
Humans in the Loop: People at the Heart 
of Systems Development 

Helen Sharp 

Abstract Despite increased automation in the process, people are (still) at the heart 
of software systems development. This chapter adopts a sociotechnical perspective 
and explores three areas that characterize the role of humans in software systems 
development: people as creators, people as users, and people in partnership with 
systems. Software is created by specialist developers such as software engineers and 
non-specialists such as “makers.” Software developers build communities and 
operate within several cultures (e.g., professional, company, and national), all of 
which affect both the development process and the resulting product. Software is 
used by people. Users also operate within communities and cultures which influence 
product use, and how systems are used feeds back into future systems development. 
People and systems are interdependent: they work in partnership to achieve a wide 
range of goals. However, software both supports what people want to do and shapes 
what can be done. 

1 Introduction 

Digital humanism aims to put humans at the center of the digital world, arguing that 
technology is for people and not the other way around. Other chapters in this volume 
(e.g., Winter in this volume) advocate human-centered systems development which 
suggests that humans’ needs should be the driving force for development and that 
humans and groups should be better integrated into the system development cycle. 

This chapter echoes that perspective but turns the spotlight back onto the people 
who contribute to the development of digital artifacts and how the human tendency 
to form communities, and their respective cultures, influences and shapes the 
artifacts they produce. We focus more specifically on the role that people have in 
the development and use of systems: who are they, what is their role, and how do

H. Sharp (✉) 
Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton 
Keynes, UK 
e-mail: helen.sharp@open.ac.uk 

© The Author(s) 2024 
H. Werthner et al. (eds.), Introduction to Digital Humanism, 
https://doi.org/10.1007/978-3-031-45304-5_23

359

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45304-5_23&domain=pdf
mailto:helen.sharp@open.ac.uk
https://doi.org/10.1007/978-3-031-45304-5_23#DOI


humans shape the digital artifacts that they encounter. A key feature of this work is 
that systems development is seen as sociotechnical, i.e., an approach that makes 
explicit the fact that people and technology are interdependent (Klein, 2014), a 
perspective that is increasingly pertinent to digital humanism.

360 H. Sharp

Digital artifacts rely on software, and software is fundamental to virtually every-
thing people do nowadays. Apart from phone apps that keep people in touch with 
their loved ones, allow bills to be paid, and keep track of their fitness levels, there are 
also global software-based projects, from instrumentation of the James Webb tele-
scope out in space (e.g. see NASA, 2023) to modeling the spread of viruses across 
the world (e.g. Wang et al., 2021), controlling neighborhood traffic (e.g. see WDM, 
2023), and tracking animals in danger of extinction (e.g. Kulits et al., 2021). 
Software development is at the core of digital artifact design and implementation, 
controlling its behavior, how it interacts with users and the environment, determin-
ing how trustworthy or secure it is, and whether it supports what the human user is 
trying to do. 

This chapter will focus on software and software development and aims to 
consider who is involved, what is their role, and how does the sociotechnical nature 
of software systems development affect the software produced. It is divided into 
three sections, exploring people as creators of software systems; people as users of 
software systems; and the partnership between people and software systems. 

2 People as Creators of Software Systems 

When thinking about people as creators of software systems, the first group that 
comes to mind are the professionals—specialist software designers and builders. But 
there is also a growing set of people who are not specialists yet who are involved 
directly in developing and implementing software systems. Whether specialists or 
non-specialists, people who create software systems are not acting on their own. 
Instead, they sit within a community of designers, developers, users, and other 
stakeholders who contribute to creation in one way or another. These communities 
may be professional (e.g., user experience designers), organizational (e.g., 
employees of a company), or personal (e.g., based on ethnicity), but they all 
influence systems development. For instance, in a study of designers in Botswana, 
researchers found that sociocultural factors of the designers influenced both the 
design process and the designed artifact (Lotz & Sharp, 2020; Sharp et al., 2020). 

