
Wei, R, Jiang, Z, Guo, X, Yang, R, Mei, H, Zolotas, A and Kelly, T

 DECISIVE: Designing Critical Systems With Iterative Automated Safety
Analysis

http://researchonline.ljmu.ac.uk/id/eprint/22067/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Wei, R, Jiang, Z, Guo, X, Yang, R, Mei, H, Zolotas, A and Kelly, T (2023)
DECISIVE: Designing Critical Systems With Iterative Automated Safety
Analysis. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems. p. 1. ISSN 0278-0070

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, DEC 2023 1

DECISIVE: Designing Critical Systems with
Iterative Automated Safety Analysis

Ran Wei, Zhe Jiang∗, Xiaoran Guo∗, Ruizhe Yang∗, Haitao Mei, Athanasios Zolotas and Tim Kelly

Abstract—Systems safety is becoming increasingly challenging
due to the presence of ever-more complex applications. Safety
analysis is an important aspect of Safety-Critical Systems Engi-
neering (SCSE) to discover problems in system design that can
potentially lead to hazards with risks that may lead to accidents.
Performing safety analysis requires significant manual effort —
its automation has become the research focus in the critical
system domain due to the increasing complexity of systems and
the emergence of open adaptive systems. In this paper, we propose
a novel methodology in which automated safety analysis drives
the design of safety-critical systems. We delve into the specifics of
our approach and the supporting tools. Additionally, we discuss
the method to integrate our approach into the current practice
of SCSE. The experimental results reveal that the proposed
approach with its supporting tool promotes the efficiency of
safety analysis significantly, whilst maintaining high degrees of
correctness, coverage and scalability.

I. INTRODUCTION

Safety-critical systems have stringent assurance and veri-
fication requirements that are essential to life-critical appli-
cation scenarios, including medical, automotive, aerospace,
and industrial automation [1]–[5]. In order to certify such
systems, justifications are required to argue and demonstrate
that they are acceptably safe to operate in defined operational
contexts. To illustrate such justifications, practitioners typically
list all the safety goals (and their relationships), the contextual
information regarding system configuration, environments, etc.
and most importantly, the evidence to substantiate that all
safety goals are met. The above form a compelling argument
regarding the safety of the system, which is typically organised
in an assurance case [1]. Prior to certification, an assurance
case must be rigorously, and often independently, evaluated to
ensure that the arguments and evidence for safety are coher-
ent and convincing [2]. Amongst the collection of evidence
required to argue the safety of systems, safety analysis results
hold a pivotal role.

Safety analysis is key in critical system engineering, primar-
ily identifying design issues — mostly arising from system
component failures — that can potentially induce hazards
and lead to accidents. Once identified, these issues should
be mitigated by improving the system design to enhance
the reliability of (part of) the system that performs critical
functions. In numerous industries, performing safety analysis

Ran Wei is with the University of Cambridge, UK.
Zhe Jiang is with Southeast University, China.
Xiaoran Guo is with Specialised research, China.
Ruizhe Yang is with Dalian University of Technology, China.
∗Corresponding authors.

is mandatory. Notable examples include the preliminary sys-
tem safety assessment in SAE ARP4761 for the aerospace
industry [6] and the safety analysis in ISO 26262 for the
automotive industry [7]. As suggested in [8], safety analysis
is required in the entire engineering lifecycle, i.e., from the
earliest planning phase until the end of the development and
verification phases.

Manual effort is heavily required in safety analysis tech-
niques due to its highly subjective nature and the need for
analysts’ skills. However, the growing complexity of safety-
critical systems, coupled with the emergence of Open Adaptive
Systems [8], present considerable challenges for such manual
approaches. Therefore, there’s an imperative need for auto-
mated safety analysis methods to: (i) address the increasing
complexity of critical systems, thus improving efficiency in
system development; (ii) integrate into the system assurance
process to enable the automated validation of system assurance
cases; (iii) transition system assurance activities from design
time to runtime (e.g. analysis and monitoring), guaranteeing
assurance for the open adaptive systems with runtime uncer-
tainties.

Contributions. In our previous work [4], we presented DE-
CISIVE (DEsigning CrItical Systems with IteratiVe automated
safEty analysis), a critical system design methodology, driven
by automated, model-based safety analysis. We also presented
SAME (Safety Analysis Management Environment), a tool
prototype which exploits the benefits of Model-Based Systems
Engineering (MBSE) to enable automated safety analysis by
means of automated fault injection (within Matlab/Simulink).
As SAME heavily relied on Matlab/Simulink, accompanied
with SAME, we proposed SSAM (Structured System Architec-
ture Metamodel), a modelling language which can be used to
describe system components. On model instances that conform
to SSAM, we developed a graph algorithm to perform safety
analysis in an automated manner. However, SSAM in [4] was
only able to create very simple block-based representations of
systems. Since then, we have received rather a large number
of requests to support DECISIVE and SAME on models
defined in multiple platforms (e.g. Simulink, PTC Integrity
Modeler [9], MagicDraw [10]). We motivate this work on the
following identified requirements:

• REQ1: SSAM shall provide facilities to support engi-
neering activities such as requirement elicitation, hazard
identification, system design and failure modelling at
multiple levels so that these models can be federated.

• REQ2: SSAM models shall contain the traceability to
external, heterogeneous models, so that data contained
in such models can be extracted by SAME and used in

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3340596

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: LIVERPOOL JOHN MOORES UNIVERSITY. Downloaded on December 09,2023 at 07:05:24 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, DEC 2023 2

the safety analysis. The users shall be able to define the
traceability and rule to extract such data.

• REQ3: SAME shall provide a graphical user interface to
support the above and existing functions.

In this paper, we revise SSAM and SAME in order to fulfil
the requirements identified above. We discuss how the revised
SSAM can be used in requirement engineering, hazard analysis
and risk assessment as well as system design, and demonstrate
how data from users’ model can be fused into a SSAM model
and be used in the automated safety analysis. We make the
following additional contributions:

• A comprehensive modelling language (SSAM) which
allows the users to create a) system safety requirement
models; b) hazard analysis and risk assessment models;
and c) block-based system component models on different
levels of abstraction.

• A tested transformation algorithm to transform Simulink
models to SSAM without information loss.

• A designed facility in SSAM, with support from SAME,
to enable the traceability to heterogeneous models defined
in different technologies, and federate such information,
based on users’ needs in the automated safety analysis.

• A graphical model editor in SAME for SSAM to support
the existing functions, as well as the functions identified
above.

• The integration of DECISIVE and the above into Safety
Critical Systems Engineering processes, as well as an in-
depth evaluation for our approach in terms of correctness,
coverage, efficiency and scalability.

II. PRELIMINARIES AND MOTIVATION

A. Safety-Critical Systems Engineering Lifecycle

The precise definition of a Safety-Critical System Engi-
neering (SCSE) lifecycle, and particularly the terms used,
depends on the respective application domain. For the sake of
simplicity, we use the terms defined in ISO 26262 [7], which
is the mandatory safety standard for the automotive industry.

The objective of SCSE is to ensure the ’freedom from
unacceptable risk.’ Risk typically refer to a combination of a)
the probability of harm, and b) the severity of that harm. The
harm is caused by hazardous events (when a hazard, a specific
operational context and a specific configuration of the system
coincide). The preliminary step in any lifecycle pertaining to
SCSE involves the identification of these hazardous events and
the assessment of their associated risks, which is typically
referred to as Hazard Analysis and Risk Assessment (HARA).

Based on the findings from HARA, safety requirements
are derived. Each safety requirement contains a functional
part and an integrity level. The functional part specifies the
functions that the system must (or must not) perform, whilst
the integrity level specifies the degree of rigour necessary for
the implementation of this requirement. Typical examples of
integrity levels include Safety Integrity Levels (SILs) defined
in IEC 61508 [11], and the Automotive Safety Integrity Levels
(ASILs) defined in ISO 26262 [7].

