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Abstract

Two-dimensional interpolation — or surface fitting — is an approximation tool with applications in geodetic datum
transformations, terrain modelling and geoid determination. It can also be applied to many other forms of geographic point data,
including rainfall, chemical concentrations and noise levels. The problem of fitting of a smooth continuous interpolant to a
bivariate function is particularly difficult if the dataset of control points is scattered irregularly. A typical approach is a weighted
sum of data values where the sum of the weights is always unity. Weighting by inverse distance to a power is one approach,
although a power greater than 1 is needed to ensure smooth results. One advantage over other methods is that data values can be
incorporated into the interpolated surface. One disadvantage is the influence of distant points. A simple cut-off limit on distance
would affect continuity. This study proposes a transition range of accelerated decline by means of an adjoining polynomial. This

preserves smoothness and continuity in the interpolating surface. Case studies indicate accuracy advantages over standard

versions of inverse-distance weighting.
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1 Introduction

A formula which covers a wide range of interpolation methods can
be categorised as "weighted average'. The general form is

_ > Wifi . (1)

fr S w,

In this formula, P is the point of interest, {P;} is a set of scattered
control points and w; is a weight dependent on P and P;. The divisor

in (1) ensures that the interpolation is exact at every control point.
The divisor turns the coefficient of each f; into a normalised weight.

If the weights are non-negative, as is the case if w; is derived
from the distance between P and P;, then the interpolated function
is constrained by the range of values in {f;}. This is a limitation if
the user wants some allowance for extrapolation, but at the same
time it is a safeguard against instability.

Two-dimensional problems where weighted-average interpo-
lation is used include several from geomatics. Gradka and Kwinta
(2018) apply it to terrain modelling, Soycan and Soycan (2003)
apply it to geoid determination, Ligas et al. (2022) apply it to quasi-
geoid modelling, and Grgic et al. (2016) apply it to geodetic datum
transformations. Applications outside geomatics include air tem-
peratures (Musashi et al., 2018), rainfall measurements (Tomczak,
1998), and housing growth (Cho et al., 2005).

2 Inverse distance to a power

Inverse-distance weighting is a scattered-data interpolation algo-
rithm proposed by Shepard (1968). It is very easy to implement.
The normalised weights are non-negative quantities whose sum is
1, and this ensures the interpolating function never strays outside
the range of the interpolated values being interpolated. The method
is considered in all the weighted-average applications quoted above.
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Figure 1. Characteristics of inverse distance interpolation using powers
1,2,3and 4

A continuous and smooth function f is interpolated at scattered
control points {P;} by the formula

_ X fild}

ST (2)

fr

where d; denotes the distance from P to P;. The formula takes the
limiting value f; when P coincides with a control point P;.
For implementation purposes, there is an alternative form of

(2):

fi+ Zisfi- (dj/di) .
1+ Tig (did)"

fp= (3)

where
j = value of i that minimises d;. (4)

The summations in (3) omit the control point nearest to the
point of interest. This avoids zero divisors and the processing of
large numbers.

The value of p in formula (2), and hence in (3), must be at least 2
to ensure smooth interpolation. If .« is exactly 2, the control points
are said to be weighted by inverse square distances. One argument
for having p greater than 2 is that it limits the influence of distant
points.

Figure 1 illustrates the effect of inverse distance interpolation
on data which depends on a single variable. None of the data fits is
totally satisfactory. Increasing the power . reduces the dip between
the 3rd and 4th points, but accentuates the changes in curvature
between other control points. The increased flatness at the control
points causes steeper slopes elsewhere, and that steepness is an
improbable interpretation of the control data.

In the cases where p > 1, the main drawback of inverse-distance

weighting is that it imposes zero gradients at the control points.

When it is used to fit a surface, it has the tendency to generate
concentric contours around the control points. This is described
by several authors, among them Attaouia et al. (2017) and Musashi
etal. (2018), as a bullseye effect. Franke and Nielson (1991) prefer
the term "flat spots". As in the one-dimensional case illustrated in
Figure 1, the increased flatness at control points that comes from
raising p causes increased steepness elsewhere.

