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A B S T R A C T   

Read-across, wherein information from a data-rich chemical is used to make a prediction for a similar chemical 
that lacks the relevant data, is increasingly being accepted as an alternative to animal testing. Identifying 
chemicals that can be considered as similar (analogues) is crucial to the process. Two resources have been 
developed previously to address the issue of analogue selection and facilitate physiologically-based kinetic (PBK) 
model development, using read-across. Chemical-specific PBK models, available in the literature, were collated 
to form a PBK model dataset (PMD) of over 7,500 models. A KNIME workflow was created to accompany this 
PMD that can aid the selection of appropriate chemical analogues from chemicals within this dataset (i.e. 
chemicals that are similar to a target of interest and are known to have an existing PBK model). Information from 
the PBK model for the source chemical can then be used in a read-across approach to inform the development of a 
new PBK model for the target. The application of these resources is tested here using two case studies (i) for the 
drug atenolol and (ii) for the plant protection product, flumioxazin. New PBK models were constructed for these 
two target chemicals using data obtained from source chemicals, identified by the workflow as being similar 
(analogues). In each case, the published PBK model for the source chemical was initially reproduced, as accu
rately as possible, before being adapted and used as a template for the target chemical. The performance of the 
new PBK models was assessed by comparing simulation outputs to existing data on key kinetic properties for the 
targets. The results demonstrate that a read-across approach can be successfully applied to develop new PBK 
models for data-poor chemicals, thus enabling their deployment during early-stage risk assessment. This assists 
prediction of internal exposure whilst reducing reliance on animal testing.   

1. Introduction 

Demonstrating the safety of chemicals is essential to protect the 
health of individuals who are exposed (e.g., operators or consumers). 
However, for many chemicals there is a lack of data on which to base 
safety assessment decisions. These decisions require information on both 
hazard (effect or potency) and exposure (both internal and external) to 
determine overall risk to health. Physiologically-based kinetic (PBK) 
models can simulate concentration–time profiles of chemicals in the 
blood and individual internal organs providing a dose metric that is 
more realistically associated with the potential to elicit an effect. PBK 
models can be both time- and resource-intensive to build due to the large 
number of parameters required and the difficulties in obtaining these 

[1]. Data required to build a PBK model de novo include: physiological 
parameters (e.g., organ volumes, blood flow rates); absorption, distri
bution, metabolism and excretion (ADME) properties (e.g., intrinsic 
clearance and intestinal absorption); and physico-chemical properties 
(e.g., octanol:water partition coefficients and pKa) [2]. Due to these 
demands, PBK models are available for relatively few chemicals. 

Read-across is an approach wherein information from a data-rich 
(source) chemical is used to fill in knowledge gaps for a data-poor 
(target) chemical [3,4]. It has previously been shown that a PBK 
model for one chemical can be used to inform the development of a PBK 
model for another chemical in a read-across approach, providing that a 
PBK model is available for a “similar” chemical [5,6]. Thompson et al. 
(2021) have previously published a PBK modelling dataset (PMD), 
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comprising information on existing PBK models [7]. These authors have 
also developed a structured framework for identifying similar (source) 
chemicals to a target of interest [8]. The framework for identifying 
similar chemicals uses a KNIME workflow to assist analogue selection, 
subsequently referred to herein as the KWAAS. Within this framework, 
similar chemicals (analogues) can be identified using similarity in terms 
of chemical structure, physico-chemical or ADME properties. Although 
it is preferable to use experimental data when populating a PBK model 
with chemical-specific information, there are an increasing number of 
resources for estimating values for both physico-chemical and ADME 
properties in silico when experimental data are not available. Resources 
for obtaining or predicting physico-chemical and ADME properties, have 
been reviewed recently [9,10]. Experimental or predicted properties can 
be incorporated into the KWAAS and used to refine the selection of 
analogues. 

