
Multi-Agent Algorithms With

Assignment Strategy Pursuing

Multiple Moving Targets in

Dynamic Environments

Azizkhon Afzalov

A thesis submitted in partial fulfilment of the requirements of

Nottingham Trent University for the degree of

Doctor of Philosophy

November 2022

mailto:azizkhon.afzalov2016@my.ntu.ac.uk

This thesis is dedicated to

my late mother, beloved wife, and my family with great gratitude.

I know you will be proud of this milestone accomplished.

Acknowledgements

”Seek knowledge from the cradle to the grave.”

Prophet Muhammad (peace be upon him)

During my part-time PhD journey of intensive research for years, I

am indebted to many people for their help throughout the process of

completing this work.

First and foremost, I would like to praise Allah Almighty; without

whose grace and mercy it would never have been possible to achieve

this success.

I owe my utmost sincere gratitude to my supervisor Professor

Ahmad Lotfi who significantly contributed to making my PhD

research a success story. He has been an inspiration and his

unlimited encouragement and support motivated me to this point

and hopefully beyond.

I am also in great dept to Dr Jun He, my director of studies, who

took over me as his PhD student at the later stages of the project and

helped a lot with his regular discussions, careful reading and providing

useful comments for my publications and thesis.

I would like to express my sincere gratitude to my previous

supervisors, Dr Benjamin Inden for his support and insightful

criticism as well as Dr Mehmet Emin Aydin for inviting me to work

in AI, mainly on pathfinding search algorithms, and providing plenty

of guidance and direction. I am thankful to both of whom continued

to support me even though they moved to different universities.

My supervisors guided me not only regarding completing this project

but also in my entire academic life. It has been an honour for me to

be their PhD student.

I am also grateful to wonderful and friendly fellow members of the

Computational Intelligence and Applications research group team

who shared their knowledge and experience whenever needed and

especially to newly graduated Dr Abdallah Naser. Thanks to all of

the administrative staff at the Doctoral School and to the library

staff, especially Victoria Boskett, who helped make graduate life

easier.

My immense gratitude to all my friends who helped me and supported

me. My special thanks to my friends Dr Cevat Ozarpa, Furkan Tektas

and many others who have been around and prayed for me. I greatly

appreciate all their contributions to my success so far.

Love and respect for their unwavering support and patience

throughout my studies go to my loving, wonderful wife who always

believed in me even when I hesitated about whether I could succeed.

She was always stoic and dignified and I am most grateful for all her

patience and devotion during these years. I am grateful to my three

beautiful daughters, Mesude, Nebahat and Humeyra, with whom I

could not spend much time together, especially towards the end of

my studies. I would like to thank my sister who morally supported

me especially when we lost our beloved mother to cancer.

Finally, and most importantly, I would like to give my special note

to my father-in-law, imam Mikdat Kutlu, for his unconditional love,

prayers and motivation to pursue my PhD studies.

Aziz Afzalov

November 2022

Abstract

Devising intelligent agents to successfully plan a path to a target is a

common problem in artificial intelligence and in recent years, attention

has increased to multi-agent pathfinding problems, especially due to

the expansion in computer video games and robotics. Pathfinding for

agents in real-world applications is a defined problem of multi-agent

systems, where pursuing agents collaborate among themselves and

autonomously plan their path to the targets.

There are multi-agent algorithms that provide solutions with the

shortest path without considering other pursuers and several of

those use coordination. However, less attention has been paid to

computing an assignment strategy for the pursuers and finding paths

that collectively surround the targets. Comparatively fewer studies

have been on target algorithms either. Besides, the multi-agent

pathfinding problem becomes even more challenging if the goal

destinations change over time. Existing solutions consider either a

single target with moving capability or multiple targets that are

stationary. The work presented in this thesis considers multiple

moving targets in multi-agent systems. Therefore, the path planning

problem for multiple pursuing agents requires more efficient

pathfinding algorithms. In addition, when the target algorithms are

improved for advanced behaviour with moving capabilities that

smartly evade the pursuers makes the problem even harder.

The research reported in this thesis aims to investigate multi-agent

search algorithms to address the challenge associated with pursuing

agents towards moving targets within a dynamically changing

environment. In multi-agent scenarios, agents compute a path

towards the target, while these target destinations in some cases are

predefined in advance. Thus, this research proposes to investigate a

solution to the path planning problem by utilising heuristic

algorithms as well as assignment strategies for multiple pursuing

agents. Furthermore, a state-of-the-art moving target algorithm,

TrailMax, has been enhanced and implemented for multiple agent

pathfinding problems, which aims to maximise the capture time if

possible until timeout.

The focus of this thesis is the investigation of the assignment

strategy algorithms to coordinate multiple pursuing agents and

explore pathfinding search algorithms to find a route towards

moving targets. This will be achieved by dividing it into two stages.

The first one is the coupled approach where the assignment strategy

with a given criterion finds the optimal combination based on the

current position of players. The second stage is the decoupled

approach, where each agent independently finds its path towards the

moving target. On the other hand, targets flee from pursuing agents

using the specified escaping strategy.

The novel contributions of the research presented in this thesis are

summarised as follows:

- A new algorithm is developed that uses existing assignment

strategies, sum-of-costs and makespan, to assign targets, and

then runs repetitive A* search until reaches the target.

- An enhancement is provided for a state-of-the-art target

algorithm that takes smart moves by avoiding capture from all

pursuers.

- To improve efficiency, six new approaches are investigated to find

an optimal agent-to-target combination for target assignment.

- A novel multi-agent algorithm is developed which uses cover

heuristics to maximise its coverage to outmanoeuvre, trap and

catch moving targets.

The proposed pathfinding solutions and the results presented in this

thesis demonstrate a significant contribution towards search

algorithms in multi-agent systems.

Publications

As a result of the research presented in this thesis, the following publications

have been published:

Refereed Journal Papers:

Azizkhon Afzalov, Ahmad Lotfi, Benjamin Inden, and Mehmet Emin Aydin. “A

strategy-based algorithm for moving targets in an environment with multiple

agents.” SN Computer Science. 3, 435 (2022).

Azizkhon Afzalov, Ahmad Lotfi, Benjamin Inden, Jun He, and Mehmet Emin

Aydin. “Coordinating Multiple Agents with Assignment Strategy to Pursue

Multiple Moving Targets.” Spinger Nature Progress in Artificial

Intelligence (Under Review).

Journal Papers to be Submitted:

Azizkhon Afzalov, Jun He, Ahmad Lotfi, Benjamin Inden and Mehmet Emin

Aydin. “Increasing Covered Area to Capture Moving Targets in a Dynamic

Environment.” Elsevier Expert Systems With Applications.

Azizkhon Afzalov, Jun He, Ahmad Lotfi, Benjamin Inden, and Mehmet Emin

Aydin. “Adaptive Weighted-Cost Assignment Strategy for Efficient Multi-Agent

Path Planning.” SN Computer Science.

vi

Publications

Refereed Conference Papers:

Azizkhon Afzalov, Jun He, Ahmad Lotfi, and Mehmet Emin Aydin

“Multi-agent path planning approach using assignment strategy variations in

pursuit of moving targets.” Agents and Multi-Agent Systems: Technologies and

Applications 2021, the 15th KES International Conference, Springer, (2021).

Azizkhon Afzalov, Ahmad Lotfi, Benjamin Inden, and Mehmet Emin Aydin,

“Multiple pursuers TrailMax algorithm for dynamic environments.” The 13th

International Conference on Agents and Artificial Intelligence, ICAART, (2021).

Azizkhon Afzalov, Ahmad Lotfi, and Mehmet Emin Aydin, “A strategic search

algorithm in multi-agent and multiple target environment.” The 8th

International Conference on Robot Intelligence Technology and Applications

2020 (RiTA 2020), Springer, (2021).

Azizkhon Afzalov, Ahmad Lotfi, and Jun He, “Coupled Assignment Strategy of

Agents in Many Targets Environment.” The 15th International Conference on

Agents and Artificial Intelligence, ICAART, (2023). (Under Review).

Workshop Papers:

Azizkhon Afzalov, ”Novel Techniques for Moving Target Search in Dynamic

Environments.” New Horizons in Digital Media (NHDM12) workshop organised

by the University of Bedfordshire, (2012).

Posters:

Azizkhon Afzalov, Edmond Prakash, and Mehmet Emin Aydin, ”Novel

Techniques for Moving Target Search in Dynamic Environments.” The 26th

International Conference on Computer Animation and Social Agents, (2013).

vii

Nomenclature

The following Acronyms are used throughout the thesis.

ADG Action Dependency Graph

ADP Agent Decomposition Planner

AI Artificial Intelligence

APSP All-Pair Shortest Path

BCP Biased Cost Pathfinding

CC CombinationCoverage

CPD Compressed Path Databases

CPF Cooperative Path-Finding

CT Constraint Tree

DAI Distributed Artificial Intelligence

D-MAPF Dynamic Multi-Agent Path Finding

d-mode dynamic assignment mode

DS DistancesSum

h-value heuristic value

IHA Incremental Heuristic Algorithm

MAM Multi-Agent Meeting

MAP Multi-Agent Planning

MAPD Multi-Agent Pickup and Delivery

MAPF Multi-Agent PathFinding

MAPR Multi-Agent Planning by plan Reuse

MAS Multi-Agent Systems

MAT Multiple Agents and Targets

MD MaxDistance

viii

Nomenclature

MG-MAPF Multi-Goal Multi-Agent Path-Finding

MPP Multirobot Path Planning on graphs

MRPP Multi-Robot Path Planning

PAMT Pursuing Agents and Moving Targets

RHCR Rolling-Horizon Collision-Resolution

SIC Sum of Individual Costs

s-mode static assignment mode

SOC Sum-Of-Costs

TAPF Target-Assignment and PathFinding

UGV Unmanned Ground Vehicle

The following Acronyms for Algorithms are used throughout the thesis.

A-MTS Abstraction MTS

CBM Conflict-Based Min-Cost-Flow

CBS Conflict Based Search

CDMTA* Cover Dynamic Moving Target A*

CRA Cover with Risk and Abstraction

D* Focused Dynamic A*

DAM Dynamic Abstract Minimax

eMIP efficient path planning

FAR Flow Annotation Replanning

F-MTS Fuzzy MTS

GAA* Generalized Adaptive A*

HCA* Hierarchical Cooperative A*

ID Independence Detection

LPA* Lifelong Planning A*

LRA* Local Repair A*

LRTA* Learning Real-Time A*

MA-CBS Meta-Agent Conflict Based Search

MLA* Multi-Label A*

MM* Multi-Directional Meet in the Middle

ix

Nomenclature

MMTS Multiple Agent–Based Moving Target Search

MPGAA* Multipath Generalized Adaptive A*

MPTM Multiple Pursuers TrailMax

MTES Real-Time Moving Target Evaluation Search

MTS Moving Target Search

Path-AA* Path Adaptive A*

PRA* Partial-Refinement A*

RTA* Real-Time A*

RTAA* Real-Time Adaptive A*

SF Simple Flee

STMTA* Strategy Multiple Target A*

TBAA* Time-Bounded Adaptive A*

TP Token Passing

TPTS Token Passing with Task Swap

Tree-AA* Tree Adaptive A*

WHCA* Windowed Hierarchical Cooperative A*

x

Contents

Dedication i

Acknowledgements ii

Abstract iv

Publications vi

Nomenclature viii

Contents xi

List of Figures xvi

List of Tables xix

List of Algorithms xxi

1 Introduction 1

1.1 Overview of the Research . 4

1.1.1 Multi-Agent Systems . 5

1.1.2 Pathfinding . 6

1.1.3 Assignment Strategy . 7

1.2 Research Aim and Objectives . 8

1.3 Scope of The Research . 9

1.4 Original Contributions of the Thesis 12

1.5 Thesis Outline . 14

xi

CONTENTS

2 Literature Review 18

2.1 Introduction . 18

2.2 Single-Agent Algorithms . 19

2.2.1 A* Algorithm . 20

2.2.2 Incremental Heuristic Algorithms 21

2.2.3 Real-Time Algorithms . 25

2.3 Multi-Agent Algorithms . 27

2.3.1 Pursuers and Single Target 28

2.3.2 Pursuers and Multiple Targets 32

2.4 Target Algorithms . 37

2.5 Design and Structure of the Experiments 40

2.5.1 Problem Formulation and Description 40

2.5.2 Existing Criteria for Assignments 41

2.5.2.1 Summation-cost 42

2.5.2.2 Makespan-cost 43

2.5.2.3 Mixed-cost . 44

2.5.2.4 Complexity analysis 44

2.5.3 Experimental Problem Settings 45

2.6 Discussion . 50

3 Coordinating Multiple Agents with Assignment Strategy to

Pursue Multiple Moving Targets 55

3.1 Introduction . 55

3.2 Problem Formulation . 58

3.2.1 Assignment Strategies . 61

3.2.2 Strategy Multiple Target A* 62

3.3 Empirical Evaluation . 66

3.3.1 Experimental Setup . 66

3.3.2 Experimental Results . 68

3.4 Conclusion . 73

4 Multi-Agent Path Planning Approach Using Assignment

Strategy Variations in Pursuit of Moving Targets 74

xii

CONTENTS

4.1 Introduction . 74

4.2 Proposed Assignment Strategies 76

4.2.1 Twin-cost . 77

4.2.2 Weighted-cost . 79

4.2.3 Cover-cost . 80

4.3 Experimentation and Discussion 83

4.3.1 Experimental Setup . 83

4.3.2 Performance Analysis . 84

4.4 Conclusion . 87

5 A Strategy-Based Algorithm for Moving Targets in an

Environment with Multiple Agents 89

5.1 Introduction . 89

5.2 Multiple Pursuers TrailMax: Proposed Approach 91

5.2.1 The MPTM Algorithm . 92

5.2.2 Further Improvements . 95

5.3 Empirical Evaluations . 95

5.3.1 Experimental Setup . 96

5.3.2 Experimental Results . 98

5.4 Discussion . 104

5.5 Conclusion . 106

6 Adaptive Weighted-Cost Assignment Strategy for Efficient

Multi-Agent Path Planning 107

6.1 Introduction . 107

6.2 Pathfinding Problem and Current Methods for Assignment Strategies108

6.2.1 Pathfinding Problem for Multiple Agents 109

6.2.2 Existing Assignment Strategy Methods 109

6.3 Proposed New Methods for Assignment Strategies 110

6.3.1 Adaptive Weighted-Cost 111

6.3.2 Joint Weighted-Cost . 113

6.3.3 Joint Twin-Cost . 114

6.3.4 Combinations and Navigation Mode 115

xiii

CONTENTS

6.4 Experimentation and Discussion 116

6.4.1 Experimental Problem Settings 117

6.4.2 Performance Analysis . 117

6.4.2.1 Pathfinding Cost 118

6.4.2.2 Minimum Cost 120

6.4.2.3 Success Rate . 120

6.4.2.4 Assignment Runtime 123

6.5 Conclusion . 125

7 Increasing Covered Area to Capture Moving Targets in a

Dynamic Environment 126

7.1 Introduction . 126

7.2 Methods . 127

7.2.1 Existing Approches . 127

7.2.1.1 The Cover Heuristic 128

7.2.1.2 Cover with Risk and Abstraction and Multi-Target129

7.2.2 Proposed Approach . 132

7.3 Experimentation and Discussion 136

7.3.1 Experimental Problem Settings 136

7.3.2 Experimental Results and Performance Analysis 137

7.3.2.1 Pathfinding Cost 138

7.3.2.2 Minimum and Maximum Cost 141

7.3.2.3 Success Rate . 146

7.3.2.4 Runtime . 148

7.4 Conclusion . 149

8 Conclusion and Future Work 151

8.1 Thesis Summary . 151

8.2 Concluding Remarks . 152

8.2.1 Coordinating Multiple Agents with Assignment Strategy to

Pursue Multiple Moving Targets 153

8.2.2 Multi-agent Path Planning Approach Using Assignment

Strategy Variations in Pursuit of Moving Targets 154

xiv

CONTENTS

8.2.3 A Strategy-based Algorithm for Moving Targets in an

Environment with Multiple Agents 154

8.2.4 Adaptive Weighted-Cost Assignment Strategy for Efficient

Multi-Agent Path Planning 155

8.2.5 Increasing Covered Area to Capture Moving Targets in a

Dynamic Environment . 155

8.3 Limitations . 156

8.4 Directions for Future Works and Recommendations 158

8.4.1 Assignment Strategy . 159

8.4.2 Multi-Agent Algorithms 159

8.4.3 Target Algorithms . 160

Appendix A 161

References 164

xv

List of Figures

1.1 Identifying the problem setting for multi-agent pathfinding. The

arrows navigate the highlighted parts which are the focus of this

research. 3

1.2 The representation of three different distance metrics with a cost

of 1 for an orthogonal (a),
√
2 for an octile (b) and

√
5 for the

Euclidean (c) movement directions. The possible route direction

between two points, agent (A) and target (T), is for Manhattan

(d), diagonal (e) and Euclidean (f) distance. 10

1.3 Coupled approach illustrates two targets getting assigned to three

pursuers and lists new algorithms, while the decoupled approach

is the chase with lists of new algorithm contributions to pursuing

agents and targets. 12

1.4 The thesis structure shows the organisation of the chapters and

their respective dependencies. 15

2.1 A sample AR0417SR map from Baldur’s Gate video game used in

the experiments. 39

2.2 Demonstrating pursuing agents’ (A1 and A2) possible directions

towards the targets (T1 and T2) on the part of AR0417SR map,

see Figure 2.1. Black shades are obstacles. 43

2.3 The standardised grid-based maps from Baldur’s Gate video game

are used and circle-shaped (a) and narrow passage corridors (b)

are the samples. 47

2.4 An environment with three different grid sizes as shown in [1]. A

circle is an agent and its generated path. 51

xvi

LIST OF FIGURES

3.1 Optimisation with assignment strategies. Four black-shaded

agents move towards three white-shaded targets that are a)

closest, b) with random selection or c) with a given strategy. . . . 57

3.2 Position of 4 pursuing agents in the middle and 3 targets dispersed

on the walls on the AR0417SR map (Figure 2.1). The initial state

(a), the states after moving 5 steps for STMTA* (b) and PRA*

(c). Black shades are non-traversable states. 59

3.3 Pursuing agent A2 towards a target T1 on a 2-D map for (a) an

orthogonal distance cost and (b) a diagonal distance cost. 64

3.4 Sample maps used in the experiments, (a) round circle-shaped

RoundTable39x39 and (b) benchmarked AR0527SR from

Baldur’s Gate video game. 65

3.5 The pathfinding cost mean per pursuing agent combination for all

algorithms. 69

3.6 The success rate mean per pursuing agent combination for all

algorithms. 70

3.7 The performance analysis of three algorithms on a

RoundTable39x39 map, measuring the pathfinding cost (number

of steps) and success rate. 71

4.1 A possible scenario where one target is positioned closer than

others. Target1 is chased if the strategy for the pursuers is to

follow the closest target. 75

4.2 Two stages for multiple agents, first planning the task with the

best combination and then navigating each agent independently

towards the targets. 75

4.3 A benchmarked AR0509SR map from Baldur’s Gate video game.

There are two pursuing agents and two targets dispersed on the

map. 82

4.4 The illustrated graphs display the number of steps mean for all

assignment strategy costs per map (a) and the success rate of

completed test runs per map (b). 86

xvii

LIST OF FIGURES

5.1 The experimented sample maps, (a) AR0311SR and (b)

AR0507SR, are used in the Baldur’s Gate video game. 96

5.2 The overall comparison of the MPTM algorithm with other target

algorithms per a pursuing agent algorithm. The graph displays the

mean for all maps and all player combinations. 99

5.3 The performance rate of success for the MPTM target algorithm

for all test configurations and maps. Lower is better. 103

5.4 The Baldur’s Gate benchmarked gaming AR0311SR map with

pursuers the targets at the initial position. 105

6.1 The success rate for pursuing agents using the s-mode, and d-mode

with change in 10 and 20 steps. 123

6.2 Comparing the assignment runtime in seconds for assignment

strategy algorithms on three different map groups. 124

7.1 Agent A is positioned at the left bottom and moving target T is

positioned on the left top. T' is the goal position for T. The top

three rows are the cover set for T and the bottom three rows are

the cover set for A. Assuming no obstacles, A move to T is the

distance heuristic (dashed arrow) and A move to T' is the cover

heuristic (straight arrow). 128

7.2 Comparing the pathfinding costs for pursuing algorithms per

target algorithm. The data table at the bottom is the mean for

all configurations and settings. 139

7.3 The difference between minimum (bottom line) and maximum (top

line) for each pursuing algorithm that is illustrated for (a) SF and

(b) MPTM target algorithms. 145

7.4 A sample AR0503SR map from Baldur’s Gate video game. 146

7.5 The success of the pursuing algorithm is only for MPTM. 147

7.6 Runtime differences in seconds are displayed for all pursuing

algorithms per target. 148

xviii

List of Tables

2.1 The multi-agent algorithms are categorised in relation to the

targets and their brief description. The new contributions are at

the bottom of the table. 29

2.2 The possible distance cost combinations for two pursuing agents.

DistancesSum is used for the Summation-cost criterion and

MaxDistance for the Makespan-cost and Mixed-cost criteria. . . . 43

2.3 The categorised testbeds used in the experiments for each chapter

with their map identification, dimensions in nodes, and traversable

states. 46

2.4 Experimental setup and the number of test runs for algorithms. . 47

3.1 The pathfinding cost (number of steps), lower is better, and success

rate (%), higher is better, are displayed for each algorithm with

player combinations on each row. 67

3.2 The statistical analysis is used between PRA* and STMTA*

algorithms and the p-value obtained using the Wilcoxon

rank-sum test. The results are grouped by the starting position

for each test run on all maps and player combinations. The

p-values below 0.05 have no shades. 72

xix

LIST OF TABLES

4.1 The sample scenario of 3 agents versus 3 targets and agents’

distance towards the targets. There are six possible

combinations, and each has the sum of distances (DistancesSum)

and maximum distance (MaxDistance). The Twin-cost is

DistancesSum times MaxDistance and Weighted-cost uses a

parameter value of 0.5 to DistancesSum and 0.5 to MaxDistance. . 78

4.2 The scenario of two pursuing agents, An, versus two targets, Tn,

and the individual expanded states that are labelled “covered” by

the pursuers towards the targets on the AR0509SR gaming map.

There are two possible combinations, and each has a percentage of

covered area (CoveredArea), and the results are averaged within

the combination (CombinationCoverage). 81

4.3 The means for the number of steps travelled, the ratio of

successful test runs and their standard deviations for all maps in

all configuration settings. The bottom of the table is the average

results of all maps. 85

5.1 The average number of steps (the capture cost) for each target

algorithm against pursuer algorithms. A larger number is better

as it avoids the capture by the pursuing agents. 97

5.2 Wilcoxon Rank Sum test results (p-values) for MTPM compared

against SF, Greedy and Minimax algorithms. 101

5.3 The overall success rate of capture for all scenarios. For targets,

the lower is better. 102

5.4 The computation time (in seconds) per step for each target algorithm.104

6.1 The scenario of two pursuing agents, An, versus two targets, Tn,

and the distance from the pursuers towards the targets on the

AR0509SR gaming map (Figure 4.3). There are two possible

combinations, and each has the sum of distances (DistancesSum),

and maximum distance (MaxDistance). 110

xx

LIST OF TABLES

6.2 The AR0509SR map (Figure 4.3) positions dispersedly players (4

vs 4) at the starting state-4 during the experiments. There are 24

possible assignment combinations. Each criterion has its optimal

combination. DistancesSum (DS), MaxDistance (MD) and

CombinationCoverage (CC) have been shortened. 116

6.3 The comparison of assignment strategy algorithms includes the

mean for pathfinding cost and minimum cost. 119

6.4 Ranking of 21 algorithms based on pathfinding costs with three

player combinations, three map groups and 300 problems each.

The bottom of the table displays the overall ranking. The best

performance is ranked no. 1. 121

6.5 p-values display the significance of pathfinding costs on each map

per player combination. 122

7.1 Code names for the pursuing algorithms. 138

7.2 Ranking of 14 algorithms based on pathfinding costs for two target

algorithms. The bottom of the table displays the overall ranking.

The best performance is ranked no. 1. 142

7.3 The significance of pathfinding costs displays the p-values for SF

(top) and MPTM (bottom) for each player combination per

experimented map. 143

7.4 Each algorithm’s minimum cost and the maximum cost mean for

all configurations. The asterisk indicates the removal of timeouts

and substituted with the second maximum cost. 144

8.1 The total number of combinations is required for the assignment

strategy algorithm per agent count. 156

A1 List of target algorithms mentioned in the thesis. 161

A2 List of pursuing algorithms mentioned in thesis and ordered by year.162

xxi

List of Algorithms

1 Assignment Strategy Algorithm. 61

2 Strategy Multiple Target A*. 63

3 Twin-cost Algorithm. 77

4 Weighted-cost Algorithm. 80

5 Cover-cost Algorithm. 81

6 The Multiple Pursuers TrailMax Algorithm. 92

7 Adaptive Weighted-cost Algorithm. 111

8 Joint Weighted-cost Algorithm. 113

9 Joint Twin-cost Algorithm. 115

10 Cover with Risk and Abstraction and Multi-Target. 130

11 Cover Dynamic Multiple Target A*. 134

xxii

Chapter 1

Introduction

Pathfinding consists of a particular order of movements with associated cost

values that lead from the starting position to the intended goal position. It

involves going around either static or moving obstacles. The total sum of

movements can be optimal if the total cost is the lowest among all possible

computed paths [2]. Pathfinding search algorithms have been one of the

interesting and challenging problems in the Artificial Intelligence (AI) research

field [3], and there has been extended work for many years [4, 5, 6]. The study

and development of such algorithms were based on the basic scenario of a single

agent tasked with finding a target or goal state on a grid-based map with

minimum cost or within minimal time. In environments with multiple agents,

which are complex, the problem becomes more challenging than in a simple,

static, single-agent environment [7]. With various assumptions of this single

agent with a single target, the scenario can be relaxed, while the following

aspects can lead to further complexities:

- There can be multiple pursuing agents that need to coordinate their actions.

- Assigning a strategy to the agents before chasing targets.

- Existence of multiple targets and their ability to move on the map over time

rather than being in a fixed position.

- Pursuing agents and targets have complete (known) or limited (partially-

known) information about the environment.

1

1. Introduction

In recent years, attention has increased to pathfinding problems in multi-agent

systems, mainly due to the expansion in video games [8, 9, 10], robotics [11, 12,

13], and warehouse management [14, 15]. An example of a robotics application is

the Amazon warehouse, where autonomous robots can lift and carry storage pots

and transport them between staging areas [16]. Similar demands can be observed

in space exploration, for instance, Curiosity [17] or Perseverance [18] Mars rover

prototypes, in the surveillance of moving targets for security reasons in authorised

areas [19, 20], in the military applications [21, 22] or with Endeavor Robotics’

The 510 PackBot robot [23], in autonomous aircraft or underwater vehicles [24],

or in search and rescue operations [25, 26], where robots are tasked to aid rescue

teams in life-threatening conditions such as in urban disaster environments.

Pathfinding can relate to single-agent and multi-agent problems. Various

suitable pathfinding solutions have been proposed for the mentioned application

domains. Some of these pathfinding algorithms are for a single agent, such as

Moving Target Search (MTS) [27], D* Lite [28], Real-Time Target Evaluation

Search (RTTES) [29] or Adaptive A* [30]. Similarly, there are some multi-agent

pathfinding search algorithms, for instance, Flow Annotation Replanning (FAR)

[31], Windowed Hierarchical Cooperative A* (WHCA*) [32], Conflict Based

Search (CBS) [33], Partial-Refinement A* (PRA*) [34] or Multiple Agents

Moving Target (MAMT) [35]. However, these algorithms aim to find the

shortest path to the target position. While the shortest path is important, the

run time is essential, too, as considered by real-time heuristic algorithms [36].

The pathfinding problem for multi-agent systems in real-time is more

challenging [31]. It requires agents’ navigation towards the moving goal (target)

while avoiding any static or dynamic obstacles. The agents need to manage the

shared information data, collaborate, and work collectively to achieve the goal

[37]. Therefore, this thesis investigates an efficient pathfinding algorithm for

multi-agent environments. Moreover, the solution needs to develop a competent

algorithm where the pursuing agents cooperate within an environment where

targets are dynamic. It is expected that multiple targets are considered with

moving away the ability to escape from pursuers in the problem scenario. These

approaches are addressed in multiple Pursuing Agents and multiple Moving

Targets (PAMT) environments. Further, this research contributes to solving

2

1. Introduction

Figure 1.1: Identifying the problem setting for multi-agent pathfinding. The
arrows navigate the highlighted parts which are the focus of this research.

major limitations of assignment strategy to find an optimal pursuer-to-target

combination, i.e., assigning targets to pursuers in various settings. In addition,

the research contributes to solving the limitations of an intelligent target

algorithm to escape from pursuers by moving to the furthest away position to

prevent capture. Derived results from the proposed approach, such as the

pathfinding cost, success rate or runtime display significant improvements by

proposing novel approaches to the multi-agent problems.

For illustration purposes, Figure 1.1 depicts the main aspects considered in

identifying the problem for pathfinding. Each main component in rectangles on

the left has different options that could be applied in the search scenarios. The

highlighted parts with navigated arrows are the focus of this research.

The remainder of this chapter is organised as follows: an overview of this

research is discussed and described in Section 1.1 followed by presenting the

research aim and highlighting the proposed objectives in Section 1.2. The scope

3

1. Introduction

of the research is included in Section 1.3. The original contributions achieved

throughout the undertaken work are introduced in Section 1.4. Finally, the

structure of the thesis is provided along with summaries of each chapter’s

contents in Section 1.5.

1.1 Overview of the Research

The prime motivation of this research is to solve a pathfinding problem for

multiple pursuing agents that can coordinate in an environment where targets

can move. The agents’ common objective is to catch all targets successfully.

This is the problem of multi-agent systems, where the circumstances of the

environment, capabilities of the pursuing agents and their relations occupy key

roles in it [38]. Nevertheless, the problem of pathfinding for cooperative

multiple agents is subject to obstacles towards static or moving multiple

targets. Heuristic search algorithms are promising AI approaches to address

these types of dynamic problems. On the other hand, the pursuing agents need

to coordinate and join their efforts to achieve their objectives. Thus, it requires

an approach to assigning targets using the criteria from the assignment strategy.

The research overview depicted in Figure 1.1 navigates the problem by outlining

the components that are considered in this study.

In the context of this research, the problem of multi-agent systems is

approached in two stages, coupled (task planning as a single composite entity)

and decoupled (autonomous navigation of each pursuing agent). The intelligent

agents can be either pursuers or targets. In the coupled stage, the pursuers

should be able to identify targets and assign each target to the pursuer. Then,

in the decoupled stage, each pursuer should be able to chase the moving targets

independently from each other. The pursuit employs two different approaches

that use different distance metrics: distance heuristic and cover heuristic to

catch all targets successfully. The distance heuristic estimates the shortest path

of an optimal cost between a pair of states while the cover heuristic takes an

action that maximises the area that a pursuer can cover before reaching a

target, which at the same time minimises the area of coverage for the target to

escape. Throughout the thesis, the words agent or pursuer or pursuing agent

4

1. Introduction

are used interchangeably. Similarly, the word dynamic describes an environment

where the size or the shape of the grid maps does not change and obstacles do

not move only the position of pursuers, as well as targets, can change within the

time steps unless it is specified differently while reviewing literature in Chapter

2.