Then, safety analyses are performed (taking available devel-
opment artefacts as input) in order to identify potential causes

of the identified system failures, safety requirements may be
broken down into specific requirements based on the analysis
results. A wide range of established analysis techniques has
been developed [12]–[14], amongst which Failure Modes and
Effects Analysis (FMEA) and Fault Tree Analysis (FTA) are
the most widely used safety analysis techniques in practice.

With the analysis results, safety concepts can be de-
rived [8]1. Safety concepts include all relevant safety require-
ments and their allocation to functions and components. Based
on the safety concept, an assurance case (or safety case) shall
be developed [1], which forms the basis for certification. SCSE
is incremental and iterative, when new hazards are identified,
or system requirements are changed, every artefact along the
process of SCSE shall be updated and re-validated to analyse
the impact of all changes.

B. Failure Modes, Effects, and Diagnostic Analysis (FMEDA)

Failure Modes and Effects Analysis (FMEA) is one of
the most adopted techniques for safety analysis, which is a
mandatory requirement in the development of safety-critical
systems in various domains. Examples of these include EN
50128 for railway systems [3], DO-178C for avionics [15], and
ISO 26262 for automotives [7]. The primary goal of FMEA
is to comprehensively identify the Failure Modes (FMs) of
components and subsequently analyse their potential effects on
the overall system. This analysis helps determine the causes
of potential hazards, with the ultimate aim to mitigate risks
by improving system design [14].

FMEA procedures. Conducting an FMEA on a system
involves the following steps:

• Step 1: decompose and partition the system into compo-
nents concerning safety.

• Step 2: identify the function of each component, and its
characteristics (safety-related or non-safety-related).

• Step 3: determine potential FMs of each safety-related
component (and the probability distributions for the
FMs). This can be obtained through the component man-
ufacturer, or from certain documents (e.g. MIL-HDBK-
338B).

• Step 4: for each FM of the safety-related component,
analyse their impacts on the whole system.

In addition to FMEA, Safety Mechanisms (SMs) can also
be deployed on components. SMs provide additional safety
coverage (in terms of percentage by approximation) to de-
crease the probability of failure for components. FMEA with
safety mechanism analysis is typically referred to as Failure
Modes, Effects and Diagnostic Analysis (FMEDA), therefore
an additional step is needed:

• Step 5: apply SMs for the components, and quantitatively
analyse the diagnostic coverage for the FMs.

In Table I, we illustrate an example of FMEDA on a Phase
Locked Loop (PLL) using the above steps2. FMEDA is a
quantitative analysis, as system architecture metrics can be

1Although the terminology of safety concept is defined in ISO 26262 [7],
it is often used in different domains to signify the same notion

2Comp.: Component; Char.: Characteristic; FM: Failure Mode; Dist.: Dis-
tribution; SMs: Safety Mechanisms; Cov.: Coverage.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3340596

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: LIVERPOOL JOHN MOORES UNIVERSITY. Downloaded on December 09,2023 at 07:05:24 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, DEC 2023 3

TABLE I
FMEDA ON PHASE LOCKED LOOP (PLL), DVF/IVF:

DIRECTLY/INDIRECTLY VIOLATE SAFETY GOAL.

Char. FM Impact Dist SMs Cov.
lower

frequency DVF 40.1% time-out
watchdog 70%

safety-
critical

higher
frequency IVF 28.7% N/A 0%

jitter DVF 31.2% dual-core
lockstep 99%

derived from the results of FMEDA. Such metrics include Sin-
gle Point Fault Metrics (SPFM) from the ISO 26262 standard,
indicating the percentage of single point faults covered by a
system design. In ISO 26262, four Automotive Safety Integrity
Levels (ASILs) are defined (ASIL-A to ASIL-D), where ASIL-A
is the least stringent level and ASIL-D the most stringent one).
For different ASILs, ISO 26262 require different target SPFM
values; for ASIL-B, the SPFM shall be ≥ 90%, ≥ 97% for
ASIL-C, and ≥ 99% for ASIL-D. Details of SPFM calculation
are discussed in Section V.

C. The Need for Automation and Model Federation

Safety analysis such as FMEA often requires manual effort,
as they are highly subjective and largely depend on the
analysts’ skills [8]. However, as the complexity of systems
increases, manual safety analysis reaches its bottleneck and
faces significant challenges [16]. In [4], we identified the need
for automation for safety analysis in the sense that:

• Performing FMEA manually on complex systems is a
lengthy, labour-intensive and error-prone process.

• Manual FMEA is not feasible for SCSE as SCSE is an
iterative process, which may cause safety problems due
to uncovered failure modes.

• The emergence of Robotics and Autonomous (RAS) with
Open and Adaptive nature requires that some of the
safety-related activities, including safety analysis, to be
performed at runtime [8].

One current and pressing challenge that could be prioritised
for automated safety analysis, is the lack of ability to federate
information across multiple types of models defined in differ-
ent platforms/technologies. For example, to perform FMEA,
the failure rates, failure modes and their probability distribu-
tion is typically required. To perform FMEDA, information
regarding applicable safety mechanisms for components is
typically needed. On a higher level, components and their
respective requirement shall typically link, and the failure
modes of a component shall also be associated with identified
hazards. On the SCSE level, FMEA results shall also be
associated with evidence that supports safety goals. In the
current state of practice, the above has not been properly
addressed. In this work, we aim to provide a research direction
to address the above challenges.

III. APPROACH OVERVIEW

We now re-iterate our approach, DECISIVE (DEsigning
CrItical Systems with IteratiVe automated safEty analysis),
its processes are shown in Figure 1. There are five steps

in DECISIVE, in which both system development artefacts
(upper swim lane) and system assurance artefacts (lower swim
lane) are derived. We discuss mainly DECISIVE with model-
based support (as it promotes automation for the safety anal-
ysis process). However, it is worthy to note that DECISIVE
may also be followed without model-based support (therefore,
losing the benefit of automation).

In Step 1, the system (to be developed) is planned. First,
the system definition is specified (which includes system
boundaries, functions, running environments, etc.). From the
system definition, the function requirements of the system are
produced. Along with the definition of the system, Hazard
Analysis and Risk Assessment (HARA) shall be performed,
after which a hazard log will be produced.

In Step 2, the system is designed, based on the function
requirements and hazard log in Step 1. The system design can
be of any level (for ISO 26262, there are conceptual level,
system level, hardware level and software level). In this step,
system safety requirements are formed, which are then taken
into consideration to produce a system architectural design.

In Step 3, reliability data related to each component of
the system (e.g. the failure mode(s), the failure mode distri-
bution and the probability of failure for each component) is
aggregated into the system design. The reliability data can be
obtained from various sources, such as standards (e.g. MIL-
HDBK-338B) and component manufacturers, which form a
component reliability model.

In Step 4a, the system design is evaluated based on each
component’s reliability data. In this paper, we focus on FMEA
and its variants. The tasks in this step can be fully automated
with our tool support, which automatically determines safety-
related components and their failure modes. Afterwards, a
component safety analysis model is produced, from which
architectural metrics (such as Single Point Failures Metric –
SPFM) can be derived. It is to be noted that this safety analysis
model is optional – our tool support allows the architectural
metrics to be calculated and an Excel-based FMEA table is
always produced.

An optional Step 4b can be taken, in which further (in-
place) refinement to the system design is possible. In this
step, analysts can deploy safety mechanisms to components
(e.g. from a safety mechanism model). Safety mechanisms can
help diagnose failures of components, and can significantly
decrease the probability of failures for components. Once
safety mechanisms are deployed to components, analysts can
go back to Step 4a and evaluate the system design, to check
if the refined design meets the target safety integrity level. It
is to be noted that Step 4b can only be taken if the safety
mechanism deployment and Step 4a can be automated (which
is achieved in our tool support). This means that analysts do
not have to make actual changes to the system design – they
can import the safety mechanism model which will be used in
the evaluation of the system design to compute architectural
metrics. This means they can enumerate and deploy the safety
mechanisms to components until they find the best trade-off
between safety and cost (which are often primary concerns for
safety-critical systems engineering). Of course, chosen safety
mechanisms need to be added to the system architectural

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3340596

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: LIVERPOOL JOHN MOORES UNIVERSITY. Downloaded on December 09,2023 at 07:05:24 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, DEC 2023 4

Fig. 1. Stages and key artefacts of the DECISIVE methodology.

design in the next iteration of the DECISIVE process, with
a proper change management process (e.g. as standardised in
Clause 8 of ISO 26262 [7]), which is not the focus of the
DECISIVE process).

