239, p=.276) (Figure 3). 
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Figure 3. Violin plot with overlaid boxplot for group comparisons between older (orange) and younger 
(grey) adults’ visual acuity (Snellen Fraction). The boxplot displays the median and the interquartile range and 
the violin plot the kernel probability density, i.e., the width of the violin area represents the proportion of the data 
located there. There was no significant difference in visual acuity between younger and older adults.  

 

3.2 Group differences in RT, SAT, and DDM parameters  

Independent t-tests on rank-transformed data revealed that older compared to younger adults showed 

larger RT (t(48) = 4.2, pFDRcor = 0.0007) (Figure 4C), non-decision time (t(48) = 2.9, pFDRcor = 0.016) 

(Figure 4D) and boundary separation values (t(48) = 2.9, pFDRcor = 0.016) (Figure 4E).  

No group differences were observed for accuracy (t(48) = 1.6, p = 0.12) (Figure 4A), SAT (t(48) = 0.18, p 

= 0.87) (Figure 4B) or drift rate (t(48) =0.16, p = 0.87) (Figure 4F). 
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Figure 4. Violin plots with overlaid boxplots for group comparisons between older (orange) and younger 
(grey) adults’ rank-transformed accuracy, response time (RT), speed accuracy trade-off (SAT) perfor-
mance and diffusion drift model (DDM) parameters. The boxplots display the median and the interquartile 
range and the violin plots the kernel probability density, i.e., the width of the violin area represents the proportion of 
the data located there. Older participants showed increased RT (mean rank-transformed RTold = 33, SD =14.1; 
mean rank-transformed RTyoung = 18, SD =10.9), boundary separation values (mean rank-transformed boundary 
separationold = 31, SD =14.8; mean rank-transformed boundary separationyoung = 20, SD =12.3) and non-decision 
time (perceptual and motor processing) (mean rank-transformed non-decision timeold = 30.9, SD =15; mean rank-
transformed non-decision timeyoung = 20.1, SD =12.2). *** pFDRcor <.001, * pFDRcor <.05 
 

 

3.3 MRI results  

3.3.1 Metabolic differences between older and younger adults  

Group comparisons between older and younger participants showed no significant differences in GABA 

levels in the ACC, OCC or the PPC (Figure 5a). Older participants had significantly lower Glx (U=189, 

p=.004) and NAA (U=109, p<.001) in the ACC than younger adults. A trend towards significantly lower 

myoinositol in older adults in comparison to younger adults in the ACC was also observed (U=234, 

p=.058). In the PPC, older adults showed significantly lower NAA (U=190, p=.011), and a trend towards 

lower Glx (U=231, p=.054) than younger adults.  
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3.3.2 Diffusion weighted MRI differences between younger and older adults 

Significantly lower restricted fraction was shown in the older group in the fornix (U=75, p<.001), right 

optic radiation (U=154, p=.001), left SLF1 (U=152, p=.001), left SLF2 (U=170, p=.002) and right SLF3 

(U=169, p=.002) (Figure 5b). 

 

Figure 5. Metabolic and microstructural differences between younger and older adults. (A) Significant group 
comparisons for metabolites in voxels of interest between older and younger adults (B) Significant group compari-
sons for FR in tracts of interest between older and younger adults. FR was significantly lower in the fornix, optic 
radiation, SLF1, 2 and 3 in older adults (orange) in comparison to younger (grey) adults. **p<.001, *p<.0.05 
 

Significantly higher FA in the fornix (U=22, p<.001), right optic radiation (U=207, p=.027), left ILF 

(U=203, p=.014), right ILF (U=157, p=.001), left SLF1 (U=131.5, p<.001), left SLF2 (U=195, p=.009), 

and right SLF2 (U=218, p=.029), and right SLF3 (U=163, p=.001) was found in younger adults in com-

parison to older adults. Significantly higher MD in the older group in comparison to the younger control 

group was found in the fornix (U=84, p<.001), left optic radiation (U=78, p<.001), right optic radiation 

(U=131, p<.001), right ILF (U=203, p=.014), right SLF1 (U=175, p=.003), right SLF3 (U=175, p=.003). 