1.1.1 Multi-Agent Systems

Multi-Agent Systems (MAS) are a subcategory of Distributed Artificial

Intelligence (DAI), which is a subcategory of AI [39]. MAS research considers

independent agents that are teamed to share knowledge and communicate in

between to find a solution to a problem that is beyond the capabilities of a

single agent [40]. As a result of the communication, the agents in MAS can

interact and have different linked relations in the environment [38]. Moreover,

when there are many autonomous agents present, it is possible to specify rules

in which each agent employs the method to maximise its value as well as

maximise the overall value for all agents [41]. In MAS, the relation among the

intelligent agents primarily focuses on solving the problems that are difficult to

find solutions with the knowledge that a single agent has [42]. Additionally, the

interaction and coordination of agents and their solutions to complex problems

in MAS have demonstrated their functionality in complex applications and

dynamic environments [43]. For instance, MAS develops new methods and

techniques for learning the behaviour which has been experimented with in the

Pac-Man computer game environment. Another solution is Double Action

markets for online bidding in trades for multiple buyers and sellers or smart city

designs which contain various sensors that collect data or share bicycles [43].

The agent in MAS relates to an independent entity that has a number of

actions before reaching its goal. The agent receives instructions and makes

independent decisions about its plan of action based on the instructions. More

complete and detailed information increases the probability of making

well-informed decisions. The agent observes its surroundings and can respond to

changes that are detected [38]. Agent’s actions are performed in an environment

that is accessible with complete information about the state. The position of

5

1. Introduction

agents and targets can change over time and the agent has no control over this.

Moreover, there is an interaction between the agents upon which success

requires cooperation, coordination, and negotiation. It is generally accepted

that interaction is perhaps the most significant aspect of advanced multi-agent

systems [44].

1.1.2 Pathfinding

Agent’s path planning consists of a particular order of movements with cost values

that lead from the starting position to a goal position [45]. The movement of the

agent is considered optimal if the sum of the costs of the individual steps is the

lowest among all possible paths [2]. Finding the lowest cost path from the agent to

the goal in real-time is often difficult or impossible due to the large search spaces

[46]. In some scenarios, the agent may not know the environment in advance and

need to predict the route to the goal using heuristic search methods [47].

Existing algorithms, for instance, MTS [27], D* Lite [28], PRA* [34] or CBS

[33], aim to find the shortest path towards the static or moving target state and

it is mostly achievable when there is one admissible target. However, the task of

navigating an agent towards a target becomes more difficult when constraints

are tightened, and more complex variations of problems are introduced. For

instance, the problem may be subject to a single constraint or a combination of

constraints, such as map types (with no obstacles, cycle-shaped, corridor-shaped

or roadmaps), the presence of more players (pursuing agents and targets), static

or moving obstacles, and the target being able to flee the capture or wait until

the rescue arrives [26]. Moreover, these issues have been extended to multiple

agent scenarios, such problems as Cooperative Path-Finding (CPF) [48, 49],

Multi-Agent PathFinding (MAPF) [50, 51], Dynamic Multi Agent PathFinding

(D-MAPF) [52], Multiple Agents and Targets (MAT) [53], Multi-Robot Path

Planning (MRPP) [54, 55], Multirobot Path Planning on graphs (MPP) [4],

Multi Agent Planning (MAP) [56, 57] Multi Agent Planning by plan Reuse

(MAPR) [58] or Multi-Agent Meeting (MAM) [59].

6

1. Introduction

1.1.3 Assignment Strategy

A simple strategy to find a low-cost distance towards the target and move to its

position can promise a capture if the speed of agents is faster than the target.

An example is the real-time strategy video game, Company of Heroes, where a

team of soldiers move quicker [60]. In an environment with multiple players, the

search for the path from agents toward the targets is more complex and requires

well-thought, rigorous task planning. The most straightforward solution for the

agents is to follow the nearest target. However, it might not be the best option

in the presence of multiple targets. If all agents choose to follow the target that

is closest in the distance, then targets that are not pursued can affect the total

pathfinding cost, success, and runtime.

In pursuing games, such as cop and robber, prey and hunter, and military

simulated applications, players can move and change their positions, and this

makes it difficult to plan, search and navigate towards the targets while avoiding

obstacles. The challenge increases when the targets are not stationary and their

number increases. The moving targets can evade capture while time permits if the

pursuers do not have a winning strategy [61]. Therefore, well-defined assignment

strategies aim to help efficient planning, reduce computation time, increase the

success of the task, and affect the total performance of catching all moving targets.

Thus, an assignment strategy is important, and a good assignment strategy is

essential for the desired outcome.

Multiple pursuers can benefit from two stages, which are coupled and

decoupled pathfinding algorithms. The coupled approach focuses on planning

and distributing tasks to all pursuers as a single task, whereas the decoupled

approach concentrates on finding a path individually. The assignment strategy

algorithm with the given criterion initially computes all possible combinations

(pursuer-to-target route) for all pursuers in the coupled stage. This coupled

approach produces optimal solutions [62], however, the computation increases

exponentially with the number of pursuers. The combination of assigning

pursuer-to-target with the lowest value, i.e., an optimal result, gets all targets

assigned to the pursuers before the move, and none of the pursuing agents

should be idle. Once the targets are assigned, the next stage starts, where all

7

1. Introduction

pursuers search their path independently and navigate themselves towards the

moving targets using the heuristic search algorithm. This decoupled approach

can be fast but occasionally fails in finding a complete solution [51, 63] because

of conflicts that can arise afterwards, where pursuers let others pass [64].

Though its usage is practical, especially with a large number of pursuers [32]

and robust as if one pursuer fails, that does not affect the entire team’s success

[65].

1.2 Research Aim and Objectives

The work presented in this thesis aims to develop new multi-agent pathfinding

algorithms by proposing approaches that surround and trap the targets instead of

running straight towards them. It also includes new assignment strategy criteria

to assign targets to the pursuers. Additionally, a new target algorithm that can

escape intelligently from the approaching pursuing agents. The new approach for

the pursuers is that find an optimal assignment strategy to assign targets before

the search starts and then use search algorithms to find the path. The research

tries to explore a solution that involves an improvement through the use of cover

heuristics, where the pursuing agents can search a path by taking different routes

to outmanoeuvre and trap the targets. To achieve the project aim, the following

research objectives have been identified:

1. Investigate a method for pursuers by implementing an assignment strategy

while using repetitive heuristic searches towards multiple moving targets.

2. Extend the state-of-the-art target algorithm, which has been proposed for

single-agent single-target, towards multiple pursuers by implementing a

smart escape mechanism for targets.

3. Study how effectively the proposed and enhanced algorithms perform in the

dynamic environments with multiple moving targets.

4. Propose novel methods for coordination that use the assignment strategy

which computes combinations for pursuing agents by utilising the sum of

costs and the makespan to find an optimal combination in assigning targets.

8

1. Introduction

5. Extend the multi-agent CRA algorithm, which has been developed for a

single moving target, by proposing a solution algorithm for multiple

pursuers that chase to capture multiple moving targets by implementing

an assignment strategy and a cover heuristic.

6. Implement the novel pursuing search algorithms using the assignment

strategies and the new target algorithm in the dynamic environment using

commercial gaming benchmarks.

7. Compare and statistically analyse the performance of all proposed

algorithms in different environments with different pursuer-to-target ratios

on various grid-based maps.

1.3 Scope of The Research

Multi-agent pathfinding algorithm is an important [66] and a broad [67] research

area in AI with many different variations, extensions and applications. In general,

it addresses the movement of the pursuing agents, the ability to determine where

to execute the next step and consider its move strategically [68]. It serves an

essential role in AI studies by providing agents with the opportunity and ability

to make decisions intelligently [69].

For instance, games are one of the applications where pathfinding problem is

widely studied and their environment is an excellent testbed [8] as seen in World

of Warcraft [70] or Command and Conquer [71] video games. However, the games

industry is so diverse, that this cannot be considered indicative of all games [72].

Although Figure 1.1 indicates the problem of this study, it is relevant to outline

the scope of this project.

The pathfinding problem can be studied in various settings and

configurations [73]. It is possible to plan a path on known, unknown or

partially-known environments and the pathfinding can be categorised as

deterministic or probabilistic. The deterministic methods applied on grid

environments allow for a similar outcome to be obtained in each execution with

the same starting settings, whereas, the probabilistic methods are more suitable

for real-time algorithms [74]. Although the environment, the shape of the

9

1. Introduction

Figure 1.2: The representation of three different distance metrics with a cost of 1
for an orthogonal (a),

√
2 for an octile (b) and

√
5 for the Euclidean (c) movement

directions. The possible route direction between two points, agent (A) and target
(T), is for Manhattan (d), diagonal (e) and Euclidean (f) distance.

states, can be specified as square, triangular, or hexagonal, it is common to use

square grids in video games or robotics as the implementation is easier and

simpler [75]. This also shapes the movement direction of the players.

Every possible movement associates a cost within, which determines the

final cost of the path taken. There are three metrics that define a way of a next

successful state. An orthogonal distance is an adaptation of four discrete moves

horizontal and vertical, and a diagonal distance includes four additional

movement directions (northeast, northwest, southeast and southwest). The

Euclidean distance [76], with a smoother path, can move in sixteen adjacent

states as illustrated in Figure 1.2 for costs and routes. When the heuristic

distance between a pursuer and a target is Manhattan then the cost is one for

each move. If the heuristic distance is a diagonal move then the cost to the

adjacent state is
√
2 and the cost for Euclidean is

√
5. Although Manhattan and

10

1. Introduction

octile heuristics are common, the Euclidean can provide less angled, more

realistic paths, nonetheless, it can underestimate the actual cost and provide

computationally expensive solutions [77].

The presence of obstacles also shapes the maps. The experiments can be

conducted on maps with no obstacles, with random obstacles, mazes, maps with

street or road shapes, or even commercial gaming map environments. Baldur’s

Gate video game testbed environments, the two-dimensional grip maps, are the

main sources to explore the behaviour of novel algorithms in this thesis.

The type of the map environment whether they are a maze, road shapes

or random obstacles and the benefits of these maps, as well as the direction of

movements and details of distance metrics, are beyond the scope of this research.

Targets are able to move with similar heuristics and at the same speed as the

pursuers [78] and the pursuers do not have control over the movements of the

target or its escaping directions [79]. There are some experiments that have been

conducted in which the target skips a move [80] while pursuing agents continue

the chase, eventually catching the target. Meanwhile, this study confines not on

chasing directly and “rush-in” towards it but coordinating among pursuers to

surround and trap one target or multiple targets for a successful outcome. This

coordination can be achieved with the coupled approach which unfortunately has

limits on how many pursuer-to-target combinations can be computed and due

to its exponential growth with the number of pursuers and limited computing

resources, it is a very difficult task to find combinations, for example, ten pursuers

[81]. In this regard, it is not very scalable and is only limited to up to 5 pursuers

where the assignment strategy algorithms within the coupled approach are able

to handle the tasks. There are algorithms that scale and solve the problem on a

one-to-one basis and some of them are described in the literature review Chapter

2, however, the scalable solutions for larger numbers are beyond the scope of

this research, as the approach is to find solutions for multiple pursuers towards

multiple targets, many-to-many scenarios, rather than individual independent

search solutions.

11

1. Introduction

Figure 1.3: Coupled approach illustrates two targets getting assigned to three
pursuers and lists new algorithms, while the decoupled approach is the chase
with lists of new algorithm contributions to pursuing agents and targets.

1.4 Original Contributions of the Thesis

First, the targets get assigned to the pursuers in the coupled approach stage using

six new assignment strategy algorithms bullet-pointed inside the box of Figure

1.3. Then, when the test run starts each player can make a move depending on

the algorithm provided in the decoupled approach stage. The thesis presents two

new algorithms for the pursuers and one new algorithm for the target.

The major contributions of the work presented in this thesis are listed in

Figure 1.3 and the following points below are grouped in line with the coupled

approach for assignment strategies and decoupled approach for pursuing agents

and targets:

- An extensive literature review of the search algorithms for pathfinding

including, single-agent search algorithms, as well as multi-agent

algorithms. It includes various suggested methods and approaches from

earlier studies that are pertinent to this thesis.

12

1. Introduction

- An enhanced framework for search algorithms extending from a single target

to adapt to multiple targets.

- Testing and evaluating the proposed algorithms using different pursuer-to-

target combinations on standardised grid-based maps from the commercial

game industry used as a benchmark.

Coupled Approach:

- Novel approaches for assignment strategies are proposed. The sum of costs

and the makespan are both used to investigate various criteria to find the

optimal combination for the target assignment.

- An exploration of the efficient criteria for the assignment strategies to be

applied for pursuing agents. Besides, comprehensive experiments are

conducted using Manhattan and diagonal movement directions to validate

the use of the assignment strategies.

Decoupled Approach:

- Propose a novel technique for multiple pursuers that uses existing

assignment strategies such as the Summation-cost and Mixed-cost criteria

and finds its path from adjacent available states towards moving targets.

- A novel approach for multiple agents in pursuing multiple moving targets.

The proposed approach uses the assignment strategy to identify and assign

targets to the agents and finds the path with cover heuristics that maximise

the coverage area to trap the targets. Also, the approach is adaptive to work

in different dynamic environments.

- A new approach to identifying the escaping route and providing the solution

for the targets. The developed approach considers multiple pursuers and

makes a smart escape to avoid capture.

13

1. Introduction

1.5 Thesis Outline

This thesis consists of eight chapters. Figure 1.4 illustrates the structure of the

thesis, which provides an organisational overview for readers with an indication

of how the chapters are linked. The ordering of the introduction of the

algorithms develops initially providing a simple and effective solution to

multi-agent problems with moving targets in Chapter 3 and moves to introduce

new assignment strategy algorithms in Chapter 4, then proposes a target

algorithm that intelligently escapes considering all pursuers in Chapter 5.

Alongside, Chapter 6 introduces furthermore new assignment strategy

algorithms and finally, the last Chapter 7 presents an optimal solution to a

complex problem. The summary of the contents of this thesis is presented as

follows:

Chapter 2: Literature Review - This chapter provides an overview of previous

work in the field of search algorithms for pathfinding. In particular, the

literature focuses on single-agent and multi-agent algorithms. The chapter gives

an overview of the available methods and a discussion on relevant literature

that is used for pathfinding. Also, the review of the previous research is

summarised to identify the research gaps and highlight how this work differs

from previous research works.

Chapter 3: Coordinating Multiple Agents with Assignment Strategy to Pursue

Multiple Moving Targets - This chapter investigates a solution to the

pathfinding problem of multiple pursuing agents towards moving targets within

dynamically changing environments. A pairwise distance is computed between

pursuing agents and targets at their initial positions, and the optimal

combination assigns targets to the pursuers. Based on this initial assignment

and with some random movements, the pursuing agents outmanoeuvre targets

even though they only use independent heuristic searches, such as the A*

algorithm. This is a simple and effective method that performs better when

compared to the existing approach in multi-agent scenarios.

14

1. Introduction

Figure 1.4: The thesis structure shows the organisation of the chapters and their
respective dependencies.

Chapter 4: Multi-agent Path Planning Approach Using Assignment Strategy

Variations in Pursuit of Moving Targets - This chapter investigates the problem

of assignment strategies for multiple agents. Sometimes, the agents compute

paths towards the static targets, while these target destinations are predefined

in advance. On the other hand, the assignment strategies identify and assign a

target at the initial position, before making any move. This problem is more

challenging if the targets move on the map. This chapter presents new

approaches to the assignment strategy to improve efficiencies by introducing

15

1. Introduction

three novel approaches in multiple moving target environments. These new

methods are tested against existing overall the best approach in the literature.

The experimental results suggest that the new assignment strategy methods

exhibit better results in comparison with the existing approaches.

Chapter 5: A Strategy-based Algorithm for Moving Targets in an Environment

with Multiple Agents - This chapter introduces a state-of-the-art target

algorithm, TrailMax, which works with one agent and one target combination.

It has been enhanced to consider multiple approaching pursuers and

implemented for multi-agent pathfinding problems. The presented algorithm

aims to maximise the capture time if possible until timeout. The empirical

analysis is performed on grid-based gaming benchmarks, measuring the capture

cost and the success of escape. The new algorithm, Multiple Pursuers TrailMax,

doubles the escaping time steps when compared with existing target algorithms

and increases the success rate.

Chapter 6: Adaptive Weighted-Cost Assignment Strategy for Efficient

Multi-Agent Path Planning - This chapter is an extension of the assignment

strategies provided in Chapter 4, and it introduces three further new approaches

to assigning targets to the pursuing agents. The chapter explores the new

methods for the assignment strategy algorithm for multiple pursuing agents

where agents must adapt their decisions according to the target moves and find

the optimal combination based on the current position of all players. The

performance measures the computation time for assigning targets, the

pathfinding cost for pursuers, and the success of the task.

Chapter 7: Increasing Covered Area to Capture Moving Targets in a Dynamic

Environment - This chapter proposes a novel algorithm for multiple agents in

pursuing multiple moving targets. A novel algorithm is developed using the

existing assignment strategy algorithms and the cover heuristics approach,

where the pursuing agents take the surrounding approach instead of the

shortest path in the dynamic environment. The presented algorithm aims to

outmanoeuvre and trap the moving targets and the results obtained from the

16

1. Introduction

experiments provide satisfactory outcomes. Similar to the previous work, the

tests are conducted on benchmarked maps and the results are compared for

pathfinding cost, success rate, minimum and maximum cost and runtime.

Chapter 8: Conclusion and Future Work - This chapter presents the conclusions

arising from the research conducted in this thesis. The major findings obtained

in this thesis are discussed with a reflection on the research questions identified in

Chapter 1. Following the summary of the findings, the chapter further suggests

possible directions for future work on pathfinding for multiple pursuing agents.

17

Chapter 2

Literature Review

2.1 Introduction

Finding a path and navigating the pursuing agent from its starting position to a

target position while avoiding obstacles is a well-known problem in AI [63, 66, 82].

A single pursuing agent is the only agent on the map, whereas, multiple pursuing

agents present two or more agents, however, multiple pursuers can proceed as a

single agent or collectively as one entity. In the presence of a single pursuer in

the environment, the A* algorithm [83, 84] is a classic example that is used for

agents that can be an effective solution. Furthermore, the environment becomes

challenging with multiple pursuing agents while each pursuer is given a target

position to reach, assuming it is static. However, relaxing the assumption and

repositioning the targets’ positions make the multi-agent pathfinding problem

more complicated [85]. While the problem is becoming increasingly important

[86], issues with coordination, target assignment, communication, obstacle or

collision avoidance, outsmarting targets while reaching with fewer time steps and

moving quicker in a limited time need to be considered [87]. Therefore, it is

essential to review existing search algorithms to justify the intent of the research

work in this thesis.

This chapter surveys the related literature and provides a comprehensive

review of the previous work by analysing their approach to solving pathfinding

problems. Although there is a wide range of literature related to the topic, this

18

2. Literature Review

chapter concentrates on the literature relevant to the multi-agent problem.

Initially, single-agent pathfinding algorithms are presented which are regarded

as incremental heuristic and real-time algorithms. They provide various

solutions that navigate a single agent towards a single target. Alongside these

algorithms and while the problem increases with the number of pursuers,

multi-agent pathfinding algorithms are introduced. It is possible to see some of

the single-agent methods to be enhanced and developed to multi-agent

algorithms. Multi-agent algorithms solve more complex problems and they do

not necessarily chase one target, but there could be multiple targets. Depending

on the problem scenarios, the target can be positioned on the map and stand

still until an agent reaches it, or the target can move around the map and avoid

being caught. Hence, some of the target algorithms are also discussed. The

survey provides fundamental knowledge and an understanding of pathfinding

search algorithms and their characteristics, variations, implementations, and

issues.

The remainder of this chapter is structured as follows: Section 2.2 gives an

overview of single-agent algorithms categorised as incremental heuristic

algorithms and real-time algorithms, and includes the A* algorithm. Section 2.3

provides background on multi-agent algorithms and their approach towards

single or multiple targets. Section 2.4 reviews the research on target algorithms.

Section 2.5 defines the problem and presents existing assignment strategy

criteria. Additionally, the section designs and structures the experiments that

are used in the following chapters. To conclude this chapter, Section 2.6

summarises and analyses the limitations of existing algorithms and indicates a

research gap.

2.2 Single-Agent Algorithms

Getting from the pursuing agent’s starting position to the target is the pathfinding

problem that has been addressed by many single-agent algorithms. The objective

is to find an optimal path, if one exists, by employing a search algorithm [88]. The

path should avoid obstacles and find a cost-minimal approach in real-time to the

static or moving target [79]. Heuristic search algorithms should find a path with

19

2. Literature Review

minimal costs and do so using minimal computation time. They should be able

to improve their performance over time when used in an environment that does

not change much. This section briefly introduces the A* algorithm and discusses

other algorithms that are classified as incremental heuristic algorithms [89] and

real-time algorithms [90] that provide the solution for a single agent.

2.2.1 A* Algorithm

The A* algorithm has broadly been applied to many single-agent problems in AI

[84, 91, 92] and is the basis of many search algorithms [68] as well as described in

this project. It is an offline algorithm that must find the whole path even before

committing to take the initial action. It estimates the optimum path by using

heuristics. If the heuristics are admissible, then it is guaranteed that it finds the

shortest path without overestimating the path cost from the position of the agent

to the target [88]. A* requires exponential space which is the main disadvantage

[93].

A* keeps the cost of discovered path values g(s) of the shortest found length

from the initial state to the state s ; a heuristic value h(s) is the heuristic distance

from state s to the target state; f(s) = g(s) + h(s), that is estimated distance

to the target state via state s. Once the search is complete, it uses tree (s) to

identify the shortest path in reverse [94].

A* has two sets of states, OPEN and CLOSED. The initial state is added to

the OPEN set. A state with the lowest f(s) is removed from the OPEN set and

inserted into the CLOSED set. If the f(s) of state s is no smaller than the f(s)

of the target state, then the target is found and A* terminates. Otherwise, it

continues the loop by expanding every neighbouring state s if it’s traversable or

not already in the CLOSED set. It assigns f(s) to the neighbouring state s if it

is a shorter path or not in the OPEN set. Next, it assigns tree (s), i.e. parent,

to the neighbouring state to point to state s. Finally, the neighbouring state is

added to the OPEN set, if it is not there already. Then, the procedure repeats

[95].

20

2. Literature Review

2.2.2 Incremental Heuristic Algorithms

For efficient planning, an Incremental Heuristic Algorithm (IHA) uses a

technique that finds a solution by replanning a path with information obtained

from previous searches [96]. After computing the initial search path, the

algorithm reuses the same information to make its next search faster instead of

starting from the beginning again. Through this, it performs faster compared to

repeated A* searches [97]. In the AI world, the dynamic is essential. If the

current world has changed or the target has moved, then the initial search path

may not be relevant, and it needs to be recalculated, learn a better path, or be

refined by reusing the previous search. Reusing the search is useful if not much

change is needed to the previous best search path [89].

One of the algorithms that were developed in a combination of incremental

search and heuristic search is Lifelong Planning A* (LPA*) [98]. It continuously

finds the shortest path from the start position to the goal position by reusing

details from the previous search on partially-known finite graphs [99]. It expands

positions similarly to A* in the first search. In following searches, it expands

them maximum twice and not all of them whose values are equal (incremental

search’s efficiency) or whose heuristic values are larger than the goal (heuristic

search’s efficiency) [89].

To speed up the searches and increase the efficiency in navigation strategy

for computer games or mobile robotics, Dynamic A* (D*) [100], and its

extension Focused Dynamic A* [101] algorithms were proposed. Focused

Dynamic A* has been extensively used and is the most known incremental

heuristic search algorithm; it is a great achievement in robotics [89]. Computing

the shortest path for Focused Dynamic A* is similar to the LPA*, hence the

combination of both algorithms resulted in presenting the D* Lite algorithm for

moving robots. D* Lite uses the same route strategy as Focused Dynamic A*

and both are equally fast [102]. But the D* Lite algorithm is simpler, easy to

understand, implement and extend [28]. Both search from the target state to

the agent’s current state. The agent notes obstacles around its current position

and moves towards the stationary target. The root (target) of the search tree

stays unchanged. Thus, D* Lite reuses previous search information. D* Lite is

21

2. Literature Review

usually faster than A* on stationary targets [95]. Moreover, it has been

extended to a Multi-Objective Path-Based D* Lite (MOPBD*) [103] algorithm

that finds multiple shortest-path solutions in a dynamic setting where edge cost

can change.

It was believed that the incremental search algorithm Fringe-Retrieving A*

(FRA*) [104] was the fastest solution for moving target search in the known

environment. It solved the problems only on two-dimensional grids, which is

impractical in robotics, such as Unmanned Ground Vehicles (UGVs). As a result,

Generalised Fringe-Retrieving A* (G-FRA*) [105] was formed to solve UGV’s

navigation problems on a grid with motion constraints (UGV’s location (x,y) and

orientations (θ)). It finds the path with minimal cost from the UGV’s current

state to the target’s state, and when the target changes its directions, it reuses

the previous search tree to speed up the current search.

The Moving Target D* Lite algorithm [80] is the extension of the previously

described D* Lite algorithm. The new algorithm is used in dynamic

environments where obstacles appear and disappear and a target moves.

Targets change their position to escape pursuers to pre-selected locations and

the chase continues until caught or ends in a deadlock. Meanwhile, D* Lite does

not perform as fast when the problem includes moving targets, therefore, the

algorithm inherits the same principle of G-FRA*. However, the G-FRA*

algorithm cannot perform in dynamic environments. Moving Target D* Lite

constantly determines a low-cost path from the agent’s current state to the

target’s state even though the environment changes obstacle positions and the

target moves to a new position. It is considered to be the fastest incremental

search algorithm in dynamic environments to solve moving target search

problems.

To have more realistic and natural movements, the Field D* algorithm [106]

was produced, which is a variation of D* Lite. It smoothens the path between

the grid points, and the agents can move at any angle, not necessarily 45° or

90°. Field D* creates a path where each state can be entered and exited in any

position, not only the corners. Low-cost paths are efficiently generated that omit

unnecessary turning without reducing the performance [107].

Anytime algorithms such as Anytime A* [108], Anytime Repairing A*

22

2. Literature Review

(ARA*) [109, 110], Anytime Dynamic A* [111] and Anytime Weighted A* [112]

are designed to give not the best but feasible solution. They are believed to give

better results with more time for path calculations. Within the given

computation time, the result converges, and its quality will not be refined

anymore. Solution quality or execution time has been their main trade-off [106].

To enhance the search, the Incremental Anytime Repairing A* (I-ARA*) [113]

algorithm is built on ARA* and also uses incremental search that is the same

as G-FRA*. It is the algorithm that is applied to moving targets which are

further improved using Compressed Path Databases (CPD) [114]. CPD stores

pre-computed information of All-Pair Shortest Path (APSP) [115] in a compressed

form to reduce the memory requirement during the runtime. This improved

algorithm, Moving Target Search with Compressed Paths (MtsCopa) [116], with

CPD’s optimal and the shortest paths finds better results and outruns I-ARA* in

known or partially-known environments [117]. Nevertheless, to propose a different

solution, a Moving Target Search with Subgoal Graphs (MTSub) [118] algorithm

is presented that is faster in finding paths than G-FRA* and quicker in the

processing phase than MtsCopa by utilising the search with abstraction on small

or large environments.

Series of Adaptive Algorithms. The incremental version of the A* algorithm

is Adaptive A* [30] which solves the heuristic problems by updating the cost.

Adaptive A* is called Lazy Adaptive Moving-Target Adaptive A* [94] as no

effort is wasted. It updates the heuristic value (h-values) at the time of search

when the search is needed. This makes it faster compared to A*. It can only do

this because it remembers information during A* searches, such as distance from

start to goal, and reuses this when future searches are needed to calculate the

h-value state. Adaptive A* is simple to understand and implement.

Adaptive A* has been adapted to execute heuristic searches in real-time [94].

Real-Time Adaptive A* (RTAA*) [119] is another version of Learning Real-Time

A*. The heuristics get updated after A* searches for these two algorithms but

each one does it differently. The RTAA* can quickly update heuristics in a

detailed way for those positions that are adjacent to the agent. It can select a

low-cost path in a limited period of time in each search episode. RTAA* plans

forward but cannot handle dynamic obstacles [1].

23

2. Literature Review

MT-Adaptive A* [95] is another modification of Adaptive A* where it also

corrects the heuristic values to maintain consistency if the goal state changes. In

many cases, it is faster than repeated A* searches and D* Lite. MT-Adaptive A*

can search two ways, from the agent’s current state to the target state and vice

versa.

Generalised Adaptive A* (GAA*) [105] is another model of Adaptive A*.

GAA* quickens the current search by updating h-values from previous searches

and not by reusing them. Adaptive A* finds the shortest path for actions with

increasing cost but no promise for decreasing action costs in the state spaces,

which means it limits its relevance and h-values need to be corrected. The GAA*

does not mind action cost increase or decrease but still finds the shortest path in

state space [94].

The Adaptive A* algorithm is extended to the Multi-Target Adaptive A*

[120] algorithm by including multiple targets in its new framework, which is a

maze environment. An agent is required to reach one target or multiple targets

(experiments conducted up to fifteen targets). A possible solution could be to

compute each target for optimal results, which is inefficient for large numbers.

It uses OR settings, where the agent must find the shortest path to the closest

target and AND settings for the agent to find the shortest path for all targets.

An optimal path is always achieved with all methods of AND settings.

Tree Adaptive A* (Tree-AA*) [121] is a generalisation of Path Adaptive A*

(Path-AA*) [122] which generalises Adaptive A*. Path-AA* is the first search

algorithm that is combined by the two types of incremental heuristic searches.

The first type makes heuristic values of the current A* search more informed

in order to quicken future A* searches, for example, Adaptive A*, GAA*. The

second type reuses the previous search tree instead of calculating from scratch, for

example, the D* or D* Lite algorithms. Path-AA* uses a termination strategy,

it stops search early if all h-values states are equal to their goal costs. Tree-AA*

finds a cost-minimal path from the current location to the goal destination and

applies it to path planning with no obstacles. A novel feature of Tree-AA* is to

reuse the search tree by forwarding the A* search.

A real-time Time-Bounded Adaptive A* (TBAA*) search algorithm is

integrated with Adaptive A* to minimise goal-achieving time within given time

24

2. Literature Review

intervals [123]. It has been proved that it reaches the destination with a

cost-minimal path or efficiently detects that there is no existing path. The

TBAA* needs fewer or almost the same time intervals compared to the

state-of-art algorithms in partially-known or unknown terrains.

Multipath Generalized Adaptive A* (MPGAA*) [124] is a simple but

powerful algorithm that utilises more previous A* searches. It is theoretically

the same as GAA* but uses more information from previous A* searches and is

easier to understand than D* Lite. Reusing previous A* searches is also a

feature in Multipath Adaptive A* (MPAA*) [125], but this algorithm cannot be

used in dynamic environments. MPAA* was an inspiration for MPGAA*. The

experimental evaluation demonstrates that MPGAA* is a superior algorithm

compared to D* Lite in relation to memory usage and for a goal-directed route

in the dynamic environment.