In Step 5, once the system design is deemed acceptably safe,
a safety concept can be synthesised. With the model-based
approach, the safety concept may contain traceability among
artefacts and may be taken as input for model-based safety
management of the system in its entire development life cycle.
Afterwards, all artefacts produced throughout the DECISIVE
process can be integrated into the System Assurance process
in a broader scope, in which such artefacts can be used to
provide contextual and evidential information in a (presumably
model-based) Assurance Case to argue the safety at the upmost
system level.

DECISIVE is iterative as its name suggests, whenever there
are changes to the system definition or system requirements, or
when new hazards are identified, the DECISIVE process shall
be repeated to determine the impacts of the changes. However,
since steps that require heavy manual effort (Steps 3 and 4)
can be automated, we argue that practitioners can focus more
on planning and designing the system (Steps 1 and 2), and the
whole design process is driven by automated safety analysis.

IV. TOOL SUPPORT

DECISIVE can be supported by model-based tools to fully
exploit the benefit of automation brought by Model Based
System Engineering (MBSE). In this section, we discuss
our model-based tool support – Safety Analysis Management
Environment (SAME).

In our previous work [4], SAME was designed to manage
primarily Matlab/Simulink models in an automated manner.
The automated failure injection algorithm and the automated
execution of the Simulink models are organised in a workflow
in the sense that no graphical user interface is provided for
SAME. For SAME to be more generic, we proposed a simple
metamodel, named Structured System Architecture Metamodel
(SSAM), which uses simple blocks and relationships to repre-
sent system components, we also provided a proof-of-concept
model transformation which is able to transform Simulink
models to SSAM models and use graph algorithms to perform
automated FMEA on the SSAM model.

In this paper, we revise SSAM and turn it into a compre-
hensive modelling language, so that it can be used to capture
multiple aspects of the design process for safety critical
systems (to address REQ1 in Section I). We also design a
facility for SSAM to trace to external, heterogeneous models
(to address REQ2 in Section I). We enhance SAME by pro-
viding a graphical model editor to better support DECISIVE
(to address REQ3 in Section I). In addition, we provide a
comprehensive model-to-model transformation to demonstrate
how Simulink models can be transformed into SSAM models
with no information loss.

A. Relevant Technologies

SAME leverages the following related technologies to sup-
port the automated safety analysis:

• Eclipse Modelling Framework (EMF). EMF [17] is one of
the most widely used modelling languages in the context
of MBSE. EMF provides the Ecore modelling language
which allows the rapid development of Domain Specific
Languages (DSLs).

• Eclipse Epsilon. Epsilon [18] is an integrated model
management platform which supports the automated
management of models defined in arbitrary modelling
technologies.

• Eclipse Sirius. Sirius [19] enables the users to create
a graphical modelling workbench by leveraging Eclipse
Modelling technologies (e.g. EMF). By defining View-
Points in Sirius, users are able to create complex graphical
modelling editors with complex functionalities.

• Matlab/Simulink. Matlab/Simulink provides a graphical
block-based framework that enables the modelling, sim-
ulation and analysis of systems and supports model man-
agement operations like code generation and continuous
model verification [20].

We make use of EMF to create a comprehensive Structured
System Architecture Metamodel (SSAM), using which practi-
tioners are able to create requirement packages, hazard logs
and system designs on any level of abstraction. We then use
Eclipse Sirius and SSAM to create a graphical model editor.
In the editor, not only the users are able to create their system
design models using SSAM, but they can also have a high

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3340596

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: LIVERPOOL JOHN MOORES UNIVERSITY. Downloaded on December 09,2023 at 07:05:24 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, DEC 2023 5

Fig. 2. Base Component of SSAM.

Fig. 3. Requirement Component of SSAM.

degree of traceability, both internal and external, as discussed
in Section IV-B. For this purpose, Epsilon’s EMC is exploited
to create model drivers to access models defined in different
frameworks. We then integrate the FMEA function for both
SSAM and Simulink to SAME to support DECISIVE.

B. SSAM and its tool support
With RQ1 and RQ2 in Section I in mind, we revise the

Structured System Assurance Metamodel (SSAM). The aim is
to design SSAM so that it becomes a generic and extensible
metamodel that allows users to create models related to
safety analysis (and transform their existing system design to
SSAM), to be used for automated FMEA and to be integrated
into the design process as well as the assurance process of
safety-critical systems. The revision of SSAM focused on the
following principles:

• Extensibility. Components of SSAM are extensible,
SSAM contains a Base module, which allows the users to
extend SSAM and adapt SSAM to their own needs with
minimal efforts.

• Modularity. SSAM consists of a number of modules
which can be used specifically for requirement engineer-
ing, hazard identification, system architecture design and
failure modelling; they are organised into packages, so
that they can exist independently, for reuse and inter-
change.

• Traceability. SSAM is designed to enable the traceability
from SSAM models to (arbitrary) external and heteroge-
neous models (models defined in arbitrary technologies),
so that a SSAM model can act as a federation model to
integrate system information and be integrated into the
process of SCSE.

1) Base Module: The base module of SSAM is shown
in Figure 2. The base module is relatively complex since
facilities are designed to promote extendability, modularity and
traceability. The core SSAM element is ModelElement, where
it has a name (of type LangString, which allows the users to
specify a string as well as the language used), and a number
of UtilityElements, the important ones are:

• ImplementationConstraint, which allows the users to
attach constraints (including machine-executable con-
straints) to the ModelElement;

• ExternalReference, which allows the ModelElement to
refer to information that exists outside the SSAM model
(e.g. to refer to a reliability model). In the ExternalRefer-
ence, the users are able to specify: the location, type and
the metadata of the external model (if it exists), and fi-
nally the (machine-executable) implementationConstraint
which, when executed, are able to pull information from
the external model.

A ModelElement is also able to “cite” another ModelEle-
ment, in the sense elements inside a SSAM model may have
traceability to elements that may be organised in another
package. With the above UtilityElements, a ModelElement is
able to provide multi-language support, as well as traceability
to external models.

2) Requirement Module: The requirement module (that ex-
tends the Base module) is shown in Figure 3. Element Require-
mentElement is an abstract of requirement elements, including
Requirement, SafetyRquirement and RequirementRelationship.
RequirementElements are organised in RequirementPackages,
which may have a number of RequirementPackageInterface,
in the sense that requirements can be modular, reused and
interchanged.

3) Hazard Module: The hazard module of SSAM is shown
in Figure 4. Again, the hazard module extends the base
module. Element HazardElement is the abstract for all hazard-

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3340596

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: LIVERPOOL JOHN MOORES UNIVERSITY. Downloaded on December 09,2023 at 07:05:24 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, DEC 2023 6

Fig. 4. Hazard Component of SSAM.

Fig. 5. Architecture Component of SSAM.

Fig. 6. MBSA Component of SSAM.

related elements, and HazardElements are organised in Haz-
ardPackages, which in turn may have a number of Hazard-
PackageInterfaces. HazardElements allows the users to model:

• HazardousSituation, which may occur due to a Cause. A
HazardousSituation may have a severity and a probabil-
ity3.

• ControlMeasures may be associated to HazardousSitua-
tions so that it can be mitigated to an acceptable safety
level.

• A ControlMeasure may have a SafetyDecision, which
provides the safety decision rationale to deploy such

3It is to be noted that SSAM does not adhere 100% to ISO 26262, to
promote generality.

ControlMeasure.
• A ControlMeasure may also have a Validation plan and

an Effectiveness of Verification (EoV) in the sense that
the ControlMeasure is verified and validated so that it
can mitigate the HazardousSituation.