Radial diffusivity was significantly higher in the older control group in all tracts of interest except the right 

SLF1, fornix (U=39, p<.001), left optic radiation (U=145, p=.001), right optic radiation (U=139, 

p<.001), left ILF (U=189, p=.007), right ILF (U=143, p<.001), left SLF1 (U=130, p<.001), left SLF2 

(U=256, p=.199), right SLF2 (U=178, p=.003), left SLF3 (U=197.5, p=.010), right SLF3 (U=135.5, 

<.001) (Figure 6). Significantly greater axial diffusivity in older adults was found in the fornix (U=529, 

p<0.001), and significantly lower axial diffusivity in older adults was found in the SLF1 left (U=178, 

p=0.005).  
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Figure 6. Diffusion tensor imaging (DTI) differences between younger and older adults. Significant group 
comparisons (p<.0.05) for tract fractional anisotropy (A), mean diffusivity (B), radial diffusivity (C) and axial diffu-
sivity (D) between older and younger adults. 

 

3.4 Correlations between response latency, SAT, and DDM parameters 

Significant positive correlations were observed between mean RT and boundary separation (Rho = 0.74, 

pFWEcor < 0.00000001), between SAT and boundary separation (Rho = 0.49, pFWEcor = 0.002), and be-

tween mean RT and SAT (Rho = 0.4, pFWEcor = 0.013). Drift rate and boundary separation were nega-

tively correlated (Rho = -0.4, pFWEcor = 0.013). Non-decision time did not correlate with any of the other 

cognitive variables (Figure 7). 
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Figure 7: Correlation matrix between response latency, SAT and DDM parameters. Mean RT and boundary 
separation (p<.001), SAT and boundary sepataion (p<.001) and mean RT and SAT (p<.05) were positively corre-
lated (blue shades). Drift rate and boundary separation were negatively correlated (p<.05) (red shade). 
 

Mediation analysis revealed that boundary separation had a significant indirect effect (indirect ES of 

boundary separation = 0.31, SE =0.28, 95% CI 0.0005 - 0.985) and removed the direct effect of mean RT 

on SAT (remaining ES of mean RT on SAT = 0.09, SE = 0.18, 95% CI -0.289 – 0.471) (Figure 8).  In 

contrast the inclusion of mean RT or SAT as mediator variables did not have any indirect effects on the 

direct effect of boundary separation on SAT (indirect ES of mean RT = 0.07, SE =0.24, 95% CI -0.51- 

0.35; direct ES of mean boundary separation on SAT = 0.42, SE = 0.18, 95% CI 0.043 – 0.8) or on mean 

RT (indirect ES of SAT = 0.027, SE =0.11, 95% CI -0.22 - 0.19; direct ES of mean boundary separation 

on mean RT = 0.71, SE = 0.11, 95% CI 0.49 – 0.94). This pattern of results demonstrates that differ-

ences in boundary separation accounted for the shared variance in mean RT and SAT.  
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Figure 8: Mediation analyses between SAT, boundary separation and mean RT. Boundary separation had a 
significant indirect effect on SAT, removing the direct effect of mean RT on SAT. No other direct or indirect ef-
fects were significant. 

 

3.5 Neurobiological predictors of response latencies, SAT, and DDM parameters 

Hierarchical linear regression analyses testing for the effects of age, TOPF-UK score, and all microstruc-

tural and metabolic brain measurements on mean RT, SAT, and DDM indices were conducted separately 

for each outcome measure. All models entered age and TOPF-UK score as first predictors followed by 

the stepwise inclusion of the brain measurements.  