2.2.3 Real-Time Algorithms

Unlike offline search algorithms, such as the A* algorithm where the entire

solution path is computed before the first action is executed [126], real-time

algorithms restrict the search to a small part of the environment and perform

sufficient computation to determine the first action from the current state, that

is incorporating planning and execution independent of the problem size

[127, 128]. Real-time algorithms do not plan the whole path, instead with a

given lookahead (a maximum number of states to expand) provide smaller

searches that result in quicker times but higher pathfinding costs [119].

Moreover, any size environment can be adapted and larger areas compute faster

planning in comparison to IHA which is slower with the environment size

increase [47]. Although finding the optimal solution is not guaranteed,

suboptimal solutions for real-time algorithms are faster than offline algorithms

[127].

Real-time heuristic search computes from the current position of the agent

to the adjacent neighbouring unblocked position within the given lookahead and

takes an action to the lowest value determined by the heuristics. This process is

repeated until the agent reaches the target position or the target becomes

25

2. Literature Review

unreachable [119]. Real-time heuristic search holds information on visited or

learned positions throughout the process in the hash table, where planning gets

updated using asynchronous dynamic programming techniques and thus

efficiently avoids cycling [93]. An unknown target’s location makes it difficult

for real-time algorithms, so they need to be fast, respond quickly to the changes

in terrain and move smoothly [47]. It is also realised that most of the

algorithms use two-dimensional grids for simplicity purposes [129].

One of the real-time variations of the A* is Real-Time A* (RTA*) [35]. RTA*

guides itself towards the goal using heuristic values. It uses a hash table to keep

previous search results. The agent’s move depends on the value in the hash table,

which determines the closest state to the goal. The second-best value is written to

the hash table too, where it tracks back the path when it seems promising to avoid

dead ends and infinitive loops (heuristic depression) [93]. In contrast to RTA*,

Learning Real-Time A* (LRTA*) [35] writes only the best heuristic value into the

hash table. After repeated searches, as the name suggests, the heuristic value in

the table will guarantee convergence to its exact value. Both RTA* and LRTA*

have been one of the first real-time algorithms and have been an inspiration to

many approaches. There are four different approaches introduced [130] to avoid

impassable paths, deadlocks, and escape a stationary position without forward

movement, heuristic depression. Among these solutions, the daRTAA* algorithm

displayed better performance and provided optimal results.

Moving Target Search (MTS) [27] is the first real-time search algorithm to

solve a problem in a dynamic environment. It is the generalisation of LRTA*

with a moving target. It gets the heuristic values for each target and keeps all

location values in a matrix. In the progress of the search, the heuristic values are

updated, and the accuracy improves [22]. To enhance its efficiency, commitment

to goals and deliberation were included [131].

Real-Time Moving Target Evaluation Search (MTES) [132] was developed

for dynamic and partially-known environments. It is capable of estimating the

distance to the target with obstacle consideration. MTES eliminates closed

directions in real-time to move the agent to the static or dynamic target

avoiding obstacles that were found using virtual rays. Virtual rays form the

border of obstacles, and the resolution mechanism chooses the single moving

26

2. Literature Review

direction [133].

Abstraction MTS (A-MTS) [36] uses a heuristic array table. It has a 2-level

search and uses abstracted state space for calculating the path towards the target.

Each searched cell is numbered and stored in a 2D array labelled Abstract. These

numbers represent a group and contain a group head. The group head measures

nodes’ distance within the same group. A-MTS has an abstraction move list and

a real move list, where both lists contain a sequence of movements. If the target

gets detected, then it is checked if it is within the group. If so, the abstraction

move list produces a list of movements and the real move list captures the target.

To avoid delays and quicken the movements, a real move list is only produced

when the previous path has been traversed. Even though the response time is

low, it is not optimal as the generated path is abstract.

The Fuzzy MTS (F-MTS) [36] algorithm is based on forecasting the future

position of the target by identifying the moving direction. If the target is not

discovered, then its last known position is used. There are two parameters:

probability – which uses the equal distribution of movements and pattern -

uneven distribution of movements, for example, the maze map environments.

These are used for locating the target’s possible future position. Prediction

performance in large environments is unsatisfactory.

2.3 Multi-Agent Algorithms

Pathfinding search algorithms have been generally employed as a single-agent

task; however, recent research is extensively focused on multi-agent algorithms

to develop solutions that coordinate multiple agents to work as a team to satisfy

the intended goal [134], either in known [135], partially-known [136, 137] or

unknown dynamic environments [122, 138]. Even though multi-agent

pathfinding algorithms are difficult, complex, and challenging, with issues such

as communication, coordination, path planning, exhaustive computation process

and distributing the tasks, there are still several challenges that need to be

addressed.

This section reviews several existing algorithms that are used in the multi-

agent scenarios in the literature. Each algorithm is characterised by the given

27

2. Literature Review

problem, some of which were discussed in Chapter 1, and applied with multiple

target or goal destinations in multi-agent pathfinding frameworks. Additionally,

the algorithms differ in the target assignment and the scenarios they are applied.

None of the algorithms can be employed in every scenario [139] or solve every

possible problem [57]. Thus, this section classifies these algorithms according to

the number of targets and whether pursuing agents approach stationary (static) or

fleeing (moving) targets. Table 2.1 illustrates multi-agent pathfinding algorithms

and two new algorithms that contributed to this thesis. The review of these

algorithms is discussed in the following sections.

2.3.1 Pursuers and Single Target

The Multiple Agents Moving Target (MAMT) [35] algorithm, is a decentralised

approach where each agent computes its path and moves towards the targets

independently from each other, however, the agents can share information among

themselves. They see what is in front of them, either agent or target, and there

are obstacles, too. The target’s or other agents’ location information is unknown

and depends on clearly seeing, assumptions, or communication among the agents

but not the target. The agent uses a believe set which depends on the grid map,

knowledge of the target and its last known place. The believe set uses filters within

a certain time to increase effectiveness and speed up the process. If the target is

invisible, the coordination and pursuit work well, otherwise, the collaboration is

ignored, and the shortest path is searched independently.

Multiple agents cooperatively outsmart the target. They do not try to

outrun but coordinate with each other to find the solution by splitting up and

surrounding the target. An effective strategy requires time balance for agents in

planning and coordination. To make it practical, the Cover with Risk and

Abstraction (CRA) algorithm is introduced in [60]. It uses a cover set to

consider the position and speed of other agents and to catch the target faster.

The agents aim to collectively reduce the target’s moving choices and not to

find the shortest path like many existing algorithms do. CRA uses abstraction

to increase the efficiency and risk to balance between keeping the target

encircled and “rush-in” to capture. CRA is slow in computing time and

28

2. Literature Review

Table 2.1: The multi-agent algorithms are categorised in relation to the targets
and their brief description. The new contributions are at the bottom of the table.

Multi-Agent
Algorithm

Target Relation A Brief Description

MAMT
Approach the target without knowing its place but use believe set of possible
positions of the target.

LRA*
Each agent computes its route independently without considering other agents
which can revisit the same position and is time-consuming.

eMIP
Coordinating robots with minimum travel costs and sharing maximum
information are experimented with in a lake.

ADP
The number of agents is limited to adapting a strategic behaviour for coordination,
but each action is committed independently.

MLA*
It is for pickup and delivery problems in warehouses for multiple agents towards
static goal positions with collision-free paths.

MM*
A meeting point for multiple agents can be a challenge and with assignment
strategies an optimal distance is arranged.

PRA*
The cost of the search is reduced by generating a path on an abstract level of the
search space.

CRA
Instead of rush-in and attacking the target, the agents split up and surround the
target using cover heuristics.

HCA*
A hierarchy of abstractions is employed, and previously computed paths are stored
in a reservation table to avoid future collisions.

WHCA*
A window space is created for agents to cooperate and in a short period of time
dynamically prioritise the search in the current window .

FAR
Another approach is to use road networks where the flow of a direction is
annotated as a one-way road on a grid map.

OD
One action is considered for one agent at a time and continues to the next agent
until all agents know their next move. It is optimal, complete but expensive to run.

ID
The problem is divided into sub-problems and merges agents into a group. The
solutions are found independently without any conflicts or sacrificing optimality.

CBS
A centralised approach with high and low levels of searches, however, its searches
are single-agent. The conflicts are resolved for pairs of agents.

MA-CBS
It is a generalisation of CBS where it merges the conflicting agents into one
compound, which then is processed to find a path at the lower level.

CBM
Agents are split into teams with the same number of targets and plan their path
with no collision by minimising the makespan in the known environments.

DiMPP
Targets are allocated in advance to the agents and each computed path uses a
priority assignment. The longer the path, the higher the priority.

TP
One solution for warehouses where agents plan one after another. The tasks are
assigned using the service time efficiency with the lowest value with no collision.

TPTS
All tasks are assigned, and agents can request to swap tasks if has a smaller cost
before reaching the location.

TA-Hybrid

TA-Prioritized

STMTA* It uses assignment strategies and the A* algorithm to surround moving targets.

CDMTA*
Cover heuristics is the main feature as well as assignment strategies. The agents
use risk analysis either to rush-in method or to trap moving targets.

Pursuing agents aim to
find a path towards a
single static target.

Although it is a single
target, it can move
away from pursuers.

A novel contribution to
the thesis where
pursuers chase multiple
moving targets.

Another solution for agents in warehouse problems (pickup and delivery), is
where task planning, path planning and deadlock avoidance are improved. These
are offline algorithms which can scale to a larger number of agents and tasks.

These algorithms aim
towards multiple targets
that are stationary
during the search.

29

2. Literature Review

indecisive in tie-breaking when each agent’s move has equal cover values if the

whole area is considered. This algorithm is thoroughly discussed in Section 7.2.

The video games industry uses the Local Repair A* (LRA*) [32] algorithm

widely. Each agent calculates its own route independently from other agents

[140]. LRA* does not consider other agents while planning the route and may

conflict with other agents’ directions. If it happens, the agent recalculates the

route to find another way. This brings revisiting the same location repeatedly

and takes time for rerouting. It has difficulty coping in challenging environments

and the planning time increases with the problem size [128].

Partial-Refinement A* (PRA*) [34] is an algorithm that reduces the cost of

search by generating a path on an abstract level of the search space. These

abstracted spaces (graphs) are built from the grid map [66]. The abstract level

is selected dynamically. The A* algorithm is then used to execute a search with

sub-goals on the abstract graph. The abstract path creates a corridor of states

in the actual search space, through which the optimal path is found. The PRA*

algorithm has often been used in the literature and it is a widely used approach

with variations that have been described with different search techniques [141].

PRA* assigns a target with the closest distance, and not all targets might be

chased, as some targets could be positioned at a further distance than others

for all pursuers. It has been implemented in multi-agent scenarios [60] and was

successfully adapted in the Dragon Age: Origins video game [34].

One way to find solutions for multi-agents is adapting strategic behaviour

among single agents that are set to limit the number of agents to coordinate but

independently commit their actions [142, 143]. Agents construct their paths on

the individual planning graph while checking their actions on the public planning

graph to avoid the path invalidation of other agents [144]. Each path is extracted

and checked until all agents reach their target destinations [145]. Furthermore, the

problem got formulated to Agent Decomposition Planner (ADP) [146] algorithm

where planning gets automatically decomposed prior to the actual search with

the help of heuristics. The ADP is an offline (must find the whole path even

before committing to take the initial action), cooperative, totally centralised,

and complete algorithm in which methods find solutions and effective paths for

independent agents. However, because of the heuristic approach, the whole search

30

2. Literature Review

space can get explored [69].

Several agents are tasked to find a collision-free path to the static goal

positions in the multi-agent pickup and delivery problems. Agents are allowed

to move from the starting position to the pickup location, wait and then

continue to the final location. A task to pick up from a location and deliver to a

goal destination is a specific multi-goal MAPF problem that is referred to as a

Multi-Agent Pickup and Delivery (MAPD) [147] problem. This process requires

multiple paths and involves planning for multiple agents [148]. The Multi-Label

A* (MLA*) [149] algorithm is able to provide a solution by computing multiple

paths by using the A* algorithm and centralised heuristic value (h-value).

First, MLA* finds the shortest path for each agent and each path has a label

of 1 or 2, where 1 is the distance from the initial position to the pickup location,

and 2 is the distance from the pickup location to the delivery destination. Second,

the assignment strategy uses heuristics to assign tasks to the agents using their

h-values that are sorted in increasing order. The agent’s h-value at the initial

position is the sum of heuristic values from the current location to the pickup

and from there till the delivery location. But, if the agent is already at the pickup

location, then the h-value is from the pickup location to the delivery location. All

successful assignments use the path found by MLA*. Although this modification

is more complex with multiple goals, it allows for better decisions to assign tasks

to the agents and find paths with shorter routes.

For real-life situations where multiple agents need to gather and choose a

meeting point among all possible destinations, Multi-Agent Meeting (MAM)

[59] arranges an optimal meeting point with the shortest paths from the starting

positions. The distance towards the meeting position is minimised using two

different costs, firstly the Sum-Of-Costs (SOC) and secondly, the Maximum

Distance Cost (makespan). The solution for these problems is overcome with

the Multi-Directional Meet in the Middle (MM*) algorithm that uses the

best-first search method when finding the middle meeting point for several

starting locations. MM* is the generalisation of the Meet in the Middle (MM)

[150, 151] algorithm that is a bidirectional heuristic search guaranteed to meet

in the middle. MM* with a unique priority function for SOC cost and makespan

cost, the MM* algorithm promises an optimal path for MAM problems. Despite

31

2. Literature Review

the solution being found for the first SOC priority function, the search continues

to find if any other solutions are available from another priority function, which

in this case is makespan.

Robotics is one of the core applications used for search algorithms and the

Efficient Path Planning (eMIP) [152] algorithm is one of them. It uses

coordination among the robots with resource constraints, for example, path

length or energy capacity. Robots monitor the environment to obtain maximum

shared information. This mutual information analyses the most informative

paths. Each robot’s path is associated with a sum of sensing cost and travelling

cost. The task is to find a path with a minimum cost and maximum

information using joint effort. This is another useful method for assigning

targets to the robots. The experiments are set on robotic boats in a lake.

2.3.2 Pursuers and Multiple Targets

Research has been conducted to investigate solutions for multiple pursuing agents

in multi-target environments that use road networks as a different approach.

The Flow Annotation Replanning (FAR) algorithm is based on annotating flow

direction on the grid map, which was inspired by two-way roads [31]. The whole

map is designed with a one-way direction for each column or row, avoiding head-

to-head collisions. Each agent runs the A* search independently. The Open and

Closed list is released from the memory and caches the computed path when it

completes the search. The deadlocks happen quite often, block the planned paths

and agents wait until the agents in the front move. Agents have solved it locally

instead of replanning the whole step.

A more suitable method in a dynamic environment is to use a hierarchy that

computes the abstract distances on demand. Hierarchical Cooperative A*

(HCA*) [32] employs a simple hierarchy of abstractions which is a simple

two-dimensional map. It creates a reservation table, previously computed and

reserved paths, for future replanning to avoid collisions [86]. HCA* calculates

the shortest path to the goal with no problem unless pushed away by other

agents on the same path. When this happens, HCA* will lose its computed

shortest path and recalculate until the goal is reached. HCA* solutions are

32

2. Literature Review

shorter compared to LRA*, however, HCA* performs worse when abstract

distances increase.

The solution of Windowed Hierarchical Cooperative A* (WHCA*) [32] is to

create a search in window space where agents cooperate among themselves and

calculate the complete path in a large, three-dimensional state space. For a

robust solution, each agent is dynamically prioritised with the highest search

preference for a short period of time in the current window. Each window specifies

a limited fixed depth in the cooperative search for the agent to move in the right

direction. The agent calculates a partial path within the window space and moves

steadily towards the goal. With improved heuristics, WHCA* is more concise,

powerful, and efficient. Agents can distribute the processing time across each

other. WHCA* is better than LRA* in finding short and successful routes with

fewer cycles.

An algorithm can be complete if it finds a solution to the existing

multi-agent pathfinding problem. An algorithm, such as a fully Distributed

Multi-agent Path Planning (DMAPP) [153] algorithm, is incomplete as it fails

to find a path although it exists. This occurs when DMAPP is prevented from

finding a solution because of the priority order. However, it has been enhanced

and proposes a complete Distributed Multi-agent Path Planning (DiMPP) [62]

algorithm for multi-agent path planning. Agents may not have complete

knowledge of all existing agents and the targets are allocated in advance.

DiMPP computes a path independently for each agent, if a conflict occurs, it is

resolved using priority assignment to the agents. The priority is decided based

on the path length of individual agents. The longer the path, the higher the

priority. DiMPP works in path planning, distributed decision-making, and plan

restructuring phases.

A real-world domain such as an automated warehouse [154] is an environment

where agents navigate between locations and interact with executing tasks. This

is a MAPD instance, one of the MAPF problems [147] where agents constantly

need to assign new assignments. The assignment is a task, that is to move from

the initial position to the mid-point and from the mid-point to the final goal

destination, where an agent picks up at a certain location and delivers to the

allocated point. Tasks can appear in the application at any time and only an

33

2. Literature Review

agent that is not allocated to any tasks yet is assigned to one task. This agent

plans a collision-free path using the A* algorithm from its current position, and

then moves to the pickup position and delivers the task.

The recent research on MAPD has improved task planning, path planning

and deadlock avoidance by introducing two offline search algorithms, Task

Assignment and Prioritized (TA-Prioritized) and Task Assignment and Hybrid

(TA-Hybrid) [155], that have experimentally proven to perform better and scale

to a large number of agents and tasks. Additionally, a closely related solution

and a different challenge to warehouse problems is the Multi-Goal Multi-Agent

Path-Finding (MG-MAPF) [156] problem where each agent gets multiple target

destinations assigned which needs to be visited at least once for successful

output. Despite, the agents can navigate the high-quality path with no collision

in automated warehouse environments, the challenge still exists in the

implementation where agents, for instance, robots, are unable to adhere to the

path accurately. Thus, the Action Dependency Graph (ADG) [157] framework

proposes a solution that guarantees robustness. Furthermore, the authors in

combination with the Rolling-Horizon Collision-Resolution (RHCR) [158], which

has a limited planning timeframe, improved the framework to resolve the

MAPF problems with a continuous flow of online tasks.

Two decoupled MAPD algorithms, Token Passing (TP) and Token Passing

with Task Swap (TPTS) are introduced in [147]. TP is a simple, distributed

algorithm that uses token passing, which stores data (task sets, assignments, and

the path of agents) in a shared memory block. All non-assigned tasks are kept

in a task set, and the task is assigned using the service time efficiency. The

service time is the average of time steps required to complete the tasks. Each

agent’s path is planned one after another. At each time step, an agent chooses a

token with the smallest h-value and no collision path at the pickup and delivery

locations. An agent with no assignment stays at the last position of the path.

Unlike TP, the TPTS contains all tasks that have not been executed

previously, not just non-assigned tasks. The difference is that an agent can

assign the task that was previously assigned to another agent and can request a

token swap if the task has not reached the pickup location and has a smaller

cost. The TPTS algorithm is more effective in comparison to TP but scalability

34

2. Literature Review

is not guaranteed for many agents as TP does. TP’s runtime is measured faster,

although the computation time needs improvements [149]. These two

algorithms operate in a known environment and are tested on a simulated

warehouse-modelled map [23].

Conflict Based Search (CBS) [159] is the algorithm for MAPF problems that

promises optimal solutions at the expense of computation by using a centralised

approach, however, all pathfinding searches are single-agent which is similar to

the decoupled approach [160]. CBS uses both high-level and low-level searches.

At the high level, the search is structured to use the best-first search, and the

arising conflicts need to be resolved for pairs of agents. The CBS algorithm uses

a constraint tree (CT), with each node having constraints on time and location.

At the low level, the A* based search is run only for the single agent, while

disregarding the other agents, to find the optimal path under a set of constraints

that are established at the high-level search [161]. CBS outperforms other optimal

multi-agent pathfinding algorithms in the corridors and the areas with many

obstacles, additionally, in the scenarios with many bottlenecks that have fewer

conflicts. Also, CBS performs better in comparison to large open spaces that

have many conflicts [33].

Although CBS solves MAPF problems optimally, still the worst-case

performance needs to be reduced and therefore, CBS has been generalised into a

new algorithm called Meta-Agent CBS (MA-CBS) [33]. This approach has been

generalised to merge the conflicting agents into one compound as a meta-agent

if the predefined conflict bound is met. Once the conflicting agents are merged,

then this meta-agent is processed to find a path at the lower level. The

complexity of the MAPF problem is exponential with the number of agents and

maintaining a larger number of agents is a problem. To mitigate this issue and

increase the performance, the conflicting agents are merged if the conflict bound

is levelled in MA-CBS and this merging is always true for the Independence

Detection (ID) [86] algorithm, unlike the CBS algorithm, which never merges

agents.

It is possible to use the extensions of the A* algorithm such as Operator

Decomposition (OD) and ID [86]. OD is an approach where branching factors

are reduced for search algorithms. At each time step, OD considers possible

35

2. Literature Review

actions for one agent at a time, and with a fixed order continues to assign the

action to the next agent. This process is called an intermediate state until all

agents know their next move, which is a full state. If no actions, it is a standard

state. This pruning method reduces the expansion of surplus states, and the

solution is found relating to the single agent’s actions [51]. For instance, if each

agent has nine possible actions, including waiting with eight diagonal moves, then

the branching factor is reduced from (9n)d to 9d while d is the depth of generated

states [162]. Despite being optimal and complete, OD has expensive runtime, and

paths can be conflicting if the runs are terminated prematurely [63].

The ID is another extension of the A* algorithm that divides the problem

into smaller sub-problems identifying an independent group of agents. ID

repeatedly merges agents into a group and finds paths using OD and this

process continues until there is no conflict between the agents and they can

independently find solutions without any conflicts and without sacrificing

optimality [63]. Provided that the complexity of MAPF problems grows

exponentially with the number of agents, the search of the largest group

dominates the running time of solving the problem, though avoiding

unnecessary merges can significantly increase performance [46]. The cost is

denoted by the Sum of Individual Costs (SIC) heuristic for these algorithms

[159].

The combined Target-Assignment and Path-Finding (TAPF) [163] problem is

a different kind of MAPF problem. The number of agents is equal to the number

of targets, and the agents are aimed first to assign all targets and then plan their

path with no collision by minimising the makespan in the known environments.

The agents are split into teams and each team is given the same number of targets

to match the number of agents in the team. It is allowed for each agent within

its team to swap the assigned targets but the agents from the different teams are

not allowed to swap the targets with other teams. The solution for this problem

is addressed with a Conflict-Based Min-Cost-Flow (CBM) [15, 163] algorithm

that solves TAPF instances using anonymous (swappable target assignments)

and non-anonymous (pre-determined target assignments) multi-agent pathfinding

algorithms.

CBM is a hierarchical algorithm that uses a non-anonymous algorithm such

36

2. Literature Review

as CBS [161] on a high level and an anonymous minimum cost maximum flow

algorithm [164] on a low level. At the high level, individual agents in each team are

merged into one meta-agent, which uses the CBS algorithm to avoid collisions

among these meta-agents and performs the best-first search on a binary tree.

Each node on the tree has a set of constraints and paths for agents to observe the

constraints. Makespan is used to find the minimum collision-free cost path. At the

low level, CBM runs the minimum cost maximum flow algorithm over the time-

expanded network. All agents in the same team are assigned to unique targets

and no-collision paths are planned to comply with the constraints introduced on

the high level. Moreover, edge weights are introduced on the low level to avoid

possible collisions among meta-agents. The CBM algorithm has theoretically

proven to be complete, correct, and optimal [163]. Furthermore, there are many

improvements and enhancements introduced to the CBS algorithm [165, 166, 167]

and different solutions explored for multi-agent pathfinding [168, 169].

2.4 Target Algorithms

This section introduces several existing target algorithms in the literature. The

following is a brief description of each algorithm. Although there is plenty of

research in the literature emphasising algorithms for pursuing agents, there are

few studies that are conducted on algorithms for mobile, moving targets. The

A* algorithm is a classic example that is implemented as an algorithm for many

pursuing agents, as well as target algorithms [170].

TrailMax [78] is an intelligent algorithm that is based on a strategy. It

generates a path for a target considering the pursuing agent’s possible moves,

i.e., it efficiently computes possible routes by expanding its current and adjacent

neighbouring nodes and the agent’s nodes simultaneously. The TrailMax

algorithm aims to make the targets stay longer by maximising the capture time.

The players can move on the map; thus, the target computes an action at every

time step with new updated information about the players. It is for one-to-one

player scenarios. The algorithm works as follows. To compute a path, an escape

route that maximises its distance away from the agent, it checks the best cost of

the neighbouring states against the pursuer’s costs and expands nodes

37

2. Literature Review

accordingly. The algorithm expands nodes that are not yet expanded and not

already occupied in the target closed list and not in the pursuer closed list. The

node with the best cost is added to the target’s closed list, which would

generate the path afterwards. The first element in the path is an action for a

target to take. This procedure is repeated from scratch at every time step. It is

a state-of-the-art target strategy algorithm that performs the best against

pursuing agents, aiming to make the targets less catchable or more difficult to

capture [53].

When Minimax [171] is used as the target algorithm, it runs an adversarial

search that alternates moves between the pursuers and the target. When the

pursuing agent gets closer to the target state, then the target distances itself

from the pursuing agent’s state. To make the algorithm faster, Minimax is run

with an alpha-beta pruning search, where alpha (α) and beta (β) are constantly

updated to avoid the exploration of sub-optimal branches. The used depth is 5,

i.e., the outcomes after at most 5 moves of each party are considered.

Dynamic Abstract Minimax (DAM) [171] is a target algorithm that finds a

relevant state on the map environment and directs the target using Minimax with

alpha-beta pruning in an abstract space. There is a hierarchy of abstractions.

Higher levels might not provide enough information about the map and lose

important details, such as an agent at the close by, and fine abstract levels might

be very detailed and increase the computation costs. The search starts on the

highest level of abstraction, an abstract space created from the original space.

The Minimax algorithm runs a search at the highest level of abstract space and

continues to the next low level of abstraction. It stops at the level where the

target can avoid the capture. Then, on this level of abstraction, if a path exists,

an escape route is computed using the PRA* algorithm (see Section 2.3.1). If the

target cannot escape and there is no available move to avoid the capture on the

selected abstract space, then the level of abstraction is decreased, and the whole

process repeats until the target can successfully run away from being caught. The

used depth is 5.

Another algorithm for targets is Simple Flee (SF) [60], which can be used to

escape from the pursuing agents to the predefined states on the map. The SF

algorithm works as follows. At the beginning of the search, the target identifies

38

2. Literature Review

Figure 2.1: A sample AR0417SR map from Baldur’s Gate video game used in
the experiments.

some random locations on the map. When the target starts moving, it navigates

to the furthest position, away from the pursuers, on the map among a set of

random locations that are set before the simulation starts. During the escape, to

disorient the pursuing agents, such as incremental heuristic algorithms, D* Lite

[28] and MT-Adaptive A* [95], that can search from the target’s state, SF can

check if the selected location is still the furthest and possibly change direction

after a pre-set number of steps, otherwise, it keeps moving to avoid capture. The

number of locations on the map and the number of steps before the change are

the parameters of the algorithm.

Greedy [172] is the standard algorithm that repeatedly makes the best local

optimal choices that, in the hope, would lead to global solutions. This is a simple

and fast approach to solving a problem that uses sub-optimal and easily computed

heuristics. Greedy runs a cumulative Manhattan distance of maximising the gap

towards the pursuers. It evaluates its options and moves to that state. Once it is

at that point, it will stay until being captured, if any other maximum states are

not available [60].

39

2. Literature Review

2.5 Design and Structure of the Experiments

Initially, this section introduces a precise problem characterisation of the

multi-agents and multiple moving targets that are referenced throughout the

thesis. Then, it follows by describing three existing assignment strategy

algorithms that are considered as a basis for studying other different criteria.

Finally, an experimental problem setting is presented which is referred to later

in the following Chapters 3-7.

2.5.1 Problem Formulation and Description

An instance of the PAMT problem consists of m number of pursuing agents P =

{p1, p2. . . pm} and n number of targets T = {t1, t2. . . tn}, where p ⩾ t on a finite,

known undirected graph G = (V, E). V denotes a set of vertices and E represents

the set of edges between vertices. Vertices are the states, edges are actions and

edge weights represent travel distances. The total cost of distances travelled by

a pursuer from the initial state to the target state is called the pathfinding cost,

i.e., the travelled total cost. A heuristic function (distance heuristic) estimates

the pathfinding cost, and a pursuer then assesses the outcomes, evaluating the

solutions with the lowest value as the most promising in contrast to the cover

heuristic (covered area) with the maximum value [173].

The problem incorporates multiple players, pursuing agents and targets, and

it is studied in a simulation environment. A scenario considers the players

navigating to any adjacent vacant state as well as the pursuing agents traversing

towards the target in a known or partially-known environment where the initial

location of the targets and the obstacles are known. The communication is free,

information is shared instantly and every player’s state is known to all players,

both pursuing agents and targets [174]. The initial states of the agents do not

need to be unique, and agents can start from the same state or during the test

runs can occupy the same state [21, 175]. Similarly, agents can share the same

target if it is an optimal combination provided by the assignment strategy

algorithm (see Section 2.5.2 and 4.2).

Coordination among the agents is achieved through the initial assignment of

pursuing agents to targets. Although, the complete knowledge of the environment

40

2. Literature Review

is known, no prior information is given about the number of targets, their escaping

route or destination. Targets are free to move to any point on the map and escape

from the approaching pursuers, and no pursuer has control over their movement

directions.

The environmental changes do not occur at the starting state, but at the next

time step, the states of the targets can change; therefore, each agent must observe

the new positions of the targets or whether they are caught. The pursuing agents

must adjust to the dynamic changes and find a path from their current state to

the state of the assigned target. Even though the path is computed on the search

space, the only action is executed locally in the neighbouring states.

The success of the problem is when the target is reached and occupied in

the same state by one of the pursuers. The success of a team when all targets

are caught. However, the success of the target when it avoids the capture and

manages to escape the approaching pursuers. When the target is not reached and

the chase continues, the pursuers alternate two actions, planning and execution.

The execution of an action, that is a moving action, interleaves with planning and

planning cannot proceed during the moving. This method enables the simulation

of the asynchronous chase scenarios that can also be found in the literature [22,

57, 176, 177].

The problem applies to any graph, however, empirical studies use grid-type

graphs. Furthermore, in the empirical testbeds, which are commercial video game

maps from Baldur’s Gate [178], the maps are set on grid-based states with four

connected neighbours, where each state is denoted as vacant or blocked by an

obstacle. An agent can move orthogonally to the adjacent empty state or stay

in the same state, i.e., a wait action. Although different speeds could be applied

to each pursuer or target, they all have the same speed. The environment is

deterministic as it is possible to infer the agent’s next action based on the given

current state and current action. Time is discretised into time steps.