4) Architecture Module: The architecture module of SSAM
is shown in Figure 4. ComponentElement is the abstract for
all architecture-related elements, and ComponentElements are
organised in ComponentPackages, which in turn may have a
number of ComponentPackageInterfaces. The ComponentEle-
ment allows the users to model:

• Component, which represents an atomic component in the
user’s systems. It may have a FIT (Failure-In-Time, 10−9

failures/hour). It also has a safety integrity level, which
implies different levels of rigours for different application
domains. The component may also have a Component-
Type, which may be system, hardware or software. The
Component may be safety related, indicating if any of the
failure modes would cause a hazardous event. In addition,
the Component may also be dynamic, which we will
discuss briefly later.

• ComponentRelationship, which connects two Compo-
nents. Function, which may have a tolerance type: 1oo1
(1 out of 1), 1oo2, 1oo3 or 2oo3.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3340596

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: LIVERPOOL JOHN MOORES UNIVERSITY. Downloaded on December 09,2023 at 07:05:24 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, DEC 2023 7

• IONodes, to capture the inputs and outputs of Compo-
nents. They also may contain the values being passed
and the lower and upper limits of the values.

• FaiulreMode, to capture the failure modes of a Compo-
nent.

• FailureEffect, which allows the users to capture the effect
of the failure.

• FailureEffect may be used to refer to another Component
by using the “cite” reference as described in the base
component.

• SafetyMechanism, to capture the safety mechanism that
can be deployed on a Component to achieve diagnostic
coverage.

5) MBSA Module: The Model-Based Systems Assurance
(MBSA) module is shown in Figure 6. This package also
extends the base package.

Fig. 7. MBSA editor for SSAM tool support.

6) SAME with graphical editor: To enable the users of
SSAM to create content-rich models to design their systems or
map their system designs to SSAM (in an automated manner),
we developed a graphical modelling tool support for SSAM
using Eclipse Sirius [19] and integrated it into SAME. The tool
support provides hierarchical graphical editors, which allows
the users to create different packages of SSAM discussed in
previous sections. Figure 7 illustrates the graphical editor for
MBSAPackage.

With the facilities in the Base component of SSAM, we are
now able to extract and federate information across external
and heterogeneous models. Figure 8 illustrates the property
editor for a component named D1. The users may specify
attributes of the component, such as the id, name, FIT, and
integrity level of the Component. In the Internal Reference
section, the users may also relate to the Requirements (which
can be modelled in the Requirement editor) in the same
SSAM model. In the External Reference section, the users
may specify the location and the metadata of their own system
design model/file, from which information can be extracted.
In the Validation field, the users may specify the operation to
be performed on their system design model. In the example
in Figure 8, a script created using the Epsilon Object Lan-
guage (EOL) is used to extract the information in the system
model regarding component D1. In this way, information

Fig. 8. Design editor for SSAM tool support.

from external, heterogeneous models may be extracted in
an automated manner, in order to perform automated safety
analysis supported by SAME.

Fig. 9. Failure mode modelling.

The users may delve into a component and model the failure
modes, as shown in Figure 9. Upon inspection of the failure
modes, the users may model the Failure Mode type, its Cause
and Exposure. In the Reference section, the users can associate
Hazards (which can be modelled in the Hazard editor of
SAME) that relate to the failure mode. In addition, the users

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3340596

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: LIVERPOOL JOHN MOORES UNIVERSITY. Downloaded on December 09,2023 at 07:05:24 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, DEC 2023 8

may also refer to the affected components by this failure mode.
If the users choose to do so, the automated FMEA would use
this information and infer if the failure mode causes a single-
point fault for the system. Again, in the External Reference
section, the users may refer to an external model and extract
failure mode data from their own files/models.

The hierarchical editors for Requirements modelling and
Hazard modelling work in the same manner as the system
design modelling editor, which we would not go into details.
With the graphical editors, we support not only existing
functions such as automated FMEA with Simulink models, we
also support the in-detail modelling of requirements, hazards,
as well as system design. We also provide the users with
the flexibility to federate the information from their own
models/files for automated FMEA.

Figure 12 in Section V shows the component system design
editor, and the users may also model the IO nodes of the
components, specifying their lower and upper limits. This is in
place because the SSAM model not only can be used for static
safety analysis, it can also be easily converted to a runtime
monitoring algorithm4. In addition, we also implement an “im-
port” function, which executes model-to-model transformation
that transforms system architecture defined in arbitrary tools
(e.g. Simulink) into SSAM in an automated manner. Within
the system architecture editor, the users may invoke automated
FMEA on any level (note that the Components may be nested)
and may choose to import a Simulink into the editor.

C. Fitting into SCSE

The artefacts produced throughout the DECISIVE process
can be naturally integrated into the System Assurance process
– the FMEA results can be used as evidence to support the
argument that the system design is acceptably safe, within an
assurance case. Since FMEA is automated with the help of
SAME, it automatically renders it possible for an assurance
case to be automatically validated (provided that a model-
based assurance case is in place).

In addition, we have to emphasise that DESICIVE shall
be used alongside other guidelines in the development life
cycle of SCSE. In particular, we find Clause 8 (Supporting
Processes) of ISO 26262 to be most useful when it comes
down to engineering management (e.g. safety requirement
management, change management, configuration management,
etc.), and highly recommend that practitioners that intend to
use DECISIVE to follow such management guidelines.

To this extent, SSAM not only promotes the generality
of our approach, but we argue that SSAM can also help
with the integration of DECISIVE into SCSE. With SSAM
and its graphical modelling tool in place, threes things are
made possible: a) system designs defined in other modelling
technologies can be transformed (in an automated manner) into
SSAM models and the automated FMEA can be performed on
such models; b) system design can also be done using SSAM
and its graphical modelling tool, in which the information
regarding the system can be extracted and federated from
various sources; c) SSAM can be converted to a dynamic

4By declaring them as dynamic, to be discussed in future work

model, with runtime monitoring mechanism automated gen-
erated from SSAM (by declaring Components as dynamic).
Currently, the graphical tool for SSAM supports the extrac-
tion and federation of information defined using: Eclipse
Modelling Framework, Matlab/Simulink, Cameo/MagicDraw
Systems Modeller, XML, CSV, Excel, and other standards
such as IFC.

Fig. 10. Working process of SAME.

D. Working Process

The working process of SAME in relation to the DECISIVE
process is shown in Figure 10. The round shape with numbers
in them rendered in yellow is the ones that relate to the
DECISIVE steps for Simulink models, whereas the round
shape rendered in blue is the ones for SSAM models. The
blocks rendered in yellow are the main components of SAME.
We first illustrate how SAME supports the automated FMEA
on Simulink models and then we discuss how SSAM can be
used for non-Simulink models.

1) Support for Simulink: For Simulink models, DECISIVE
Steps 1 and 2 shall be performed independently, as they cannot
be modelled using Simulink.

In DECISIVE Step 3, a separate Reliability Model needs to
be provided so that SAME can keep track of the failure rate
and the failure modes (and their probability distributions) of
components. Since we leverage the extensible model drivers
of Eclipse Epsilon, SAME supports Reliability Model defined
in arbitrary modelling language. Reliability data can include,
for each component: a) Failure-In-Time (FIT) data, which
is the probability of failure for the component. Typically, 1
FIT is approximately 10−9 failures/hour; b) Failure modes
and their probability distribution. Take the Resistor component
type as an example, its failure modes can be open and short
in an electrical system; associated with the failure modes
are the probability distribution. For resistors, the probability
distribution for failure modes (open and short) are 30% and
70%, respectively.

DECISIVE Step 4a is to evaluate system design, in SAME,
we perform automated FMEA on the Simulink model with
imported information through Step 3. The principle of the
automated FMEA is based on failure injection [21], [22]. For
our approach, the failure injection is performed automatically
based on the failure modes of the components in the system

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3340596

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: LIVERPOOL JOHN MOORES UNIVERSITY. Downloaded on December 09,2023 at 07:05:24 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, DEC 2023 9

design. The automated FME(D)A on Simulink models follow
the steps below5:

1) Initialise: the values of the properties of all the compo-
nents are recorded.