 

3.5.1 Response latencies (RTs) and SAT 

Variation in RTs were not accounted for by age and TOPF-UK score along (adj R2 = 0.01, F(2,37) = 1.2, 

p=0.31) but the inclusion of the following microstructural and metabolic brain measurements improved 

the fit of the model significantly: fornix FA (delta R2=0.24, F(1,36)=12.5, p =0.001), AD in left optic ra-

diation (delta R2=0.14, F(1,35)=8.9, p =0.005), RD in right SLF1 (delta R2=0.11, F(1,34)=8.7, p =0.006), 

myoinositol in OCC (delta R2=0.05, F(1,33)=4.2, p =0.048), and AD in right SLF1 (delta R2=0.06, 

F(1,32)=5.2, p =0.029). The final model explained 66% of the variation in RTs (adj R2 = 0.59, F(7,32) = 

9.01, p<0.001) and included the following predictors: fornix FA (beta = -0.9, pFDRcor < 0.0000001), RD in 
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right SLF1 (beta = -0.33, pFDRcor = 0.019), myoinositol in OCC (beta = 0.38, pFDRcor = 0.019), TOPF-UK 

score (beta = 0.32, pFDRcor = 0.025), AD in right SLF1 (beta = 0.35, pFDRcor = 0.034) and AD in left optic 

radiation (beta = -0.26, pFDRcor = 0.034).  

Age and TOPF-UK score alone did not predict variability in SAT (adj R2 = -0.025, F(2,37) = 0.53, 

p=0.6). The inclusion of the following metabolic and microstructural measurements improved the fit of 

the model significantly (adj R2=0.42, F(5,34) = 4.9, p = 0.002): NAA in the ACC (delta R2=0.21, 

F(1,36)=10.12, p =0.003), RD in right SLF1 (delta R2=0. 1, F(1,35)=5.3, p =0.03) and FA in right SLF1 

(delta R2=0.08, F(1,34)=4.5, p =0.04).  In the final model SAT was significantly predicted by NAA in the 

ACC (beta = 0.5, pFDRcor = 0.015) and RD in the right SLF1 (beta = -0.9, pFDRcor = 0.015) (Figure 9). 
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Figure 9: Slopes of the regression lines for the brain predictors in the final model for rank of mean reaction time (RT) 

(A) and mean SAT (B).  Significant predictors (p<.05) of rank mean RT and rank mean SAT included in final hierar-
chical models. 
 

3.5.2 DDM parameters 

Variation in boundary separation was not explained by age and TOPF-UK score (adj R2 = 0.029, F(2,37) 

= 1.6, p=0.22) but the inclusion of fornix FA (delta R2=0.20, F(1,36)=10.12, p =0.003) and FR in the 

right ILF (delta R2=0.08, F(1,35)=4.6, p =0.04) improved the fit of the model significantly (adj R2 = 0.29, 

F(4,35) = 5.01, p=0.003). In the final model fornix FA (beta = -0.8, pFDRcor = 0.002) was the only signifi-

cant predictor for variation in boundary separation. 

Similarly, variation in non-decision time was not explained by age and TOPF-UK score alone (adj R2 = -

0.02, F(2,37), p=0.5). The inclusion of the following metabolic and microstructural measurements im-

proved the model fit significantly (adj R2=0.47, F(6,33) = 6.7, p < 0.001: NAA in the ACC (delta 

R2=0.23, F(1,36)=11.5, p =0.002), AD in the right ILF (delta R2=0.15, F(1,35)=8.9, p =0.005), creatine in 

the OCC (delta R2=0.07, F(1,34)=4.3, p =0.045) and GLx in PPC (delta R2=0.07, F(1,33)=4.9, p =0.034). 

In the final model NAA in the ACC (beta = -0.45, pFDRcor = 0.015), AD in the right ILF (beta = 0.38, 

pFDRcor = 0.015), and creatine in the OCC (beta = 0.32, pFDRcor = 0.03) predicted non-decision time signif-

icantly. 

Finally, age and TOPF-UK score did not account for variation in drift rate (adj R2 = 0.01, F(2,37), 

p=0.32) and the inclusion of brain measurements did not improve the model fit significantly (adj 

R2=0.12, F(3,36) = 2.6, p = 0.07; delta R2=0.12, p=0.031) (Figure 10). 
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Figure 10: Slopes of the regression lines for the brain predictors in the final model for rank of mean non-decision time 

(A) and mean boundary separation (B).  Significant predictors (p<.05) of rank mean non-decision time and rank 

mean boundary separation included in final hierarchical models. 