The flat-spots effect can be reduced by splitting the function
into a trend model and a signal (analogous to the noise-free version
of least-squares collocation; see Ruffhead (1987)). If a suitable trend
model is identified, its parameters can be obtained by least-squares
optimisation. The residual variable, or signal, is interpolated exactly
by inverse distance to a power. The interpolated signal will have
zero gradient at the control points, but the overall interpolant at
those points will have the same gradient as the trend model. Inverse
distance to a power would become a means of interpolating (and
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thereby eliminating) residuals from the data minus the model.

This researcher believes that extracting a trend model can im-
prove the accuracy of inverse-distance weighting, although he has
not seen an explicit statement to that effect in any publication. It
was probably regarded as intuitively obvious by Grgi¢ et al. (2016)
and Ligas et al. (2022). Both studies used inverse-distance weight-
ing — amongst other methods — to interpolate residuals from a
trend model. This paper will test the proposition in its case studies.

A variation of (2) can be applied to control points which have
weights based on their perceived reliability:

_ X wfyld!

T wd ©)
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Control points with the highest weights will influence the inter-
polated f within a larger local radius than control points with the
lowest weights.

Grgic et al. (2016) apply inverse-distance-to-a-power to in-
terpolate residual transformations. Given that the residual datum
shifts are smaller than the original datum shifts, the drawback
of zero gradients at control points is less of a problem than in it
would be if the method had been applied to the original datum
shifts. When inverse square distances were used (p = 2), the accu-
racy over Croatia was comparable to that achieved by Kriging and
minimum curvature.

In passing, it should be noted that inverse-distance weighting
canbe modified by introducing a "smoothing factor" into the values
of the weights. The control points closest to point P will have the
greatest influence on the value offp but f will not interpolate the
control points exactly. One version is given by Tomczak (1998)
which claims Keckler (1995) as its source. The latter is a user guide
to Surfer Version 6 (Keckler, 1995). The other version is given on
page 115 of Surfer (2002). A trial-and-error process for deriving
the smoothing factor is suggested in Woodson (2016).

This paper only considers the method of inverse-distance
weighting as an exact interpolator. The generic form in Surfer can
be used as such provided the smoothing factor to set to zero.

The method of "inverse distance to a power" can be used to
generate a rectangular mesh of pseudo-data points from which
further interpolation is done by means of bilinear or bicubic func-
tions. This may be unnecessary because of the simplicity of the
inverse-distance method itself.

In geospatial science, data is often defined over a region of the
Earth represented by an ellipsoid, with coordinates given in lati-
tude and longitude. The method can be applied is one of two ways.
A projection could be applied to generate plane coordinates from
which distances between points are computed using Pythagoras’s
theorem. Alternatively, ellipsoidal distances can be computed, ei-
ther by a rigorous formula for geodesics such as the one in Sodano
(1965) or by an approximate formula, such as a Pythagorean esti-
mate using the arc lengths between the latitudes and longitudes of
the respective points.

3 Hybrid inverse power function embodying ac-
celerated decline (HIPFEAD)

One of the serious deficiencies of inverse-distance weighting for . >
1, noted by Franke and Nielson (1991), is "undue influence of points
which are far away" especially for p = 2. Simply removing the
influence of points beyond a certain distance would affect continuity
and smoothness.

The new method offers a solution to this problem. It involves a
new process for calculating weights of function values for distance-
related interpolation. It resembles inverse distance to a power. How-
ever, it imposes a limit-of-influence, removing the influence of
control points beyond a given distance rmax from the point of in-
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Figure 2. Effect of radial partitioning on the weights defined by the hy-
brid inverse square function for interpolation at P

terest. It does this by a smooth join (at r = rjy;,) between inverse
distance to a power and a low-degree polynomial function of dis-
tance. The latter accelerates the decline of the weighting function,
hence its name.

For the weighting of function values at control points on a sur-
face around point P, the effect can best be illustrated by Figure 2.
The circles defined by r = rjo;, and r = rmax can be regarded as
"radial partitioning" of the area of interest. The unlabelled dots are
illustrative control points.

The simplest form of the polynomial component is ¢ (rmax — r)*
where c is a constant. For the weighting function to be continuous
and smooth atr = rjy;, the following equations need to be satisfied:

W
Yrigin = € (rmax - rjoin) ; (6)

1 n-l
—ufri = —uc (max = ioin) - )

From these equations, it is easily deduced that
Tjoin = 'max — Tjoin- (8)

Substituting into (6),

— 21
c=1rg (9)
Rearranging (8),
'max = erom. (10)

This ensures a balance between a gradual tapering-off and ex-
clusion of influence from faraway points. A value of rmax smaller
than 2r;,;, would make the transition from 1/r* to zero relatively
abrupt. A value of rmax larger than 2ljoin would compromise the
objective of limiting the number of points used in the interpolant.