The KWAAS provides a structured approach to determining simi
larity using physico-chemical properties, chemical fingerprints or other 
criteria, such as ADME properties, as selected and optimised by the user 
[8]. Herein we provide evidence of the practical applications of the 
approach by describing two case studies where read-across was used in 
the development of new PBK models for two target chemicals - atenolol 
(a commonly used drug) and flumioxazin (a plant protection product). 
Existing PBK models are available for both atenolol and flumioxazin; 
however, these chemicals were chosen so that the parameters obtained 
from the newly-developed PBK models could be compared to existing 
models to validate the approach. Hence atenolol and flumioxazin 
represent “pseudo-unknowns” rather than true unknowns. The KWAAS 
(as described by Thompson et al. [6]) was used firstly to identify existing 
PBK models for the two targets and then to identify PBK models for 
analogues. The existing models for the analogues were reproduced, as 
accurately as possible before being adapted to use as “templates” to 
build PBK models for the target chemicals. The performance of the 
newly-derived PBK models was assessed by comparing blood concen
tration–time profiles with existing data from the literature. Model 
assessment was undertaken for each new PBK model created using 
global sensitivity analysis and comparison of fold error for key metrics – 
maximum concentration (Cmax), time to reach maximum concentration 
(Tmax), and the area under the concentration–time curve (AUC). 

2. Methods 

2.1. Identifying analogues, with an existing PBK model, from the PBK 
modelling dataset (PMD) using the KWAAS 

This paper is Part 2 of a study into using a read-across approach to 
build PBK models for chemicals lacking data. For details on how to 
obtain and use the KWAAS, along with information on how analogues 
are selected and the types of output available, please refer to the linked 
publication [8]. Here, we report the application of the KWAAS to two 
case studies and an assessment of the quality of the new models devel
oped for the two target chemicals, atenolol and flumioxazin. Initially, 
the InChiKeys for the two target chemicals were obtained from Pub
Chem (https://pubchem.ncbi.nlm.nih.gov) and used to search the PMD 
for existing models for the two chemicals. These targets had been 
selected as they were known to have existing PBK models, hence the in 
vivo data from these models could be used to assess the predictions from 
the newly developed models generated using the read-across approach. 
The chemical name and SMILES string of the two chemicals were 
inputted into the KNIME workflow to calculate structural similarity to 
other chemicals in the PMD, using nine different fingerprints, before 
being refined to identify those chemicals that were also similar in terms 
of their physico-chemical properties. In this case, chemicals with simi
larity scores of 0.6 and above were included for further refinement. A 
Tanimoto score of 0.6 or above has been proposed previously as a 
suitable cut-off value for identifying similar chemicals [11]. Analogue 
selection was refined based on molecular weight being within ± 50 % of 

the target chemical’s molecular weight and log P or log D values being 
within ± 1. The purpose of selecting property ranges within finite values 
is to identify a suitable number of analogues that are considered suffi
ciently similar by these criteria. The values can be set at any range the 
user selects, this is in part determined by the number of analogues 
identified at each stage (i.e. if too many analogues are suggested a 
narrower range can be used; if too few are identified the cut-off values 
can be adjusted to encompass a wider range). Further explanation of 
selection criteria is given in Thompson et al [8]. 

2.1.1. Atenolol 
The analogues for atenolol, selected by the KWAAS at each stage in 

the workflow, are shown in Fig. 1. Using the nine fingerprints to identify 
similar chemicals resulted in eight potential analogues being identified. 
Atenolol has a molecular weight of 266 Da and log P of − 0.11. Hence 
when refining the results of the similarity analysis, chemicals with a 
molecular weight of 266 Da ± 50 % (i.e., 133–399 Da) and log P of 
− 0.11 +/- 1 (i.e., − 1.11–0.89) were sought. The KNIME workflow 
suggested six analogues based on chemical fingerprints and molecular 
weight, one of which was atenolol itself. After refining the results of the 
chemical similarity analysis by incorporating molecular weight, three 
chemicals (other than atenolol) were identified. The final selection of 
the analogue PBK model to use for atenolol, involved filtering the results 
of initial analogue identification, based on availability of full equations, 
humans being the subjects used, and the drug being administered via the 
oral route. This corresponds to Stage 3 of the previously described 
KWAAS. 

Analysis of the proposed analogues at different stages of the work
flow were undertaken to assess the suitability of the analogues suggested 
at each stage. A PBK model for propranolol was determined to be the 
most suitable after refinement at the molecular weight stage. When 
refining further and including log P as a similarity metric only one 
analogue was suggested, salbutamol, (the other two chemicals remain
ing at this stage were atenolol itself and a metabolite of the beta-blocker 
metoprolol). Thus, salbutamol was chosen as a second chemical to use as 
a template to explore the effects of using the KWAAS at different levels of 
refinement. 