 

3.5.3 Correlation analyses between age, fornix FA, and RT 

Spearman correlation coefficients were calculated between age, fornix FA, RT and boundary separation 

to explore the directionality of these relationships. Fornix FA correlated negatively with age (Rho = -0.75, 

pFWEcor < 0.00000001), boundary separation (Rho = -0.48, pFWEcor = 0.007), and RT (Rho = -0.53, pFWEcor 

= 0.002). A significant positive correlation was present between age and RT (Rho = 0.35, pFWEcor = 0.016) 

and a trend for a positive correlation between age and boundary separation (Rho = 0.26, p = 0.06). 

Mediation analysis demonstrated that fornix FA had a significant indirect effect (ES = 0.45, SE =0.13, 

95% CI 0.21 - 0.7) and removed the direct effect of age on mean RT (remaining ES = -0.09, SE = 0.18, 

95% CI -0.47 – 0.27).  In contrast the inclusion of age as mediator variable did not have an indirect effect 

(ES = 0.07, SE =0.13, 95% CI -0.2 - 0.3) on the direct effect of fornix FA on RT (ES = -0.6, SE = 0.18, 

95% CI -0.97 – -0.22). 

This pattern of results suggests that age-related response slowing is mediated by the age-related decline in 

fornix microstructure but not vice versa (Figure 11).  
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Figure 11: Correlation matrix and mediation analyses investigating the relationship between Age, FA in the 

Fornix, Mean Reaction time (RT) and boundary separation value.  Correlation matrix (left) shows significant 

negative correlations (red share) (p<.05) between FA in fornix, age, mean RT and boundary separation. A significant 

positive correlation (blue shade) was present between age and RT. Mediation analyses (right) shows a significant 

indirect effect of FA in fornix on mean RT, which removed the direct effect of age on mean RT. Age as an indirect 

predictor did not remove the effect of FA in fornix on mean RT. 

 

4. Discussion  

 

The aim of this study was to investigate the cognitive and neurobiological substrates of age-related re-

sponse slowing in visuo-perceptual decision making. For this purpose, we modelled older and younger 

adults’ RT data from the ANT flanker task with the EZ DDM to derive three cognitive components 

thought to contribute to response slowing in ageing. These were the non-decision time, that reflects the 

time needed for bottom-up sensory and top-down motor execution processes, the boundary separation 

value, that reflects the degree of conservatism regarding a response decision criterion, and the drift-rate, 

the speed with which information is accumulated to reach a response threshold. Furthermore, we em-

ployed advanced multi-shell diffusion-weighted MRI and MRS techniques to acquire estimates of micro-

structural and metabolic properties of gray matter ROIs and white matter connections in visual-

perceptual and attention networks. We then tested which of these brain measurements were predictive of 

differences in cognitive parameters for the purpose of elucidating the neurobiological basis of any age-

related differences in visuo-perceptual decision making.  

Consistent with the literature (Ratcliff et al., 2007; Rabbit, 1979; Theisen et al., 2021) and our hypotheses, 

we found age-related increases in RTs, boundary separation, and non-decision time. These differences 
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were observed in participants without visual acuity impairments as measured with the Snellen Fraction, 

thus were not due to reduced eyesight in older participants. Contrary to our hypotheses, older adults did 

not show increased SAT, as measured with LISAS, and did not differ in accuracy or diffusion drift rates 

from younger adults.  