This section explores these two groups (specialists and non-specialists) and how 
they influence and inform systems development.



Humans in the Loop: People at the Heart of Systems Development 361

2.1 Specialists such as Software Engineers 

Professional software engineers are one subset of specialist creators, although this 
seemingly homogeneous group is made up of yet more subgroups, such as commer-
cial software developers, open-source developers, and freelance software devel-
opers, for example. Members of these groups work within a community and a 
network of stakeholders, technical components, and standards. Their work is 
influenced by different cultures and their own experience and those around them 
(Sharp et al., 2000). 

Modern software development is a very complex endeavor and relies quite 
extensively on building from existing components such as language library assets, 
interface components, patterns, and design system languages, often created by 
different groups. A piece of software must be embedded in its technical environment 
and is dependent on digital and physical attributes of the device and of the environ-
ment within which it operates, e.g., Internet connectivity and access to digital assets. 
This complexity means that software developers and their work are highly dependent 
on others: local others and distant others. 

The community aspect of software development is often overlooked. Software 
developers may operate in teams, which is one kind of community, but they also 
form very close communities across companies, disciplines, and continents (see 
Fig. 1). These may coalesce around programming languages or tools, or in specific 
domains such as finance or physics, or in particular locations. Members of these 
communities support each other with solutions to problems, guidance on technical 
matters, and documentation, for example. And it goes beyond that—communities 
are very influential. When we were looking at object-oriented development in the 
1990s, one of the research questions we had was how did object-oriented technology 
emerge and become widespread. We didn’t look at the official history but instead 
tried to follow strands of evidence in contemporaneous literature. From that inves-
tigation came the view that the community of object-oriented advocates built a 
significant following through community events so that when a commercial-strength 
object-oriented language emerged (C++), there was a ready-made appetite among 
developers for it to spread very rapidly (Robinson & Sharp, 2009). 

Developer communities support each other in various practical ways through 
sharing solutions and propagating information. But the impact that social processes 
have goes beyond this. For instance, resilience of sociotechnical systems relies on 
people (Furniss et al., 2011a). While some aspects of resilient performance are 
visible through written procedures or policies, others are “hidden” within adapta-
tions made by people every day. To illustrate this, Furniss et al. (2011b) provide 
several examples from a hospital study. One of these relates to a batch of infusion 
pumps that were prone to triggering a false alarm. A workaround, i.e., lubricating the 
relevant part with alcohol gel, was developed by the nurses but was not captured in 
any procedures nor reported to anyone beyond the immediate team. Instead, people 
adapted their behavior to account for the situation until the batch had been used and



work could return to “normal.” Examples of how people’s actions keep systems 
working are also found in software development (Lopez et al., 2023). 

362 H. Sharp

Fig. 1 Communities and cultures affecting software development (© Tim Clarke) 

A further example of how developers are influenced by their environment is given 
in work by Lopez et al. (2022), who studied the security behavior of software 
developers. They were driven to understand why known security vulnerabilities 
were still being embedded in software: why aren’t the developers countering these 
known issues when the software is built. At the time, the finger was often pointed at 
software developers asking why they didn’t “just do it.” Findings showed that 
decisions that have an impact on security within code were not always made by 
developers and their teams but instead reflect the attitudes and priorities of compa-
nies and their clients. This provided evidence that the cultures of the company, the 
client, and the team all affected technical outcomes, not just the individual’s expe-
rience and expertise.



Humans in the Loop: People at the Heart of Systems Development 363

2.2 Non-specialists such as Domain Experts 

There are many ways in which non-specialists can and do contribute to systems 
development. For instance, a quick search on Google will show that crowdsourcing 
of ideas for new technologies and systems is common-place. Two non-specialist 
examples are discussed in this section as system creators: domain experts and “the 
public.” 