2.1.2. Flumioxazin 
Fig. 2 summarises the results at each stage of the workflow for flu

mioxazin. This chemical has a molecular weight of 354 and log P of 
1.9281. These values were used for assessing similarity as well as 
including information on pKb (3.31) and log D (2.55) at pH 5.5. Ranges 
used for the inclusion of analogues at each stage of the workflow were: 
molecular weight, 177–531; log P, 0.9281–2.9281; pKb, 2.31–4.31; and 
log D, 1.55–3.55. 30 different chemicals were initially identified when 
fingerprints alone were considered for similarity. Further refining of the 
analogues resulted in only one candidate analogue remaining after pKb, 
and log D were included in the similarity assessment. An existing PBK 
model for flumioxazin was also identified. Information from this model 
was used for comparison when assessing the accuracy of the model 
developed using the analogue as a template. As only one chemical, 
rivaroxaban, was determined to be similar after all stages of the KWAAS, 
it was selected to be used as a template for building a model for 
flumioxazin. 

2.2. Selecting the most appropriate analogue for read-across 

2.2.1. Atenolol 
The propranolol PBK model developed by Kiriyama et al [12] was 

used as a template for atenolol. The output from an atenolol PBK model 
by Peters [13] was used for comparison and to assess the accuracy of 
using the propranolol model as a template. To ensure that comparisons 
can be made between the PBK model used for read-across and the 
observed data from the literature, the most similar dosing scenarios 
were selected for comparison. Both the Kiriyama et al. [12] and the 
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Peters [13] models were developed for oral dosing in human. The 
original propranolol model from the Kiriyama et al. paper [12] was 
reproduced, and the equations, parameters, and variables were used as a 
template for atenolol, where chemical-specific information was changed 
to be that of atenolol using predictive software or data from the litera
ture. The atenolol model output and observed data from Peters (2008) 
[13] were used to validate the template model. To assess the suitability 

of analogues at different stages of the workflow, a salbutamol PBK model 
described by Boger & Fridén [14] was used as a second analogue 
chemical model to predict atenolol concentrations. As with the pro
pranolol analogue PBK model, the atenolol data from Peters [13] was 
used for comparison to assess the accuracy of the template model. Both 
the Boger & Fridén [14] and Peters [13] models were designed for oral 
dosing in humans. The model for salbutamol was used as a template, 

Fig. 1. Results for identifying analogues for atenolol at each stage of using the KWAAS. The arrow on left indicates the criteria used to refine the selection at 
each stage. 

Fig. 2. Results for identifying analogues for flumioxazin at each stage of using KWAAS. The arrow on left indicates the criteria used to refine the selection at 
each stage. 
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adapting the chemical inputs to be for atenolol. 

2.2.2. Flumioxazin 
The PBK model for rivaroxaban by Yamazaki-Nishioka et al. [15] was 

used as a template for flumioxazin. The data from a PBK model for 
flumioxazin itself, published by Takaku et al. [16] was used for com
parison to assess the accuracy of the new read-across PBK model for 
flumioxazin (based on rivaroxaban). Both models simulate oral dosing in 
humans; however, Takaku et al. [16] modelled data for a pregnant 
woman. 

2.3. PBK models 

Source chemical PBK models from the literature were firstly repro
duced as accurately as possible for the source chemical itself, before 
being adapted for the target chemical. The ordinary differential equa
tions for each model were solved in MATLAB using the numerical 
regression solver for stiff differential equations (ode15s) to simulate 
concentration–time plots. All PBK model details can be found in the 
Supplementary material. 

2.3.1. Propranolol PBK model 
The PBK model for propranolol described by Kiriyama et al [12] was 

used in the analysis. The model has 13 compartments: arterial, venous, 
lung, brain, heart, liver, spleen, gut, kidney, adipose, muscle, bone, and 
skin. Elimination of the chemical from the body is assumed to be via 
metabolism in the liver [12]. The equation for gut was adjusted to 
simulate the dose entering the system and all other parameters remained 
as described in the original paper. The Supplementary material includes 
full details of the propranolol PBK model and the modifications used for 
atenolol. The doses used for the propranolol simulations were 10, 40, 80, 
and 160 mg. These were the same doses used within the reports for 
comparing model simulations with observed data. For atenolol, the dose 
used was 100 mg, i.e., the same dose as used in the Peters publication 
[13]. The dose entering the body (2 mg) was calculated by including 
bioavailability (equations in Supplementary material). 