2.5.2 Existing Criteria for Assignments

Many algorithms use the shortest distance criteria for assigning agents to pursue

the targets. Others consider all or most possible assignments and use criteria

41

2. Literature Review

such as the sum of distances or the maximum distance (makespan) to select the

optimal combination of assignments. Different or similar methods have been used

for these cost criteria, including sum-of-costs and makespan [59], flowtime and

makespan [179], service time and makespan [149] and the sum of path lengths

and makespan [14], or the sum of the individual path costs (flowtime) and the

maximum of the individual path costs (makespan) [180].

The work in this study builds on the criteria introduced by Xie, Botea and

Kishimoto [53] and their research uses Summation-cost, Makespan-cost and

Mixed-cost criteria. The Mixed-cost criterion is optimised by merging the other

two criteria and it is the best overall in their study [53]. These three target

assignment approaches, which consider a distance to evaluate the cost, are

described in this section.

2.5.2.1 Summation-cost

A cost is the number of movements that measures the distance from a starting

location to the goal location. Every agent, at the current position, estimates a

distance cost towards the goal and not the future positions. Summation-cost is the

cumulative distance sum of each agent [59]. Depending on the number of targets

present in the environment, the pursuer computes a Manhattan distance from its

current position towards the targets. Each combination cumulates the distance

cost of each pursuer, and the Summation-cost criterion selects the combination

with the lowest value.

Consider a two-dimensional game map AR0417SR (Figure 2.1) with

obstacles in the black shade; Figure 2.2 is a portion of this map. There are four

players present, two pursuing agents (A1, A2) and two targets (T1, T2). Each

pursuing agent has an admissible path towards the targets; therefore, they have

got a choice of which one of two targets to follow. Table 2.2 provides

pre-computed individual distance costs, the Distance column, for each pursuing

agent and the table contains DistancesSum column, which is the sum of two

distance costs within each combination. The Summation-cost criterion

compares the DistancesSum values and assigns targets based on the lowest

combination cost. Table 2.2 displays distances from Figure 2.2, where (A1,T1),

42

2. Literature Review

Figure 2.2: Demonstrating pursuing agents’ (A1 and A2) possible directions
towards the targets (T1 and T2) on the part of AR0417SR map, see Figure 2.1.
Black shades are obstacles.

(A2,T2) has a cost of 3+10=13, which is optimal to (A1,T2), (A2,T1) with a cost

of 7+8=15. In this case, Combination1 has the minimum value and it is

preferred to Combination2.

2.5.2.2 Makespan-cost

This is similar to the Summation-cost criterion described above. The Makespan-

Table 2.2: The possible distance cost combinations for two pursuing agents.
DistancesSum is used for the Summation-cost criterion and MaxDistance for the
Makespan-cost and Mixed-cost criteria.

Combination Agent to Target Distance DistancesSum MaxDistance

1
A1 → T1 3

13 10
A2 → T2 10

2
A1 → T2 7

15 8
A2 → T1 8

43

2. Literature Review

cost criterion uses the maximum distance cost within the combination instead

of its total [53]. The Makespan-cost has been called time steps too, as each

move is equal to a one-time step. Thus, it focuses on the maximum time spent

to reach the current position of the targets for all agents. This is important in

many situations, for example, hot food delivery drivers might want to take their

customers’ orders to their destinations such that the maximum time is as low as

possible.

Table 2.2 additionally shows this criterion in the column named MaxDistance

where the combinations are compared with one another and the lowest value is

selected. The assignment (A1,T2), (A2,T1) has a MaxDistance(7,8)=8 which is

optimal with respect to the makespan-cost criterion, whereas (A1,T1), (A2,T2)

has a MaxDistance(3,10)=10. Therefore, according to these results, by selecting

Combination2, which has the lowest value for the Makespan-cost criterion, the

delivery drivers can have the optimal solution.

2.5.2.3 Mixed-cost

The Mixed-cost criterion uses the Makespan-cost criterion as the main component

for its assignment strategy and it has been found to be the overall best criterion

in some previous experiments [53]. To assign agents to the targets it takes the

best value from the MaxDistance, i.e., the lowest value, as shown in Table 2.2.

The distance cost used in the Mixed-cost criterion is the maximum time spent

to reach the destination at the current position. If MaxDistance values are equal

for both combinations, then the tie-breaker uses the DistancesSum.

2.5.2.4 Complexity analysis

The complexity analyses have been previously studied and they are provided

for the above criteria. The problem in the Summation-cost criterion is to find

the minimum total cost within the combinations and the time required to solve is

O(n3) [181], whereas Makespan-cost seeks to find the lowest value of the maximum

cost in each combination and the solution for its time complexity is provided in

O((m + n)
√
n) steps which is O(n

5
2) [182]. The Mixed-cost criterion employs

Summation-cost as the tie-breaker, therefore, the worst-case is the same as the

44

2. Literature Review

Summation-cost [53].

2.5.3 Experimental Problem Settings

The experiments are adapted to a simulated gaming environment and set to

run on commercial game industry maps, which are standardised benchmarked

maps from Baldur’s Gate video game [183]. The maps are two-dimensional,

grid-based rectangular environments with four-connected grids and impassable

obstacles. Commercial gaming maps are important for AI research, although

they are complex and difficult in comparison with handmade or purposely-made

artificial environments, these maps are significant in solving real-life problems

[184] and improved to create realistic and engaging behaviour for non-human

players [8]. It can be imagined as a scenario with cops (pursuing agents) and

robbers (targets), where cops need to unite their forces to successfully catch

robbers at a minimum cost.

The selection of experimental maps has prioritised the size, the existence of

obstacles (static non-traversable cells) and the difficulty of navigation. Each

map has its defined obstacles in the black shade and these obstacles shape the

map. The white space is a traversable area. Although the maps are not already

categorised, they are put into three different groups in Table 2.3 based on visual

layouts as circle-shaped, corridors and large open spaces. The circle-shaped with

resembling island obstacles in Figure 2.3(a) and those with narrow corridors in

Figure 2.3(b) are the illustrated samples of Baldur’s Gate video game.

To evaluate the performance of the algorithms, there are twenty-four

benchmarked maps used for the experiments across all chapters and organised

into groups from the same category. Each newly presented algorithm conducted

experiments on circle-shaped and large open-space maps. Moreover, the

environment with narrow passages and corridor-shaped maps were introduced

for Chapters 4, 6 and 7. Additionally, five more purposely-made maps [60, 171]

with varying navigation difficulties are included only for the experiments in

Chapter 3.

Time is discretised into time steps. Only orthogonal moves are allowed where

the travel directions could be horizontal (left or right) and vertical (up or down)

45

2. Literature Review

Table 2.3: The categorised testbeds used in the experiments for each chapter with
their map identification, dimensions in nodes, and traversable states.

Map Names
Chapter

3

Chapter

4

Chapter

5

Chapter

6

Chapter

7

Height x Width

(number of nodes)

Empty States

to Expand

Circle-shaped

AR0313SR ✓ 64x60 946

AR0401SR ✓ 59x52 1081

AR0402SR ✓ 59x56 1075

AR0417SR ✓ ✓ ✓ 54x52 833

AR0507SR ✓ 54x52 739

AR0526SR ✓ 80x72 833

AR0527SR ✓ ✓ ✓ 54x52 531

AR0528SR ✓ ✓ 54x52 562

AR0531SR ✓ 54x52 716

Corridors

AR0016SR ✓ 86x88 2103

AR0304SR ✓ 86x80 1734

AR0413SR ✓ 118x108 1014

AR0503SR ✓ 75x68 745

AR0514SR ✓ 64x64 1134

AR0712SR ✓ 64x64 1163

Large Open Space

AR0302SR ✓ 86x80 1819

AR0311SR ✓ 54x52 558

AR0332SR ✓ ✓ 59x56 973

AR0407SR ✓ ✓ 54x52 576

AR0508SR ✓ 54x52 567

AR0509SR ✓ 75x72 1503

AR0512SR ✓ ✓ 54x56 896

AR0607SR ✓ ✓ 54x60 1730

AR0707SR ✓ ✓ 59x56 974

Purposely-Made

RoundTable09x09 ✓ 09x09 56

RoundTable39x39 ✓ 39x39 572

MTS1 ✓ 41x41 731

MTS2 ✓ 41x41 1277

Empty30x30 ✓ 30x30 900

46

2. Literature Review

Figure 2.3: The standardised grid-based maps from Baldur’s Gate video game
are used and circle-shaped (a) and narrow passage corridors (b) are the samples.

with a cost of one each. This is the Manhattan distance that is the standard

heuristics for rectangular grid environments [185] and Manhattan distance is very

accurate [186]. Meanwhile, the diagonal heuristics are also used in [118, 125, 136]

with a cost of
√
2 and it has been implemented for evaluation only in Chapter

4. If targets are not standing idle, then they have the same moving capabilities

Table 2.4: Experimental setup and the number of test runs for algorithms.

Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7

STMTA* Assignment

Strategy - 1

MPTM Assignment

Strategy - 2

CDMTA*

Movement

Direction

Manhattan Diagonal Manhattan Manhattan Manhattan

Number of

Test Runs per

Each Setup

30 30 20 20 20

Total Number

of Individual

Test Runs

21,600 12,600 20,480 56,700 56,000

Computer CPU: 2.2 GHz CPU: 1.9 GHz CPU: 2.2 GHz CPU: 2.2 GHz CPU: 2.2 GHz

Configuration RAM: 16 GB RAM: 40 GB RAM: 16 GB RAM: 16 GB RAM: 16 GB

47

2. Literature Review

as pursuers. Pursuing agents and targets have equal speed, and one action is

performed at each time step. Each action is either move to the adjacent cell or

stay put. Nevertheless, the approach is suitable to work in situations where there

are different movement costs and speeds.

In the literature, there are many different settings outlined for the tests. For

instance, in each configuration setting, which consists of a fixed or random

starting position for pursuers and targets, every experimental result is averaged

of the 5 [149], 10 [29, 62, 187], 20 [60, 152] or 30 [179, 188] test runs and

variations may occur due to computational resource constraints [126]. The

number of map environments used during the empirical experiments has been

various, too. Despite the existence of 25 [189, 190], 50 [14] or 100 [66, 191] test

runs, some algorithms, such as those used in warehouse settings [23, 192] or

compressed path databases on static environments for point-to-point distances

[114, 193], were only evaluated once for each state but with a different starting

states on each individual run. The experiments in this research, as can be seen

in Table 2.4, are the average of 20 or 30 test runs for each testing configuration

setup. The total number of individual test runs is displayed in the same table.

To help to analyse the behaviour of the algorithms better, different sets of

scenarios are conducted. Each given environment has various pursuer-to-target

combinations. In single-agent scenarios one target is sufficient, and similarly,

some multi-agent scenarios involve only one target. This research conducts multi-

agent multiple-target experiments (the PAMT problem), which contain several

combinations with 3, 4 or 5 pursuers and 2, 3 or 4 targets, where the ratio of the

pursuers outnumbers the targets or is equal and no target is left unassigned. In

the case of testing target algorithms in Chapter 5, these scenarios also help to

study the actions and measure the performance when targets are outnumbered.

Each problem is defined by the starting position of the pursuing agents and

targets. These positions provide a diverse set of scenarios where the behaviour

and performance of the algorithms can be observed. Depending on the algorithm

evaluated they have different sets of starting positions on each map, and they

are positioned on preselected random locations in the known environment. All

pursuing agents and targets have knowledge of the locations of others. The

constraint is relaxed, and the pursuers are allowed to occupy the same state.

48

2. Literature Review

This helps in understanding how the pursuers utilise the use of surrounding and

trapping the targets. Therefore, on some maps, the starting states included

positioning pursuers in the same location on the map’s corner, in the centre

close to each other or spread out by the wall of the map. The targets are always

positioned as far away on the opposite side of the map. Each chapter, Chapters 3-

7, evaluate different pursuer-to-target combination and various starting positions.

The results presented evaluate the performance of algorithms and each chapter

measures pathfinding cost and the success rate considering all pursuers. The

pathfinding cost (the travelled total cost) is the number of steps taken before

capturing all targets for successful runs, or the number of time steps until timeout

for unsuccessful runs. On the contrary, as for the target algorithms in Chapter

5, this is a capture cost, meaning the number of steps of avoiding capture. The

next is a success which is recorded when a target is captured, i.e., the pursuing

agent occupies the same state as the target. In multi-agent scenarios, at least

one pursuer's occupancy is enough to claim success. In the presence of multiple

targets, success can be achieved when all targets are captured. For the target(s),

success is the absence of pursuer success. Additionally, Chapter 6 and 7 measure

minimum cost and runtime while Chapter 7 includes maximum cost, too. Having

different-sized maps, the experiments are not limited to the fixed runtime, but

the runtime is adjusted to the map size and runs out of time (timeout) at 10 times

the height of the map. Statistical analysis has been provided for the significance

of the results for all pathfinding costs in every chapter.

The base of the implementation [60] was kindly provided by Alejandro Isaza

and it has been extended such that multiple targets and various

pursuer-to-target assignment strategies could be tested. The simulation is

implemented using C++. Table 2.3 displays that all obtained results from the

experiments were conducted on a Linux machine on Intel® Core™ i7 at 2.2

GHz CPU with 16 GB of RAM, except those experiments which are conducted

in Chapter 4 are on a Linux machine with a 1.9 GHz Intel® Core™ i7 and 40

GB of its RAM.

All the above-mentioned descriptions are the base settings of the experiments.

Chapters 3-7 evaluate different algorithms, therefore, the pursuer-to-target ratio

combination, the starting positions of the pursuing agents and the targets and

49

2. Literature Review

their compared algorithms are described in the experimentation section of each

chapter.

2.6 Discussion

The related work presented in this chapter covers pathfinding search algorithms

for single and multiple pursuing agents, alongside target algorithms. This review

aims to identify the research problem of the multi-agent search algorithms towards

moving targets. While previous sections investigate existing approaches to finding

solutions to pathfinding and discuss how the presented algorithms differ from each

other, this section is dedicated to highlighting the limitations of the literature and

how the proposed approaches in this thesis improve the assignment strategy and

the pathfinding for multiple pursuing agents as well as the escaping method for

the target. The algorithms that are covered in this chapter are categorised in

Appendix A.

Finding an optimal algorithm for a given environment is a difficult task, for

instance, the FAR algorithm might be optimal for road networks while

unsuitable for maze map environments. Therefore, finding an optimal algorithm

for all environments is impossible in principle [194]. Therefore, multiple agents

are required to collaborate and work collectively to achieve the goal which is

moving to the stationary goal destinations or capturing all available targets in

dynamic environments. Within this scope, computing the optimal solution is a

challenging task, especially in complex environments. First, targets must be

identified and assigned to the pursuing agents. Second, agents individually or

teams of agents find paths to the assigned targets. Consequently, this is the

area Chapter 2 is primarily investigating. The possible solutions in Section 2.3

mainly focus on multi-agent pathfinding problems with static targets and only a

few consider moving targets. Although the review presented in this section

discusses the pathfinding solutions for multiple pursuers, still computing the

path is performed by autonomous agents. The various methods applicable to

single-agent pathfinding algorithms are described in Section 2.2.

Pathfinding algorithms should find the shortest path, avoid obstacles, and

reach the stationary or moving target within the time limit. Even in a simple

50

2. Literature Review

Figure 2.4: An environment with three different grid sizes as shown in [1]. A
circle is an agent and its generated path.

environment, the pathfinding search algorithm faces several challenges and one of

them is the varying grid size in the environment. Figure 2.4 illustrates grids closer

to the agent with a higher resolution plan a detailed search and grids away at a

distance with lower resolution create a rough plan and compute faster [1]. The key

challenges are switching between different resolutions and representing dynamic

obstacles. Moreover, grid maps, for instance, gaming maps from Baldur’s Gate,

are easier to navigate when compared to room-shaped or maze maps [97].

Another challenge is a large environment where the algorithm performs worse

[32] and produces a movement path in a longer period [36]. If the environment is

dynamic, not every algorithm can be used [124]. The design of the environment

is important, it may lead to collisions or deadlocks [31].

When choosing a search algorithm for moving targets, one criterion should

be considering memory consumption and computation efficiency [36, 89]. Cost-

minimal movements are essential, and improvements demonstrated efficiency in

G-FRA*, Field D* and TBAA*. Some IHAs generate a path from the stationary

target location to the agent location. This is efficient for D* Lite as it can shift

the map to find a quick path but makes it slower if the target moves in a dynamic

environment. Then, D* Lite cannot reuse some previous search information [80].

51

2. Literature Review

Real-time heuristic algorithms search from the agent location to the target and

MT-Adaptive A* can do it and vice versa [95].

One way to find a solution for the pathfinding problem for multiple agents is

to have minimal interaction among the agents and use prioritised planning [5].

For instance, WHCA* [32] executes planning in the prioritised framework, where

agents move in the window space to avoid conflicts. Although there can be valid

solutions, it does not guarantee the completeness or optimality of the solutions

[5]. The planning is much quicker with FAR [31] which uses less memory and

performs even better with more pursuers [195].

Some multi-agent pathfinding algorithms were demonstrated whose

performance could change depending on the grid map, size of the map, number

of agents, and branching factor; and there is not any global best algorithm [33].

An algorithm such as CBS, an optimal solver for MAPF problems, can

underperform in environments with open spaces and display worse performance

than A* [159]. Similarly, A* searches might be a quicker solution than LPA* if

the previous search tree is different from the current one [95].

The majority of the existing search algorithms aim to find the shortest path

to the target location. Meanwhile, the CRA algorithm contradicts this to be the

main objective, instead, it prefers working collectively to minimise choices of the

target [60]. Although the shortest path is important, the timing is essential too

as seen in real-time heuristic algorithms [36].

Multi-agent pathfinding approaches trade-off between coupled and decoupled

approaches [192, 196, 197]. The coupled algorithms are complete and can be

optimal, however, the computation is excessive, and they do not scale with the

number of agents as the state space grows exponentially. Whereas the decoupled

approach is effective and can work with many agents, on the other hand, the

completion of the path, its runtime and the minimum cost are not guaranteed.

There are a few methods that utilise these two approaches by joining together

[162]. For instance, Biased Cost Pathfinding (BCP) [196] combines them to avoid

expensive replanning, and collision among agents, and applies time constraints.

Section 2.4 presents a review related to the target algorithms where the work is

based on escaping strategies. Target algorithms, without strategy but considering

a pursuing agent’s position, can escape from the pursuers but sometimes might

52

2. Literature Review

fall into the path of other pursuing agents. This causes an issue in multi-agent

frameworks. To avoid this limitation, the study in this thesis considers every

pursuing agent, and this new approach provides a winning strategy for the target.

The literature review of the algorithms indicates that there are many

different solutions to solve a pathfinding problem. Initially, single-agent

pathfinding problems were reviewed to demonstrate the variety of possible

solutions. This further continued to the multi-agent algorithm, which indeed,

uses some of the solutions that are provided for a single-agent. For instance,

Adaptive A* with various versions developed to MPGAA*, or D* Lite being

extended to MOPBD*, or different variations of A* such as LRA*, OD, ID,

HCA* or WHCA* are implemented in multi-agent problems. However, these

solutions do not cover every problem or scenario, and especially the complex

problems are left with less attention.

The review indicates that research needs to continue for multi-agent

algorithms, particularly in environments with moving targets. Table 2.1

categorises multi-agent algorithms with respect to their relation to single or

multiple and static or moving targets. Moreover, with the increased number of

players, the research implies the requirement for a good assignment strategy for

pursuers, which has been an area of investigation. In the meantime, the current

criteria for the assignment strategies are presented in Section 2.5.2. Similarly, it

is inevitable to develop an effective strategy capable of providing competent

solutions for the multiple pursuers in order to surround and capture the targets.

These highlighted points suggest new methods to improve and solve multi-

agent multi-target problems. One solution is to use variants of A* with the current

assignment strategy criteria. Meanwhile, this leads to investigating further other

criteria options to assign targets, which have not been studied yet in the literature.

Although the review of algorithms aims to quickly catch a target and concentrate

on the shortest distance, only the CRA algorithm uses coverage areas to minimise

target escaping options. This method was not studied with multiple targets,

consequently, it leads to further investigation of how multi-agents could capture

not only static targets but also moving multiple targets. Therefore, this develops a

new multi-agent algorithm that is capable of capturing multiple moving targets in

an efficient way. This solution needs to consider coupled or decoupled approaches.

53

2. Literature Review

The review presented in this chapter aims to identify the gap while considering

the scope and its limitations. It provides an overview of the pathfinding search

algorithms and discusses various prevalent methods and approaches for both,

single and multi-agent algorithms. Additionally, the limitations of using these

algorithms are also covered in this chapter, which motivates this thesis to find

new approaches that address the gap. Alongside this, the area of research is

illustrated in Figure 1.1 which displays the problem set. Hence, the efforts of

this thesis are focused on exploring multi-agent pathfinding solutions to provide

alternatives to the current approaches.

54

Chapter 3

Coordinating Multiple Agents

with Assignment Strategy to

Pursue Multiple Moving Targets

3.1 Introduction

The research aims to find pathfinding solutions for multiple Pursuing Agents and

Moving Targets (PAMT), which is a challenging problem, especially in real-time

applications. This type of problem is considered to be NP-hard [14, 198, 199] in

the theory of computational complexity, that solving these problems efficiently

is not known. Further complications can arise when one expects that agents are

required to compute quickly enough to avoid slowdowns, deadlocks or running

out of allocated time [95]. The agents need to coordinate their actions and move

quickly while avoiding obstacles [200, 201]. They can detect and approach the

target within a specified area and use a suitable heuristic algorithm that enables

them to search, identify and catch the target [36].

The PAMT is an important problem that has many applications, and yet,

despite various methods introduced, there are still limitations to the existing

algorithms either by the number of targets or the moving targets they chase or

coordination in assigning the targets. For instance, if agents plan their actions

independently, conflicts may arise while they execute their plans. Issues like

55

3. Coordinating Multiple Agents with Assignment Strategy to
Pursue Multiple Moving Targets

whether and how agents communicate and coordinate their actions must also be

considered [37]. Hence, to overcome these limitations, in this chapter, the issues of

coordinating among agents, target assignment, finding the shortest path for each

agent and most importantly, pursuing multiple moving targets are addressed.

The objective is to develop a new method of solving the problem using

assignment strategies for moving multiple targets. The problem can be divided

into coupled and decoupled approaches. The first part of the algorithm

proposed is called Assignment Strategy, which is the coupled approach that can

identify targets, evaluate their positions, and coordinate pursuers. The

algorithm runs all possible pursuer-to-target combinations at the initial position

using the specified criteria and the optimal combination is chosen that assigns

one target to each pursuer.

Figure 3.1 illustrates multiple robot agents aiming to catch multiple targets.

Agents with a strategy to follow the closest target will chase only one closeby

target and leave the rest as depicted in Figure 3.1(a) while in Figure 3.1(b)

agents can chase any random target, which might cause disruption and chaotic

environment. It is possible that all agents can start at the same position, and a

naive assignment strategy causes all of them to follow the same path, which can

cause boredom or a lack of immersion in game applications. The issue can be

addressed with a combined force or trap strategy [202], which not only increases

the difficulty but also makes the game more interesting. Figure 3.1(c) displays

that agents with a given strategy can follow only one assigned target and this

increases the chance of catching all targets quicker. Therefore, the assignment

strategy displays an important step for multiple pursuing agents in identifying

which target to follow which can help in finding an optimal path.

The main algorithm proposed is called Strategy Multiple Target A*

(STMTA*). This is the decoupled approach where STMTA* collects

information obtained from the assignment strategy, and it searches for a

minimum-cost route at each time step for each pursuer and navigates it towards

the moving target in dynamic environments. To find the optimal path, it

independently computes all available paths starting from its neighbouring states

towards the target and the path with the lowest cost is selected. If the target is

caught by the assigned pursuer(s) on successful runs, then only these pursuers

56

3. Coordinating Multiple Agents with Assignment Strategy to
Pursue Multiple Moving Targets

Figure 3.1: Optimisation with assignment strategies. Four black-shaded agents
move towards three white-shaded targets that are a) closest, b) with random
selection or c) with a given strategy.

57

3. Coordinating Multiple Agents with Assignment Strategy to
Pursue Multiple Moving Targets

are re-assigned with the existing, not caught yet, targets. This give-a-hand

function helps other agents to chase and catch the remaining targets quicker.

The hypothesis is that the STMTA* increases performance and produces better

outcomes.

The implemented STMTA* and its variations are evaluated on standardised

commercial gaming grid-based benchmark maps. Therefore, in this chapter, the

main contribution is to evaluate the new method through the conduct of extensive

and comprehensive experiments that extend the work significantly, by providing:

• A detailed explanation of the algorithm with illustrated examples.

• A detailed description of the assignment strategy and existing criteria.

• A comprehensive set of experiments.

• An increase in the number of maps including benchmark environments from

the Baldur’s Gate video game [183].

• A variety of pursuer-to-target combinations for experimentation, where the

number of the pursuing agents ≥ targets.

• Different starting positions that help to evaluate the assignment strategy.

• Statistical analysis using Wilcoxon rank-sum test [203].

In the remaining parts of this chapter, Section 3.2 explains the assignment

strategies and the STMTA* algorithm. Section 3.3 evaluates the algorithms

empirically and provides the results of statistical tests. Section 3.4 concludes

with areas that are left for future work.

3.2 Problem Formulation

There are many search algorithms available for multiple agent scenarios, but only

a few can deal with multiple moving targets. Multiple agents need to navigate

cooperatively, rapidly capture the moving targets and avoid obstacles. To study

and evaluate the behaviour and the performance of multi-agent algorithms, the

58

3. Coordinating Multiple Agents with Assignment Strategy to
Pursue Multiple Moving Targets

Figure 3.2: Position of 4 pursuing agents in the middle and 3 targets dispersed
on the walls on the AR0417SR map (Figure 2.1). The initial state (a), the states
after moving 5 steps for STMTA* (b) and PRA* (c). Black shades are non-
traversable states.

problem is formulated using the idea of outmanoeuvring and surrounding the

target [60]. The pursuing agent considers the position of the target at each time

step and recomputes its path to the new state of the target if the target has

moved otherwise it uses the previously computed path. The complexity of the

problem for multiple cooperative agents is known to be NP-hard [14].

The common feature of the search algorithms that have been discussed in

Chapter 2 is that their purpose is to get to the target as quickly as possible. In

contrast, STMTA* often creates pursuit scenarios where agents do not

necessarily take the shortest path but move in such a way that the target is

trapped and outmanoeuvred. Firstly, at the initial state, before any moves

59

3. Coordinating Multiple Agents with Assignment Strategy to
Pursue Multiple Moving Targets

start, the assignment strategy algorithm allocates targets to agents after

evaluating all possible combinations according to the set criterion. Then, in the

next stage, once each pursuer is assigned a target to follow, the STMTA*

computes a path and distance towards the target from its adjacent

non-occupied neighbouring states. One of the actions (paths) that reach the

target fastest is selected. As this is not a deterministic step, pursuers may not

necessarily follow the same route towards the target even if they start from the

same position, as displayed in Figure 3.2(a). However, a common strategy is to

approach the closest target. For instance, the PRA* algorithm is one of them

which independently and without coordination moves to the target.

Unfortunately, all pursuers will follow the same target and leave the others free,

unlike in the STMTA*. Even after 5-time steps when all players have

repositioned and have new states. PRA* moves to the target at the top of the

map as it is the closest in the distance as seen in Figure 3.2(c), while in Figure

3.2(b) STMTA* spreads out its pursuers to chase the targets that are previously

assigned. This utilises resources for STMTA*. Another example that often

leads to situations where the pursuers approach a target from different

directions, leaving the target fewer or no opportunities to escape. For example,

in maps that have round, circle-shaped obstacles similar to Figure 3.4(a). PRA*

selects the same action for each agent, but STMTA* might select two different

routes (clockwise and anticlockwise). This is because of the randomness it uses

for its actions. Thus, targets are surrounded and trapped.

This study uses the PRA* algorithm as a baseline, and experiments are

conducted against the STMTA* algorithm with its two variations, the

Summation-cost criterion and Mixed-cost criterion. For the PRA* algorithm, a

pursuer is simply assigned to the target that it is closest to, and the rest of the

targets are pursued if the distance shortens. The performance is studied on

complex maps with multiple pursuing agents and targets that have various

starting positions.

For the statistical tests, the null hypothesis (H0) is that the PRA* algorithm

and the STMTA* algorithm have equal performance. It is aimed to refute it and

show that the performance of the STMTA* algorithm is better.

60

3. Coordinating Multiple Agents with Assignment Strategy to
Pursue Multiple Moving Targets

Algorithm 1 Assignment Strategy Algorithm.

1: function assignTarget(target)
2: agents← getAllAgents();
3: targets← getAllTargets();
4: for each agents a do
5: for each targets t do
6: d← getDistanceCombinations(a, t);
7: end for
8: end for
9: if d is not empty then

10: c← computeAssignmentStrategy(d); ▷ get optimal combination
11: p← assignAll(c);
12: end if
13: return p;
14: end function

3.2.1 Assignment Strategies

The success of search algorithms is when an agent occupies the same location

as the target within a given time space and has a shorter distance. These types

of searches are easier if they involve one-to-one players or multiple agents to

one target. The problem becomes complex when the number of players increases.

The question arises of how searching agents know which target they need to chase

before making the first move.

Algorithm 1 outlines the assignment strategy steps for multiple pursuing

agents. The aim of the algorithm is to find the best possible combination for

pursuing agents out of all available combinations within the given strategy that

are computed between each agent and each target. The steps of the algorithm

are as follows: initially, in line 2 all agents, agents, and in line 3 all targets,

targets, are identified and placed in the lists. When all players are put in the

relevant lists, the distance is computed by looping through each target, t, for

each agent, a, to get the distance combination, d, at lines 4-8. If the computed

distance combinations are not empty for d at line 9, then the best combination,

c, at line 10 is selected based on the given assignment strategy (Summation-cost

or Mixed-cost). The computed c will be assigned to the agents at line 11 to

pursue relevant targets that return p at the final step in line 13. The

61

3. Coordinating Multiple Agents with Assignment Strategy to
Pursue Multiple Moving Targets

assignment strategies, Summation-cost and Mixed-cost, are used in this study

and they are described in Section 2.5.2.

The algorithm results in a search for a path for a fixed number of pursuing

agents. Since the algorithm is run in the coupled stage, the complexity is analysed

where the runtime of each distance computation is in the worst-case exponential

in the number of pursuing agents. Computing the distance between an agent and

a target is the most time-consuming operation. Line 2 in Algorithm 1 calls a

function to loop through all players which then identifies the agents and appends

them to agents list. This operation requires n time. Similarly, line 3 calls a

function to identify the targets and appends them to the targets list with n

time. Lines 4-8 instruct two nested loops for agents and targets. Line 4 requires

k operations for the pursuing agents and line 5 requires l operations for the

targets. The total number of players is k × l. However, line 6 calls a function

to get the distance between an agent and a target that needs n times. Line 9

checks the condition and executes one time and then line 10 calls a function to

get the optimal combination with O(n) time complexity. Line 11 is an assignment

statement with one time. Therefore, the function in the worst-case makes the

time complexity of O(kln). Although getting a distance between a pursuer and

a target seems a straightforward computation, it can grow exponentially with

many combinations for multiple pursuers and it makes it impractical for larger

problems.