All software development requires developers to engage with the domain of 
application, i.e., where the software will be deployed, and the kind of functionality 
it is designed to embody. In some cases communicating the intricacies of that 
domain can be particularly challenging if the domain is specialist, for example, in 
scientific discovery (Chawla, 2015). In this case, it is common for the domain 
specialists themselves to create the software, and while they are specialists in their 
own field, they are not necessarily software or technology specialists. This demon-
strates one group of non-specialist creators: domain experts. While some software 
may be produced simply to support the developer’s own requirements, it is common 
for this software to be valuable to others and such software may be taken up in the 
wider community, supported by crowdsourced documentation (Pawlik et al., 2015). 

The Maker Movement (Anderson, 2013; Hatch, 2014) is very much about 
opening up the world of “making” to a wide range of people, some of whom were 
already hobbyists, but others are new to making. The Maker Movement (MM) aims 
to make Do-It-Yourself making accessible to whoever wants to take part (Anderson, 
2013). It explicitly aims to encourage people to make as well as consume artifacts. 
At its core is to collaboratively craft physical and digital artifacts using a diversity of 
machines, tools, and methods. The availability of affordable, powerful, and easy-to-
use tools, coupled with a renewed focus on locally sourced products and community-
based activities, has fueled this interest and made the movement feasible. A network 
of makerspaces has enabled the maker movement to become widespread and 
popularized worldwide. 

The main principles of MM are to make, share, give, learn, play, participate, 
support, and change. Note that this is not just about making your own things but also 
sharing and supporting others. Websites such as instructables.com and makezine. 
com illustrate the outcomes of this ethos and demonstrate what can be achieved 
when people share and build on each other’s ideas and creations. Although the 
pandemic dampened the opportunity to gather physically, the movement is still 
growing. The use of pre-formed kits such as Arduino1 and e-textiles,2 together 
with ready-made components in the form of software development kits, patterns, 
and libraries, also encourages a wide engagement. 

This movement illustrates the power of community and of individual abilities to 
create artifacts that focus on things that they want. It also represents a change in

1 Arduino is an open-source electronics platform based on easy-to-use hardware and software; see 
arduino.cc for more information. 
2 A field of electronics that combines electronic widgets (lights, batteries, sensors) with textiles.

http://instructables.com
http://makezine.com
http://makezine.com


mindset where people can see that they have the chance to shape technology to fit 
their own purpose rather than be driven by it.

364 H. Sharp

3 People as Users of Software Systems 

You might think it goes without saying that software is built to be used, and so 
people are users of software. It is worth remembering that software is intended to 
support peoples’ goals and that software should be developed with users in mind, but 
this section goes beyond these simple platitudes. Here we explore two sociotechnical 
aspects of people as users that are relevant to systems development: that users are 
inventive and appropriate technology for their own context and that user feedback 
and behavior with existing systems influence future systems development. 

3.1 Taking Account of Users and What They Do 

During the 1970s, when software and its applications were becoming more wide-
spread, the need to pay attention to the design of the interface so that it was usable by 
humans was recognized. The early focus on “man-machine interface” quickly 
evolved during the 1980s into human-computer interaction (HCI), a term that is 
still used today although its scope has increased considerably over the decades. 

From the beginning, HCI drew on a range of disciplines including cognitive 
psychology, linguistics, computer science, and sociology. The goal was to design 
software that would take account of human characteristics such as attention and 
learning and influences on human behavior such as group processes and attitudes. 
HCI’s focus was on how to take account of these traits in the design of interfaces and 
systems. For instance, an understanding of attention led to suggestions on how best 
to structure information, so that users could find what they needed more effectively, 
and how to use space and color on screens to direct users’ attention to the salient 
points for the task in hand. 

HCI also recognized the need for an iterative approach to development so that a 
range of expertise could be brought into play, and the emerging design may be 
checked with users. This evaluation of early prototypes and designs with users 
became the focus of the HCI design process in which emerging designs and pro-
totypes are shown to and evaluated with intended user groups, and the results fed 
back into redesign (Preece et al., 1994). 