2) Iterate Component
a) Iterate Failure Modes: For each component of the

system, SAME looks for their failure modes in the
Reliability Model. For a found failure mode, a failure
is injected into the system.

b) Compare Results: After a failure is injected, SAME
invokes Simulink’s simulate() function, and compares
the readings of the voltage/current sensor with the
readings before the failure injection. If the value differs
by a threshold, SAME marks the failure mode of the
chosen component as safety-related.

3) Output: After all components are iterated, SAME pro-
duces a Component Safety Analysis Model, this is what
engineers are particularly familiar with – the FMEA
result. In this step, it is also possible to compute the
architecture metrics, such as the SPFM.

In DECISIVE Step 4b, if the system design does not meet
the desired metrics (e.g. target ASIL), the design can be
refined. For this purpose, safety mechanisms (e.g. watchdogs,
redundancy) may be deployed on components. Safety mecha-
nisms act as a means of rectification of failures for components
when components fail, therefore improving the safety integrity
level of the whole system.

However, deploying safety mechanisms for components
manually would require the engineers to 1) look for safety-
related components in the system; 2) find cost-effective safety
mechanisms for the component; 3) deploy safety mechanisms
and calculate system safety integrity level; 4) repeat previous
steps if the target safety integrity level is not met. The above
manual process is automated by SAME, which was discussed
in our previous work.

2) Support for Non-Simulink models: As stated in Section I,
there is a clear need for DECISIVE tool support for non-
Simulink models. For this purpose, we make use of SSAM,
which can be used in two ways to achieve the automated
FMEA for non-Simulink models. First, the users may choose
to transform their models (e.g. requirements, hazard logs,
system designs) into SSAM models and perform the auto-
mated FMEA within SAME using the transformed model.
To demonstrate this, we have implemented a transformation
from the Simulink model to SSAM and tested its applicability
on multiple Simulink models6. Alternatively, if the users lack
tool support for requirements and hazard identification, they
can create such SSAM models and map their own require-
ments/hazards into SSAM with the external traceability facility
discussed in Section IV-B.

With SSAM in place, we naturally support DECISIVE
Steps 1-3. One remark on Step 3 is that instead of importing
reliability data from Excel, the users are free to model the
failure modes of the Components using SAME, and are able

5For a more detailed description, please refer to our previous work [4]
6https://github.com/wrwei/DECISIVE/blob/main/org.eclipse.epsilon.

simulink2ssam/test/simulink2dt.eol

to define the nature of the failure modes (e.g. loss of function).
This is essential for the automated FMEA to be performed. For
DECISIVE Step 4a, automated FMEA is performed following
Algorithm 1. The algorithm is able to determine if a failure
mode of the Component would render the end of a path (from
the Input of the Componeng to the Output of the Component)
unreachable (e.g. open for Resistors), in order to determine
safety-related failure modes.

In DECISIVE step 4b, the users may deploy Safety Mech-
anisms on their components and calculate the SPFM. Alter-
natively, the users may choose to extract information from
their own Safety Mechanism Model and let SAME determine
the solution for the target safety level and costs. If there are
multiple options available, the users may be able to model a
cost for each Safety Mechanism and provide weights on costs
(if there are many) and ask SAME to search for the pareto
front of viable solutions. The users can then choose the Safety
Mechanisms that they see fit. Most importantly, with the Safety
Mechanism in place, the changes in SSAM can be propagated
back to the original model (e.g. back to the Simulink model).

Algorithm 1: Determining single point failures for
SSAM models.

1 let component = the Component under analysis;
2 let paths = all possible paths containing nodes, between the

input node and the output node of the Component;
3 for c in {all Component contained in component} do
4 for fm in {all failure modes} do
5 if fm is loss of function or similar nature then
6 if c exists in all paths then
7 mark fm as safety related;
8 end
9 end

10 else
11 provide a warning on fm;
12 end
13 end
14 repeat this algorithm for c;
15 end

V. CASE STUDY

We now discuss a case study on which DECISIVE and
SAME are applied. In this case study, we look into a sim-
ple power supply system for a proximity sensor, which is
developed as a Safety Element out of Context (SEooC) as
per ISO 26262. We first discuss how DECISIVE is followed
by analysing a Simulink model, and then discuss the system
model created using SSAM.

A. Matlab

In DECISIVE step 1, we perform requirement elicitation
and hazard identification. We select a top-level hazard H1:
The power supply fails unexpectedly for consideration.

In DECISIVE step 2, we create a Simulink model based
on the requirements and identified hazards, part of which is
shown in Figure 11. In the system, DC1 is a 5V direct current
power source, D1 is a diode, L1 is an inductance, C1 and C2
are capacitors, GND1 is a ground reference, MC1 is a micro-
controller, CS1 is a current sensor. All other blocks are related

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3340596

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: LIVERPOOL JOHN MOORES UNIVERSITY. Downloaded on December 09,2023 at 07:05:24 UTC from IEEE Xplore. Restrictions apply.

https://github.com/wrwei/DECISIVE/blob/main/org.eclipse.epsilon.simulink2ssam/test/simulink2dt.eol
https://github.com/wrwei/DECISIVE/blob/main/org.eclipse.epsilon.simulink2ssam/test/simulink2dt.eol

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, DEC 2023 10

Fig. 11. A segment of the sensor power supply system designed using
Simulink.

to simulation, S1 is a solver configuration for the simulation,
Scope1 displays the signal coming out of CS1, and Out1 is
used to write the output of CS1 into Simulink’s workspace.
We also specify that our safety requirement for hazard H1
shall at least have a safety integrity level of ASIL-B (as per
ISO 26262).

TABLE II
EXAMPLE COMPONENT RELIABILITY MODEL.

Component FIT Failure Mode Distribution
Diode 10 Open 30%

Short 70%
Capacitor 2 Open 30%

Short 70%
Inductor 15 Open 30%

Short 70%
MC 300 RAM Failure 100%

In DECISIVE step 3, information from the Reliability Model
is aggregated into the model. In our case study, we use one
Excel spreadsheet containing reliability data, as shown in
Table II. In the reliability model, the required information
includes: 1) Component type; 2) FIT (failure-in-time, in 10−9
failures/hour); 3) Failure modes of components; 4) Probability
distribution of the failure modes for components.

In DECISIVE step 4a, automated FMEA is performed
following the steps discussed in Section IV-D. For our chosen
top-level hazard (H1), we are interested in correct readings at
CS1, and assume that DC1 is stable (i.e. over-voltage and
under-voltage are not considered). Therefore, safety-related
components are D1, L1 and MC1, and the automated FMEA
results produced by SAME supports this intuition (columns
Component, FIT, Safety Related, Failure Mode in Table IV).
In this step, we can also ask SAME to calculate the Single
Point Fault Metric (SPFM), based on the following equa-
tion (where SR HW denotes ‘safety-related hardware’, λSPF
denotes the failure rate of a component’s failure mode that
causes a single point fault, λ denotes the total failure rate of
a component):

SPFM = 1−
∑

SR HW(λSPF)∑
SR HW λ

(1)

In our example, the calculated SPFM is 5.38%, much less than
the required target value for ASIL-B (≥90%) in ISO 26262.

TABLE III
EXAMPLE SAFETY MECHANISM MODEL.

Component Failure Mode Safety Mechanism Cov. Cost(hrs)
MCU RAM Failure ECC 99% 2.0

In DECISIVE step 4b, we import a Safety Mechanism Model
to refine the existing design. The Safety Mechanism Model
shall contain: 1) Component type; 2) Component failure mode;
3) Safety Mechanism for such failure mode; 4) Coverage of
such safety mechanism for the failure mode. In our example,
we store such information in another Excel spreadsheet, as
shown in Table III, which contains only one entry: the safety
mechanism for MCUs (Micro Controller Units such as MC1 in
Figure 11). The type of safety mechanism that can be deployed
on the MCU is Error Checking & Correction (ECC), which
can cover 99% of RAM failures for MCUs. If the user chooses
to deploy such a safety mechanism, a FMEDA result may be
generated by SAME, as shown in Table IV. In our example,
the analysis shows that safety-related failure modes of the
components are: D1’s open failure mode, L1’s open failure
mode, and MC1’s RAM Failure mode. Since we deployed ECC
on MC1, and its diagnostic coverage is 99%, the FMEDA
shows that Single Point Failure Rate for MC1 is dropped to 3
FIT (10−9 failures/hour).