3.2.2 Strategy Multiple Target A*

As explained in Section 3.2.1, the algorithm starts by considering all possible

assignments of pursuers to targets and choosing one based on criteria such as

those described in Section 2.5.2. Then each pursuer computes the shortest path

towards the target using heuristic methods. The common way is to compute

the path from the current position but the STMTA* algorithm computes from

its non-blocked neighbouring positions separately, and one of the paths with

minimal distance becomes the route to take. Although the targets move away,

the pursuers keep re-computing a path at each time step and thus chase their

assigned targets until the capture or timeout. On successful runs when the target

62

3. Coordinating Multiple Agents with Assignment Strategy to
Pursue Multiple Moving Targets

Algorithm 2 Strategy Multiple Target A*.

1: function getPathForStrategy()
2: assignedTarget← assignTarget(target);
3: p← currentpursuerstate;
4: t← currentassignedTargetstate;
5: get all neighbours list for p;
6: min distance← max(); ▷ max integer
7: if neighbours list > 1 then
8: for each neighbours list n do
9: compute distance d at position n;

10: if d < min distance then
11: min distance = d;
12: best action← n;
13: end if
14: end for
15: else
16: best action← neighbours list[0];
17: end if
18: return best action;
19: end function

is captured by one or more pursuers, instead of computing new assignments for all

pursuers, the algorithm re-assigns only for these pursuers, which is sub-optimal

but comparatively quick.

The pursuing agents have full knowledge of the map. Since the assignment

or re-assignment is done from a global perspective rather than by individual

agents, this is equivalent to a scenario where agents can communicate without

noise, delays, or bandwidth limits. For STMTA*, the number of pursuers, m, and

the number of targets, n, do not have to match, the scenarios for experimental

tests were based on m ≥ n such that no target would be left unassigned. In

those situations where the agent is left without a target assigned, the algorithm

re-runs the assingTarget() function from the Assignment Strategy algorithm and

provides a new target that has still not been caught by the other pursuing agents.

Algorithm 2 displays the pseudo-code of STMTA*.

The function getPathForStrategy() finds the best possible move for the

STMTA* algorithm. It starts with assigning the target at line 2 that was

63

3. Coordinating Multiple Agents with Assignment Strategy to
Pursue Multiple Moving Targets

Figure 3.3: Pursuing agent A2 towards a target T1 on a 2-D map for (a) an
orthogonal distance cost and (b) a diagonal distance cost.

identified using Algorithm 1. Lines 3 and 4 set the position p and t for each

player, the pursuer and the target respectively. If the neighbours p' of p are

traversable and there are no obstacles, they are inserted into the neighbours list

at line 5. This is also the list of possible actions. If the number of actions is one,

then it is the best action, line 16, else the actions are more than one. Starting

from line 7, the algorithm loops through neighbours list to find the shortest

distance d towards t. The heuristic search algorithm A* is used to compute d at

line 9, and it is compared with other p' within lines 10-13. The best action for p

is the p' with the lowest value, line 12.

The experiments in this study use the Manhattan distance, but it is possible

to use a diagonal distance. To illustrate this, Figure 3.3 displays orthogonal

neighbours with distance costs of 1 and diagonal neighbours with a distance

cost of
√
2. From the position of pursuer A2 towards target T1, there are two

neighbouring states that are added to the neighbours list at step 5 of Algorithm

2. The possible actions (routes) with 5 steps from position A2' and 6 steps

from position A2'' are displayed with arrows towards the target as shown in

Figure 3.3(a). But Figure 3.3(b) has got three neighbouring states with additional

diagonal movement and the possible actions with a cost of 4.8 from position A2',
5.4 from position A2'' and 4.4 steps from position A2'''. The best action for

the orthogonal distance is 5 steps from the neighbouring position A2', and the

64

3. Coordinating Multiple Agents with Assignment Strategy to
Pursue Multiple Moving Targets

Figure 3.4: Sample maps used in the experiments, (a) round circle-shaped
RoundTable39x39 and (b) benchmarked AR0527SR from Baldur’s Gate video
game.

best action for the diagonal distance is 4.4 steps from the neighbouring position

A2'''.
Although the time complexity of Algorithm 1 depends on the number of

pursuers, Algorithm 2 finds a path per pursuer where the planning is individual

and there is no need to interact with other pursuers. Lines 2, 3, 4 and 6 are the

assignment statements that generate one time. The pursuer has its state and

four neighbouring positions, thus line 5 executes five times if not blocked. Line

7 checks the condition of whether there are more traversable neighbouring

positions for the pursuer which requires one time, and then the algorithm

performs a loop to find the shortest distance in line 8 with k time requirement.

Similarly, lines 9 to 12 require k times of operations. Line 16 is an assignment

operation that executes one time. The time complexity of the algorithm is

O(k). However, if the distance is computed using the A* algorithm and its time

complexity is O(bd) where b is the branching factor and d is the depth of the

solution [84]. Moreover, the difficulty of the map and the length of the path

have a proportional effect on the complexity [204].

It is possible to use other parameters such as different speeds for players.

65

3. Coordinating Multiple Agents with Assignment Strategy to
Pursue Multiple Moving Targets

For example, MTS [131], Moving Target D* Lite [80], Incremental ARA* [113]

and some other algorithms are successful in solving the problem if the target

occasionally misses a turn. The empirical evaluation section demonstrates that it

is possible to combine forces and trap targets while maintaining the same speed

for all players, which makes the algorithm more powerful. The method might

be slower overall (because of the overhead of computing assignment strategies)

in comparison to “rush-in” methods, but it demonstrates a higher chance of

being successful, i.e., catching all targets. STMTA* is capable of surrounding the

target unless it ends in a deadlock or runs out of time steps in the scenarios where

round circle routes exist, as shown in Figure 3.4(a). Therefore, to evaluate the

algorithms in various scenarios and proceed with similar environment settings

from the previous studies [60, 171], the experiments included purposely-made

maps only in this Chapter 3 where the details of maps are displayed in Table 2.3.

3.3 Empirical Evaluation

Empirical results are presented in this section to demonstrate the efficiency of

the proposed new STMTA* algorithms. First, the setup for the experiments is

described, and then, the measurement of pathfinding cost for the solutions and

the performance success is explained. Finally, the results are tested for statistical

significance.

3.3.1 Experimental Setup

The general setup of experiments such as the map environment, player

combinations, the movement direction of players, the cost of moves, the number

of test runs for each configuration and the total number of individual tests as

well as the computer settings are detailed in Section 2.5.3.

The performance of STMTA* with two criteria, Summation-cost and Mixed-

cost, is tested and compared to the previous approach, the PRA* algorithm which

has been used in the literature often [141]. PRA* uses a greedy approach that

loops through all players and assigns a target with the closest distance, and not

all targets might be chased, as some targets could be positioned at a further

66

3. Coordinating Multiple Agents with Assignment Strategy to
Pursue Multiple Moving Targets

distance than others for all pursuers. A similar situation is depicted in Figure

3.2. By using abstractions of search spaces, PRA* is quicker than A*.

The targets are not allocated to the pursuers in advance, instead, each agent

algorithm identifies its target to follow. PRA* selects targets based on their

nearby position on the map, whereas STMTA* assigns all targets to all pursuing

agents using the assignment strategy algorithm, either the Summation-cost or

the Mixed-cost criterion. The targets use the SF algorithm to avoid capture from

the pursuing agents and a detailed description is in Section 2.4.

Figure 3.4 illustrates only two out of ten sample maps that are used to evaluate

the performance of algorithms with different ratios of pursuers and targets and

different starting positions. The combination of players can be seen in Table 3.1.

There are four different starting positions, and all players are located at

randomly selected positions on the maps. The first starting positions, state1, for

the pursuing agents are on the right bottom corner, similar to previous

experiments [29] on Figure 3.4(a), and the targets’ positions are further away on

the left side of the map. Pursuing agents and targets are aggregated in one

position in the first test run [60]. All other starting positions, staten, are

Table 3.1: The pathfinding cost (number of steps), lower is better, and
success rate (%), higher is better, are displayed for each algorithm with player
combinations on each row.

Player Combinations

(Pursuer vs Target)

PRA*
STMTA*

Summation-cost Mixed-cost

Number

of steps

Success

Rate

Number

of steps

Success

Rate

Number

of steps

Success

Rate

3 vs 2 79.52 88.63% 69.87 96.58% 66.76 97.50%

3 vs 3 116.89 82.22% 80.34 97.83% 80.53 97.47%

4 vs 2 84.69 87.46% 48.82 99.30% 47.4 99.63%

4 vs 3 94.79 85.64% 74.54 98.11% 73.35 98.50%

5 vs 2 88.41 86.25% 49.28 99.38% 49.97 99.46%

5 vs 3 79.36 89.86% 53.54 99.50% 51.4 99.61%

Average: 90.61 86.68% 62.73 98.45% 61.57 98.69%

67

3. Coordinating Multiple Agents with Assignment Strategy to
Pursue Multiple Moving Targets

dispersed and positioned as far away as possible or next to the map walls. The

similar positioning is applied for all players, pursuers and targets, on all maps.

These positions provide a diverse set of scenarios where the behaviour and

performance of the algorithms can be observed.

3.3.2 Experimental Results

Performance analysis is conducted with respect to two key indicators; (i) the

pathfinding cost is the number of steps taken before capturing all targets for

successful runs, or the number of time steps until timeout for unsuccessful runs,

and (ii) its success rate. Both measurements are averaged considering all pursuers.

To evaluate the overall performance of the algorithms, the comparison table is

displayed in Table 3.1 grouped by the number of pursuing agents against targets.

During the experiments, success for the pursuing agents is achieved when at

least one pursuer reaches each target and occupies the same state as that target

on the map. The 100% success is measured when all targets are captured. The

pursuing agents cannot always reach the target before the timeout. But in all

cases, a lower number of steps indicates a more successful algorithm.

The experimental results are run on ten different maps described in Section

2.5.3 and each row in Table 3.1 is the mean taken per player combination. It

can be seen from the results that both variations of STMTA* manage to reach

the targets quicker, i.e., with less pathfinding cost and have a better success rate

compared with PRA*. The Mixed-cost criterion was previously reported that it

is overall the best [53], and the results displayed in Table 3.1 support that.

When the difference of success rate is taken in each row for player combinations

in Table 3.1, then the lowest is 8% for 3 vs 2 and the highest is approximately

16% for 3 vs 3 is seen when the Summation-cost criterion is employed. Although

STMTA* Summation-cost has slightly better success rates in the 3 vs 3 and 5

vs 2 player combinations, this is because STMTA* Mixed-cost missed the target

and went to timeout on a few occasions on various maps, but the time steps mean

shows better results.

Comparing scenarios with different pursuing agent combinations shows that,

as expected, when the number of pursuing agents increases, the pathfinding cost

68

3. Coordinating Multiple Agents with Assignment Strategy to
Pursue Multiple Moving Targets

Figure 3.5: The pathfinding cost mean per pursuing agent combination for all
algorithms.

tends to decrease, as illustrated in Figure 3.5, and the success of catching the

targets tends to increase, see Figure 3.6.

Even though the results in Table 3.1 indicate that the STMTA* algorithm

with its two variations has an overall success rate of over 98%, it performs weaker

on round circle maps in comparison with other maps, but it still outperforms the

PRA* algorithm which has 86%.

For example, the RoundTable39x39 map (see Figure 3.4(a)) is used, where

the obstacles are shaped as a round table and players navigate by circling

around it. Figure 3.7 illustrates the results for all player combinations for this

map environment. There are two results displayed, the top half is a line chart

for success rate and the lower part is for a number of steps using the bar chart.

The maximum success rate for the PRA* algorithm is 75% and it performs

worst in 3 vs 3 player combination with 58%. The reason is that PRA* rushes

in towards the target and keeps chasing it, as all agents use the same speed, it

hopes that the target makes a mistake by turning in the wrong direction,

otherwise they loop continuously until timeout. This has been the main issue

for PRA*. On the other hand, the STMTA* algorithm is more successful

because the pursuers approach the target from different directions. The

69

3. Coordinating Multiple Agents with Assignment Strategy to
Pursue Multiple Moving Targets

Figure 3.6: The success rate mean per pursuing agent combination for all
algorithms.

difference in the number of steps is displayed on bar charts. The performance of

PRA* is similar against agent combinations when two targets are present but

shows significant change with three targets when the pursuers increment. Only

in 3 vs 2 player combination, PRA* performs noticeably well against STMTA*

Summation-cost but still demonstrates poorer results in all other test runs. In

contrast, the success rate of STMTA* with both variations is higher, and there

are fewer steps until targets are caught.

PRA* displays similar lower results on other maps too. The success rate is

79.6% on a smaller RoundTable09x09 map and 72.3% on the MTS2 map and

it has the worst performance on the Empty30x30 map with 43.1%, whereas the

STMTA* algorithm has over 94% of success for the RoundTable09x09 and the

MTS2 maps. The environment without any obstacles, the Empty30x30 map, has

a success rate of 100% for STMTA*. The STMTA* Mixed-cost demonstrates

overall the best results.

Despite the fact that STMTA* was successful in most of the test runs, it

displayed a drop in relative performance on the AR0407SR and AR0528SR maps.

All three algorithms have a 100% of success rate but PRA* was slightly quicker

to catch the targets on these map environments.

Next, statistical tests are used on the pathfinding costs to find out which of

70

3. Coordinating Multiple Agents with Assignment Strategy to
Pursue Multiple Moving Targets

Figure 3.7: The performance analysis of three algorithms on a RoundTable39x39
map, measuring the pathfinding cost (number of steps) and success rate.

the results are significantly different. The pathfinding costs are not normally

distributed; therefore, the statistical results are obtained using the Wilcoxon

rank-sum tests. The level of significance used is 0.05.

Table 3.2 provides a heat map for the values obtained from the statistical tests.

The table compares the p-values for each initial starting position for PRA* with

STMTA* Summation-cost (left column) and for PRA* with STMTA* Mixed-cost

(right column) algorithms. State1 is the aggregated and staten, n >1, are the

dispersed positions for pursuers.

From this table, the majority of the results display statistically significant

differences. Most of the state1 aggregated positions show significance, in

contrast to staten dispersed positions. What stands out in the table is a

significant difference in round table maps (RoundTable09x09 and

71

3. Coordinating Multiple Agents with Assignment Strategy to
Pursue Multiple Moving Targets

Table 3.2: The statistical analysis is used between PRA* and STMTA* algorithms
and the p-value obtained using the Wilcoxon rank-sum test. The results are
grouped by the starting position for each test run on all maps and player
combinations. The p-values below 0.05 have no shades.

State1 State2 State3 State4 State1 State2 State3 State4

RoundTable09x09 3.8E-08 2.4E-08 0.3438 4.5E-13 3.6E-08 9.8E-11 0.4733 4.5E-13

RoundTable39x39 0.0001 8.0E-10 4.0E-11 4.8E-10 1.3E-05 0.2028 1.7E-10 4.4E-09

MTS1 0.0341 0.0007 0.0002 0.0017 0.0323 0.0021 0.0002 0.0002

MTS2 8.8E-07 1.7E-12 6.9E-12 9.3E-13 1.7E-08 4.5E-11 4.6E-11 7.4E-13

Empty30x30 1.2E-12 1.2E-12 NA 1.3E-08 1.2E-12 1.2E-12 1.6E-09 1.2E-10

AR0407SR 0.4486 0.01293 6.4E-09 0.1217 0.0245 0.0449 0.1416 0.0002

AR0417SR 0.0001 7.9E-07 0.1582 3.8E-09 0.0030 3.0E-06 0.1296 5.8E-10

AR0527SR 0.2136 6.7E-06 0.6565 0.0143 0.9646 2.8E-05 0.6890 0.6461

AR0528SR 4.7E-05 4.0E-05 2.2E-08 0.0040 4.0E-07 1.2E-10 1.0E-08 0.0023

AR0707SR 0.0164 9.9E-09 0.1689 2.7E-08 9.2E-05 8.3E-11 0.0273 5.3E-06

RoundTable09x09 7.2E-13 9.7E-13 0.4602 0.0004 4.0E-11 1.0E-12 0.7587 0.0076

RoundTable39x39 6.1E-14 0.0005 0.0195 5.7E-12 4.9E-13 0.0013 0.0112 2.3E-11

MTS1 1.1E-12 0.0175 4.8E-05 2.2E-05 1.1E-12 0.0054 2.8E-06 0.0020

MTS2 0.0110 1.3E-08 0.8155 5.8E-10 0.3337 1.1E-12 0.9701 2.0E-11

Empty30x30 1.2E-12 1.2E-12 9.9E-13 1.2E-12 1.2E-12 1.2E-12 8.3E-13 1.2E-12

AR0407SR 0.0270 0.2863 7.6E-05 7.7E-05 0.0070 0.9409 3.4E-06 0.0004

AR0417SR 1.9E-07 0.0209 1.5E-06 0.3286 9.3E-05 0.6252 0.0073 0.5385

AR0527SR 0.0368 0.0123 0.6198 0.7058 0.1386 0.0079 0.7956 0.0944

AR0528SR 2.1E-07 1.5E-11 2.7E-07 0.0934 4.2E-08 3.5E-08 9.1E-09 0.0670

AR0707SR 0.0100 0.0007 0.5655 0.5004 0.0011 0.0031 0.2841 0.7111

RoundTable09x09 3.8E-10 5.3E-12 0.0014 1.7E-14 3.9E-12 5.0E-12 0.0014 1.7E-14

RoundTable39x39 1.3E-10 1.2E-10 0.0001 0.0002 1.6E-11 1.2E-10 1.1E-05 1.5E-05

MTS1 0.0027 0.0002 1.3E-12 0.0034 0.0046 0.0212 1.3E-12 0.0008

MTS2 1.7E-14 1.2E-11 1.2E-11 1.6E-13 1.7E-14 1.5E-11 1.3E-11 2.4E-13

Empty30x30 1.2E-12 1.2E-12 NA 1.1E-12 1.2E-12 1.2E-12 NA 1.2E-12

AR0407SR 0.1508 0.8756 0.0307 1.2E-09 0.0179 0.0335 0.1162 3.9E-10

AR0417SR 0.0082 2.1E-07 0.0012 1.5E-07 0.0094 7.3E-06 0.0004 8.5E-07

AR0527SR 0.0210 3.4E-05 0.0145 1.2E-05 6.4E-05 0.0005 0.2149 3.8E-06

AR0528SR 7.4E-09 0.0007 0.3386 0.6420 3.5E-08 1.1E-05 0.0761 0.7902

AR0707SR 0.0280 1.6E-10 0.1048 2.6E-09 0.1892 5.0E-06 0.0073 5.0E-09

RoundTable09x09 1.2E-12 1.2E-11 4.2E-07 0.0262 2.0E-13 1.3E-11 2.0E-06 0.0413

RoundTable39x39 5.1E-11 0.0175 4.8E-10 0.2465 4.2E-12 0.0020 1.7E-08 0.9228

MTS1 4.6E-05 3.6E-05 2.6E-05 4.1E-06 0.0002 0.0731 0.0061 1.9E-10

MTS2 1 1.5E-07 1.7E-14 0.0044 0.6354 1.5E-07 1.7E-14 1

Empty30x30 1.2E-12 1.2E-12 9.2E-13 1.2E-12 1.2E-12 1.2E-12 8.3E-13 1.2E-12

AR0407SR 0.0002 0.0006 0.7775 0.0010 0.0002 0.0431 0.2648 0.0007

AR0417SR 2.2E-06 0.0006 3.4E-07 0.0001 7.9E-07 1.3E-06 2.9E-07 0.0057

AR0527SR 0.0220 0.0902 0.1550 0.0071 0.0067 0.0079 0.0139 0.0007

AR0528SR 1.0E-07 1.6E-05 0.6879 2.3E-05 1.2E-08 2.1E-05 0.4611 0.0008

AR0707SR 0.0212 9.0E-06 0.0514 2.8E-07 0.0911 7.1E-07 0.7865 0.2071

RoundTable09x09 2.4E-10 1.7E-14 3.4E-07 2.4E-13 6.4E-13 1.7E-14 3.4E-07 4.5E-13

RoundTable39x39 1.5E-11 0.0001 1.5E-08 1.5E-12 5.3E-11 0.0005 3.6E-08 3.0E-12

MTS1 0.3716 0.6348 1.2E-09 0.0425 0.3889 1 1.6E-12 4.5E-08

MTS2 3.4E-13 4.0E-08 4.1E-08 9.0E-13 2.9E-13 5.5E-07 4.1E-06 9.4E-13

Empty30x30 1.2E-12 1.1E-12 3.8E-08 1.2E-12 1.2E-12 1.1E-12 1.2E-07 1.2E-12

AR0407SR 0.0136 0.0004 0.9466 2.4E-08 1.7E-05 7.0E-05 0.3337 1.2E-07

AR0417SR 2.1E-06 1.9E-08 3.0E-07 4.8E-08 0.0004 7.2E-08 1.2E-06 7.4E-09

AR0527SR 0.1525 0.1258 0.2946 3.7E-07 5.0E-05 0.0307 0.1468 2.0E-06

AR0528SR 2.7E-06 9.1E-06 0.0015 3.3E-08 3.1E-06 1.1E-09 0.0009 5.5E-05

AR0707SR 0.0427 6.4E-10 0.4266 4.5E-10 0.4804 6.9E-07 0.0256 6.6E-09

RoundTable09x09 1.6E-13 0.6012 0.0007 2.8E-12 1.5E-12 1.2E-06 2.8E-05 2.2E-12

RoundTable39x39 4.1E-12 0.0769 1.0E-07 1.4E-11 4.2E-12 0.9285 5.3E-09 1.6E-10

MTS1 7.0E-11 0.9941 2.4E-05 1.7E-08 9.1E-12 0.7104 0.0760 0.0002

MTS2 1.2E-07 1.3E-08 3.8E-08 4.6E-13 1.7E-09 5.4E-07 9.3E-13 4.4E-13

Empty30x30 1.2E-12 1.2E-12 0.0003 1.2E-12 1.2E-12 1.2E-12 NA 1.2E-12

AR0407SR 0.0168 0.0195 3.4E-11 0.9881 2.3E-05 3.1E-07 1.7E-08 0.9468

AR0417SR 5.0E-08 8.7E-12 0.0003 1.9E-07 3.2E-08 6.0E-12 6.5E-05 2.0E-07

AR0527SR 0.0634 0.6705 0.1057 9.9E-12 0.8459 0.6607 0.3968 9.6E-12

AR0528SR 7.5E-06 1.3E-07 0.0799 8.6E-05 2.4E-05 3.2E-08 0.0282 0.0007

AR0707SR 0.6190 6.5E-08 0.9270 0.0005 0.0035 1.7E-08 0.6007 1.3E-07

5 Pursuers
 vs

2 Targets

5 Pursuers
vs

3 Targets

Maps
Players

configuration

p-value: PRA* vs STMTA* summation cost p-value: PRA* vs STMTA*mixed cost

3 Pursuers
vs

2 Targets

3 Pursuers
vs

3 Targets

4 Pursuers
vs

2 Targets

4 Pursuers
 vs

3 Targets

72

3. Coordinating Multiple Agents with Assignment Strategy to
Pursue Multiple Moving Targets

RoundTable39x39) at state1. If the experimental results produce the same

number of steps for all test runs, then the Wilcoxon rank-sum Test returns

nothing for p-value as displayed for the state3 position on the Empty30x30 map.

Overall, most of the results are significantly different, while the exceptions are

not distributed very regularly.

3.4 Conclusion

In this chapter, the new STMTA* algorithm is proposed to find the solution

for multiple pursuers in a dynamic environment while chasing multiple moving

targets. The presented algorithm is divided into two approaches, coupled and

decoupled. The coupled approach coordinates all pursuers to find the combination

using the assignment strategy algorithm which runs all possible pursuer-to-target

combinations at the initial position using the given criteria, and the optimal

combination is selected that assigns one target to each pursuer. In the decoupled

approach, the pursuers independently compute their path towards the moving

target at each time step.

The STMTA* algorithm has been investigated more thoroughly in this

thesis on multi-agent and multi-target scenarios using benchmark environments.

Detailed experiments were carried out using ten purposely made and

commercial gaming benchmark testbeds with six different player combinations.

During these experiments, the number of steps and success rate were measured,

and for statistical analysis, the Wilcoxon rank-sum test was applied. This study

has established that the proposed algorithm captures targets quicker and

produces a higher rate of success, approximately by 16%, in scenarios with

multiple moving targets. This algorithm, therefore, provides a useful approach

in dealing with scenarios where multiple moving targets are present.

73

Chapter 4

Multi-Agent Path Planning

Approach Using Assignment

Strategy Variations in Pursuit of

Moving Targets

4.1 Introduction

A simple strategy to find a low-cost distance towards the target and move to its

position can promise a capture if the speed of agents is faster than the target.

An example is the real-time strategy video game, Company of Heroes, where a

team of soldiers move quicker [60]. In an environment with multiple players, the

search for the path from agents toward the targets is more complex and requires

well-thought, rigorous task planning. The most straightforward solution for the

agents is to follow the nearest target, however, it might not be the best option in

the presence of multiple targets. Figure 4.1 is an example where pursuing agents

will follow only Target1 as it is the closest among all other targets. If all agents

choose to follow the target that is closest in the distance, then targets that are

not chased can affect the total cost, success, and runtime. The challenge increases

when the targets are not stationary, and their number increments.

Multiple agents can benefit from two stages, the combination of coupled and

74

4. Multi-agent Path Planning Approach Using Assignment Strategy
Variations in Pursuit of Moving Targets

Figure 4.1: A possible scenario where one target is positioned closer than others.
Target1 is chased if the strategy for the pursuers is to follow the closest target.

Figure 4.2: Two stages for multiple agents, first planning the task with the best
combination and then navigating each agent independently towards the targets.

decoupled pathfinding algorithms, as illustrated in Figure 4.2. The assignment

strategy algorithm with the given criterion initially computes all possible

combinations for all pursuers in the task planning stage. The combination with

the lowest value gets all targets assigned to the pursuers, before the move, and

none of the pursuing agents should be idle. Once the targets are assigned, the

next stage starts, where all pursuers search their path independently and

navigate themselves towards the moving targets using heuristic algorithms.

75

4. Multi-agent Path Planning Approach Using Assignment Strategy
Variations in Pursuit of Moving Targets

Pathfinding problem variation and complexity depend on the map

environments, the existence of obstacles, a target being able to move or wait

until the rescue arrives [26], the number of players and the combination of these.

There are many search algorithms that use the classical and standard scenario,

where a single agent’s goal is to find the shortest path; for example, the A*

algorithm is a well-known solution to many applications, as are MTS, D*Lite,

RTAA* or Abstraction MTS to name a few. Moreover, these issues have been

extended to PAMT or MAPF [51] problem scenarios. The problem of multiple

agents is known to be an NP-hard to solve optimally [14, 199]. Alongside this

consider a scenario where five pursuing agents are present, their adjacent states

are not occupied, and each agent can make a move in orthogonal directions.

The possible joint actions at a one-time step are equal to 45 = 1024 [24].

One of the alternating approaches to solve pathfinding problems for multiple

pursuers is to use an assignment strategy algorithm prior to navigating towards

the targets. The distance measures pose a very high impact on the performance

level of the strategy, while an efficient measure would help the agents fast

approach the targets. The study in this chapter investigates more effective

distance measures encompassing multiple criteria. A variety of cost functions

have been considered in this study to ascertain the efficiency of each proposed

composite criterion subject to various environmental configurations. Twin-cost,

Cover-cost and Weighted-cost criteria are investigated in this chapter. It is

found that these criteria are more efficient than the existing best-known

criterion, which has been commonly used in the literature.

The rest of this chapter is organised as follows. In Section 4.2, the proposed

methods for assignment strategies are presented in the context of multi-agent

algorithms and Section 4.3 follows with a description of the experimental setup

and a discussion of the analysis. Finally, Section 4.4 draws conclusions from the

results obtained.

4.2 Proposed Assignment Strategies

One possible solution to coordinate multiple pursuing agents is to consider the

assignment strategy algorithm which is introduced in Section 1.1.3. The

76

4. Multi-agent Path Planning Approach Using Assignment Strategy
Variations in Pursuit of Moving Targets

Algorithm 3 Twin-cost Algorithm.

1: function computeAssignmentStrategy(combinations)
Input: DistancesSum and MaxDistance
2: m←DistancesSum;
3: n←MaxDistance;
4: for each n do
5: ct ← m× n;
6: end for
7: return ct;
8: end function

pursuers are composed as one entity and a task is delivered that helps to

navigate towards the targets quicker and capture them for a successful outcome.

Existing assignment strategies, such as Summation-cost and Makespan-cost, are

detailed in Section 2.5.2. New proposed methods for the assignment strategy

algorithms are introduced in this section. First, Twin-cost and Weighted-cost

are presented that use distance for their criteria. Then, it follows to introduce

the Cover-cost assignment strategy approach which uses an area of coverage for

computing an optimal solution.

Except for the Cover-cost criterion, all existing and new proposed

assignment strategies use distance as their measurement. Table 4.1 displays 3

pursuing agents versus 3 targets and all possible six combinations are listed.

The Distance column is measured while pursuing agents and targets are

stationary at the initial position. Column for DistancesSum is the sum of all

distances while column MaxDistance is the maximum distance in each

combination, which at the same time represent Summation-cost and

Makespan-cost, respectively. The results for Twin-cost and Weighted-cost

criteria are described in the sections below.

4.2.1 Twin-cost

Similar to the Summation-cost and Makespan-cost criteria as described in Section

2.5.2, the Twin-cost criterion uses distance cost to obtain the best value for its new

assignment strategy. The equation for the Twin-cost criterion is the product cost

that uses the values that were computed for the Summation-cost, DistancesSum,

77

4. Multi-agent Path Planning Approach Using Assignment Strategy
Variations in Pursuit of Moving Targets

and the Makespan-cost, MaxDistance from Table 4.1. The result of this product,

DistancesSum times MaxDistance, is the cost for each combination. In situations

where the combination costs are equal, then the average of DistancesSum and

MaxDistance is taken. The equation for Twin-cost, ct, is:

ct = DistancesSum×MaxDistance (4.1)

Algorithm 3 is the pseudo-code for the Twin-cost criterion. When the Algorithm

1 in Section 3.2.1 calls the function computeAssignmentStrategy() on line 10,

then Algorithm 3 with pre-computed DistancesSum and MaxDistance performs

Table 4.1: The sample scenario of 3 agents versus 3 targets and agents’ distance
towards the targets. There are six possible combinations, and each has the sum of
distances (DistancesSum) and maximum distance (MaxDistance). The Twin-cost
is DistancesSum times MaxDistance and Weighted-cost uses a parameter value
of 0.5 to DistancesSum and 0.5 to MaxDistance.