The more recent term interaction design captures a focus that is much wider than 
that of the early HCI days. Interaction design today recognizes that the context of use 
has expanded away from “one user-one computer” and a wide range of different 
disciplines needs to be drawn upon in deciding what interactive products to develop 
and how to design them, including psychology and computer science but also 
product design, social sciences, and cognitive ergonomics. Interaction design also



recognizes the centrality of people and humans as users, co-designers, and creators 
in the design of interactive products. It is defined as “designing interactive products 
to support the way people communicate and interact in their everyday and working 
lives” (Rogers et al., 2023). 

Humans in the Loop: People at the Heart of Systems Development 365

Alongside this change of emphasis is the recognition that designing for users isn’t 
enough but that creators need to also design with users so that technologies can be 
truly human-centered (see Winter in this volume). But even with the best human-
centered development process, users have a habit of appropriating technology for 
their own uses and it’s not clear how it will be used until it is in the hands of the user 
population. Although software may be designed for particular purposes, people are 
very good at adapting the software for their own use and in molding it to their own 
context. This phenomenon prompted the introduction of “in-the-wild” studies of use 
and evaluation of early designs (Rogers & Marshall, 2017). The idea behind this 
approach is that systems are evaluated in situations that reflect as much as possible 
the context in which they will be deployed. While users may say that they will do 
things in a particular way, it’s often the case that they do something different when 
faced with the situation “for real.” The old adage that “what I do and what I say I do 
are not the same thing” applies in systems design and use too. Indeed, sociology of 
technology suggests that the usefulness of software is actively and socially 
constructed by users rather than merely perceived as a property of technology 
(Pinch & Bijker, 1987). For instance, studying ERP systems (enterprise resource 
planning systems), Abdelnour-Nocera et al. (2007) found that the context and local 
culture shaped the utility and usability of systems after they have been deployed. 

The importance of encouraging developers to watch users interacting with their 
creations was realized a long time ago, and the importance of iteration is reflected in 
modern software development through the agile approach (Ashmore & Runyan, 
2015; Zuber et al. in this volume). Agile software development recognizes the need 
for regular interactions with users and customers so that feedback is provided as the 
product evolves. In many cases, products are released regularly into real use so that 
value is delivered to the business often, and feedback may be based on real use. 

Insight into how technologies are appropriated by communities of users can be 
gained by observing products in use and getting regular feedback. However, 
uncovering cultural norms such as assumptions, customs, beliefs, and habits of 
user communities is challenging, yet their impact on technology use is significant. 
For instance, Chavan and Gorney (2008) describe scenarios in which the use of 
mobile phones is influenced by cultural norms where technologies are shared and 
hence privacy and security are compromised. If cultural norms of communities are 
explored during the design process, then this kind of unexpected (to the designers) 
behavior could be accounted for. This example is one of many that led researchers to 
recognize that different approaches to design for indigenous communities may be 
needed (Winschiers-Theophilus & Bidwell, 2013), so that the role that technology 
plays can be better understood.



366 H. Sharp

3.2 Software Use Influences Future Development 

Human-centered development of new systems is important, but much technology 
design and development are based on evolving existing systems rather than being 
completely new inventions. Given what we said in the previous section, then it’s not 
a surprise that existing use of systems influences how they evolve in the future. And 
we’ve got better at knowing how to collect data and derive information that allows us 
to do this. Nowadays, there is an inextricable interdependence between development 
and use. 

The Lean UX approach is one example of software development where even an 
idea can be checked within the context of real use before development proceeds too 
far. A “minimum viable product” (MVP) is released for real use and user behavior is 
monitored to see whether and how the product is used. Gothelf and Seiden (2016, 
pp. 76–77) provide a simple example of an MVP produced by a company who 
thought that their customers would like a monthly newsletter. To test out this 
assumption before spending a lot of resource on developing it, they spent half a 
day producing a sign-up form available online. This MVP allowed them to collect 
evidence to support or refute their assumption, based on user feedback. 