We can now re-calculate SPFM with the refined architecture
using Equation 1. This time it yields 96.77%, and achieves
ASIL-B as per ISO 26262. We can then invoke a proper change
management process (as per ISO 26262, but other standards
may also be followed) to deploy the ECC on MC1. This also
means that another iteration of DECISIVE shall be followed.

B. SAME and SSAM

We repeat the above process in Matlab using SSAM with
the SAME support.

In DECISIVE step 1, we create a Requirement Package, in
which system requirements are recorded. Again, we select the
top-level hazard H1: The power supply fails unexpectedly.

In DECISIVE step 2, we create the system design using the
graphical editor provided by SAME, as shown in Figure 12,
which is a 1-to-1 mapping to Figure 11. Again, the safety
integrity level for H1 is set to ASIL-B. Note that the SSAM
model in this case is used as a mapping model, which is able
to extract information only needed for FME(D)A from the
system models.

In DECISIVE step 3, the information from the Reliability
Model is aggregated into the SSAM model, using the external
model traceability facility provided by SSAM discussed in
Section IV-B6.

In DECISIVE step 4a, the automated FMEA is performed,
as described in Section IV-D2. We provide a context menu
entry which performs automated FMEA on SSAM models, to
determine safety-related components.

In DECISIVE step 4b, we model a safety mechanism (ECC
as discussed in Section V-A) directly on MC1, and model the
coverage by ECC, we are able to achieve the same SPFM of
96.77%, and the automated calculation of ASIL for the model
yields ASIL-B.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3340596

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: LIVERPOOL JOHN MOORES UNIVERSITY. Downloaded on December 09,2023 at 07:05:24 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, DEC 2023 11

TABLE IV
GENERATED FAILURE MODE AND EFFECT DIAGNOSTIC ANALYSIS (FMEDA).

Component FIT Safety Related Failure Mode Distribution Safety Mechanism SM Coverage Single Point Failure Rate
D1 10 Yes Open 30% No SM 3 FIT

No Short 70%
L1 15 Yes Open 30% No SM 4.5 FIT

No Short 70%
MC1 300 Yes RAM Failure 100% ECC 99% 3 FIT

C. Integration to Assurance Case

With the current design, we integrate into the broader
System Assurance process. For this purpose, we obtained a
model-based assurance case management tool (named ACME),
which is briefly discussed in [2] and created an assurance case
module for our power supply system. In ACME, the users are
able to create an Artifact class instance from the Structured
Assurance Case Metamodel [2], by using which the informa-
tion from external artefacts (such as Excel spreadsheets) can be
extracted. In our example, we trace to our generated FMEDA
result and store a query to calculate SPFM in the assurance
case model, to check whether the SPFM meets the target ASIL
value. In this case, when our design changes, it is reflected in
the FMEDA result, which can in turn be automatically checked
by ACME (by executing the query). In this way, it is possible
to automate the evaluation of assurance cases.

Fig. 12. Automated FMEA in SSAM with SAME support.

VI. EVALUATION

The aim of our evaluation is to answer the following
research questions:

RQ1 (Correctness): Does DECISIVE, with model-based
tool support SAME, produce correct FMEA results in an
automated manner?

RQ2 (Coverage): Does SAME cover all of Simulink’s
system design blocks? In its broader application, does SAME
supported by the SSAM modelling language provide sufficient

coverage to map system design information across application
domains?

RQ3 (Efficiency): Does DECISIVE, supported with SAME,
increase the efficiency of developers for the design of safety-
critical systems/components?

RQ4 (Scalability): Does DECISIVE (supported with
SAME), support the design of complex safety critical systems
with a large number of model elements?

The evaluation set-up is as follows:
• Evaluation Subjects: we have chosen two systems7,

including a sensor power supply system (denoted as
System A) with 102 elements in the design, and the main
control unit (hardware and software) of an Autonomous
Underwater Vehicle (AUV) (denoted as System B) with
230 elements in the design.

• Participants: two safety professionals (Participants A
and B) with relatively the same level of expertise are
asked to participate in the evaluation.

• Platform: we use SAME with JDK 1.8.0 301, Matlab
2018b and Epsilon 2.3.

A. RQ1: Correctness

For correctness, we ask Participant A to perform FMEA
manually on the evaluation subjects, and Participant B to use
SAME8 with automated support, and we compare the results
yielded for both systems. For System A, we observe a 1.5%
difference between the FMEA results generated by participants
A and B. For System B, we observe a 2.67% difference
between the results. This is typically due to the fact that FMEA
is a highly subjective analysis technique, and the opinions on
the effects of failing components may differ from the analysis
algorithm in SAME. However, we also observe that the safety-
related components for both System A and System B are
all identified correctly by both participants, this provides us
the confidence that SAME is able to produce correct analysis
results.

B. RQ2: Coverage

For coverage, we first evaluate the coverage for Simulink.
Currently SAME supports the analysis of electrical systems
built using Simulink’s Simscape Foundation Library, which
focuses on analogue circuit design, for proof-of-concept. There
are some electrical elements that are not covered in SAME
(e.g. complex microcontroller units), but work-arounds are
devised for such elements – for elements not covered in

7Which we are not at liberty to disclose due to intellectual properties.
8A brief training on how to use SAME is provided

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3340596

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: LIVERPOOL JOHN MOORES UNIVERSITY. Downloaded on December 09,2023 at 07:05:24 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, DEC 2023 12

Simulink’s Simscape, we create subsystems in Simulink and
annotate them to be the desired elements. With the work-
arounds solution, we are able to cover 100% of the evaluation
subjects. Whilst it is possible to cover elements outside the
Simscape library, we need to incorporate algorithms for iden-
tifying components and their failure modes in SAME for such
components, which is an ongoing work. Then, we evaluate
the coverage for SSAM for its ability to map system design
across domains, we are able to map the conceptual function
blocks for both System A and B, and we are also able to map
both software and hardware blocks for both Systems A and
B, this provides us with the confidence that DECISIVE and
SAM are able to achieve a very high degree of coverage for
both Simulink’s Simscape library using Simulink, as well as
all other types of system design using SSAM.

TABLE V
COMPARATIVE EXPERIMENT FOR EFFICIENCY EVALUATION.

System Participant Time spent (minutes) No. Iterations
A A(Man.) 505 5
A B(Auto.) 62 2
B A(Man.) 1143 6
B B(Auto.) 105 3
A A(Auto.) 57 6
A B(Man.) 497 3
B A(Auto.) 110 4
B B(Man.) 1166 2

C. RQ3: Efficiency
For efficiency, we ask participants A and B to follow the

DECISIVE process to design both System A and System
B in two settings. In the first setting, Participant A takes a
completely manual process: to aggregate reliability data into
the system, perform FMEA, search and deploy appropriate
safety mechanisms, and come up with a design with a target
safety level (in the case study, we aim at achieving ASIL-B, the
requirements of which are described in ISO 26262) for both
systems. Participant B follows DECISIVE with support of
SAME, we provide a reliability model and a safety mechanism
model, Participant B is asked to find a design with the same
safety level for both systems. In the second setting, we ask
Participant A to follow DECISIVE with automation support,
and Participant B to take a manual process on both systems.

We compare the time it takes for both participants to
complete their tasks, as shown in Table V. In the first setting,
for System A, Participant A takes approximately 505 minutes
to complete the system design (with three iterations), in which
most of the time is spent on FMEA, deployment of safety
mechanisms and change management. In contrast, Participant
B takes 62 minutes (with six iterations), in which most of
the time is spent on change management. For System B,
Participant A takes approximately 19.05 hours (with two
iterations), with a time distribution similar to System A. In
contrast, Participant B takes 105 minutes (with five iterations).
In the second setting, for System A, Participant A takes ap-
proximately 57 minutes (with 6 iterations), and Participant B
takes 110 minutes (with 4 iterations). For System B, Participant
A takes approximately 8.28 hours (with 3 iterations), and
Participant B takes 19.43 hours (with 2 iterations).