Combi- Agent to Distance DistancesSum MaxDistance Twin-cost Weighted-cost

nation Target 50/50

1

A1 → T1 8

39 16 624 27.5A2 → T2 15

A3 → T3 16

2

A1 → T2 4

37 17 629 27A2 → T1 17

A3 → T3 16

3

A1 → T2 4

40 22 880 31A2 → T3 22

A3 → T1 14

4

A1 → T1 8

41 22 902 31.5A2 → T3 22

A3 → T2 11

5

A1 → T3 20

48 20 960 34A2 → T1 17

A3 → T2 11

6

A1 → T3 20

49 20 980 34.5A2 → T2 15

A3 → T1 14

78

4. Multi-agent Path Planning Approach Using Assignment Strategy
Variations in Pursuit of Moving Targets

the steps on lines 4-6 and returns, ct, the best result on line 7. Lines 2 and 3

are assignment operations, therefore they are required one time, however, line 4

is a loop that needs k operations. Line 5 is the statement inside the loop and it

requires the same k time. Since the algorithm has only one loop to run its results

for each combination, the frequency of the execution of the statement displays

the complexity of O(k).

Consider a case where only Combination4 and Combination6 from Table 4.1

are present. For the Makespan-cost criterion, the MaxDistance with the lowest

cost value of 20 would be the result. But, when the DistancesSum and

MaxDistance are multiplied, the results are 902 for Combination4 and 980 for

Combination6. Although Combination6 has a lower MaxDistance and it is the

best choice for the Makespan-cost criterion, in multiplication Combination4 has

a better result. Therefore, for the cost of two-time steps, the optimal choice is

Combination4 with respect to the Twin-cost criterion.

In the situations, when there is a tie-breaker needed, then the average of

DistancesSum and MaxDistance is taken. Imagine a conflicting result where the

first combination has 20 steps for DistancesSum and 9 steps for MaxDistance

while the second combination has 30 steps for DistancesSum and 6 steps

MaxDistance. Now it is clear that the product of both combinations returns the

same result of 180 steps for the Twin-cost criterion. However the average of

DistancesSum and MaxDistance in the first combination is 14.5 and in the

second combination is 18. Therefore, the first combination returns the results.

4.2.2 Weighted-cost

This is the criterion relevant to the problems where both DistancesSum and

MaxDistance costs need to be considered. When all distances are computed and

their combination values are obtained for each agent, then the Weighted-cost

criterion allocates predefined weight values for both DistancesSum and

MaxDistance depending on the ratios provided by the assignment strategy. For

instance, it is possible to allocate w1 = 0.25 and w2 = 0.75, where the total of

w1 and w2 is equal to one. The equation for the Weighted-cost criterion, cw, is:

79

4. Multi-agent Path Planning Approach Using Assignment Strategy
Variations in Pursuit of Moving Targets

Algorithm 4 Weighted-cost Algorithm.

1: function computeAssignmentStrategy(combinations)
Input: DistancesSum and MaxDistance
2: initialise w1 and w2 ▷ w is a weight parameter
3: m←DistancesSum;
4: n←MaxDistance;
5: for each n do
6: cw ← (m× w1) + (n× w2);
7: end for
8: return cw;
9: end function

cw = (DistancesSum× w1) + (MaxDistance× w2) (4.2)

The overview of the Weighted-cost criterion approach is presented in Algorithm

4. The pseudo-code provides the steps to compute the best assignment strategy

for agents based on the weight inputs on line 2. The equation on line 6 returns

the values which are compared to get the lowest result for this criterion. Similar

to Twin-cost, this criterion requires two operations with one time in lines 3 and

4. Then it iterates the loop for k times at line 5, and so does the statement in

line 6. Thus the complexity is processed in O(k).

One example can be a taxi driver who has a plan to drive fast to get to the goal

destination quicker, the Makespan-cost criterion, but needs to consider shorter

routes to get there at the same time, the Summation-cost criterion. Another

example to compute the cost of equal ratio 50/50 is shown in Table 4.1 where it

displays the results for the Weighted-cost criterion with 0.5 for DistancesSum and

0.5 MaxDistance in the last column. In contrast to the Makespan-cost criterion

(MaxDistance), where the results show that Combination1 is the best option, the

Weighted-cost criterion displays slightly better results for Combination2.

4.2.3 Cover-cost

All previous criteria, existing ones, the new Twin-cost criterion and the Weighted-

cost criterion use a distance to compute the best assignment strategy for the

multiple agents. This Cover-cost criterion proposes a different approach which

80

4. Multi-agent Path Planning Approach Using Assignment Strategy
Variations in Pursuit of Moving Targets

Algorithm 5 Cover-cost Algorithm.

1: function computeAssignmentStrategy(combinations)
2: compute state to cover ▷ labels ”covered”
3: mark state as agent covered
4: get costValue for marked states
5: append costValue to coverCost list
6: for each coverCost c do
7: cc ← max(c); ▷ gets maximum combination cover cost
8: end for
9: return cc;

10: end function

is not to use the cost of distances, but instead, use the area of coverage. Each

pursuer, while idle, before the test run starts, expands all possible states before

it successfully reaches the target at the current position. Then each expanded

state on the map is marked as “covered” for the pursuer and all other states are

“uncovered” if not an obstacle. This is similar to the expansion of the states in

the breadth-first search algorithm [205] or the Dijkstra algorithm [206]. When

these areas are computed, every pursuer’s covered area value is averaged per

combination, and the combination with maximum coverage area is the optimal

combination to assign targets to the pursuers.

The Cover-cost Algorithm 5 gives the pseudo-code for these steps. Similar to

Table 4.2: The scenario of two pursuing agents, An, versus two targets, Tn,
and the individual expanded states that are labelled “covered” by the pursuers
towards the targets on the AR0509SR gaming map. There are two possible
combinations, and each has a percentage of covered area (CoveredArea), and the
results are averaged within the combination (CombinationCoverage).

Combination
Agent to Covered Number CoveredArea Combination-

Target of States Coverage

1
A1 → T1 274 18.2%

18.4%
A2 → T2 279 18.6%

2
A1 → T2 490 32.6%

39.5%
A2 → T1 696 46.3%

81

4. Multi-agent Path Planning Approach Using Assignment Strategy
Variations in Pursuit of Moving Targets

Figure 4.3: A benchmarked AR0509SR map from Baldur’s Gate video game.
There are two pursuing agents and two targets dispersed on the map.

the previous criteria, when Algorithm 1 calls the function on line 10,

computeAssignmentStrategy(), then Algorithm 5 returns the optimal result from

all possible combinations. First, it computes all available states for each pursuer

in line 2 and marks each state as it is covered by this pursuing agent in line 3.

Then, in line 4, the percentage of covered areas is computed and added to the

list in line 5. To return the final output, lines 6-8 loop through the list and

provide the maximum coverage.

The time complexity of Algorithm 5 is analysed. Line 2 is the expansion of

the states which has a linear complexity [60] and requires k times. Similarly,

lines 3 and 4 need k time and line 5 is the statement that generates one time.

However, line 6 is the loop that does not compute distance, instead focusing on

the covered area which requires k times. The assignment statement inside the

loop, in line 7, needs k times, too. Therefore, the Covered-cost criterion displays

82

4. Multi-agent Path Planning Approach Using Assignment Strategy
Variations in Pursuit of Moving Targets

the same complexity of O(k) as the Twin-cost and the Weighted-cost criteria.

Table 2.5.3 in Section 2.5.3 details map environments and displays the total

number of empty states to expand for each map in the Empty States to Expand

column. For instance, the AR0509SR map illustrated in Figure 4.3 contains 1503

empty states and has 4 players (2 pursuing agents vs 2 targets). Table 4.2 displays

possible two combinations for these two pursuers. The table contains the sum of

all states that are labelled “covered”, Covered Number of States, for each pursuer

(An,Tn). The CoveredArea is the percentage of the states on the map, that is

Covered Number of States divided by the total of empty states Empty States to

Expand. This results in the equation:

CoveredArea =
Covered Number of States× 100%

Empty States to Expand
(4.3)

The last CombinationCoverage column is the average for each combination. The

combination with the highest CombinationCoverage percentage is assigned to the

pursuers. Combination2 has the highest value in this instance, and hence it is

chosen over Combination1.

4.3 Experimentation and Discussion

This section contains empirical results for the existing and proposed approaches.

The experimental setup is described first and followed by performance results for

the proposed new methods.

4.3.1 Experimental Setup

The general setup of experiments such as the map environment, player

combinations, the movement direction of players, the cost of moves, the number

of test runs for each configuration and the total number of individual tests as

well as the computer settings are detailed in Section 2.5.3.

All new assignment strategy approaches are compared against the existing

overall best assignment strategy, the Mixed-cost criterion. The Twin-cost or the

Cover-cost criteria do not take any parameters, however, the Weighted-cost

criterion employs pre-defined weight parameters. For the experiments in this

83

4. Multi-agent Path Planning Approach Using Assignment Strategy
Variations in Pursuit of Moving Targets

study, the ratio of 75/25, 25/75 and 50/50 was used for DistancesSum and

MaxDistance, respectively. In the first setting for the ratios, the strategy

considers more weight on the DistancesSum than the MaxDistance, while the

second setting is the opposite strategy where the MaxDistance considers more

weight than the DistancesSum. The third setting considers the equal weight

strategy for both values. These weight parameters are analysed to compute the

best possible combination for pursuing agents.

The pursuing agents use the STMTA* algorithm and the targets use the SF

algorithm. The initial scenario is configured with 4 vs 2. The number of players

is increased by 1 for each side in the next combination.

There are five different starting positions for agents and targets. The first

starting position is the same state for agents and at a far distance, it is the same

state for targets. The second starting position is to locate all agents in the centre

of the map, if possible and spread the targets around the corners of the map.

The position of agents on other sets was randomly selected on the opposite side

of each other.

4.3.2 Performance Analysis

The results are presented as a comparison of assignment strategies for multiple

agents. Performance measures the average number of steps travelled for all agents

on a single map and the success of completeness of the path. The timeouts are

excluded from the results, instead, the percentage of the hit rate is provided.

The results are compared for Mixed-cost, Twin-cost, Cover-cost and Weighted-

cost criteria.

The evaluation of assignment strategies and their comparison is displayed in

Table 4.3. The means represent the number of steps travelled for each test set

and the hit rate indicates the percentage of successful runs, meaning at least one

of the agents occupying the state of the targets before the timeout. At the bottom

of the table, the results are averaged for all maps. Although there is not a big

difference, the Cover-cost and the Twin-cost criteria perform slightly better in

the 4 pursuers vs 2 targets (4 vs 2) scenario and only Twin-cost shows positive

results for the 5 pursuers vs 3 targets (5 vs 3) scenario.

84

4. Multi-agent Path Planning Approach Using Assignment Strategy
Variations in Pursuit of Moving Targets

In Table 4.3 the results show that the Mixed-cost criterion has been

outperformed in every case on each map. The overall means for the number of

steps travelled display that the Weighted-cost criterion is successful with the

lowest results, although with a different set of parameters for each scenario,

Weighted-cost 75/25 on 4 vs 2 and Weighted-cost 25/75 on 5 vs 3.

Table 4.3: The means for the number of steps travelled, the ratio of successful
test runs and their standard deviations for all maps in all configuration settings.
The bottom of the table is the average results of all maps.

4 pursuers vs 2 targets 5 pursuers vs 3 targets

Mixed-

cost

Twin-

cost

Cover-

cost

Weighted-

cost 75/25

Weighted-

cost 25/75

Weighted-

cost 50/50

Mixed-

cost

Twin-

cost

Cover-

cost

Weighted-

cost 75/25

Weighted-

cost 25/75

Weighted-

cost 50/50

Map AR0302SR

Means 67.55 65.62 64.93 65.03 65.54 62.84 90.11 87.77 73.93 89.35 89.80 85.44

Std. dev. 9.66 10.35 5.38 9.66 9.95 9.20 14.41 12.35 10.56 12.85 15.42 15.84

Hit Rate 84% 87% 90% 80% 83% 83% 93% 92% 88% 94% 91% 91%

Map AR0304SR

Means 51.44 52.20 52.43 41.57 53.13 52.61 64.92 64.11 69.73 64.24 63.74 64.08

Std. dev. 4.21 5.05 5.46 4.54 4.96 4.52 8.05 7.21 5.77 7.31 6.42 6.69

Hit Rate 83% 84% 79% 79% 82% 83% 100% 100% 100% 100% 100% 100%

Map AR0313SR

Means 69.33 68.31 69.91 68.65 69.45 70.39 83.27 81.92 85.26 79.77 84.47 83.90

Std. dev. 14.65 13.09 10.15 12.61 14.21 12.63 17.65 14.19 15.87 17.09 14.13 14.40

Hit Rate 89% 87% 86% 91% 87% 91% 91% 94% 93% 92% 95% 95%

Map AR0417SR

Means 47.10 44.97 46.55 49.38 47.77 48.95 63.99 64.51 58.28 60.61 56.06 55.04

Std. dev. 14.39 8.91 15.65 11.33 9.71 12.27 24.22 37.50 19.68 22.23 20.65 17.15

Hit Rate 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Map AR0514SR

Means 49.27 48.47 43.08 49.39 48.81 47.23 46.57 48.12 49.03 46.11 45.28 45.79

Std. dev. 9.09 8.89 3.77 10.19 8.82 8.46 9.42 8.29 6.91 7.63 6.95 7.89

Hit Rate 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Map AR0528SR

Means 34.75 34.91 33.29 36.24 35.56 34.91 40.47 38.32 46.36 42.97 38.16 39.90

Std. dev. 7.26 7.45 2.69 7.41 7.50 7.30 11.09 9.44 6.58 10.81 7.92 6.80

Hit Rate 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Map AR0607SR

Means 80.78 83.14 83.82 78.00 82.88 84.95 65.42 65.30 80.83 73.91 65.55 71.78

Std. dev. 18.67 23.49 21.02 18.51 20.29 21.83 15.66 18.45 27.00 23.55 16.20 22.90

Hit Rate 83% 85% 91% 89% 88% 89% 99% 100% 93% 97% 99% 95%

Means of all 57.17 56.80 56.29 55.47 57.59 57.41 64.97 64.29 66.20 65.28 63.29 63.70

Std. dev. of all 11.13 11.03 9.16 10.61 10.78 10.89 14.36 15.35 13.20 14.49 12.53 13.10

Hit Rate of all 91% 92% 92% 91% 92% 92% 98% 98% 96% 98% 98% 97%

85

4. Multi-agent Path Planning Approach Using Assignment Strategy
Variations in Pursuit of Moving Targets

Figure 4.4: The illustrated graphs display the number of steps mean for all
assignment strategy costs per map (a) and the success rate of completed test
runs per map (b).

86

4. Multi-agent Path Planning Approach Using Assignment Strategy
Variations in Pursuit of Moving Targets

AR0302SR, AR0304SR, AR0313SR and AR0607SR maps are either larger in

dimensions or have more nodes to expand. These maps are more difficult to

navigate and provide lower rates of success, i.e., capturing the targets before the

timeout, see Figure 4.4(b). The results suggest that increasing the number of

agents from 4 to 5, increases the success rate and it never drops. The great

improvement is seen on maps: AR0304SR with an average hit rate from 82% to

100% and AR0607SR with an average hit rate from 87% to 97%, as depicted in

Figure 4.4(b). The graph illustrated in Figure 4.4(a) demonstrates the

improvement in the number of steps, averaged per map when compared with 4

vs 2 and 5 vs 3 players. More experiments with scenarios on 4 vs 3 and 5 vs 2

test combinations for each assignment strategy have been conducted, but due to

space limitations, and similarities in the outputs, the results are not outlined in

this study.

Standard deviation is taken as the third metric alongside means and hit rate

to indicate the spread of data with which the particular mean value is calculated.

The lower the standard deviation, the better the performance is. The results in

Table 4.3 show the standard deviation remains steady and helps differentiate the

performances from one another.

Overall, the experimental results show that the proposed new assignment

strategies help to succeed and in some individual cases improve by approximately

23% especially when themeans are the same. The reduction is seen in the number

of steps, even if the number of agents increases.

4.4 Conclusion

This chapter has investigated and identified more new alternative methods for

assignment strategies in multi-agent scenarios in order to increase efficiency. The

proposed methods such as Twin-cost, Cover-cost and Weighted-cost criteria have

been experimented with, and performance analysis measures the number of steps

travelled and the success of completed test runs on grid-based gaming maps.

These findings highlight the potential usefulness of these methods and evaluate

the strengths and weaknesses during the experiments. It was suggested that

the use of the proposed criteria makes the algorithms more efficient than those

87

4. Multi-agent Path Planning Approach Using Assignment Strategy
Variations in Pursuit of Moving Targets

currently used including the Mixed-cost criterion. The results suggest that the

Weighted-cost criteria depending on parameters have performed the best.

88

Chapter 5

A Strategy-Based Algorithm for

Moving Targets in an

Environment with Multiple

Agents

5.1 Introduction

There has been a large amount of research on search algorithms for many years.

The study and development of search algorithms were based on the basic scenario

of a single agent that is tasked with finding a target or goal state on a graph

within minimal time. Each search algorithm has its own purpose and need.

Even in a simple, static environment, the pathfinding search algorithm faces

several challenges. In complex environments, more challenges arise. With various

assumptions of this single agent with a single target, the scenario can be relaxed,

leading to more difficult problems: there can be several pursuing agents that

need to coordinate their search, assigning strategy to the agents before following

targets, there can be multiple targets, all of which need to be caught, and targets

can move on the graph over time rather than be in a fixed position.

Besides a more standard pathfinding search for a single agent pursuing a

single target on a static map, the case could be complicated by an increase in the

89

5. A Strategy-based Algorithm for Moving Targets in an
Environment with Multiple Agents

number of agents or dynamic changes in the environment. For example, in the

scenarios with moving targets, the target algorithms also play an essential role

in developing multi-agent scenarios, but they are less studied. The goal of such

algorithms is to evade capture as long as possible.

Consider a pursuit and evasion game, where players could be human or

computer-controlled. Other examples are video games such as Grand Theft

Auto and Need For Speed where both sides of players can be controlled by the

algorithms or a flight simulation application where computer-controlled targets

are needed to catch or shoot [207]. To make the game more interesting,

intriguing, and challenging, the targets need to behave intelligently. Therefore,

good target algorithms are an essential factor in improving the gaming

experience.

Target algorithms that exist usually have strategies such as maximising the

escaping distance [53], random movements to selected, unblocked positions to

evade the capturer [3] or, in a state-of-the-art approach called TrailMax,

maximising the survival time in the environment by considering the potential

moves of pursuing agents on each time step [78].

MAPF problems have been analysed in detail in the literature [170]. These

problems are known to be NP-hard [14]. An example of such a problem in a video

game is when all non-player agents need to navigate from a starting location to

the goal location on a conflict-free route in a static or dynamic environment [62].

Algorithms developed for moving, in other words escaping targets, can make the

empirical study of MAPF problems more meaningful, useful, and challenging.

Thus, how the existing ones can be improved? An algorithm is introduced based

on TrailMax that can be used for multiple moving targets to flee from multiple

agents in a dynamic environment. A good design of such an algorithm can help

targets to escape more intelligently, rationally and in a human-like manner.

This study considers more testing scenarios against more pursuer strategies,

target algorithms, benchmarked maps, player combinations and improving the

cost while the target expands pursuers’ nodes. Empirical evaluations report

different performance metrics, such as capture cost, success rate, computation

time and statistical analysis for the significance of the findings.

In the remaining parts of this chapter, Section 5.2 describes the new approach

90

5. A Strategy-based Algorithm for Moving Targets in an
Environment with Multiple Agents

to the problem. Empirical comparisons are described in the subsequent Section

5.3 which follows the discussion in Section 5.4 and the conclusion is derived in

Section 5.5.

5.2 Multiple Pursuers TrailMax: Proposed

Approach

The proposed new target algorithm is described in this section. First, the

introduction is given for the algorithm, then it follows with pseudo-code and the

section finalises with further improvements.

When the problem was described in Section 5.1, it was stated that a smart

target algorithm is very useful. In simple scenarios where a single agent pursues

one target, the target would know from which agent it needs to escape, as there is

only one. Some of the strategies to run away from the agent have been discussed

in Section 2.4. But if a situation is considered where multiple targets need to

escape from the current state and move to the safest destination in the dynamic

environment, how would targets know which pursuing agent they need to avoid

for a successful run? For example, the SF algorithm can flee from the closest

pursuer but sometimes could run into other pursuers. What would be a smart

move for a target while avoiding capture if there are many pursuers?

Although the TrailMax algorithm is a state-of-the-art algorithm, it has been

designed to work with only one agent, meaning a target does not have any strategy

to escape from one pursuer and avoid another approaching pursuer at the same

time. For this specific reason, a target algorithm that would be able to identify

approaching multiple agents and escape from all pursuers, a novel algorithm,

called Multiple Pursuers TrailMax (MPTM), is developed.

The MPTM algorithm uses a similar methodology as TrailMax but is

enhanced for MAPF or PAMT problems. There are two possible benefits that

could come from extending TrailMax to multi-agent pathfinding problems.

First, the target can identify the state location of other targets and collaborate

with them. Second, it can ensure the escape is not only from one pursuing agent

but from any approaching invading agents. Here the focus is on the second

91

5. A Strategy-based Algorithm for Moving Targets in an
Environment with Multiple Agents

issue. It is exhaustive, meaning it considers all possible moves from the agents.

Therefore, it is relatively computationally intensive and provides a solution if

one exists.

5.2.1 The MPTM Algorithm

The pseudo-code for the MPTM algorithm is depicted in Algorithm 6. First, the

current locations of all players (pursuers and target) need to be initialised in line

Algorithm 6 The Multiple Pursuers TrailMax Algorithm.
1: function MultiplePursuersTrailMax()
2: initialise position for all players (pursuers and target)
3: initial cumulative cost c ← 0 for each player
4: add target to target node queue
5: add pursuers to pursuer node queue
6: target caught states ← 0
7: if target is not captured then
8: while target node queue not empty do
9: ct ← get c from target node queue
10: ca ← get c from pursuer node queue
11: if (ct ≤ ca) then
12: remove target from target node queue
13: if target not in target closed and pursuer closed and parent node not in pursuer closed then
14: insert target into target closed
15: append target neighbours onto target node queue
16: end if
17: else
18: for each pi of players do
19: get state si for pi
20: if si is pursuer then
21: ca ← get c on pursuer node queue
22: remove pi from pursuer node queue
23: if pi not already in pursuer closed then
24: insert pi into pursuer closed
25: if pi in target closed then
26: increment target caught states
27: if target caught states is equal to size of target closed then
28: return true
29: append pi neighbours onto pursuer node queue
30: end if
31: end if
32: end if
33: end if
34: end for
35: end if
36: end while
37: end if
38: generate target path
39: if target closed not empty then
40: reverse target closed
41: end if
42: return target path
43: end function

92

5. A Strategy-based Algorithm for Moving Targets in an
Environment with Multiple Agents

2. The next step is to group all players according to their role and append their

positions into the relevant queues, all pursuers to the pursuer node queue and a

target to the target node queue. At this point, all players will have a cumulative

cost of zero, lines from 3 to 5. To make it easier to follow the code, each movement

cost will be equal to one unless it is in wait action, then it is zero. This is with

the assumption that there is no octile distance. However, the algorithm works

with different speeds and distances.

The algorithm has four different lists. The first two lists, target node queue

and pursuer node queue, contain expanded and visited nodes, such as the

current state or neighbouring states for both target and pursuers. The next two

lists, target closed and pursuer closed, contain states that are already visited

and occupied by players.

Since this is the target algorithm, in line 7, it starts first to check if it is

already caught or not. Then loops through if there are any target nodes in the

target node queue. As this is the first step, it only contains the target’s current

position. Then, it computes the cumulative cost c, the highest value, for target

ct and pursuers ca at lines 9 and 10. If the ct is lower or equal to the ca, then the

target expands its nodes, line 11.

During the expansion of nodes for targets in lines 12–15, first, the target

node is removed from the target node queue and placed inside target closed if it

is not already in the list and not in the pursuer closed list. It also checks if

the target’s parent node is not in pursuer closed. The target loops through its

available adjacent neighbours and adds them to the target node queue. These

steps are iterated until no state is left to expand. The nodes are expanded like

in breadth-first search [205], first-in-first-out.

When the target ct is higher than ca, the condition on line 11, the pursuers

take the turn and start to expand their nodes. The main part of this algorithm

is the lines between 17 and 35, where each pursuer loops through its state and

expands its nodes independently from other pursuers. The target needs to know

the position of pursuers’ states and loops through each player. If it is a pursuing

agent, then this particular agent will be removed from pursuer node queue and

placed inside pursuer closed if not already in. The neighbours will be added

to the pursuer node queue. Any state visited by the pursuer exists inside the

93

5. A Strategy-based Algorithm for Moving Targets in an
Environment with Multiple Agents

target closed list, then target caught states is incremented and compared to the

size of target closed, which returns true if equal.

Lines 38–42 generate a path. The last element in target closed is the furthest

state that the target could move to. This list is reversed to identify the route,

and the first element in the list is the action that the target takes. The function

repeats every time step to find the best action for the target.

This turn-based expansion goes to the point where all states on the map have

been occupied either by the target or the pursuers. The target could only win if

its state is not taken by any pursuers until the timeout. For multiple targets, the

algorithm runs on each target, and normally, each will get a different outcome

based on its location. The result will be the same if they are all in the same state.

Even if the starting position is different, the targets could join their path if that

is the optimal option.

Although the MPTM algorithm is similar to breadth-first search in

expanding its states, it additionally requires computing the cost and comparing

each iteration to the cost of the pursuers. First, line 2 requires k times to

initialise the position of pursuers and targets. Line 3 is an assignment statement

to each pursuer which needs k time operations. Lines 4, 5, and 6 are the

statements that require one time. Next, line 7 is a conditional statement that

needs one time, however, it contains the main part of the algorithm. This

follows with a while loop in line 8 and this requires k time operations. Line 9

and line 10 are the assignment statements which also need k times. Then

another conditional statement to compare the costs and needs k time in line 11.

The statements in lines 12, 13 and 14 require k time operation, however, line 15

generates l operations for target neighbours, therefore, the required time is kl.

When the condition in line 11 is not met, then line 18 is checked and requires l

operations for each player which makes its complexity of kl times. The

statements in lines 19 to 28 all require kl time of operations, too. Meanwhile,

line 29 needs n operations for each neighbour of the pursuer and this makes kln

time in total operations. Lastly, the line 38 generates a path with k time. Line

39 is a conditional statement with one time and line 40 requires k time

operations. The final result is generated with one time in line 42. Hence, the

worst-case time complexity of the MPTM algorithm is O(kln).

94

5. A Strategy-based Algorithm for Moving Targets in an
Environment with Multiple Agents

5.2.2 Further Improvements

The strategy of TrailMax works for one-to-one agent scenarios, and getting the

best cost from the list for each player is straightforward. But this is not the case

for the MPTM algorithm as it considers many pursuing agents in one search.

The pursuer node queue contains information for all pursuers and their moving

directions with costs.

It has already been discussed that the initial cost is zero for all players. When

line 11 is called, it will be true, and the target will take turns to expand and

increase its cost by one. On the next iteration, this condition will be false, as

the cost for the target is 1, and all pursuers’ cost is still zero. The expansion

takes place for pursuers. As there are many pursuers, line 21 will request the first

pursuer’s cost from the pursuer node queue. Then this pursuer will expand and

increase its cost to 1. There is a problem here because TrailMax requests the best

cost for each iteration. It would have been fine if there was only one pursuer, but

this is an issue with multiple pursuers. If the best cost was considered for multiple

pursuers, then only the first pursuer would be expanded as only its cost would be

incremented. This leads to the fact that only the same pursuer is requested with

the best cost and all other pursuers are left without expansion with an initial cost

of zero.

To fix the above problem, the cost requested on lines 10 and 21 is not the

best cost but a cost for each pursuer in order of from the pursuer node queue.

This gives a greater opportunity for a target to evaluate all pursuers’ moves

and make decisions more accurately. Another enhancement is that MPTM does

not only consider and run away from the closest pursuing agent but takes into

consideration all pursuers on the map by checking each pursuer’s state on line 18.

5.3 Empirical Evaluations

The empirical results will be presented in this section to demonstrate the efficiency

of the proposed algorithm. First, the experimental setup will be described, and

then, the performance results of the MPTM algorithm described in the previous

Section 5.2 will be reported.

95

5. A Strategy-based Algorithm for Moving Targets in an
Environment with Multiple Agents

Figure 5.1: The experimented sample maps, (a) AR0311SR and (b) AR0507SR,
are used in the Baldur’s Gate video game.

5.3.1 Experimental Setup

The general setup of experiments such as the map environment, player

combinations, the movement direction of players, the cost of moves, the number

of test runs for each configuration and the total number of individual tests as

well as the computer settings are detailed in Section 2.5.3.

The evaluation of the MPTM algorithm is tested and compared against

Greedy, Minimax and SF algorithms. The pursuing agents use PRA* and

STMTA* algorithms. The assignment strategies algorithms such as Twin-cost,

Cover-cost and Weighted-cost 50/50 criteria are introduced in Section 4.2 and

they are employed for STMTA*.

The scenarios were chosen to have multiple targets, and for the experiments,

initially, two and later, three targets were tested. The combination of pursuers

versus targets is displayed in Table 5.1. These scenarios help to understand the

behaviour of the MPTM algorithm when targets are outnumbered.

All players are placed at different randomly selected locations on each map.

There were two different sets of starting positions. The first set has all pursuers in

the same location and all targets in the same location, and targets are positioned

96

5. A Strategy-based Algorithm for Moving Targets in an
Environment with Multiple Agents

at the farthest distance from pursuers. The second set has all players randomly

positioned in disperse, on various walls of the map.

Table 5.1: The average number of steps (the capture cost) for each target
algorithm against pursuer algorithms. A larger number is better as it avoids
the capture by the pursuing agents.

Player

Combinations

(Pursuer vs

Target)

Target

Algorithms

Pursuer Algorithms

PRA*
STMTA*

Twin-cost Cover-cost
Weighted-cost

(50/50)

4 vs 2

SF 50.44 51.22 51.94 52.73

Greedy 53.32 50.44 49.80 50.77

Minimax 73.11 57.38 58.3 57.86

MPTM 117.30 119.45 125.62 117.92

4 vs 3

SF 52.78 55.98 57.14 55.33

Greedy 60.78 52.02 51.22 51.63

Minimax 68.23 59.33 60.43 61.08

MPTM 130.27 138.97 146.26 132.28

5 vs 2

SF 48.31 49.6 50.00 49.53

Greedy 52.70 49.55 50.20 50.00

Minimax 67.59 56.26 55.79 55.05

MPTM 106.72 100.77 108.36 104.81

5 vs 3

SF 51.31 52.94 54.33 53.45

Greedy 58.57 54.04 51.66 54.94

Minimax 63.59 56.36 56.93 56.00

MPTM 126.92 123.55 133.58 112.23

Mean for all

combinations

SF 50.71 52.44 53.35 52.76

Greedy 56.34 51.51 50.72 51.84

Minimax 68.13 57.33 57.86 57.50

MPTM 120.30 120.69 128.46 116.81

97

5. A Strategy-based Algorithm for Moving Targets in an
Environment with Multiple Agents

5.3.2 Experimental Results

Performance analysis is conducted with respect to three key indicators: (i) the

number of steps taken for each target algorithm before being caught, (ii) its

success rate and (iii) computation time. The first two measurements are averaged

considering all targets, and the time is normalised per step.