Another approach that focuses on online systems and obtains evidence of users’ 
behavior is A/B testing (Kohavi et al., 2020). In A/B testing, different versions of the 
same system are delivered to different sets of users, and their performance is tracked 
according to a defined set of evaluation criteria. The performance of the two designs 
then helps to decide which one to implement more widely. The name “A/B testing” 
is based on the idea that there are two alternative designs—“A” and “B”—and that 
their quality is being tested via an experiment. Setting up appropriate criteria and 
implementing an experiment are not simple although this technique is used widely. 
Users are identified and assigned to groups randomly. They don’t usually know that 
they are taking part in such an experiment, so next time you’re online and the website 
or app looks different, perhaps you’re helping the designers learn how users interact 
with their creations! 

Other sources of information about how software is used come from customer 
reviews, which can affect the popularity and success of a product (Harman et al., 
2012). App reviews from social media can also provide concrete improvements, for 
example, Twitter has been suggested as a good source of app reviews (Mezouar 
et al., 2018). However, it’s not straightforward to extract useful information that can 
be acted upon by developers (Dabrowski et al., 2022). These areas are still the 
subject of research.



Humans in the Loop: People at the Heart of Systems Development 367

4 People in Partnership with Software Systems 

People and software work in partnership in a way that is more than just “using” 
software: what people can achieve, how ideas and understanding evolve, and how 
people behave are all influenced by the software systems we use. For instance, what 
can be achieved through computer-aided design (CAD) systems has revolutionized 
the way in which buildings are designed and maintained by providing a high level of 
accuracy and detail that can be modified repeatedly and easily. Software visualiza-
tion and manipulation of images that supports the analysis of satellite photos have 
allowed our understanding of how human activity has affected the planet to evolve. 
How software shapes our behavior is illustrated by the effect of accurate navigation 
systems on walking and cycling for leisure. Before these came along, such activities 
needed to be carefully planned and landmarks noted. With the support of accurate 
GPS tracking and detailed maps, it’s possible to find where you are (almost) 
anywhere in the world and how to get to your destination. You just go out of the 
door and follow the prompts! 

Taking this last point further, software-based systems not only influence our 
behavior in line with our original goals; it can also help people to change their 
habits. Persuasive technologies (Fogg, 2009) are explicitly designed to do this. For 
instance, behavior around domestic energy use can be changed by providing regular 
feedback to consumers about their energy consumption. Behavior of groups of 
people may also be changed by sharing consumption figures across a neighborhood. 
These kinds of persuasive technologies illustrate that the partnership between people 
and software can have a positive impact across large groups. 

However, persuasion can sometimes be less positive. Many online sites are 
designed to persuade users to do something beyond their initial goal, such as buying 
an additional product or signing up for services other than those originally intended. 
At times, this is seen as a fair marketing technique, provided it is transparent, e.g., if 
purchasing a train ticket to visit a new city, it is likely that the user will also want 
accommodation, so why not offer them some options? Unfortunately, sometimes a 
more deceptive approach is implemented where the user feels tricked into “opting 
in” for something they didn’t want. This approach has been referred to as deceptive 
or dark patterns (see www.deceptive.design). 

On the whole, the partnership between software and people has positive out-
comes, but although it is very malleable, software has its constraints, and it can have 
unintended consequences. These constraints may come from technical issues, such 
as the speed of rendering an image, or from the underlying design of a system, such 
as mismatches between data formats that prevent integration. Research into technical 
areas has and will continue to break new ground and what is a constraint today will 
have been solved next week, but it will be replaced by some other constraint and the 
cycle will progress. Constraints caused by design issues will also be resolved over 
time (although significant frustration may continue in the meantime), as more is 
learned about what users do and want to do.