Both participants state that the DECISIVE approach pro-
vides helpful guidance in designing the system. In this ex-
periment, we observe approximately a tenfold increase in
efficiency. We also observe that the complexity of the system
is an affecting factor on how many iterations of the design
process can be taken for manual efforts. However, this does
not seem to affect the process with automation support.

D. Scalability

Our last evaluation is on the scalability of SAME, although
SAME is the secondary contribution of our work, we report
our findings on the scalability of the tools. Our evaluation was
performed on the premise that the majority of the models used
in our development process are EMF models, with a mixture
of Simulink models, Excel spreadsheets, formal models and
JSON models. To evaluate the scalability of SAME, we
selected 5 data sets, as shown in Table VI. It is to be noted that
the in our end result systems, the maximum number of model
elements we have in our collection of models was 5689 (Set3).
We made duplicates of our models and put them together to
form Set4 and Set5 to evaluate the scalability of SAME in
different orders of magnitudes. We found that SAME suffered
from scalability issues from Set4 and would not load Set5
due to memory overflow. This is typically caused by the fact
that SAME needs to load EMF models in their entirety before
any queries can be performed on them, which is an existing
issue discovered in various studies [23]–[25]. However, this
shall not be counted as a scalability problem with SAME, but
rather a scalability problem with EMF. Currently, there are a
number of frameworks that can be adopted directly to solve
the scalability problem with EMF [23], [26]. Whilst we aim
to improve SAME by addressing the scalability problem in
EMF, we argue that SAME is scalable as long as the access
(i.e. reading and storing) mechanism for the models is scalable.

TABLE VI
NORMALISED EFFICIENCY EXPERIMENT.

Model No. of Model Elements Time taken for Evaluation(sec)
Set0 109 0.1
Set1 269 0.2
Set2 1369 0.8
Set3 5689 4.1
Set4 5689000 48.3
Set5 568990000 N/A

VII. RELATED WORK

A number of research look into the model-based ap-
proach for the safety analysis of safety-critical systems. In
[27], a model-based system analysis approach using assume-
guarantee compositional reasoning on AADL models is dis-
cussed. In this work, an extension to the AADL language
is discussed and formal methods for analysis are presented.
We would like to point out that, AADL models can also be
transformed to SSAM and our approach can also be applied.
In contrast to complete formal analysis, our approach is also
applicable for runtime scenarios, where qualitative FMEA is
important to determine if CPS can collaborate at runtime. In

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3340596

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: LIVERPOOL JOHN MOORES UNIVERSITY. Downloaded on December 09,2023 at 07:05:24 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, DEC 2023 13

[14], a model-based approach named HiP-HOPS (Hierarchi-
cally Performed Hazard Origin & Propagation Studies) and its
supporting tool are presented, using which model-based Fault
Tree Analysis can be generated. In addition, FMEA tables
can be generated from the fault trees. In comparison, our
generation of FMEA does not rely on the existence of a fault
tree. In addition, SAME enables the automated transformation
of system design models to SSAM not only from Simulink,
but also other tools. In [28], the authors propose AltaRica,
a family of event-based modelling languages, Altarica 3.0
focuses on deterministic or stochastic delays associated with
events. AltaRica can be used for sequence diagram gener-
ation, markov chain generation, model checking, reliability
allocation, stochastic simulator, as well as fault trees. Whilst
AltaRica has a focus on probabilistic modelling and simu-
lation, DECISIVE focuses more on the interoperability of
system models among tools and the automated FMEA on
such models. In [13], a domain-specific modelling framework
(EAST-ADL) is presented, and evaluated using HiP-HOPS. In
comparison, we provide a more comprehensive methodology
for designing critical systems, which is driven by automated
FMEA. In [29], the functional design phase, using SysML,
is combined with commonly used reliability techniques (i.e.
FMEA and construction of AltaRica Data-Flow models). In
comparison, DECISIVE is applicable to any system design
models not limited to SysML and considers the automated
deployment of safety mechanisms.

VIII. SUMMARY AND FUTURE WORK

In this paper, we answer to identified requirements from
requests on tool support sent to us since our previous work. We
revised the Structured System Assurance Metamodel (SSAM)
and designed it to support modularity, extensibility and trace-
ability. Based on the changes to SSAM, we also created a
graphical editor for SAME, and provide hierarchical views
for each aspect in the system design process. In our answer
to REQ1, the revised SSAM covers requirement elicitation,
hazard identification and system design, and enables the trace-
ability inside SSAM models. In our answer to REQ2, the Base
component of SSAM provides the facility for the traceability
to external heterogeneous models, which is supported by
graphical editors in SAME. In our answer to REQ3, the
graphical user interface in SAME proves very useful in the
modelling of systems for non-Simulink models.

In this paper, we also performed an in-depth evaluation
of correctness, coverage, efficiency and scalability of the
DECISIVE approach with SAME tool support. We find that
there is an observable efficiency improvement due to automa-
tion, whilst maintaining a satisfactory level of correctness,
coverage and scalability. We also discover that the DECISIVE
process provides useful guidance on designing safety-critical
systems. We also briefly tapped into how the DECISIVE
methodology, as well as the models produced by SAME,
can fit seamlessly into the process of Safety Critical Systems
Engineering (SCSE). Throughout the modelling process of
SSAM, we realised that the SSAM can also be converted into
a dynamic model. By declaring a Component as dynamic, it

is possible to generate Java facilities to receive runtime data
for the component in a real time manner. We will investigate
more in our future work.

In the future, we plan to: 1) enhance SAME to include
the model-based support for Fault Tree Analysis (FTA) and
how FTA and FMEA can be federated for quantitative system
safety analysis; 2) provide support for system design in widely
adopted languages such as SysML and AADL; 3) integrate
a scalable model indexing (or model storage) framework
into SAME to achieve scalability when accessing models
defined in EMF, UML, and other technologies to achieve
full scalability for SAME; and 4) investigate the automated
generation of runtime monitoring framework for RAS with
open and adaptive nature.

REFERENCES

[1] Timothy Patrick Kelly. Arguing safety: a systematic approach to
managing safety cases. PhD thesis, University of York York, UK, 1999.

[2] Ran Wei, Tim P Kelly, Xiaotian Dai, Shuai Zhao, and Richard Hawkins.
Model based system assurance using the structured assurance case
metamodel. Journal of Systems and Software, 2019.

[3] Zhe Jiang, Shuai Zhao, Ran Wei, Dawei Yang, Richard Paterson, Nan
Guan, Yan Zhuang, and Neil C Audsley. Bridging the pragmatic
gaps for mixed-criticality systems in the automotive industry. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 41(4):1116–1129, 2021.

[4] Ran Wei, Zhe Jiang, Xiaoran Guo, Haitao Mei, Athanasios Zolotas, and
Tim Kelly. Designing critical systems with iterative automated safety
analysis. In Proceedings of the 59th ACM/IEEE Design Automation
Conference, pages 181–186, 2022.

[5] Zhe Jiang, Ran Wei, Pan Dong, Yan Zhuang, Neil C Audsley, and Ian
Gray. Bluevisor: Time-predictable hardware hypervisor for many-core
embedded systems. IEEE Transactions on Computers, 71(9):2205–2218,
2021.

[6] SAE International. Certification Considerations for Highly-integrated
Or Complex Aircraft Systems. SAE International, 1996.

[7] ISO. ISO 26262: Road Vehicles - Functional Safety. 2018.
[8] Mario Trapp, Daniel Schneider, and Peter Liggesmeyer. A safety

roadmap to cyber-physical systems. In Perspectives on the future of
software engineering, pages 81–94. Springer, 2013.

[9] David Norfolk. Ptc integrity modeler. . . a standards-based tool
for systems and software engineering. InDetail. Bloor. In:
https://www. ptc. com/-/media/Files/PDFs/ALM/Integrity/PTC-Integrity-
Modeler-Bloor-InDetail. pdf, 2015.