2.3.2. Salbutamol PBK model 
Boger and Fridén [14] outlined a nine-compartment model consist

ing of lung, liver, spleen, gut, rapidly perfused organs, slowly perfused 
organs, and adipose. The organs are linked by arterial and venous blood. 
The model allows for both oral and inhalation administration routes, 
with the lung being split into 24 airway compartments, with further 
splitting of these airway generations into three separate compartments 
(epithelial lining fluid, epithelium, and sub-epithelium). However, for 
simplicity the lung compartment was reduced to one equation in this 
analysis as the inhalation route of administration was not relevant here. 
The equations for all other compartments were reproduced exactly from 
the original paper. The Supplementary material includes full details of 
the salbutamol PBK model and the model adaptations for atenolol. 
Salbutamol has an active enantiomer (R-salbutamol); however, as it is a 
mix of the enantiomers being modelled, both were considered in com
bination. Thus, clearance was calculated as a weighted average of each 
enantiomer. 

2.3.3. Rivaroxaban PBK model 
A minimal PBK model consisting of hepatic, blood, urine, and gut 

compartments for oral administration of rivaroxaban was described by 
Yamazaki-Nishioka et al. [15]. When adapting the model for flumiox
azin, no blood-plasma concentration ratio value could be found (neither 
from online ADME property predictors nor from literature). Flumioxazin 
is a neutral, lipophilic compound so it was assumed that the ratio was 
equal to 1 [17]. The supplementary material provides the full details of 
the rivaroxaban PBK model, and the model adaptations used for 
flumioxazin. 

2.4. Model assessment 

2.4.1. Fold error calculation 
For each source model (i.e. the original model reproduced from the 

literature) and the model as adapted for the target (i.e. the literature 
model for the source chemical with adaptations to make it relevant for 
target chemical) the most common pharmacokinetic metrics, i.e., time 
taken to reach the maximum concentration (Tmax), the maximum con
centration (Cmax), and the area under the curve (AUC), were calculated 
and compared with literature estimates to assess accuracy. The fold 
error was calculated in each case by taking a ratio between the predicted 
and literature values so that it was always greater than 1. 

2.4.2. Sensitivity analysis 
The general-purpose software OpenCOSSAN (https://cossan.co.uk; 

accessed October 2023) was used to perform global sensitivity analysis 
of all three models developed (i.e., two models for the target atenolol, 
based on propranolol and salbutamol, and one model for the target 
flumioxazin based on rivaroxaban). Sobol indices were calculated to 
determine which parameters had the most significant impact on model 
AUC. The Sobol indices method determines the significance of each 
input parameter and the contribution of their interactions to variance in 
model output. The full range of each input parameter variation and in
teractions between parameters are evaluated. The method involves the 
generation of random parameter vectors based on assigned parameter 
probability distributions (e.g., normal, log normal, etc.) and a sampling 
method (e.g., Monte Carlo, Latin Hypercube, Halton, etc.). Normal 
probability distributions and a Monte Carlo sampling method were used. 
Results from the global sensitivity analysis are illustrated with a Lowry 
plot, where parameters are ranked according to the magnitude at any 
given time of the total effects from left to right as a bar chart. The main 
effect and any interactions with other parameters together make up the 
total effect and the variance due to parameter interactions is represented 
by a ribbon across the plot [18]. 

3. Results 

3.1. Comparison of data from existing and newly-generated PBK models 

3.1.1. Propranolol PBK model 
Simulations of propranolol at doses 10, 40, 80 and 160 mg were 

applied to reproduce the PBK model from Kiriyama et al [12] with 
comparisons to observed data for propranolol obtained from Kopitar 
et al. [19]. The comparisons are shown in Fig. 3. Simulations of pro
pranolol with a dose of 80 mg best fit the observed data. The approach 
was able to successfully reproduce the original model, as shown in Fig. 3 
(c.f. results from Kiriyama et al. [12]). Overall, the Kiriyama model fits 
well across all doses. Discrepancies between model-simulated outputs 
and the observed data at lower doses could be a result of the difficulties 
in quantifying the chemical in the blood at such low concentrations. 

Key physico-chemical information in the model was replaced with 
data for atenolol but organ volumes, blood flow rates, and model 
equations remained the same. Fig. 4 shows the predicted atenolol 
simulation compared to observed and predicted atenolol data from Pe
ters [11], alongside propranolol predicted and observed data. The 
overall line shape of atenolol using the analogue chemical model (i.e., 
the model for propranolol) is similar to Peters (see Fig. 3a from Peters 
[11]). The peak concentration of atenolol can be seen approximately 2 h 
after administration of the dose with a gradual decline in concentration 
as the chemical is cleared. 