http://www.deceptive.design


368 H. Sharp

Unintended consequences are particularly interesting to digital humanism. Baeza-
Yates and Murgai in this volume, for example, highlights the ubiquity of bias on the 
Web. Another example of unintended consequences is provided by recommender 
systems, which are also discussed by Knees and Neidhardt in this volume. Recom-
mender systems help a user to identify products or services that they might not 
otherwise have found. These systems are used by online retailers and streaming 
services, for example, to suggest the items someone might want to purchase or films 
they might like to download. They analyze data collected about a user such as 
previous searching or downloading behavior and aim to predict what that user may 
like; recommenders may also compare across their bank of users to make predic-
tions. Exactly how these recommendations are arrived at depends on the algorithm 
used, which is a combination of filtering and prediction strategies. However, these 
systems can lead to the user’s preferences simply being self-reinforcing, i.e., the 
same kind of articles, products, or views are presented again (Pariser, 2011), rather 
than introducing new ideas. People are prone to biases of various kinds, e.g., 
confirmation bias, and recommender systems can exacerbate this unless designed 
deliberately to introduce a novel perspective. If this happens, silos of opinion or 
creativity can form, which constrain rather than expand a person’s outlook. The 
phenomenon of “algorithm hate,” where users become dissatisfied or puzzled by the 
recommendations they receive, is an active area of research (Smith et al., 2022). 
However, if users were more aware of this tendency, then changing their behavior 
would lead to a change in recommendations. 

5 Conclusions 

Software systems development is a sociotechnical endeavor with people at its heart. 
Software both supports people in achieving their goals and shapes what can be done; 
in turn, the ways in which people use software affects how the software behaves and 
shapes its future evolution. Together, software and its users work in partnership to 
extend our capabilities, and despite its limitations, software systems have helped us 
achieve significant advances. 

Moreover, both software creators and software users sit within communities, each 
of which has its own cultural norms that inform and influence software’s develop-
ment and use. Software creation, whether by professional developers or 
non-specialists, depends on ready-made components and technical assets created 
by others. Increasingly, non-specialist creators and users are influencing the tech-
nologies available. 

Making people aware of the fact that software development and use are becoming 
increasingly interdependent may provide unexpected opportunities within digital 
humanism.



Humans in the Loop: People at the Heart of Systems Development 369

Discussion Questions for Students and Their Teachers 
1. What consequences arise for digital humanism from the sociotechnical nature of 

the relationship between people and software this chapter describes? 
2. Consider the number of software systems you use in a day. Which of them 

support you and which of them shape your behavior? Choose one that you use 
regularly and consider how your day would be affected if it wasn’t available. 

3. Investigate platforms for crowdsourcing ideas—how could crowdsourcing be 
used to good effect in the quest for digital humanism? 

4. Discuss whether and how the communities you belong to influence your rela-
tionship with software—as a user or as a creator. 

Learning Resources for Students 
1. Bergman, O. and Whittaker, S.(2016). The Science of Managing Our Digital 

Stuff. MIT Press 
This book provides an account of how users manage all their digital stuff that 

seems to keep increasing each day. It explains why users persist with seemingly 
old-fashioned methods when there are alternative, maybe better approaches that 
have been designed by software companies. 

2. CHASE conference proceedings (the list of papers is available through www. 
chaseresearch.org) 

This is an annual conference that showcases up-to-date research into the 
cooperative and human aspects of software development. The papers concentrate 
on software creators and include a range of issues related to human characteristics 
and their impact on software development. 

3. Hatch, M. (2014) The Maker Movement Manifesto. McGraw Hill 
This introduces the Maker Movement and how anyone can get involved in 

making things and sharing what they have produced. It outlines the fundamentals 
behind the movement although in places it is a little evangelical. 

4. Kohavi, R., Tang, D., and Ya, X. (2020). Trustworthy Online Controlled Exper-
iments: a practical guide to A/B testing. Cambridge University Press 

This book was written by three experienced practitioners who have been 
running online experiments, also referred to as A/B testing, at scale for many 
years. It is readable and accessible to a wide range of readers and provides 
valuable detail backed up with specific examples that show the impact that 
applying this approach successfully can have. 