The HIPFEAD version of interpolation formula (1) defines the
distance-dependent weights as follows:

1/r# if o<r< Tioins
w(r) = [<2r]-0,~n - r) /rjzm-n]u if  Tjoin <1< 2gip; (11
(o] if r> eroin.

The smoothness of the weighting function ensures that
HIPFEAD generates a C! surface. Figures 3 and 4 illustrate the
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Figure 4. HICFEAD with rjy;, as the defining constant

HIPFEAD weighting function in the cases 1 = 2and p = 3. These
are the subtypes of HIPFEAD considered in this project:

- Hybrid inverse square function embodying accelerated decline
(HISFEAD), in which inverse square distance is joined smoothly
to a quadratic polynomial. HISFEAD can be considered a modifi-
cation of weighting by inverse square distance.

- Hybrid inverse cubic function embodying accelerated decline
(HICFEAD), in which inverse cubic distance is joined smoothly
to a cubic polynomial. HICFEAD can be considered a modifica-
tion of weighting by inverse cubic distance.

The application of HIPFEAD has a similar problem to inverse
distance to a power, namely a near-zero divisor when the point of
interest is close to a control point. In (11), w; = co when d; = 0.

The solution is similar to that used in (3) and (4). Define j by
equation (4), making it the subscript of the nearest control point. If
d;j > rjoin the proximity problem does not arise. If d; < rjyj,, which
means the reciprocal of wj is d].“, then formula (1) can be replaced

by

fP = [f} + Z deWl'fi]/[l + Z d]qu] (12)
i i

This avoids the need to compute w;.

One potential characteristic of HIPFEAD is the interpolant taking
a constant value over one or more sub-areas. This will happen if
there is an area for which for which only one control point is within
distance rmax; the interpolant will take the value of f at that control
point for the whole of that area. (This is, of course, a characteristic
of all sub-areas in the case of nearest-neighbour interpolation.)

A problem arises if a point of interest is more than rmax from
every control point. There are two would-be solutions, but each of
them is problematic:

- Setting the interpolated f to zero in sub-areas which are at least
rmax from all control points; but this introduces discontinuities
at the boundaries of those sub-areas.

- Setting the interpolated f to nearest neighbour in sub-areas
which are at least rmax from all control points; but this intro-
duces discontinuities across lines which are equidistant from
two control points.

It is therefore a prerequisite for HIPFEAD that rmgy is sufficiently
large to ensure that every possible point of interest is within rmax
of at least one control point. One way of ensuring this is to impose
arectangular grid over the area of interest, setting a grid interval
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of Al This ensures that every point in the area is within Alv/2 of a
mesh point. The distance to the nearest control point is computed
for each mesh point. The largest of these values is set to dpy,;;,. Then
any value of rmax that exceeds d,;, + Alv/2 will ensure that every
point is within rmax of a control point. The quantity d,,;, + Alv2
can be considered as a grid-based lower limit on rmax.

The upper limit on the choice of rmgx depends on how far is
considered too far to have an influence on the interpolated value
of f.

4 Case studies

The case studies are all simulated. They are defined in subsets of
the (x, y) plane. Coordinates are in linear units such as (but not
necessarily) metres. The function f(x, y) being interpolated can be
visualised as a surface, so in terms of graphical representation f can
be visualised as a ""height"".

Data points were generated in the chosen areas using pseudo-
random numbers. '"Height" values were created by combining
smooth continuous functions of different types (exponential, log-
arithmic, rational, trigonometric, etc) so as to imitate a non-
mathematical physical surface. The advantage of so doing is that
the accuracy of the interpolants can be measured against the same
combinations of functions.

The methods compared were inverse-distance weighting (in-
verse square and inverse cubic)) and HIPFEAD (HISFEAD and
HICFEAD). They were applied initially to the original data and then
to the "signal" after the removal of a trend model. In each case,
the latter was a bivariate quadratic polynomial of the normalised
coordinates that gave the best least-squares fit to the control points.