[10] Halina Tańska. Enterprise architect and magic draw uml–comparing the
abilities of case tools. PUBLISHER UWM OLSZTYN 2009, page 181,
2009.

[11] IEC. IEC 61508: Functional safety of electri-
cal/electronic/programmable electronic safety-related systems. 2010.

[12] Wen-Shing Lee, Doris L Grosh, Frank A Tillman, and Chang H
Lie. Fault tree analysis, methods, and applications, a review. IEEE
transactions on reliability, 34(3):194–203, 1985.

[13] DeJiu Chen, Nidhal Mahmud, Martin Walker, Lei Feng, Henrik Lönn,
and Yiannis Papadopoulos. Systems modeling with east-adl for fault tree
analysis through hip-hops. IFAC Proceedings Volumes, 46(22):91–96,
2013.

[14] Yiannis Papadopoulos, Martin Walker, David Parker, Erich Rüde, Rainer
Hamann, Andreas Uhlig, Uwe Grätz, and Rune Lien. Engineering failure
analysis and design optimisation with hip-hops. Engineering Failure
Analysis, 18(2):590–608, 2011.

[15] Stephen Jacklin. Certification of safety-critical software under do-178c
and do-278a. In Infotech@ Aerospace 2012, page 2473. 2012.

[16] Saddek Bensalem, Chih-Hong Cheng, Wei Huang, Xiaowei Huang,
Changshun Wu, and Xingyu Zhao. What, indeed, is an achievable
provable guarantee for learning-enabled safety critical systems. arXiv
preprint arXiv:2307.11784, 2023.

[17] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro.
EMF: eclipse modeling framework. Pearson Education, 2008.

[18] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. Eclipse
development tools for epsilon. In Eclipse Summit Europe, Eclipse
Modeling Symposium, volume 20062, page 200, 2006.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3340596

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: LIVERPOOL JOHN MOORES UNIVERSITY. Downloaded on December 09,2023 at 07:05:24 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, DEC 2023 14

[19] Vladimir Viyović, Mirjam Maksimović, and Branko Perisić. Sirius: A
rapid development of dsm graphical editor. In IEEE 18th International
Conference on Intelligent Engineering Systems INES 2014, pages 233–
238. IEEE, 2014.

[20] Beatriz A Sanchez, Athanasios Zolotas, Horacio Hoyos Rodriguez,
Dimitris Kolovos, Richard F Paige, et al. Runtime translation of ocl-
like statements on simulink models: Expanding domains and optimising
queries. Software and Systems Modeling, 2021.

[21] Anjali Joshi and Mats PE Heimdahl. Model-based safety analysis of
simulink models using scade design verifier. In International conference
on computer safety, reliability, and security, 2005.

[22] O Lisagor, JA McDermid, and DJ Pumfrey. Towards a practicable
process for automated safety analysis. In 24th International system safety
conference. Citeseer, 2006.

[23] Konstantinos Barmpis and Dimitris Kolovos. Hawk: Towards a scalable
model indexing architecture. In Proceedings of the Workshop on
Scalability in Model Driven Engineering, pages 1–9, 2013.

[24] Ran Wei, Dimitrios S Kolovos, Antonio Garcia-Dominguez, Konstanti-
nos Barmpis, and Richard F Paige. Partial loading of xmi models. In
Proceedings of the ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems, pages 329–339, 2016.

[25] Seyyed M Shah, Ran Wei, Dimitrios S Kolovos, Louis M Rose,
Richard F Paige, and Konstantinos Barmpis. A framework to benchmark
nosql data stores for large-scale model persistence. In International
Conference on Model Driven Engineering Languages and Systems,
pages 586–601. Springer, 2014.

[26] Antonio Garcia Dominguez, Konstantinos Barmpis, Ran Wei, and
Richard Paige. Stress testing results for relational and graph-based
stores. 2016.

[27] Danielle Stewart, Michael W Whalen, Darren Cofer, and Mats PE
Heimdahl. Architectural modeling and analysis for safety engineering.
In International Symposium on Model-Based Safety and Assessment,
pages 97–111. Springer, 2017.

[28] Tatiana Prosvirnova. AltaRica 3.0: a model-based approach for safety
analyses. PhD thesis, Ecole Polytechnique, 2014.

[29] Pierre David, Vincent Idasiak, and Frederic Kratz. Reliability study
of complex physical systems using sysml. Reliability Engineering &
System Safety, 95(4):431–450, 2010.

Dr Ran Wei (Member, IEEE) is a Research As-
sistant Professor at the Department of Engineer-
ing, University of Cambridge. His research inter-
ests include Model Driven Engineering, High In-
tegrity Systems Engineering, Model Based System
Assurance and Model Based Digital Twin Gen-
eration and Maintenance. He can be reached at:
rw741@cam.ac.uk.

Prof Zhe Jiang (Member, IEEE) is currently a
Professor at Southeast University, China. He is
broadly interested in computer architecture, micro-
architecture, and design automation for emerging
computing systems, with a particular focus on im-
proving functional safety, security, reliability, and
timing-predictability of automotive, cloud and em-
bedded computing systems. He can be reached at:
101013615@seu.edu.cn.

Dr Xiaoran Guo is with the Specialised Services
Research Department of China. His research in-
terests include Model Based System Verification
and Validation, Metrology and Instrumentation, and
Safety Critical Systems Engineering. He can be
reached at: vip850522@163.com.

Ruizhe Yang is a MSc student in Artificial Intel-
ligence of Dalian University of Technology (DUT),
China. His current research interests include model
driven engineering, High Integrity Systems Engi-
neering and Model-Based Digital Twin. He can be
reached at: ruizheyang@mail.dlut.edu.cn.

Dr Haitao Mei received his Ph.D. degree from the
Real-Time Systems Research Group at the Univer-
sity of York in 2018. His research interests are in
real-time operating systems and programming lan-
guages, Big Data and real-time stream processing.

Dr Athanasios Zolotas is a Senior Lecturer in
Software Engineering at the School of Computer
Science and Mathematics at Liverpool John Moores
University, UK. Athanasios received his EngD in
Large-Scale Complex IT Systems from the Univer-
sity of York in 2017. His research interests are in
model-driven engineering, big data analytics, safety
critical systems and requirements engineering, while
he is collaborating with leading companies in the
aerospace and automotive domain such as Rolls-
Royce and Volkswagen.

Prof Rev. Tim Kelly is a honorary professor of the
High-Integrity Systems Engineering research group
of the University of York. His research interests in-
clude system assurance cases, safety-critical systems
engineering, and model based system assurance. He
was one of the founding members of the GSN (Goal
Structuring Notation) standard and is one of the
leading contributors of SACM (Structured Assurance
Case Metamodel).

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3340596

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: LIVERPOOL JOHN MOORES UNIVERSITY. Downloaded on December 09,2023 at 07:05:24 UTC from IEEE Xplore. Restrictions apply.

	I Introduction
	II Preliminaries and Motivation
	II-A Safety-Critical Systems Engineering Lifecycle
	II-B Failure Modes, Effects, and Diagnostic Analysis (FMEDA)
	II-C The Need for Automation and Model Federation

	III Approach Overview
	IV Tool Support
	IV-A Relevant Technologies
	IV-B SSAM and its tool support
	IV-B1 Base Module
	IV-B2 Requirement Module
	IV-B3 Hazard Module
	IV-B4 Architecture Module
	IV-B5 MBSA Module
	IV-B6 SAME with graphical editor

	IV-C Fitting into SCSE
	IV-D Working Process
	IV-D1 Support for Simulink
	IV-D2 Support for Non-Simulink models

	V Case Study
	V-A Matlab
	V-B SAME and SSAM
	V-C Integration to Assurance Case

	VI Evaluation
	VI-A RQ1: Correctness
	VI-B RQ2: Coverage
	VI-C RQ3: Efficiency
	VI-D Scalability

	VII Related Work
	VIII Summary and Future Work
	References
	Biographies
	Dr Ran Wei
	Prof Zhe Jiang
	Dr Xiaoran Guo
	Ruizhe Yang
	Dr Haitao Mei
	Dr Athanasios Zolotas
	Prof Rev. Tim Kelly