The propranolol model using the output at a dose of 40 mg from the 
literature was reproduced, with the predicted Cmax and Tmax comparable 
with that observed in Kiriyama et al [10]. Predicted AUC was calculated 
to be within a 1.8-fold error of the Kiriyama et al simulations. The 
resulting read-across model for atenolol produced AUC and Cmax values 
within 3-fold error of the observed values from Peters [13]. A fold error 
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of 3 in the context of PBK model development and validation is not 
considered unreasonable [18,19]. However, the Tmax was within a 1-fold 
error. Predicted Cmax, Tmax and AUC values for propranolol and atenolol 
are noted in Table 1 as are the literature values used for comparison. 

3.1.2. Salbutamol PBK model 
Fig. 5 shows the reproduced salbutamol PBK model compared to 

observed data from Boger & Fridén [14] as well as the predicted atenolol 
simulations compared to observed and predicted data from Peters [13]. 
This used the model equations, organ volumes and blood flow rates for 
salbutamol as a template for simulating atenolol, with the physico- 
chemical information adapted to be the values for atenolol. The salbu
tamol simulation accurately represented the observed data, and likewise 
the line shape of the atenolol simulation was similar to the atenolol data 
and simulation of Peters [13]. 

The Boger & Fridén salbutamol model was reproduced well, result
ing in comparable values for Cmax and AUC. Using the analogue chem
ical (salbutamol) model as a template, atenolol simulations were 
reproduced well (1-fold error) for Cmax and Tmax and AUC within a 2-fold 
error compared to the observed data. All Cmax, Tmax and AUC values 
predicted, and literature values are summarised in Table 2 with fold 
errors also given. 

3.1.3. Rivaroxaban PBK model 
The rivaroxaban PBK model from Yamazaki-Nishioka et al. [15] was 

reproduced see Table 3. Rivaroxaban and flumioxazin simulations are 
shown in Fig. 6, as well as flumioxazin data [16]). Flumioxazin con
centration predictions do not reduce over time as would be expected 
when compared to the data reported by Takaku et al. [16]. 

The pharmacokinetic metrics Cmax and AUC (no Tmax values were 

Fig. 3. Simulations of propranolol at doses 10 (-), 40 (-), 80 ( − − − ) and 160 
mg ( − − − ) using the PBK model described by Kiriyama et al. [12]. Individual 
data points of observed propranolol data from Kopitar et al. [19] at doses 10 
(●), 40 (○), 80 (▪) and 160 mg (□). 

Fig. 4. Predicted propranolol (40 mg dose, blue line) and atenolol (100 mg 
dose, yellow line) simulations compared to observed data from the literature 
(propranolol observed data from Kiriyama et al. [12] (Cmax represented by a 
blue square); and atentolol observed data from Peters [13] (observed Cmax 
represented by a yellow square and predicted by a yellow triangle)). 

Table 1 
Comparisons of Cmax, AUC, and Tmax of propranolol and atenolol to the literature 
[12,13]. Fold errors of predictions are also shown.   

Propranolol Kiriyama et al.  
[12] 

Atenolol Peters  
[13]  

Cmax (µg/ml)  0.0312 0.03  0.1296 0.3942 
Fold error  1.0 3.0 
AUC (µg⋅min/ 

ml)  
11.3699 6.25  62.4018 195.6001 

Fold error  1.8 3.1 
Tmax (min)  92.39 90  155.9400 102 
Fold error  1.0 1.5  

Fig. 5. Predicted salbutamol (2 mg dose, blue line) and atenolol (100 mg dose, 
yellow line) simulations compared to observed data from the literature (Boger 
& Fridén, (blue squares); and Peters (yellow square and triangle)). 

Table 2 
Comparisons of simulated Cmax, AUC, and Tmax for salbutamol and atenolol to 
the literature [14,13]. Fold errors of predictions are also given.   