During the experiments, each test run finishes when all targets are caught or

there is a timeout. If some pursuers already caught their assigned targets, the

chase continues as long as there are still uncaught targets. Success for pursuers is

achieved when all targets are caught, and the number of steps, until the targets

have been caught, is recorded. The success of the targets is to avoid capture or

stay on the map for as long as possible.

Capture Cost. To evaluate the MPTM algorithm, a comparison with SF,

Minimax and Greedy is displayed in Table 5.1. This measures the performance

in terms of the number of steps for all targets. The numbers indicate the mean

of steps for target algorithms on all maps.

Table 5.1 displays results for different target algorithms. Each value is the

mean of eight tested maps. The proposed MPTM target algorithm offers a much

longer stay on the maps for all combinations. This indicates that it avoids capture

and demonstrates smarter decisions. The higher number is better.

Some maps have island-type obstacles that allow the targets to escape from

pursuers more easily, see Figure 5.1. Although each map has many states to

explore, as detailed in Table 2.3, all algorithms managed to find an escape route.

SF and Greedy both display similar capture times and their results are close

to each other. Minimax is better than SF and Greedy but still not as good as

MPTM.

The results compared in Table 5.1 show that for all player combinations, the

MPTM algorithm managed to escape all pursuing agents two times longer than

Minimax. The same algorithm when compared against SF or Greedy, the results

display that on average MPTM manages to run away from the pursuers 2.3 times

longer. The graph in Figure 5.2 provides a visual comparison of the times to

capture between MPTM and the other three target algorithms.

98

5. A Strategy-based Algorithm for Moving Targets in an
Environment with Multiple Agents

Figure 5.2: The overall comparison of the MPTM algorithm with other target
algorithms per a pursuing agent algorithm. The graph displays the mean for all
maps and all player combinations.

Comparing scenarios with different pursuing agents and target numbers shows

that, as expected, when the pursuer-to-target ratio increases, capture times tend

to decrease, while when the pursuer-to-target ratio decreases, capture times tend

to increase.

The evidence shows that the new MPTM algorithm outperforms SF, Minimax

and Greedy algorithms in the number of steps in all test configurations.

While the experiments were designed to study target algorithms, it is also

interesting to note that the STMTA* algorithm with its assignment strategy

variations performs overall better than PRA*.

Statistical tests are also used on the capture costs to find out which of the

results are significantly different. The proposed MPTM algorithm is compared

against existing SF, Greedy and Minimax algorithms. Only the STMTA*

Weighted-cost algorithm’s results are used for the comparison as it has shown

overall the best results among other pursuer algorithms as shown in Table 5.1.

The capture costs are not normally distributed; therefore, the statistical results

99

5. A Strategy-based Algorithm for Moving Targets in an
Environment with Multiple Agents

are obtained using the Wilcoxon Rank Sum tests. A significance level of 0.05 is

used. The values obtained from the statistical tests are provided on a map in

Table 5.2.

Table 5.2 displays p-values for all eight maps and four different player

combinations separately that are used during the experiments. There were two

starting positions on each map. Each set of players was aggregated in the first

position and in the second position, and all players were dispersed. The results

in the table display p-values individually for each starting position.

From these results, it can be seen that the majority of the results display

statistically significant differences. p-values presented in Table 5.2, the results

below 0.05 indicate significant differences, while there are results that are below

0.01 in the level of significance. Although some results are close significant. Most

of the aggregated positions show significance, in contrast to dispersed positions.

It can be concluded that the results of the experiments for capture cost are

significant for 0.01 on most of the tests. The findings should make an important

contribution to the field of target search algorithms.

Success Rate. Success for the agents is achieved when a pursuing agent gets

to the position of the target. In multitarget scenarios, success is achieved when

all targets have been captured. For the target(s), success is the absence of agent

success. The success rate for algorithms is shown in Table 5.3. The results

presented in the table are for four target algorithms against four pursuing agent

algorithms for all sets of combinations.

From this Table 5.3, the SF and Minimax algorithm performs the worst, and

they always get caught by pursuing agents in any tested combination. The

Greedy algorithm shows being caught in every possible test against the

STMTA* algorithm and its variations. It also failed against PRA*, but only in

one instance, where it managed to succeed when the deadlock occurred. It

happened on the 5vs3 player combination. In this particular example, when the

pursuers caught one target, instead of approaching and catching the remaining

targets, the pursuers kept moving one step back and forward until timeout.

On the other hand, MPTM shows better results in comparison with SF,

Greedy and Minimax. Overall, the performance of MPTM is quite well, yet

100

5
.
A

S
tra

te
g
y
-b

a
se
d

A
lg
o
rith

m
fo
r
M

o
v
in
g
T
a
rg

e
ts

in
a
n

E
n
v
iro

n
m
e
n
t
w
ith

M
u
ltip

le
A
g
e
n
ts

Table 5.2: Wilcoxon Rank Sum test results (p-values) for MTPM compared against SF, Greedy and Minimax
algorithms.

Player

combinations

(Pursuer

vs Target)

Target

Algorithms

Maps used from Baldur’s Gate Video Game (p-values)

Map AR0311SR Map AR0407SR Map AR0507SR Map AR0508SR Map AR0512SR Map AR0527SR Map AR0531SR Map AR0707SR

Position1 Position2 Position1 Position2 Position1 Position2 Position1 Position2 Position1 Position2 Position1 Position2 Position1 Position2 Position1 Position2

SF 0.0005 0.0006 0.0838 0.0386 3.6E-07 0.3907 0.0010 2.3E-07 4.6E-05 0.3284 0.4404 0.0532 0.0021 0.0630 0.0594 0.0009

4 vs 2 Greedy 0.8597 5.3E-08 0.1866 4.0E-05 3.4E-07 0.0600 7.8E-09 3.9E-08 0.6926 0.0366 7.9E-09 0.7811 5.9E-09 0.1084 9.6E-06 5.2E-09

Minimax 0.0395 0.0009 0.6398 5.3E-05 4.6E-07 4.3E-06 3.7E-06 5.2E-06 0.1500 0.0045 2.3E-07 0.5473 1.5E-08 0.0003 0.0075 5.7E-08

SF 1.6E-05 0.0236 0.6354 0.0121 5.6E-07 0.1853 6.6E-06 1.3E-05 0.4311 0.2133 0.0080 0.3486 0.0065 0.0130 0.0528 0.0060

4 vs 3 Greedy 0.0050 0.0013 9.8E-05 2.4E-06 5.7E-07 0.0363 7.9E-09 3.5E-07 0.1892 0.3248 7.8E-09 0.3353 6.8E-09 0.0028 0.0002 0.0134

Minimax 0.1842 0.0004 0.0110 0.0118 2.8E-07 1.0E-05 2.5E-08 0.0004 0.2319 0.0160 1.5E-08 0.3353 1.3E-08 0.3939 0.0110 3.1E-07

SF 0.0002 1.2E-05 0.0068 0.0007 4.6E-08 0.7649 1.1E-06 3.5E-08 4.0E-07 0.9455 0.6161 0.0024 0.2908 0.0025 0.3639 5.8E-08

5 vs 2 Greedy 0.0250 4.6E-07 0.0015 0.2622 5.5E-08 0.0872 7.8E-09 1.3E-08 0.9891 0.0858 7.5E-09 0.7806 7.8E-09 0.5570 0.0006 6.3E-05

Minimax 0.4322 0.0477 0.0070 0.01364 1.3E-08 0.0920 5.9E-08 8.8E-07 0.0202 0.0997 1.1E-07 0.0497 6.7E-08 6.2E-07 0.0156 1.0E-04

SF 1.8E-06 0.0005 0.5956 0.0289 3.0E-07 0.2380 0.0002 9.6E-06 0.0369 0.8374 0.3935 0.4524 0.0066 0.4874 0.1164 1.1E-05

5 vs 3 Greedy 0.0400 0.0001 0.0004 0.0162 9.5E-07 0.0053 7.9E-09 1.6E-05 0.1549 0.1025 7.9E-09 0.0005 5.9E-09 0.0091 2.1E-05 1.1E-06

Minimax 0.0197 6.2E-05 0.0018 0.6448 1.1E-07 0.4472 3.0E-08 0.0773 0.0209 0.1036 7.9E-09 0.0005 8.4E-09 0.0016 0.0008 1.1E-06

101

5. A Strategy-based Algorithm for Moving Targets in an
Environment with Multiple Agents

there are a few instances where eventually gets caught 100% of the time. The

graph in Figure 5.3 illustrates how MPTM performed for all test combinations

on all maps.

Like capture costs, success rates are also dependent on pursuer and target

ratios. The success was proportional to the number of pursuers and targets. More

pursuers for the same number of targets increased the captivity. The success rate

was increased when the number of targets incremented versus the same number

of agents, as displayed on the graph, see Figure 5.3.

The behaviour of the MPTM algorithm is better on the maps that have

obstacles that could be navigated around, for example, the maps illustrated in

Figure 5.1. These types of maps may be suitable for adaptive target algorithms

as they offer opportunities for escape but may be difficult for the pursuing agent

algorithms if they do not have strategies such as the trap strategy [202]. The

maps AR0311SR, AR0527SR and AR0707SR have dead-ends or blind alleys and

thus make it more difficult to find an escape route, leading to lower target

performance on these maps.

With some algorithms, pursuing agents sometimes fail to catch the targets,

although these are outnumbered. They might catch one target but fail to catch

the other, or keep following the target, or end in a deadlock until timeout. This

is commonly seen in PRA* as there is no assignment strategy before starting the

move, unlike STMTA*.

Table 5.3: The overall success rate of capture for all scenarios. For targets, the
lower is better.

Target

Algorithms

Pursuer Algorithms

PRA*
STMTA*

Twin-cost Cover-cost
Weighted-cost

(50/50)

SF 100.00% 100.00% 100.00% 100.00%

Greedy 99.92% 100.00% 100.00% 100.00%

Minimax 100.00% 100.00% 100.00% 100.00%

MPTM 92.89% 90.55% 89.46% 91.41%

102

5. A Strategy-based Algorithm for Moving Targets in an
Environment with Multiple Agents

Figure 5.3: The performance rate of success for the MPTM target algorithm for
all test configurations and maps. Lower is better.

On average, over all maps per player combinations, the success rate can be

13% better than Minimax, Greedy and SF.

Timing. This section measures the time taken for each algorithm during the

same tests that measured the capture cost and the success rate. Each experiment

is recorded in seconds and averaged over all tests.

Table 5.4 provides the results for each target algorithm. SF, Greedy and

Minimax do not do as much computation as MPTM prior to moving, therefore,

their results are smaller and closer to each other in comparison to MPTM, which

has greater differences.

To find the best possible action, the MPTM algorithm computes all possible

moves for the target and all pursuers on the map, therefore, the computation

time is much higher.

103

5. A Strategy-based Algorithm for Moving Targets in an
Environment with Multiple Agents

5.4 Discussion

Results presented in Section 5.3 show that the MPTM algorithm has a greater

chance of escaping from multiple pursuing agents, which has been the main focus

of this study. The MPTM algorithm can estimate the possible future movements

of the pursuers and therefore, MPTM can function smartly by avoiding capture

and fleeing as far as possible until it runs out of all options. This could be similar

to cop and robber situations, where the robber is a villain and escapes from the

Table 5.4: The computation time (in seconds) per step for each target algorithm.

Player

Combinations

(Pursuer vs

Target)

Target

Algorithms

Pursuer Algorithms

PRA*
STMTA*

Twin-cost Cover-cost
Weighted-cost

(50/50)

4 vs 2

SF 0.00037 0.00038 0.00038 0.00038

Greedy 0.00019 0.00008 0.00008 0.00009

Minimax 0.00166 0.00155 0.00154 0.00156

MPTM 0.15913 0.16537 0.16234 0.16284

4 vs 3

SF 0.00057 0.00055 0.00055 0.00055

Greedy 0.00020 0.00011 0.00011 0.00011

Minimax 0.00141 0.00129 0.00140 0.00138

MPTM 0.24819 0.24975 0.24949 0.23835

5 vs 2

SF 0.00036 0.00038 0.00038 0.00037

Greedy 0.00014 0.00008 0.00009 0.00009

Minimax 0.00171 0.00163 0.00163 0.00160

MPTM 0.15882 0.15846 0.16146 0.15964

5 vs 3

SF 0.00054 0.00054 0.00054 0.00054

Greedy 0.00019 0.00013 0.00012 0.00012

Minimax 0.00151 0.00136 0.00143 0.00136

MPTM 0.24287 0.25920 0.24776 0.24295

104

5. A Strategy-based Algorithm for Moving Targets in an
Environment with Multiple Agents

Figure 5.4: The Baldur’s Gate benchmarked gaming AR0311SR map with
pursuers the targets at the initial position.

cops as illustrated in the simulation gaming map from Baldur’s Gate in Figure

5.4. The simulation displays the initial position of four cops (pursuers) and three

robbers (targets) on the map.

The proposed MPTM algorithm is measured and compared against SF,

Greedy and Minimax algorithms. MPTM offers better results by staying much

longer on the maps and managing to escape the pursuing agents. The number

of steps is the capture cost, where in some cases the MPTM avoids capture by

2.6, 2.9 and 2.4 times longer than SF, Greedy and Minimax, respectively.

Moreover, these results were statistically tested using the Wilcoxon Rank Sum

test to establish the significance of the findings. Table 5.2 displays the p-values

and with a 95% level of confidence, most of the results indicate significant

differences. Another key measurement is the success rate that exceeds

expectations for MPTM with 91.08% of being caught, the lower is better,

whereas SF and Minimax get caught 100%, and Greedy with 99.98%.

Based on different maps and various player combination settings, the

105

5. A Strategy-based Algorithm for Moving Targets in an
Environment with Multiple Agents

suggested new algorithm allows for functioning efficiently. Despite MPTM’s

success rate and outsmarting pursuers, further research is needed to improve the

computation process. To avoid exhaustive and intensive computation with

larger player combinations and to speed up the search, it might be more

beneficial to have a branching factor or window-based search.

5.5 Conclusion

The aim of this chapter was to provide a solution for MAPF or PAMT problems

and develop a target algorithm that would consider multiple pursuers and make

a smart escape. Numerous interesting studies have been conducted on search

algorithms, and among them are solutions to the MAPF frameworks. Only a

few studies have been carried out on target algorithms, especially in multi-target

environments.

This research shows that TrailMax is a successful algorithm for the control of

targets if developed further for dealing with multiple pursuers. The amendments

proposed to the TrailMax algorithm made it work as a strategy for multi-agent

multi-target search problems in dynamic environments.

The resulting MPTM algorithm has outperformed other target algorithms for

the same scenario, and that can make pursuit and evasion scenarios in computer

games more challenging, meaningful, and interesting. The results clearly show

that the MPTM algorithm performs far better, with at least doubling capture

cost and escaping success by 13% on the gaming maps used for benchmarking.

106

Chapter 6

Adaptive Weighted-Cost

Assignment Strategy for Efficient

Multi-Agent Path Planning

6.1 Introduction

The necessity and the importance of assignment strategy algorithms were

discussed in Chapter 4. In this regard, the sample problem of how pursuing

agents might only follow one target in the presence of multiple targets was

illustrated in Figure 4.1. The discussion provided solutions and presented three

new different criteria, including Twin-cost, Weighted-cost and Cover-cost

assignment strategies, in Section 4.2. The Weighted-cost criterion performed the

best, and in this study, it is the baseline for the new algorithms. However, there

are limitations to the Weighted-cost algorithm as it needs to predefine the

weight parameters before the test run. The experiments are conducted on the

benchmarked gaming maps [178] and in Section 2.5.3 categorised into three

different groups: maps with narrow corridors, circle-shaped obstacles, and large

open spaces. Although solving every problem with one algorithm may not be

possible, the solutions provided might be sufficient for these configurations.

This chapter’s main contribution is a new assignment strategy algorithm,

Adaptive Weighted-cost, for multiple pursuers. First, the issues with predefined

107

6. Adaptive Weighted-Cost Assignment Strategy for Efficient
Multi-Agent Path Planning

weight parameters are avoided and instead, each situation is resolved by

adapting dynamically so that the Adaptive Weighted-cost algorithm evaluates

and computes the weight parameters independently. The computation of the

same weight parameters can be adjusted with a cross multiplication of values

for better utilisation of makespan in multi-agent situations. The second

contribution is the Joint Weighted-cost and the Joint Twin-cost algorithms,

which use the distance and the covered area of agents to find a combination

that helps pursuers assign targets to capture them quicker. There are two

possible solutions, one is to use the weight formula, and the other one is to use

multiplication between the variables. In some situations, because of their

position on the map, the targets can have more area covered, more area to

escape, and the effort of joining distance and a covered area to find the best

combination for pursuers can lead to better task planning. Third, each

assignment strategy algorithm can navigate towards the assigned target in the

static assignment mode (s-mode) or periodically (predefined parameter) stop for

an evaluation and re-assign targets in the dynamic assignment mode (d-mode).

In the d-mode, the pursuers might change the targets, if needed, based on the

current position of the players [189].

The rest of this chapter is organised as follows. Section 6.2 briefly discusses

the problem and the existing approaches and then introduces new methods for

assignment strategies in Section 6.3. A description of the experimental setup, a

discussion of analyses and the display of evaluated results are provided in

Section 6.4. Finally, Section 6.5 draws conclusions from the findings obtained

with suggestions for future works.

6.2 Pathfinding Problem and Current Methods

for Assignment Strategies

This section refers to the problem and then describes the pursuer-to-target

assignment with suggested enhancement methods. The second part of this

section briefly describes existing assignment strategies with their approach and

methods used.

108

6. Adaptive Weighted-Cost Assignment Strategy for Efficient
Multi-Agent Path Planning

6.2.1 Pathfinding Problem for Multiple Agents

Given that the multi-agent pathfinding problem is introduced in Section 2.5.1, it is

possible for pursuing agents to follow any target based on their closest distance to

the agent as used with PRA* [34]. However, thorough planning for pursuers can

increase performance by reaching the targets quicker and successfully capturing

them.

The pursuing agents move towards the targets using the STMTA* algorithm

which relies on the Assignment Strategy Algorithm 1 to assign targets. Once the

targets are assigned to the pursuers, each pursuer computes its route towards

the target. The pursuers constantly observe the new positions of the targets and

whether any of the targets are caught. This process repeats each time step. If the

target is caught by the assigned pursuer(s) on successful runs, then to find quicker

sub-optimal solutions, only these pursuers are re-assigned with the existing, not

caught yet, targets. This give-a-hand function helps other agents to catch the

remaining targets quicker. The STMTA* algorithm has been enhanced and it

can change previously assigned targets if it meets the given assignment strategy’s

criteria. The improvement offers s-mode or d-mode. In s-mode, the targets are

assigned only at the beginning of each run and not changed until the capture,

whereas in d-mode, the pursuing agents are able to re-assess the position of all

players and re-assign after a predefined number of steps.

6.2.2 Existing Assignment Strategy Methods

Multiple pursuing agents and multiple targets are present in a given scenario.

The pursuers coordinate among themselves using assignment strategy algorithms

to assign each target. These assignment strategies then provide the optimum

combination to assign targets in order to enable the pursuers to achieve their goal

of catching targets most cost-effectively. The research has been taken to provide

a solution to find an optimal combination of assignments and the most common

methods that have been used are the cumulative distance sum or the maximum

time step (makespan). Although Summation-cost and Mixed-cost criteria and

their similar approaches are commonly used in the literature as mentioned in

Section 2.5.2, there are other new approaches to finding the best cost-effective

109

6. Adaptive Weighted-Cost Assignment Strategy for Efficient
Multi-Agent Path Planning

combination for multiple pursuers. Twin-cost, Cover-cost and Weighted-cost are

the current methods that were introduced in Chapter 4 and the experiments

were conducted in comparison with the existing Mixed-cost criterion. The Twin-

cost and the Weighted-cost criteria use the distance measurement to obtain the

best values, while the Cover-cost criterion uses an area of coverage. Section 4.2

details these proposed assignment strategies and Section 4.3.2 evaluates their

performance.

6.3 Proposed New Methods for Assignment

Strategies

In the following section, three new assignment strategy algorithms are

introduced. These new methods aim to find the best combination to assign

targets to multiple agents which leads to better task planning and increases the

performance in successfully capturing targets. The first algorithm is the

Adaptive Weighted-cost that disregards predefined weight parameters and

computes the cost by dynamically evaluating the parameter values. The second

is the Joint Weighted-cost and the third is the Joint Twin-cost algorithms that

use the sum of distances and the covered area to find a combination. Finally,

the section introduces two different navigation modes, the s-mode and d-mode,

for pathfinding search once the experiment starts.

Table 6.1: The scenario of two pursuing agents, An, versus two targets, Tn, and
the distance from the pursuers towards the targets on the AR0509SR gaming
map (Figure 4.3). There are two possible combinations, and each has the sum of
distances (DistancesSum), and maximum distance (MaxDistance).

Combination Agent to Target Distance DistancesSum MaxDistance

1
A1 → T1 21

49 28
A2 → T2 28

2
A1 → T2 25

51 26
A2 → T1 26

110

6. Adaptive Weighted-Cost Assignment Strategy for Efficient
Multi-Agent Path Planning

Algorithm 7 Adaptive Weighted-cost Algorithm.

1: function computeAssignmentStrategy(combinations)
Input: DistancesSum and MaxDistance
2: m←DistancesSum;
3: n←MaxDistance;
4: w1 ← m

(m+n)
;

5: w2 ← n
(m+n)

;
6: for each n do
7: csa ← (m× w1) + (n× w2);
8: end for
9: return csa;

10: end function

6.3.1 Adaptive Weighted-Cost

In the study of assignment strategies in Chapter 4, the Weighted-cost criterion

was successful and performed better results in comparison with the approaches

tested. The experiments used predefined weighted parameters and the ratios

were 0.25/0.75, 0.50/0.50 and 0.75/0.25 for the Summation-cost and the

Makespan-cost values (DistancesSum/MaxDistance), during the test runs for

the Weighted-cost criterion. Although the experimental results displayed

promising outcomes, further work is undertaken to improve and optimise the

algorithm such that, instead of predefining the parameter values each time, the

algorithm adapts this approach and dynamically identifies the weight cost based

on the values for DistancesSum and MaxDistance.

Algorithm 7 outlines the Adaptive Weighted-cost algorithm for multiple

agents. Lines 2 and 3 require combination values for DistancesSum and

MaxDistance. The main part of the algorithm is the computation that happens

in lines 4 and 5 for w1 and w2 parameters, where w1 is DistancesSum divided by

the sum of DistancesSum and MaxDistance and w2 is MaxDistance divided by

the sum of DistancesSum and MaxDistance. The iteration finds the values for

all combinations in lines 6-8 and returns the outcome in line 9 for the Adaptive

Weighted-cost algorithm. Table 6.1 has testing results from the AR0509SR

gaming map (Figure 4.3) for Combination1 where DistancesSum is 49 and

MaxDistance is 28. The dynamically computed ratio for w1/w2 is 0.64/0.36.

111

6. Adaptive Weighted-Cost Assignment Strategy for Efficient
Multi-Agent Path Planning

Although the method differs in how the weight values are determined, it

actually has a similar time complexity as Algorithm 4. Thus, lines 2 and 3 are

the repeats of the operations. However, lines 4 and 5 are the additional

operations that compute weight cost values and since they are assignment

operations, they require one time. Therefore, the number of steps in the

worst-case does not change and has a complexity of O(k).

The mentioned Algorithm 7 displays a standard method of computing two

variables, DistancesSum and MaxDistance, with dynamically identified weighted

parameters. There can be situations with five pursuing agents on the map and

they all might have a similar distance towards the targets with 20 time steps

each. The Summation-cost for these five pursuers is 100 steps, but the makespan

is 20 steps. Because there is a huge ratio difference between these values, it can

be adjusted in such a way that the dynamic weight parameters can be swapped.

Therefore, the computation for the standard Adaptive Weighted-cost, csa, in line

7 for Algorithm 7 is:

csa = (m× w1) + (n× w2) (6.1)

This equation will normalise the result and utilise more MaxDistance. So, the

result for the standard Adaptive Weighted-cost criterion is (100 × 0.83) + (20 ×
0.17) = 86.40, while the adjusted Adaptive Weighted-cost criterion, caa, is (100

× 0.17) + (20 × 0.83) = 33.60, with an equation:

caa = (m× w2) + (n× w1) (6.2)

This adjusted method helps to balance off the values especially if there is a huge

difference between two values and provides a better combination for pursuing

agents in assigning the targets. The Adaptive Weighted-cost criterion’s both

standard and adjusted methods are implemented and tested during the

experiments.

112

6. Adaptive Weighted-Cost Assignment Strategy for Efficient
Multi-Agent Path Planning

Algorithm 8 Joint Weighted-cost Algorithm.

1: function computeAssignmentStrategy(combinations)
Input: DistancesSum and CombinationCoverage
2: initialise w1 and w2 ▷ wn is weight parameter
3: m←DistancesSum;
4: n←CombinationCoverage;
5: for each n do
6: cjw ← (m× w1) + (n× w2);
7: end for
8: return cjw;
9: end function

6.3.2 Joint Weighted-Cost

Until now, the distance measurement (the sum of distances or makespan) or

covered area has been used to assign targets to the pursuing agents and all the

above-mentioned Weighted-cost criteria have used distance values for their

assignment strategies. Although the distance is an important measurement, it is

possible to use the covered area together with the distance as the parameter to

compute an optimal solution for assignment strategies. This is a new approach

to the assignment strategy where the pursuing agents’ distance and covered area

join together and use the weight parameter.

The combination of the shortest distance criterion and large covered area

criterion is used in this new approach. The pursuing agents need to evaluate the

lowest cost of the DistancesSum and also consider the covered area together.

The Summation-cost criterion already provides the DistancesSum value, and

the Cover-cost criterion provides the CombinationCoverage value. The Joint

Weighted-cost criterion is similar to the Weighted-cost criterion mentioned in

Section 4.2.2 and it uses the predefined weight parameters that help to compute

the best option among all combinations for multiple pursuers. The criterion

requires two measurements, DistancesSum and CombinationCoverage, as

displayed in lines 3 and 4 of Algorithm 8. The ratio of the weight parameters in

line 2 for this criterion is used at 0.5/0.5 on both variables. Algorithm 8 iterates

all possible combinations that are available for the pursuers in lines 5-7 and the

best combination with the minimum cost value is returned in line 8.

113

6. Adaptive Weighted-Cost Assignment Strategy for Efficient
Multi-Agent Path Planning

In each assignment computation DistancesSum and CombinationCoverage

values are required and also have initialisation of weight parameters. Although

each of these lines 2, 3 and 4 is one time operation, the iteration in lines 5 to 7

generates k number of operations for the optimal assignment combination.

Since the manual input of weight parameters does not change the complexity,

the time complexity of the Joint Weighted-cost criterion is the same as the

Weighted-cost criterion, which is O(k) per step.

6.3.3 Joint Twin-Cost

When the number of targets is more than one and multiple pursuers require

assignment strategies, another way to solve the assignment problem can be

using an interaction effect between two variables [208]. The Joint Twin-cost

criterion uses two measurements, the sum of distances and the covered area, as

in the Joint Weighted-cost criterion above and multiplies them to find the

combination value. This approach is similar to the Twin-cost criterion that is

mentioned in Section 4.2.1 but instead of the sum of distances and makespan,

this criterion uses a joint between the agents’ sum of distances, DistancesSum,

and their covered area, CombinationCoverage. Algorithm 9 provides steps for

this criterion. Line 2 and line 3 require agents’ sum of distances, DistancesSum,

and the cost of the area covered, CombinationCoverage. The product of two

variables performs in lines 4-6 and the result is returned in line 7. The drawback

of using the CombinationCoverage value in Joint Weighted-cost and Joint

Twin-cost algorithms is that it increases the computation time as it computes

the breadth-first search by visiting every state until it reaches the target.

This newly introduced Algorithm 9 has the same order of steps and the

function is similar to the Algorithm 3 that is described in Section 4.2.1. The

assignment operations in lines 2 and 3 require one time. The number of

operations in lines 4 to 6 is not changed, therefore, it is possible to conclude

that the complexity of this algorithm is equal to O(k).

114

6. Adaptive Weighted-Cost Assignment Strategy for Efficient
Multi-Agent Path Planning

Algorithm 9 Joint Twin-cost Algorithm.

1: function computeAssignmentStrategy(combinations)
Input: DistancesSum and CombinationCoverage
2: m←DistancesSum;
3: n←CombinationCoverage;
4: for each n do
5: cjt ← (m× n);
6: end for
7: return cjt;
8: end function

6.3.4 Combinations and Navigation Mode

The above-mentioned algorithms can be tested on a gaming AR0509SR map

(Figure 4.3). The experiment was conducted on a configuration with 4 agents vs

4 targets (4 vs 4) and possible 24 combinations are listed in Table 6.2. Pursuing

agents are numbered 4-7 and targets are numbered 0-3, and each pursuer is

assigned one target with the relevant cost in parenthesis (the first example is

the distance cost from pursuing agent P5 to target T0 is measured in 26 steps).

In the first row, if four distance steps in the parenthesis are summed up, then

DistancesSum is equal to 129 and the maximum step distance for MaxDistance

is 43 for the first-row combination. Three algorithms, Weighted-cost, Joint

Weighted-cost and Adaptive Weighted-cost, use already generated values

(DistancesSum and MaxDistance) and compute their cost based on their

criterion. The results for CombinationCoverage, Joint Weighted-cost and Joint

Twin-cost use the maximum combination cost values, while the rest use the

minimum combination cost. Six possible combinations could be applied during

the test runs before the chase starts depending on the provided criterion. The

empirical evaluation of the experimental results is in Section 6.4.

The algorithms, Weighted-cost, Adaptive Weighted-cost with the standard

and the adjusted method of computation, Joint Weighted-cost and Joint Twin-

cost, all assign targets to the pursuers at the s-mode before the navigations start

and the target does not change until it is caught. The d-mode has a predefined,

changeable number of steps parameter, that the targets can be re-assigned during

the test run if the computation of the assignment strategy suggests a different

115

6. Adaptive Weighted-Cost Assignment Strategy for Efficient
Multi-Agent Path Planning

combination setting. The behaviour of changing targets in d-mode will be tested

and compared with its s-mode configuration in the next Section 6.4.

6.4 Experimentation and Discussion

This section presents the empirical results of the newly proposed approaches for

the assignment strategies. Initially, the setting for the experiments is described

Table 6.2: The AR0509SR map (Figure 4.3) positions dispersedly players (4 vs 4)
at the starting state-4 during the experiments. There are 24 possible assignment
combinations. Each criterion has its optimal combination. DistancesSum (DS),
MaxDistance (MD) and CombinationCoverage (CC) have been shortened.