4.1 Casestudy1

The first study considered a square region defined by 0 < x <
40000 and 0 < y < 40000. Pseudo-random numbers were used to
generate 1525 data points in the region. 1681 computation points
were defined at 1000-unit intersections, so that 160 were boundary
points and 1521 were non-boundary points.

The pseudo-physical surface was generated by the following
combination of functions:

f =15 + 1.3 sin(x/4000) + 2.3 cos(y/5500) + 261/(x + 123.5)
+£416.9/(40280 — y) + (20000 — x)/(y + 12000)
+ 0.9 exp[—{(x - 21452)* + (y — 33461)*}/4000000]
- 13exp[—{(x — 15436)” + (y — 22786)*}/3000000]
+exp[—{1.2 (X — 37755)> + 0.8 (Y — 28044)>3/3500000]
— exp[—{0.86 (x — 11458)* + 1.14 (Y — 3865)>1/5500000].

(13)

An overview of the surface is given in Figure 5. The grid points in
the defined region coincide with the decimal points of the '"height"
values. They are 2500 units apart, which means that the diagram
does not capture all the complexities of the surface generated by
equation (13).

The trend model obtained from the control data for the purpose
of deriving a signal was

Model = 13.48677 — 0.85755U + 0.85864V )
14
+1.50270U% + 0.55667UV + 4.67250V>.

The normalised coordinates U and Vin (14) are defined by
U = (x —20000)/20000 and V = (y — 20000)/20000. (15)

The results from the four methods are shown in Table 1.
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Figure 5. General-pattern surface map for case study 1

4.2 Case study 2

The second study considered a circular region defined by x? + y? <
250002, Pseudo-random numbers were used to generate 1564 data
points in the region. 1625 computation points were defined on con-
centric circles with radii 1000, 2000, ..., 25000 units so that the ith
circle has 5i equally-spaced computation points. That created 125
boundary points on the outermost circle and 1500 non-boundary
points on the inner circles.

The pseudo-physical surface was generated by the following
combination of functions:

f = (250000 — 3x)/(25000 + 0.00004x2)

+(0.00012y — 2)? [/2 + 0.00004y (16)
+30s[0.0004 (x + V)]
+50000/(750000 + X — y).

An overview of the surface is given in Figure 6. The grid points in
the defined region coincide with the decimal points of the '"height"
values. They are 2500 units apart, which means that the diagram
does not capture all the complexities of the surface generated by
equation (16).

The trend model obtained from the control data for the purpose
of deriving a signal was

Model = 12.23124 — 1.95742U — 10.61535V ()
17
- 5.21667U2 + 1.00573UV + 10.27861V>.

The normalised coordinates U and V in (17) are defined by
U = x/25000 and V = y/25000. (18)

The results from the four methods are shown in Table 2.

4.3 Case study 3

The third study considered the trapezoidal region illustrated in
Figure 7. Pseudo-random numbers were used to generate 1504 data
points in the region. 1126 computation points were defined where
units-of-1000 gridlines crossed each other (except less than 500
units from the boundary) and where they crossed the boundary.
That created 131 boundary points and 995 non-boundary points.
The pseudo-physical surface was generated by the following
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Table 1. Quality of fit from the different interpolation methods for Case Study 1

Inv Square Inv Cubic HISFEAD HICFEAD
RMS for 160 boundary points 1.351 (0.844) 0.906 (0.655)  0.825(0.674)  0.816 (0.682)
RMS for 1521 non-boundary points 0.512 (0.380) 0.135 (0.124) 0.091(0.099)  0.086 (0.088)
RMS for all 1681 computation points  0.641(0.446) 0308 (0.234)  0.269(0.228)  0.264 (0.226)

Figures in brackets give the "signal" RMS when the 6-parameter trend model is removed.