Slowed response times while maintaining accuracy is a characteristic pattern observed in ageing and is 

generally thought to reflect a shift to a more conservative decision criterion that favours accuracy over 

speed. Consistent with this view we observed age-related increases in boundary separation. Importantly, 

mediation analysis revealed that the differences in boundary separation accounted for the shared variance 

between SAT and RTs but not vice versa, suggesting that the shift to a more conservative response strategy 

is the main contributor to the slowing of decision-making in older age. Drift rate was negatively correlat-

ed with boundary separation reflecting that a more conservative response strategy involves the accumula-

tion of more information, and hence reduces the speed of reaching a response threshold criterion. Non-

decision time did not correlate with any of the other cognitive variables, suggesting that this variable cap-

tures other processes than those involved in central decision-making. This result accords with the DDM 

model’s assumption that non-decision time comprises low-level sensory and pure motor execution pro-

cesses that are independent of central decision-making processes, such as boundary separation. Thus, alt-

hough ageing increased non-decision time, as proposed by the sensory degradation and the motor noise 

hypotheses, this age-related decline in sensory-motor function was unrelated to the increase in boundary 

separation and only the latter accounted for overall response slowing. In summary, the pattern of results 

for the cognitive data indicates that older adults responded more slowly because they adopted a more 

conservative criterion threshold that favoured responding accurately over responding quickly (Rabbitt, 

1979; Salthouse, 1979; Smith & Brewer, 1995; Starns & Ratcliff, 2010). While age-related increases in 

non-decision time were observed and accord with accounts of low-level sensory degradation and slowing 

of motor execution with age, these processes did not contribute to overall response slowing or to the in-

creases in boundary separation.  

The main aim of our study was to investigate the neurobiological basis of differences in cognitive com-

ponents thought to underpin age-related response slowing.  For this purpose, we acquired microstructural 

and metabolic measurements with advanced diffusion-weighted MRI and MRS from key regions within 
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visual perceptual and attention-executive networks.  Regions involved in bottom-up visuo-sensory and 

perceptual processing comprised the occipital cortex as well as the optic radiation and ILF while selected 

areas hypothesized to mediate top-down decision-making processes were the ACC, PPC, SLF and fornix. 

Consistent with our hypotheses and the literature (Michielse et al., 2010; Salat et al 2005; Yang, Bender & 

Raz, 2015), we observed age-related reductions in FA and FR and increases in MD, RD and AD indices 

in all white matter pathways, demonstrating that they were detrimentally affected by age. In contrast to 

previous studies, we employed not only DTI measurements but also the restricted signal fraction FR 

from CHARMED. DTI measures are not only affected by the biological properties of white matter such 

as myelin and axon density but also by the geometry and complexity of fiber architecture for instance 

crossing fibers, and hence are difficult to interpret in terms of any specific tissue changes (De Santis et al., 

2014). FR from CHARMED reflects the fraction of the signal from a restricted diffusion compartment 

that is thought to arise from intra-axonal space in white matter. Reductions of FR have been proposed to 

reflect a decrease in the density of axons, that may occur due to a loss of myelin and/or axons secondary 

to Wallerian degeneration in ageing (De Santis et al., 2014). 

Older relative to younger adults also showed reduced levels of NAA and Glx in the ACC and lower levels 

of NAA in the PPC.  NAA and Glx are both markers of neuronal metabolism (Newsholme et al., 2003) 

and are considered to play a key role in energy metabolism in neural mitochondria (Lu et al., 2004). These 

findings are consistent with accumulating evidence of energy depletion as a key component of biological 

aging (Raz & Daugherty 2018). With normal aging, the accumulation of biological ‘imperfections’ such as 

protein aggregation are thought to impair mitochondrial function and cause low-level inflammation, re-

sulting in reduced glucose uptake, synaptic deterioration, and gliosis (Currais, 2015), and in turn to further 

energy reduction. The here observed reductions in NAA and Glx in the ACC in older adults may reflect a 

decreased neuronal metabolism due to the accumulation of these biological ‘imperfections’. The pattern 

of our results suggest that aging affects neuronal metabolism primarily in frontal and parietal attention 

regions but not in the OCC, consistent with evidence suggesting that healthy aging is particularly associat-

ed with a reduction in mitochondrial energy metabolism in frontal brain regions (Reddy & Beal, 2008, 