5. Rogers, Y., Sharp, H. and Preece, J. (2023). Interaction Design: beyond human-
computer interaction. Hoboken: Wiley 

This book provides a good introduction to a wide range of subjects within 
Interaction Design. Written by a cognitive scientist, an information scientist, and 
a software engineer, it brings together perspectives from three of the disciplines 
that have influenced Interaction Design. See id-book.com for more detail. 

6. Segal J. and Morris C. (2008) Developing scientific software, IEEE Software, 
25(4), 18–20

http://www.chaseresearch.org
http://www.chaseresearch.org
http://id-book.com


370 H. Sharp

This introduction to a special issue on scientific development is a short piece 
exploring the nature of this kind of software creation. Further papers in the special 
issue delve into more detail about developing software for scientific discovery. 

7. Sharp, H., Robinson H., and Woodman, M. (2000) ‘Software engineering: 
community and culture’, IEEE Software, 17(1), 40–47 

This is a relatively short read that explains how community and culture impact 
software development. The work is based on ethnographic studies of 
development. 

Acknowledgments Many of my colleagues have shaped the views expressed in this chapter. In 
particular, I’d like to mention Yvonne Rogers, Jenny Preece, Tamara Lopez, and Hugh Robinson. 
The development of this chapter was supported by UKRI/EPSRC EP/T017465/1. 

References 

Abdelnour-Nocera, J., Dunckley, L., & Sharp, H. (2007). An approach to the evaluation of 
usefulness as a social construct using technological frames. International Journal of HCI, 
22(1), 157–177. 

Anderson, C. (2013). Makers. Random House Business Books. 
Ashmore, S., & Runyan, K. (2015). Introduction to agile methods. Addison Wesley. 
Chavan, A. L., & Gorney, D. (2008). The dilemma of the shared mobile phone---culture strain and 

product design in emerging economies. Interactions, 15(4), 34–39. 
Chawla, D. S. (2015). The Unsung heroes of scientific software. Nature, 529, 115–116. 
Dabrowski, J., Letier, E., Perini, A., & Susi, A. (2022). Analysing app reviews for software 

engineering: a systematic literature review. Empirical Software Engineering, 27, Article 43. 
Fogg, B. J. (2009) A behavior model for persuasive design. In Proceedings of the 4th International 

Conference on Persuasive Technology (Persuasive ’09). ACM, New York, NY, Article 40. 
Furniss, D., Back, J., Blandford, A., Hildebrandt, M., & Broberg, H. (2011a). A resilience markers 

framework for small teams. Reliability Engineering & System Safety, 96(1), 2–10. 
Furniss, D., Blandford, A., & Mayer, A. (2011b). Unremarkable errors: Low-level disturbances in 

infusion pump use. In Proceedings of the 25th BCS Conference on Human-Computer Interac-
tion (BCS-HCI ’11) (pp. 197–204). BCS Learning & Development Ltd. 

Gothelf, J., & Seiden, J. (2016). Lean UX. O’Reilly. 
Harman, M., Jia, Y., & Zhang, Y. (2012) App store mining and analysis: MSR for app stores. In 

Proceedings of the 9th IEEE Working Conference on Mining Software Repositories (MSR 12) 
(pp. 108–111). 

Hatch, M. (2014). The maker movement manifesto. McGraw Hill. 
Klein, L. (2014). What do we actually mean by ‘sociotechnical’? On values, boundaries and the 

problems of language. Applied Ergonomics, 45, 137–142. 
Kohavi, R., Tang, D., & Ya, X. (2020). Trustworthy online controlled experiments: A practical 

guide to A/B testing. Cambridge University Press. 
Kulits, P., Wall, J., Bedetti, A., Henley, M., & Beery, S. (2021). ElephantBook: A semi-automated 

human-in-the-loop system for elephant re-identification. In ACM SIGCAS Conference on 
Computing and Sustainable Societies (COMPASS ’21) (pp. 88–98). Association for Computing 
Machinery. 