Table 2. Quality of fit from the different interpolation methods for Case Study 2

Inv Square Inv Cubic HISFEAD HICFEAD
RMS for 125 boundary points 3.044(1.329) 1238 (0.866)  0.993(0.855)  0.844(0.735)
RMS for 1500 non-boundary points ~ 1.447(1.129)  0.571(0.537) 0.460 (0.427)  0.399 (0.364)
RMS for all 1625 computation points ~ 1.626 (1.146)  0.647(0.569)  0.521 (0.471) 0.450 (0.405)

Figures in brackets give the "signal'' RMS when the 6-parameter trend model is removed.
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Figure 6. General-pattern surface map for case study 2
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Figure 8. General-pattern surface map for case study 3

combination of functions:

_ (%/8000 + 3)* + (y/6000 — 5)
/% + X[8000 — y[18000
+ (/18000 — 0.2) In(14 + X/1600)

f

+ (X/16000 + 0.3)* In(16 + y/1800) (19)

+ /7 — x/5333 exp(y/18000 — 1)
+ /5 — ¥/9000 exp(x/16000 — 1).

Anoverview of the surface is given in Figure 8. The grid points in
the defined region coincide with the decimal points of the '"height"
values. They are 2000 units apart, which means that the diagram
does not capture all the complexities of the surface generated by
equation (19).

The trend model obtained from the control data for the purpose
of deriving a signal was

Model = 19.18808 + 3.92375U — 12.78205V (20)
20
+5.20684U% + 2.64749UV + 5.97880V2.
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Table 3. Quality of fit from the different interpolation methods for Case Study 3

Inv Square Inv Cubic HISFEAD HICFEAD
RMS for 131 boundary points 3.491(0.161) 1.281(0.085)  0.651(0.061) 0.579 (0.053)
RMS for 995 non-boundary points 1.176 (0.037) 0.241 (0.011) 0.163(0.009)  0.172 (0.008)
RMS for all 1126 computation points ~ 1.625(0.065)  0.492(0.031)  0.270 (0.022)  0.255 (0.020)

Figures in brackets give the "signal" RMS when the 6-parameter trend model is removed.

The normalised coordinates U and V in (20) are defined by
U = x/16000 and V = y/18000. (21)

The results from the four methods are shown in Table 3.

5 Discussion

In all three case studies the most accurate interpolation method is
HICFEAD, followed by HISFEAD, inverse cubic and inverse square.
Although this applies to Case Study 3 overall, HISFEAD gives a 5%
better fit than HICFEAD at the non-boundary points, but only when
there is no trend model.

The case studies confirm the expectation that introducing a
trend model and treating the residuals as a signal to be interpolated
improves the accuracy of all four methods. The extent depends
on the variations in the data and the type of trend model that is
chosen. The improvement is least (14% to 30%) in Case Study 1,
where the HIPFEAD methods show a slight accuracy reduction at
the non-boundary points.

The case studies show a tendency for HICFEAD to give a better fit
than HISFEAD. This is part of a general tendency for inverse cubic
distance to give a better fit than inverse square distance. Given that
the former has a tendency to produce wider flat areas and steeper
slopes, it may not always be a better interpolator. The study by
Musashi et al. (2018) favoured 2 as the best value of ., although it
should be noted that the interpolation made no use of trend models.

One problem which is common to all the methods based on
inverse distance to a power (including HIPFEAD) is the absence of
extrapolation outside the bounding polygon of control points. This
is the reason for the fit at boundary points being inferior to that at
non-boundary points, which are more likely to be in the bounding
polygon. This is, in fact, a further reason for using a trend model,
since a suitably chosen one will have an element of extrapolation
around the bounding polygon.

Inverse-distance weighting and the enhanced versions pro-
posed in this paper are exact interpolants with respect to those
data points used as control points. As with other surface-fitting
methods, in order to have an independent estimate of accuracy,
some data points will need to be set aside as test points or verifi-
cation points, where the interpolation will produce residuals. In
cases where the data is a finite set of actual physically-generated
"height" values, interpolation cannot be exact at all of them if there
is to be a meaningful accuracy estimate for the region as a whole.

The main conclusion of this study is that a transition range of
accelerated decline improves the accuracy of by inverse-distance-
weighting 2D interpolation. The diminished influence of distance
points is achieved by an adjoining polynomial of the same power as
that applied to inverse distance.

As a result, comparisons between inverse-distance weighting
and other methods of interpolation need to be reconsidered in the
light of the accuracy improvements obtainable using HIPFEAD. To
illustrate this point, consider the datum transformation example
of Grgic et al. (2016). Inverse square distance weighting was found
to give comparable accuracy to Kriging and minimum curvature,

and better accuracy than the other methods obtainable from Surfer

software. This strongly suggests that HIPFEAD (with p = 2 or
p = 3) would give superior results to any method in that study.
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