Salbutamol Boger & Fridén [14] Atenolol Peters [13] 

Cmax (nmol/l)  16.1614  18.8464 1467.9 1480 
Fold error  1.2  

1.0 
AUC (nmol⋅h/l)  168.5676  181.0549 18,152 12,240 
Fold error  1.1  

1.5 
Tmax (h)  2.4  3.9 3.7 1.7 
Fold error  1.6  

2.2  
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available for comparison from Yamazaki-Nishioka et al. [15] for rivar
oxaban) were predicted using a reproduced version of the rivaroxaban 
PBK model, following an oral dose of 5 mg. Results were compared to 
measured data from Yamazaki-Nishioka [15]. Predicted and observed 
PK metrics are compared in Table 3 for both rivaroxaban and flumiox
azin. The model reproduced key metrics for rivaroxaban when 
compared to simulations in Yamazaki-Nishioka et al [15] furthermore, 
the flumioxazin metrics compared well to the literature. The line shape 

when using the analogue chemical model is not the same as Takaku’s 
flumioxazin simulation. Some differences are expected since the sex and 
life stage used in developing the model for the analogue chemical are 
different to those used in the comparator data reported in Takaku et al. 
[16]. 

3.2. Sensitivity analysis 

Global sensitivity analysis (GSA) results are visually presented in 
Figs. 7-8 using Lowry plots. The Lowry plot consists of bars for each 
parameter and its associated main effect (black bar), interactions with 
other parameters (grey bar), and the cumulative frequency of variance 
due to interactions (blue ribbon). The upper bound of the ribbon rep
resents the cumulative sum of the total effects and is indicated by a red 
dashed line. Parameters to the left of the red dashed line are those 
considered to have a significant contribution to the total variance. 

3.2.1. Source model: Propranolol 
Results of the GSA when using the propranolol PBK model as a 

template to develop the atenolol model are summarised in Fig. 7. The 
fraction absorbed from the intestinal tract (fa) was highlighted as the 
most sensitive parameter, contributing most to model output, with the 
total effect contributing to over 50 % of the variance. In addition, the 
blood-plasma concentration ratio (Rbp), fraction unbound in the plasma 
(fup), intrinsic clearance (CLint) and fraction unbound in the blood (fB) 
also had significant overall effects on the model. However, the rate of 
absorption (ka) was deemed to only have a small contribution to the 
total variance of the model output. Thus, the fraction absorbed is 
considered to be a key feature within the model. 

3.2.2. Source model: Salbutamol 
Global sensitivity analysis of the salbutamol model when used as a 

template for atenolol highlighted three parameters that significantly 
contributed to the total variance: clearance (CL), blood-plasma ratio, 
(R), and slowly perfused tissue-to-blood partition coefficient (kppp). 
Fig. 8 shows the Lowry plot for the global sensitivity analysis for the 
salbutamol template model for atenolol. The clearance was the most 
influential parameter on the model, accounting for 45 % of the variance 
due to main effects and up to 92 % including interactions. The slowly 
perfused tissue-to-blood partition coefficient and blood-plasma ratio 
contributed a further 3 % and 5 % total effect on variance, respectively. 
The absorption (ka) and the gut tissue-to-blood partition coefficient 
(kpgu) were deemed to be relatively less sensitive. 

Table 3 
Comparisons of Cmax, and AUC of rivaroxaban and flumioxazin to the literature 
[15,16]. Fold errors of predictions are also given.   

Rivaroxaban Yamazaki-Nishioka 
et al. [15] 

Flumioxazin Takaku et al. 
[16] 

Cmax (ng/ 
ml)  

117.0415 141 615.5223 856 

Fold error  1.2 1.3 
AUC 

(ng⋅h/ 
ml)  

768.4955 816 21,864 19,351 

Fold error  1.1 1.1  

Fig. 6. Predicted rivaroxaban (5 mg dose, blue line) and flumioxazin (1,000 mg 
dose, yellow line) simulations compared to observed data for flumioxazin from 
the literature (Takaku et al. [16] represented by yellow squares. 

Fig. 7. A Lowry plot showing the results of global sensitivity analysis when using propranolol as the template model for atenolol.  
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3.2.3. Source model: Rivaroxaban 
All input parameters that were adapted during model building (i.e. 

from the values for rivaroxaban in the source model, to the values for 
flumioxazin (the target) were analysed for uncertainty. These were 
adapted by using data from literature or predictive software (e.g. Opera 
https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-opera 
/opera; accessed October 2023) and ADMETlab (2.0 https://admetmesh 
.scbdd.com/service/evaluation/index; accessed October 2023). The rate 
of absorption (ka) was found to be the most sensitive and significantly 
contributed to the total variance, with a total effect of 55 %. Renal 
(CLrenal) and intrinsic clearance (CLint) contributed to the total variance, 
20 % and 8 % respectively, as well as blood-plasma concentration ratio 
(Rb), 8 %. A summary of the sensitivity analysis in a Lowry plot is shown 
in Fig. 9. The fraction unbound in the plasma (fup) had some effect, but 
this was not statistically significant. 