Lopez, T., Sharp, H., Bandara, A., Tun, T., Levine, M., & Nuseibeh, B. (2022). Security responses 
in software development. ACM Transactions on Software Engineering and Methodology, 32(3), 
1–29.



Humans in the Loop: People at the Heart of Systems Development 371

Lopez, T., Sharp, H., Wermelinger, M., Langer, M., Levine, M., Jay, C., & Nuseibeh, B. (2023) 
Accounting for socio-technical resilience in software engineering. In Proceedings of CHASE 
2023, Melbourne, IEEE. 

Lotz, N., & Sharp, H. (2020). Challenges for interaction design education in the South: A case study 
of Botswana. Journal of International Development, 32(1), 62–84. 

Mezouar, M. E., Zhang, F., & Zou, Y. (2018). Are tweets useful in the bug fixing process? An 
empirical study on Firefox and Chrome. Empirical Software Engineering, 23, 1704–1742. 

NASA. Accessed June 16, 2023., from https://jwst.nasa.gov/content/forScientists/publications.html 
Pariser, E. (2011). The filter bubble: What the Internet is hiding from you. Penguin. 
Pawlik, A., Segal, J., Petre, M., & Sharp, H. (2015). Crowdsourcing scientific software documen-

tation: A case study of the NumPy documentation project. Computing in Science and Engi-
neering, 17(1), 28–36. 

Pinch, T., & Bijker, W. (1987). The social construction of facts and artifacts. In W. Bijker, 
T. Hughes, & T. Pinch (Eds.), The social construction of technological systems (pp. 17–50). 
MIT Press. 

Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S., & Carey, T. (1994). Human-Computer 
Interaction. Addison-Wesley. 

Robinson, H., & Sharp, H. (2009). The emergence of object-oriented technology: the role of 
community. Behaviour and Information Technology, 21(3), 211–222. 

Rogers, Y., Sharp, H., & Preece, J. (2023). Interaction Design: Beyond human-computer interac-
tion (6th ed.). Wiley. 

Rogers, Y., & Marshall, P. (2017). Research in the wild. Morgan & Claypool. 
Sharp, H., Lotz, N., Mbayi-Kwelagobe, L., Woodroffe, M., Rajah, D., & Turugare, R. (2020). 

Socio-cultural factors and Interaction Design in Botswana: Results of a video diary study. 
International Journal of Human-Computer Studies, 135, 102375. 

Sharp, H., Robinson, H., & Woodman, M. (2000). Software engineering: Community and culture. 
IEEE Software, 17(1), 40–47. 

Smith, J. J., Jayne, L., & Burke, R. (2022). Recommender systems and algorithmic hate. In 
Proceedings of the 16th conference on recommender systems (RecSys ’22) 
(pp. 592–597). ACM. 

Wang, H., Miao, Z., Zhang, C., Wei, X., & Li, X. (2021). K-SEIR-Sim: A simple customized 
software for simulating the spread of infectious diseases. Computational and Structural Bio-
technology Journal, 19, 1966–1975. 

WDM. (2023). Accessed June 16, 2023, from https://www.wdm.co.uk/software 
Winschiers-Theophilus, H., & Bidwell, N. J. (2013). Toward an Afro-centric indigenous HCI 

paradigm. International Journal of Human-Computer Interaction, 29(4), 243–255. 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter's Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter's Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

https://jwst.nasa.gov/content/forScientists/publications.html
https://www.wdm.co.uk/software
https://doi.org/10.1007/978-3-031-45304-5_23#DOI

	Humans in the Loop: People at the Heart of Systems Development
	1 Introduction
	2 People as Creators of Software Systems
	2.1 Specialists such as Software Engineers
	2.2 Non-specialists such as Domain Experts

	3 People as Users of Software Systems
	3.1 Taking Account of Users and What They Do
	3.2 Software Use Influences Future Development

	4 People in Partnership with Software Systems
	5 Conclusions
	References