Reutzel et al., 2020, Yin et al., 2014). 
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Hierarchical regression analyses testing for effects of the microstructural and metabolic brain measure-

ments on DDM components while controlling for age and TOPF-UK score demonstrated that differ-

ences in boundary separation were predicted by differences in fornix FA, while differences in non-

decision time were predicted by regions involved in both bottom-up and top-down processes, specifically 

NAA in the ACC, AD in the right ILF, and creatine in the OCC. No brain predictors were found for 

drift rate. In addition, differences in fornix FA together with diffusivities (AD, RD) in right SLF1, 

myoinositol in OCC, AD in left optic radiation, and the verbal intelligence as estimated by the TOPF-UK 

score predicted differences in overall RT while differences in NAA in the ACC and RD in the right SLF1 

predicted differences in SAT. Age was not a significant predictor in any model.  

The observed pattern of relationships between brain measurements and cognitive components were 

overall consistent with our hypotheses. More specifically we observed that differences in microstructural 

and metabolic tissue properties in top-down regions known to be involved in decision making (fornix, 

ACC, SLF) predicted boundary separation (fornix) and SAT (ACC, SLF) while a combination of meas-

urements from bottom-up sensory (OCC, ILF) and top-down motor execution (ACC) regions predicted 

non-decision time that captured low level sensory function and pure motor execution. Finally, differences 

in overall response time were predicted by brain estimates from a network of top-down (fornix, SLF) and 

bottom-up brain regions (OCC, optic radiation) together with verbal intelligence, reflecting that response 

latency is a function of all of the processes involved in visuo-perceptual decision-making.  

Fornix FA was the only brain predictor for boundary separation and the largest predictor for overall re-

sponse time while age did not contribute to the regression models. The fornix is the main output connec-

tion from the hippocampus to other limbic and cortical regions and is known to be detrimentally affected 

by age (Chen et al., 2015; Metzler-Baddeley et al 2011). The role of the hippocampus and the fornix in 

episodic memory processing is well-established and age-related decline in fornix microstructure has been 

shown to contribute to episodic memory impairments in ageing (Douet & Chang, 2015; Metzler-Baddeley 

et al 2011). However, based on neuroimaging and lesion studies that have shown an involvement of the 

hippocampus and the fornix in complex visual discrimination tasks (Lech et al 2016; Postans et al., 2014), 

it has been proposed that the medial temporal lobe structures do not only process mnemonic but also 

visuo-perceptual and spatial functions (Graham et al 2010; Lech et al 2016).  
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To better understand the role of the fornix in age-related slowing of visual-perceptual decision making, 

we carried out additional correlational analyses that revealed large negative correlations between fornix 

FA and age (Rho = -0.75) as well as between fornix FA and RT (Rho = -0.5) and fornix FA and bounda-

ry separation (Rho = -0.48 demonstrating that lower fornix FA values were associated with slower re-

sponse times and higher boundary separation values. Finally, aging was positively correlated with RT 

(Rho = 0.35) and a trend for a positive correlation between age and boundary separation (Rho = 0.26) 

was observed. Additional mediation analyses revealed that differences in fornix FA removed any effects 

of age on RT while the inclusion of age did not remove the effects of fornix FA on RT and boundary 

separation. This pattern of results indicates that age-related response slowing was mediated by the age-

related decline in fornix microstructure but not vice versa. In other words, fornix FA mediated the relation-

ship between age and increase in response time. Fornix FA also predicted boundary separation, which 

fully explained the shared variance in SAT and RT.  

To summarise, our findings indicate that age-related slowing in visual discrimination is primarily driven by 

the adoption of a more conservative response strategy. The degree of conservatism adopted relies on for-

nix microstructure, regardless of age. However, as fornix microstructure declines with advancing age pos-

sibly due to axonal loss and/or myelin damage, age is indirectly associated with the adoption of a more 

conservative decision strategy. Based on this pattern of results we propose that the fornix plays an im-

portant role in the accumulation of information to reach a response threshold criterion in a visual percep-

tual discrimination task. If fornix integrity is compromised, for instance by ageing, this process will be-

come noisier and more information needs to be accumulated before a decision can be reached leading to 

a more conservative response strategy.  