Sensitivity analysis can help to identify reasons for discrepancies 
between data derived from the model and the literature data, by iden
tifying the parameters that have the most influence on the model. 
Highlighting these parameters as a priority for further investigation 
helps to improve the accuracy of the model as it is iteratively refined. 
Figs. 7-9 identify these most influential parameters as determined in the 
two exemplar case studies here. For the propranolol template model 
(used to derive a model for atenolol) influential parameters were frac
tion absorbed in gut, intrinsic clearance and factors relating to 

partitioning in blood. For the salbutamol template (used to derive a 
model for atenolol) key parameters again related to clearance and par
titioning in blood as well as partitioning between poorly-perfused tissues 
and blood. In the case of the rivaroxaban model (used to derive a model 
for flumioxazin) key parameters were rate of absorption, clearance and 
partitioning in blood. Parameters relating to absorption and clearance 
are often not only defining parameters for overall internal exposure but 
also are recognised (particularly in the case of clearance) to be highly 
variable when measured experimentally. To improve model accuracy, it 
is essential that these parameters are further investigated. For example, 
additional searches within the literature may be conducted to obtain 
corroboratory information to increase confidence in the values obtained 
for these key parameters. Alternatively, sensitivity analysis can help to 
identify which in vitro assays may yield the most valuable information 
for increasing the accuracy of the model. 

4. Discussion 

One asset for safety assessment of chemicals would be the ability to 
use existing PBK models as templates to inform the development of new 
PBK models, for chemicals lacking this information. This would also be 
of benefit to the reduction, refinement, and replacement of animal 
testing (3Rs). The previous paper by Thompson et al. [8] described the 
development of a KWAAS to identify similar chemicals with available 

Fig. 8. A Lowry plot showing the results of global sensitivity analysis when using salbutamol as the template model for atenolol.  

Fig. 9. A Lowry plot showing the results of global sensitivity analysis when using rivaroxaban as a template model for flumioxazin.  
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PBK models to a target chemical. Validation of the KWAAS was under
taken in this paper, where case studies for two chemicals, atenolol and 
flumioxazin, were undertaken. It was demonstrated that, for the two 
chemicals selected, the KWAAS identified suitable analogues. The PBK 
models for these analogues were used, successfully, to inform the 
development of PBK models for the target chemicals, with key phar
macokinetic metrics (Cmax, Tmax and AUC) falling within an acceptable 
range of published values. 

In attempting to reproduce PBK models from the literature, several 
problems were identified which highlight some of the potential pitfalls 
in the approach. For the PBK model reported in Kiriyama et al. [12] and 
used to develop a model for atenolol, there were multiple values quoted 
for the fraction absorbed from the intestinal tract (fa) with no clarity as 
to the actual value used. Additional parameter values for fraction un
bound in the blood (fB) and blood-plasma concentration ratio (Rbp) were 
only available in secondary references. Furthermore, there were also 
inconsistencies in the reporting of equations compared to the repre
sentative PBK model schematic. The schematic indicated blood from the 
spleen and gut flows directly into the venous compartments, while the 
liver equation describes blood flow from the spleen and gut into the 
venous and liver compartments. There were also discrepancies in the 
calculations for the stomach compartment. Inconsistency in reporting of 
any parameters or equations will result in discrepancies in the model 
output. This may explain why the AUC could only be reproduced within 
a 2-fold error, although lineshape of the curves were similar and Cmax 
and Tmax were reproduced reasonably well. 

The second chemical with a PBK model used as a template for 
atenolol was salbutamol. The Boger & Fridén model [14] for salbutamol 
was reproduced successfully, as judged by comparison of model output 
to literature values; however, there were difficulties regarding how the 
model was reported. There was a lack of clarity regarding blood flow and 
organ volumes, as calculated using body weight, and discrepancies be
tween the PBK model schematic and the equations employed. 
Notwithstanding, accurate simulations of atenolol concentration dy
namics (including lineshape) were successfully produced by using the 
salbutamol model as a template, as demonstrated by comparison with 
previously published in vivo data. Using the source chemical salbutamol 
as a template in a read-across approach for building a PBK model for 
atenolol gave more accurate predictions than using the propranolol PBK 
model as a template. This suggests that, in this instance, further 
refinement of analogue selection was of benefit in model building. 