We also observed an increase of non-decision time with age, which was predicted by a reduction of NAA 

in the ACC and increases of creatine in the OCC and AD in the right ILF. This suggest that age-related 

decline in visual sensory-perceptual networks and regions involved in motor action control (ACC) due to 

reduced energy metabolism and neural activity, myelin damage and/or axonal loss underpin loss of senso-

ry motor functions. While the differences in brain regions involved in sensori-motor functions predicted 

overall response slowing and non-decision time, non-decision time was unrelated to differences in fornix 

microstructure, boundary separation and overall RT. Thus, we did not find any evidence to support the 
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view that age-related sensory motor decline in terms of sensory degradation and motor noise, led to the 

adoption of a more conservative response strategy. 

A few limitations of our study are noteworthy. Firstly, the sample size of 25 participants per age groups 

was relatively small and it would be advantagous to replicate the here observed findings in a larger cohort. 

However, we did successfully replicate a number of well-established effects notably the increase of non-

decision time, boundary separation, and overall RT, the widespread reductions of white matter micro-

structure and of ACC and Glx in older versus younger adults. Our main findings are also based on mod-

erate to large effect sizes, suggesting that despite the modest sample size we were appropriately powered 

to study the cognitive and neurobiological correlates of age-related slowing in visuo-perception.  

Our results suggest that under the specific task conditions employed here boundary separation may pro-

vide a more sensitive measurement of SAT than LISAS for which no age effect was present. Our instruc-

tions for the ANT flanker task did not seek to experimentally manipulate accuracy-speed trade-offs by 

emphasising speed over accuracy or vice versa. It could therefore be that opposing between-subject trade-

offs may have masked any SAT differences between the age groups. In other words, the increased speed 

by one participant may have been compensated by the increased accuracy by another. LISAS is a linear 

measure of SAT that has been shown to be insensitive to SAT, if the SAT effects are linearly balanced 

across participants (Vandierendock 2017). Thus, LISAS may have been a suboptimal choice to estimate 

SAT in the present study. 

Finally, the neurobiological interpretation of the differences in white matter microstructural indices needs 

to be done with caution. While we observed age-related reductions in FR from CHARMED in the fornix, 

optic radiation and SLF, suggesting a decline in axon density and/or axonal myelination in these 

pathways, the FR index did not significantly predict any cognitive components. In contrast, the DTI 

measurements of FA, axial and radial diffusivities were identified as significant brain predictors of 

cognition in the regression analyses. This pattern of results suggests that DTI indices that capture a 

variety of age-related differences in white matter microstructure due to differences in biological 

properties, such as loss of myelin and axons and increased inflammation, and differences in the geometry 

and complexity of fibers are more sensitive brain predictors of cognitive change than the FR index that is 
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thought to be more sensitive to specific biological properties of white matter (axon density). DTI and FR 

measures were corrected for partial volume effects with the Free Water Elimination Method (Pasternak et 

al., 2009), but this method cannot completely rule out that atrophy-induced free water contamination may 

have biased these indices. This may have been particularly the case for DTI indices notably in regions 

susceptible to partial volume contamination such as the fornix (Metzler-Baddeley et al 2012; see Parker et 

al., 2021) and may have made these indices more sensitive to age-related tissue atrophy. 

 

4.2 Conclusions 

Our study provides novel insights into the cognitive and neurobiological underpinnings of age-related 

response slowing. We demonstrate that age-related response slowing occurs due to the adoption of a con-

servative response strategy that arises from the decline in fornix microstructure that accompanies aging 

rather than reflecting a direct effect of age. We further provide evidence that age-related increases in re-

sponse times and boundary separation are unrelated to increases in non-decision time due to impaired 

sensory-motor functions. Finally, we identified that age-related reductions in metabolic and microstruc-

tural properties of gray and white matter regions within bottom-up and top-down visual perceptual deci-

sion making networks.   
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