For the second case study chemical, flumioxazin, only one chemical 
(rivaroxaban) was identified as being sufficiently similar following 
analogue selection and refinement using the KWAAS. The minimal PBK 
model for rivaroxaban was reproduced successfully and used as a tem
plate for flumioxazin. Values for Cmax and AUC were predicted reason
ably well as compared to literature values but the lineshape was 
dissimilar. The predicted liver-to-plasma concentration ratio (Kphep) and 
blood-plasma concentration ratio (Rb) assumption of 1 could have 
affected the lineshape of the curve. A workflow for adapting parameters 
to improve predicted lineshape and better replicate observed values has 
been proposed by Peters [13]. A possibility in this case would be to adapt 
the tissue distribution coefficients by adding a multiplicative factor to 
the tissue partition coefficient values. Further, when considering the 
differences in rivaroxaban and flumioxazin parameters there were large 
differences in the fraction unbound in plasma (fup) and the absorption 
rate constant (ka) (see Supplementary material). Rivaroxaban had a fup 
of 0.203 and a ka of 1.42 h− 1 while flumioxazin had a fup of 0.03 and a ka 
of 0.005 h− 1. The differences in these kinetic parameters, between the 
source and target chemical, may explain why the rivaroxaban model 
does not replicate the correct lineshape for flumioxazin, although Cmax 
and AUC were reasonably well-predicted. 

The issues outlined above highlight some of the limitations of the 
present study. These include the use of only two case study chemicals, 
potential bias in selecting analogues and problems created by inconsis
tent or inadequate reporting of key parameter values needed for PBK 

modelling. It would be valuable for further case studies to be undertaken 
by users of the PMD and KWAAS to identify how these resources could 
be improved. One possibility would be to include additional properties 
of chemicals in the KWAAS, for example physico-chemical or ADME 
properties generated or obtained from resources that have been assessed 
for reliability. This may help to increase consistency in model devel
opment to some extent. Analogue selection should incorporate expert 
judgement of those working within a given chemical space with full 
justification given for selection. 

5. Conclusions 

The read-across approach outlined in this paper, wherein new 
models for the target chemicals atenolol and flumioxazin were devel
oped using PBK models for source chemicals, provides evidence of the 
effectiveness of using the KWAAS described by Thompson et al. [8] to 
identify chemical analogues. This paper demonstrates a potential 
contribution to the 3Rs in the area of safety assessment through the use 
of PBK modelling and read-across. Two case studies were carried out 
within this paper; however, application of the KWAAS to chemicals 
relevant to other sectors (e.g., botanicals, cosmetics, or industrial com
pounds) would be beneficial. 

To enable a successful read-across approach, all the information that 
is necessary to build the source PBK model needs to be clearly reported 
to allow for the adaptation and development of the new PBK model. 
However, when using software to predict values such as log P or pKa for 
example, any inconsistencies from these predictions will potentially be 
brought forward into the PBK model. The addition of ADME properties 
into the KWAAS, e.g., absorption or metabolism properties, may help 
with the selection and refinement of suitable PBK models for read- 
across. For example when developing a model for chemicals adminis
tered via the dermal route information regarding skin uptake may help 
in model selection e.g. the ability to refine by skin absorption parame
ters would allow for PBK models with similar kinetics to be identified. 

Discrepancies in reporting of PBK models leads to difficulties when 
attempting to reproduce PBK models from the literature. This problem 
has been highlighted previously [20]. The recently published OECD 
guidance on the characterisation, validation, and reporting of PBK 
models [21] should help to improve reporting if it is embraced by the 
PBK modelling community. Hence, use of this template is highly rec
ommended – other minimum reporting standards have also been rec
ommended by the European Medicines Agency [22], the US Food and 
Drug Administration [23] and a consortium of pharmaceutical in
dustries [24]. Other initiatives, such as the Biomodels database (htt 
ps://www.ebi.ac.uk/biomodels/; accessed October 2023), help to 
facilitate model reproducibility (or allow reporting of any problems 
identified in terms of reproducibility) and increase confidence in the 
application and re-use of existing models. As PBK models are resource- 
intensive to generate, applications that enable re-use or re-purposing 
of the models is an important step in capitalising on the rich informa
tion they hold. 
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