Pursuer-to-Target assignments DS MD CC
Weighted-cost

Joint

Weighted-cost

Joint

Twin-cost

Adaptive

Weighted-cost

are in this order of combinations: 25/75 50/50 75/25 50/50 m × n Standard Adjusted

1 5->0(26), 7->1(43), 6->2(32), 4->3(28), 129 43 0.387 64.50 86.00 107.50 64.69 49.91 107.50 64.50

2 5->0(26), 6->1(37), 7->2(38), 4->3(28), 129 38 0.370 60.75 83.50 106.25 64.68 47.68 108.29 58.71

3 5->0(26), 4->1(15), 6->2(32), 7->3(30), 103 32 0.340 49.75 67.50 85.25 51.67 34.98 86.17 48.83

4 6->0(37), 7->1(43), 5->2(31), 4->3(28), 139 43 0.331 67.00 91.00 115.00 69.67 45.96 116.32 65.68

5 6->0(37), 5->1(44), 7->2(38), 4->3(28), 147 44 0.327 69.75 95.50 121.25 73.66 48.02 123.27 67.73

6 7->0(35), 5->1(44), 6->2(32), 4->3(28), 139 44 0.326 67.75 91.50 115.25 69.66 45.36 116.16 66.84

7 5->0(26), 4->1(15), 7->2(38), 6->3(24), 103 38 0.325 54.25 70.50 86.75 51.66 33.44 85.48 55.52

8 7->0(35), 6->1(37), 5->2(31), 4->3(28), 131 37 0.313 60.50 84.00 107.50 65.66 41.01 110.30 57.70

9 6->0(37), 4->1(15), 7->2(38), 5->3(21), 111 38 0.301 56.25 74.50 92.75 55.65 33.38 92.38 56.62

10 7->0(35), 4->1(15), 6->2(32), 5->3(21), 103 35 0.300 52.00 69.00 86.00 51.65 30.94 85.75 52.25

11 5->0(26), 7->1(43), 4->2(18), 6->3(24), 111 43 0.295 60.00 77.00 94.00 55.65 32.72 92.01 61.99

12 5->0(26), 6->1(37), 4->2(18), 7->3(30), 111 37 0.292 55.50 74.00 92.50 55.65 32.46 92.50 55.50

13 6->0(37), 4->1(15), 5->2(31), 7->3(30), 113 37 0.283 56.00 75.00 94.00 56.64 32.03 94.25 55.75

14 4->0(41), 7->1(43), 6->2(32), 5->3(21), 137 43 0.277 66.50 90.00 113.50 68.64 37.96 114.54 65.46

15 6->0(37), 7->1(43), 4->2(18), 5->3(21), 119 43 0.271 62.00 81.00 100.00 59.64 32.22 98.83 63.17

16 7->0(35), 4->1(15), 5->2(31), 6->3(24), 105 35 0.268 52.50 70.00 87.50 52.63 28.15 87.50 52.50

17 4->0(41), 6->1(37), 7->2(38), 5->3(21), 137 41 0.260 65.00 89.00 113.00 68.63 35.59 114.89 63.11

18 4->0(41), 5->1(44), 6->2(32), 7->3(30), 147 44 0.256 69.75 95.50 121.25 73.63 37.61 123.27 67.73

19 7->0(35), 6->1(37), 4->2(18), 5->3(21), 111 37 0.253 55.50 74.00 92.50 55.63 28.10 92.50 55.50

20 6->0(37), 5->1(44), 4->2(18), 7->3(30), 129 44 0.250 65.25 86.50 107.75 64.62 32.19 107.38 65.62

21 4->0(41), 7->1(43), 5->2(31), 6->3(24), 139 43 0.245 67.00 91.00 115.00 69.62 34.03 116.32 65.68

22 4->0(41), 6->1(37), 5->2(31), 7->3(30), 139 41 0.243 65.50 90.00 114.50 69.62 33.71 116.68 63.32

23 4->0(41), 5->1(44), 7->2(38), 6->3(24), 147 44 0.241 69.75 95.50 121.25 73.62 35.41 123.27 67.73

24 7->0(35), 5->1(44), 4->2(18), 6->3(24), 121 44 0.234 63.25 82.50 101.75 60.62 28.34 100.47 64.53

116

6. Adaptive Weighted-Cost Assignment Strategy for Efficient
Multi-Agent Path Planning

and then follows the presentation of the performance results for all algorithms

detailed in Section 6.3. The runtime to assign targets to agents, the pathfinding

cost, and the success of the run, are all measured for performance. Finally,

statistical tests are conducted for the significance of the results.

6.4.1 Experimental Problem Settings

The general setup of experiments such as the map environment, player

combinations, the movement direction of players, the cost of moves, the number

of test runs for each configuration and the total number of individual tests as

well as the computer settings are detailed in Section 2.5.3.

While the pursuing agents employ the STMTA* algorithm during the

experiments, the multiple-moving targets use the SF algorithm. Each

assignment strategy algorithm is tested under the same configurations in the

same environment. All newly proposed approaches, Adaptive Weighted-cost,

Joint Weighted-cost and Joint Twin-cost algorithms, in Section 6.3 are

evaluated against the baseline Weighted-cost algorithm, which has predefined

weighted parameters with ratios of 0.25/0.75, 0.50/0.50 and 0.75/0.25.

Altogether, including the s-mode and d-modes, 21 algorithms will be tested.

For the given environment, the initial scenario for the first tests is to have

four pursuing agents and two targets (4 vs 2). To help analyse the algorithms’

behaviour better, the second and the third set of tests were conducted with the

number of targets increased by one and two, i.e., the pursuers outnumber targets

or are equal. Each problem is defined by the starting position of the players.

Players have five different sets of starting positions on each map, and they are

placed randomly at preselected locations.

6.4.2 Performance Analysis

The performance of the assignment strategy algorithms is evaluated, and the

results are presented for the pathfinding cost, the success of reaching targets,

the time it takes to assign targets and the minimum cost. The pathfinding cost

is measured for the number of time steps taken before capturing all targets for

successful runs or until timeout for unsuccessful runs. The runtime is measured

117

6. Adaptive Weighted-Cost Assignment Strategy for Efficient
Multi-Agent Path Planning

in seconds. Mean is taken for all measurements considering all pursuers and

configurations.

Each assignment strategy algorithm is tested for s-mode and d-mode, and in

d-mode, the pursuers can assess the position of players and if necessary, then

change previously assigned targets with a new configuration after every 10 steps

for one set and 20 steps for the other set.

6.4.2.1 Pathfinding Cost

The pathfinding costs for assignment strategy algorithms are measured and

displayed in Table 6.3. The table is split into three-player combinations,

pursuing agent versus targets (4 vs 2, 4 vs 3 and 4 vs 4), and each player

combination contains three map groups. The table shows the mean of three

maps for the pathfinding cost and minimum cost [183, 189, 209, 210] within

each group. The minimum cost is obtained from the tests run twenty times for

each starting state. The overall mean for the pathfinding cost and the minimum

cost of all results are shown at the bottom of Table 6.3.

Predefined weight parameters for the Weighted-cost algorithm display similar

performance but the dynamic method of identifying weight parameters for the

Adaptive Weighted-cost algorithm shows better results. The Joint Twin-cost

algorithm performed the worst, but the Joint Weighted-cost algorithm performed

better and in some individual cases displayed the best results. It is seen in

Table 6.3 that the Adaptive Weighted-cost with the adjusted approach resulted

in having the lowest cost for each map group with two exceptions, where Adaptive

Weighted-cost with the standard on circle group maps for 4 vs 2 and Weighted-

cost (50/50) on corridor group maps for 4 vs 2, but the overall result displays the

best performance for Adaptive Weighted-cost with the adjusted computation.

The results in Table 6.3 suggest that dynamically adapting the weight

parameter for the assignment strategy algorithm produces better results but to

identify its significance the statistical tests are used on the pathfinding costs.

The data obtained from the test runs are not normally distributed and because

there are many algorithms to compare the Friedman test is used for statistical

analysis. First, the ranking is used in the Friedman test where each data set is

118

6
.
A
d
a
p
tiv

e
W

e
ig
h
te
d
-C

o
st

A
ssig

n
m
e
n
t
S
tra

te
g
y
fo
r
E
ffi
cie

n
t

M
u
lti-A

g
e
n
t
P
a
th

P
la
n
n
in
g

Table 6.3: The comparison of assignment strategy algorithms includes the mean for pathfinding cost and minimum
cost.

Weighted-cost Joint Weighted-cost Joint Twin-cost Adaptive Weighted-cost

25/75 50/50 75/25 50/50 m × n Standard Adjusted

Static
Dynamic

Static
Dynamic

Static
Dynamic

Static
Dynamic

Static
Dynamic

Static
Dynamic

Static
Dynamic

10step 20step 10step 20step 10step 20step 10step 20step 10step 20step 10step 20step 10step 20step

Circle

Cost mean 80.0 77.4 82.7 79.5 77.6 78.2 78.4 78.8 78.9 81.7 76.5 78.6 95.8 158.2 130.5 76.9 77.3 78.7 75.1 77.2 79.8

min. cost 37.7 35.8 35.6 36.9 35.7 35.1 39.2 35.1 35.2 37.0 34.6 35.0 44.2 47.8 48.6 36.6 35.4 35.7 36.3 36.1 35.7

Corridors

Cost mean 76.9 77.0 77.3 77.0 77.7 77.0 75.8 76.7 77.5 77.2 78.4 77.5 80.2 104.0 92.6 75.5 76.7 77.8 75.49 78.0 76.9

min. cost 59.0 59.4 58.1 58.9 60.3 58.8 59.1 58.5 59.0 59.5 59.6 58.7 62.8 66.1 63.4 58.2 58.1 58.8 58.8 59.5 59.8

Large Open Space

Cost mean 64.7 66.2 64.6 64.12 66.5 64.9 64.9 65.4 64.9 65.5 66.8 64.9 65.8 79.5 71.4 65.0 66.2 64.7 64.16 65.2 64.5

min. cost 46.8 46.7 46.9 47.1 46.6 46.3 47.1 46.4 46.1 47.1 47.0 46.0 47.3 51.8 48.8 46.0 46.8 45.2 46.0 46.1 44.8

Average for all maps

Cost 73.9 73.6 74.9 73.6 73.9 73.3 73.0 73.7 73.8 74.8 73.9 73.7 80.6 113.9 98.2 72.5 73.4 73.7 71.6 73.5 73.8

min. costs 47.8 47.3 46.9 47.7 47.5 46.7 48.5 46.7 46.8 47.9 47.1 46.54 51.4 55.2 53.6 47.0 46.8 46.57 47.0 47.3 46.8

119

6. Adaptive Weighted-Cost Assignment Strategy for Efficient
Multi-Agent Path Planning

ranked separately for each algorithm and the algorithm with the best performance

is ranked 1, as shown in Table 6.4. The ranking is obtained for all algorithms per

map and added up according to their group category on each player combination.

To obtain the overall ranking results, all ranking values are added to get the total

sum and the final ranking as displayed at the bottom of Table 6.4. Second, the

Friedman test uses these ranking results to obtain p-values. The 0.05 is used for

the level of significance and the results are displayed in Table 6.5. The evidence

suggests that 4 vs 3 and 4 vs 4 player configuration results display statistically

significant differences and the results for the 4 vs 2 player combination show

significance only in most cases.

6.4.2.2 Minimum Cost

As for the minimum cost for the test runs on each state, both Weighted-cost

and Adaptive Weighted-cost algorithms with their variations displayed the best

results in some individual cases throughout the experiments. Table 6.3 shows

that every player combination has a different algorithm that performs the best.

The results highlight that the Joint Weighted-cost algorithm produces the best

outcome on 4 vs 2, the Adaptive Weighted-cost (standard) algorithm outperforms

on 4 vs 3, the Weighted-cost (50/50) algorithm on 4 vs 4 and the overall best

performance is displayed by the Joint Weighted-cost which outperforms Adaptive

Weighted-cost (standard) by a very small margin. The table suggests that joining

the distance and the covered area may find the lowest costs. Also, the evidence

indicates that the algorithms in the d-mode with re-assessment in every 20 steps

display the minimum cost in all player combinations and for the best-performing

algorithm. Comparing the results for different player combinations shows, as

is expected, that the pathfinding cost and the minimum cost increase with the

number of targets.

6.4.2.3 Success Rate

Success is measured when the targets’ positions are occupied by at least one

pursuing agent. Although in these experiments, in two out of three pursuer-to-

target combinations, the pursuing agents outnumber the targets, it is possible

120

6
.
A
d
a
p
tiv

e
W

e
ig
h
te
d
-C

o
st

A
ssig

n
m
e
n
t
S
tra

te
g
y
fo
r
E
ffi
cie

n
t

M
u
lti-A

g
e
n
t
P
a
th

P
la
n
n
in
g

Table 6.4: Ranking of 21 algorithms based on pathfinding costs with three player combinations, three map groups
and 300 problems each. The bottom of the table displays the overall ranking. The best performance is ranked no. 1.

10step 20step 10step 20step 10step 20step 10step 20step 10step 20step 10step 20step 10step 20step

Circle 3551 3012 2961 3305 3005 3223 3235 3098 3141 3408 3027 3116 3772 4185 4182 3090 2969 3335 3338 2985 3366

Corridors 3070 3436 3260 3114 3392 3285 2899 3142 3141 3436 3242 3237 3493 4095 3876 2905 3457 3331 2859 3325 3311

LargeOpenSpace 3306 3247 3385 3189 3303 3277 3298 3095 3064 3442 3370 3150 3144 3920 3545 3282 3369 3194 3304 3089 3334

Total Rank Values 9927 9694 9605 9607 9699 9784 9431 9334 9345 10285 9639 9502 10409 12199 11603 9277 9795 9859 9500 9398 10011
Rank 16 11 8 9 12 13 5 2 3 18 10 7 19 21 20 1 14 15 6 4 17

Circle 3249 3199 3366 3144 3075 3116 3079 2930 2999 3358 3202 3144 3917 4264 4261 3295 3309 3154 3042 3126 3076

Corridors 3089 3122 3269 2870 3159 3062 2932 3019 2902 3164 3645 3598 3974 4694 4480 2848 3131 3073 3043 3291 2940

LargeOpenSpace 3064 3321 3219 3058 3355 3069 3002 3305 3232 3138 3568 3125 3391 4633 3741 3031 3351 3329 3090 3281 3001

Total Rank Values 9401 9642 9853 9071 9589 9246 9013 9253 9132 9660 10414 9867 11282 13591 12482 9173 9790 9556 9175 9697 9017

Rank 9 12 16 3 11 7 1 8 4 13 18 17 19 21 20 5 15 10 6 14 2

Circle 3465 3008 2968 3163 3152 2986 3383 3073 2946 3146 2904 3071 4175 4831 4723 3297 3081 2850 3066 2907 3110

Corridors 3234 3280 3167 3164 3431 3214 3036 3221 3322 3015 3441 3158 3536 4239 3996 2889 3242 3188 2930 3333 3268

LargeOpenSpace 2955 3428 3321 2749 3497 3130 3016 3156 3148 3009 3558 3329 3222 4864 4148 3042 3523 2956 2788 3338 3130

Total Rank Values 9653 9716 9455 9075 10080 9329 9435 9450 9416 9169 9902 9557 10932 13934 12867 9227 9845 8994 8784 9577 9508

Rank 14 15 10 3 18 6 8 9 7 4 17 12 19 21 20 5 16 2 1 13 11

Total Sum 28981 29052 28913 27753 29367 28359 27879 28037 27893 29114 29954 28926 32622 39724 36951 27677 29429 28408 27459 28672 28535

Rank 13 14 11 3 16 7 4 6 5 15 18 12 19 21 20 2 17 8 1 10 9

4 vs 2

4 vs 3

4 vs 4

Standard Adjusted

Static Dynamic Static Dynamic Static Dynamic Static Dynamic Static Dynamic

Weighted-cost Joint Weighted-cost Joint Twin-cost Adaptive Weighted-cost

Static Dynamic Static Dynamic

25/75 50/50 75/25 50/50 m * n

The Sum of All Combinations & Ranking

121

6. Adaptive Weighted-Cost Assignment Strategy for Efficient
Multi-Agent Path Planning

for pursuers to fail and if at least one target manages to escape the capture before

the timeout this is recorded as an absence of success for all pursuers. Figure

6.1 displays the success rate for each player combination while the assignment

strategy is in s-mode or in d-mode. It is evident from the graph that the pursuers

who get assigned a target in the s-mode, do not change their target until it

is captured, and are 100% successful in all maps and all combinations. Large

open space maps are easier to navigate and have more options to approach the

targets, therefore, the same 100% success rate can be seen in these maps where

the pursuing agents catch the targets successfully in all tested situations. Similar

results are displayed for corridor type of maps that all algorithms achieve their

intended results by capturing all targets, apart from the AR0016SR map for the

Joint Twin-cost algorithm in the d-mode with re-assessment every 10 steps. This

only happened on the map with two different starting states for 4 vs 3 and 4 vs

4 player combinations, this slightly affected the performance. The circle-shaped

maps are the most difficult ones to navigate and if the speed of targets and

pursuers are the same, which is the case, then it makes it more challenging. The

Table 6.5: p-values display the significance of pathfinding costs on each map per
player combination.

Maps
Player combinations

4 vs 2 4 vs 3 4 vs 4

Circle

AR0401SR 1.2E-09 1.6E-04 8.2E-28

AR0402SR 2.4E-23 1.0E-28 3.8E-37

AR0526SR 1.8E-05 4.5E-08 1.7E-29

Corridors

AR0016SR 3.9E-22 5.5E-24 9.4E-19

AR0413SR 2.6E-05 2.0E-42 4.1E-03

AR0712SR 0.0868 5.8E-18 2.8E-34

Large Open Space

AR0332SR 0.0778 2.1E-21 7.0E-18

AR0509SR 0.0856 5.4E-05 2.9E-12

AR0607SR 4.1E-14 8.1E-14 1.2E-45

122

6. Adaptive Weighted-Cost Assignment Strategy for Efficient
Multi-Agent Path Planning

Figure 6.1: The success rate for pursuing agents using the s-mode, and d-mode
with change in 10 and 20 steps.

pursuing agents can only succeed with these types of maps only if they split and

surround the target otherwise the tests end with a continuous run until timeout.

The AR0402SR map in this group has been the most difficult to navigate and

succeed, and the lowest performance is displayed by the Joint Twin-cost algorithm

with 78% on 4 vs 3 and 4 vs 4 player combinations. All algorithms in the d-mode

with re-assessment of 10 steps or 20 steps with various combinations and settings

manage to achieve an overall result of over 99.5% and 99.8%, respectively, in the

circle-shaped maps. All algorithms achieve 100% of success when their navigation

is in s-mode, but when the s-mode and d-mode are averaged, the most successful

algorithm in capturing the targets is Adaptive Weighted-cost with the adjusted

method at 99.9%.

6.4.2.4 Assignment Runtime

The time spent for assignment strategy algorithms to identify and assign targets

to the pursuing agents is measured in seconds. Each algorithm recorded the

time from the start of the test run until all agents were provided with the most

123

6. Adaptive Weighted-Cost Assignment Strategy for Efficient
Multi-Agent Path Planning

Figure 6.2: Comparing the assignment runtime in seconds for assignment strategy
algorithms on three different map groups.

optimal combination set and assigned all available targets on the map. Figure

6.2 illustrates the results for all algorithms and their behaviour on map groups.

Because all five starting positions are fixed on every test run and the time to

assign targets is measured before the navigation starts, each algorithm’s s-mode

and d-mode with 10 steps and 20 steps of the assignment are averaged. The

graph depicted in Figure 6.2 presents the circle-shaped maps that are quicker to

assign targets with slightly over a second in all algorithms. Although

corridor-shaped maps are larger and have more empty cells to occupy in

comparison with large open-spaced maps, the algorithms are quicker to assign

targets. The Joint Weighted-cost and Joint Twin-cost algorithms use cells to

label covered for each pursuer and as expected, this reflects on the higher

computation cost for each assignment runtime. The number of pursuers is not

altered in player combinations, only the number of targets increases. Therefore,

the number of possible combinations remains the same for the pursuers and the

increase in the number of targets does not escalate the computation time in

assigning targets. Dynamically adapting the weight parameter on each test

124

6. Adaptive Weighted-Cost Assignment Strategy for Efficient
Multi-Agent Path Planning

outperforms the predefined weight parameters and the Adaptive Weighted-cost

algorithm with the adjusted approach displays the quickest assignment time.

6.5 Conclusion

In this study, novel approaches have been proposed for coupled planning in

developing assignment strategy algorithms for multiple pursuing agents in an

environment with multiple moving targets and static obstacles. The proposed

methods including Adaptive Weighted-cost, Joint Weighted-cost and Joint

Twin-cost algorithms provide combinations that help to increase the

performance by reaching the targets most cost-effectively. To find the optimal

combination, the Adaptive Weighted-cost algorithm is based on the sum of

costs, DistancesSum, and makespan, MaxDistance, whereas the Joint

Weighted-cost and Joint Twin-cost algorithms are based on the DistancesSum

and covered area, CombinationCoverage, of the pursuers. These newly

introduced algorithms were analysed and compared against the existing overall

best approach, the Weighted-cost algorithm.

The experiments were conducted on the benchmarked Baldur’s Gate gaming

maps and performance was evaluated for the pathfinding cost, that is the

number of steps travelled before reaching the targets, the minimum cost per test

set, and the success of the completed test runs and the computation time for

assigning targets. The findings from the empirical evaluations suggest that the

runtime was high for Joint Weighted-cost and Joint Twin-cost, this is due to

computing the covered area, CoveredArea, for each pursuer, and this is reflected

in the pathfinding costs, although Joint Weighted-cost occasionally displayed

the minimum cost per test run. The results highlight that using dynamic weight

parameters for the Adaptive Weighted-cost algorithm with the adjusted method

displayed the best overall performance. Furthermore, it succeeded with a rate of

99.9% and was proven to be statistically significant. To conclude, the new

proposed approach is more efficient and gives better performance over other

assignment strategy algorithms.

125

Chapter 7

Increasing Covered Area to

Capture Moving Targets in a

Dynamic Environment

7.1 Introduction

A heuristic function to compute the distance between an agent and a target

is used as the Manhattan distance (four-connected grids) or Euclidean distance

(eight-connected grids). The heuristics do not overestimate the solution cost;

however, the presence of obstacles may result in poor solution quality. A solution

to the problem aims to minimise the distance between the agent and the target

and eventually catch the target. This is the approach where the problem may not

be minimised if the target is moving and all players have the same speed, then

most likely, the chase can continue without capturing the target. Multiple agents

adopting the same strategy will follow the target as if they are grouped into one

instead of benefiting from surrounding and trapping the target. The objective

of the introduced solution is to outmanoeuvre the target [60]. First, the covered

area is computed for each player then the action of each agent is defined either to

increase the covered area or to attack the targets to reduce the distance. It is also

possible that the action that increases the covered area can reduce the distance.

This problem characterises the real-time algorithms that interleave planning and

126

7. Increasing Covered Area to Capture Moving Targets in a Dynamic
Environment

execution and it is prevalent in computer video game environments [34, 106].

In this chapter, the problem scenario is extended from single to multiple

targets and the original CRA algorithm [60] is enhanced to adapt to multiple

targets. The idea of the covered area approach, to trap and outmanoeuvre the

target, is used in the proposed new algorithm, Cover Dynamic Moving Target

A* (CDMTA*). The method of the new algorithm is developed such that each

pursuing agent is assigned a target using the assignment strategy algorithm in

the coupled stage, and it is enhanced to identify the attacking action based on

the distance to the target in the decoupled stage. Another improvement

includes position consideration of other agents and clearing any actions that

lead to an occupied state of other agents.

The layout of this chapter is organised as follows: the cover computation

and existing algorithm with its new enhanced approach is given in Section 7.2.

Experimental results and analysis are presented along with discussions described

in Section 7.3. Finally, relevant conclusions are drawn in Section 7.4.

7.2 Methods

This section first presents an existing method that allows multiple agents to

coordinate and surround a single target using a covered area approach, which is

the opposite of the “rush-in” method. Then, the section follows with a new

approach that improves and enhances the existing approach by presenting

multiple moving targets and having assignment strategies for the pursuers.

7.2.1 Existing Approches

In general, heuristics is the estimated distance between two points. The computed

distance gives an indication of which action to take in order to move straight

to the destinations. In an environment with multiple agents, the strategy can

change and instead of directly approaching the target, it is possible for agents to

disperse and subsequently trap the target. Thus, this method, the cover heuristic,

is discussed in the first part of this section and followed by an algorithm that

implements it.

127

7. Increasing Covered Area to Capture Moving Targets in a Dynamic
Environment

Figure 7.1: Agent A is positioned at the left bottom and moving target T is
positioned on the left top. T' is the goal position for T. The top three rows are
the cover set for T and the bottom three rows are the cover set for A. Assuming
no obstacles, A move to T is the distance heuristic (dashed arrow) and A move
to T' is the cover heuristic (straight arrow).

7.2.1.1 The Cover Heuristic

Imagine two players on the two-dimensional map with an agent A positioned on

the left bottom and a target T positioned on the left top as illustrated in Figure

7.1. T has the moving ability and can run away from the approaching agent

and the suggested target’s goal is T'. Manhattan distance is used and A at the

current node expands its nodes to the neighbouring nodes in a similar way to

the breadth-first search. By taking turns, T expands its nodes from its current

position. Each expanded node is the set of a cover set for A, and nodes expand

until they reach the target node expansion, that is the cover set for T [60]. The

expansion stops when both sets meet and there is no node to expand further. The

position of the agent and the target defines the size of the cover set. For example,

the cover set for the agent is larger if the target is cornered. The increase of the

agents and their different positions is the joint effort of all cover sets.

In Figure 7.1, both players have the same number of nodes expanded in their

cover sets. In a situation with no obstacles and the same speed for players, the

cover set expansion is the top three rows for the target and the bottom three

rows are for the agent. If the agent uses the distance heuristic, then the optimal

128

7. Increasing Covered Area to Capture Moving Targets in a Dynamic
Environment

move is to follow the dashed arrow. The cover set can suggest a different route

(straight arrow) and select an action that always gives a larger cover set. The

notion of a cover set can be referred to as a cover. The computation of the cover

is costly, grows exponentially with the number of the pursuers and has linear

time complexity. Besides that, the cover can benefit from two features that can

be effective. First, it lessens the mobility of the target by minimising the states

that the target can travel to. Second, it increases the cover set for pursuers by

spreading out and coordinating multiple pursuers, which leads to increasing cover

and trapping the target.

7.2.1.2 Cover with Risk and Abstraction and Multi-Target

Heuristic search algorithms use distance heuristics to estimate the distance

between an agent and the target. The goal of the search is to identify the

shortest path between the states of the agent and the destination. The Cover

with Risk and Abstraction (CRA) algorithm presented in this section

contradicts the shortest distance capture [60]. Instead of heading directly

towards the targets, the CRA algorithm surrounds and demobilises the target

before the capture. It is a decentralised approach, and CRA receives three

parameters (agent, risk, abstraction) for each pursuer and returns an action that

maximises the cover value. The risk parameter ρ ∈ [0, 1] identifies a choice

between states that increase the cover (risk = 0) or select an action that moves

straight towards the target to reduce the distance (risk = 1). The abstraction

takes a predefined level where the PRA* algorithm [34] is used to run the

heuristic search. An agent initially assesses all possible actions at the

neighbouring states on each move, and it then sequentially computes its cover

for each possible successor state. Then filters through and takes the action that

results in the state with the highest cover value. Next, compares the predefined

risk parameter and selects a move that results in either cover action or heuristic

distance action, which is the PRA* algorithm that uses abstraction. Notice that

the original CRA algorithm works only with one target, therefore, it has been

enhanced to perform with multiple targets.

Algorithm 10 outlines the pseudo-code of the CRA algorithm for the pursuing

129

7. Increasing Covered Area to Capture Moving Targets in a Dynamic
Environment

Algorithm 10 Cover with Risk and Abstraction and Multi-Target.
1: function CRA(a, ρ, ℓ)
2: initialise state for an agent a ▷ default 0 for risk ρ, level ℓ
3: initialise vectors allActions, maxActions, clearActions
4: append available actions for a onto allActions
5: for each allActions n do
6: v ← getCoverageV alue(n);
7: maxV alue← v ▷ the highest cover value
8: append max. or equal value actions onto maxActions
9: end for
10: for each maxActions m do
11: boolean include = true;
12: for each agents p do
13: if (wait action for p and p' at the same position) ∨ (p’s destination is the position of p') then
14: include = true;
15: append m onto clearActions
16: end if
17: end for
18: end for
19: while target not caught do
20: get the closest target t of all targets
21: end while
22: for each clearActions c do
23: compute distance da from the action c to the t
24: maxAction ← da; ▷ da is the minimum distance
25: end for
26: hAction← runHeuristicSearch; ▷ A* from a to t
27: cover ← getCoverageV alue(hAction);
28: ∆c = (maxV alue− cover)/(maxV alue+ 1)
29: if ∆c > ρ then
30: return maxAction;
31: else
32: return hAction;
33: end if
34: end function
35:
36: function getCoverageValue(coverValue)
37: calculateCover(state);
38: return 2 × (coveredCells / (coveredCells + uncoveredCells)) - 1;
39: end function

agent. Depending on the position of the target and the cover values, the CRA

algorithm aims to identify the action that maximises its cover which helps in

catching the target. Therefore, after initialising states for the agent in line 2,

three vectors are created in line 3. All available neighbouring actions are inserted

into the allActions vector in line 4 and with the aid of the eliminating procedures,

these vectors are functioning to lessen the set of succeeding states of optimal cover

in lines between 5 and 25. The allActions vector gets all actions including the

wait action, then only maximum value or equal to maximum value actions are left

in the maxActions vector. The final vector clearActions identifies the action with

the maximum cover value, the maxAction. Since the original algorithm is built to

130

7. Increasing Covered Area to Capture Moving Targets in a Dynamic
Environment

work only with one target, and rather than providing one target’s state, the lines

from 19 to 21 compute the distances to each available, uncaught target and pick

the one with the closest distance value. Line 26 gets a result for hValue using

heuristic distance from the agent’s position to the target. It is possible to use

any heuristic search algorithm, in this case, PRA* is used. The move, which has

an optimal heuristic action, computes a cover value in line 27. The cover value

computed in lines 6 and 27 is obtained through the function getCoverageValue()

where it returns the normalised value between 0 and 1. The delta-cost equation

is shown in line 28, and the outcome indicates which action should be taken. A

risk zero means that always cover action is taken that maximises the covered area

and the risk equal to one mean PRA* move that involves taking a risk, moving

forward, and attacking the target. The PRA* algorithm can be replaced by

any heuristic search algorithm; however, it needs to use abstractions otherwise

the computation is high. The equation in line 29 compares delta-cost to the

predefined risk parameter and the outcome returns the action.

Since the CRA algorithm is a decoupled approach, it runs independently on

each pursuer separately. The time complexity is linear in regard to the cover

heuristics. First, line 2 is an operation with one time that is needed for an

initialisation statement, next is the initialisation statements for three vectors

which require three times in line 3. All available actions of the pursuer to append

onto a vector generate operations up to five times. Then the iterative statements

follow. Line 5 requires k times. Line 6 calls a function that is included in lines

36-39. This function expands the states to compute the coverage in line 37 with

linear complexity requiring n times and line 38 needs one time. Consequently,

line 6 generates up to kn times. Line 7 is an assignment statement that needs

one time but line 8 has a complexity that is less than five times. Meanwhile, the

statements in lines 10 to 18 have nested loops. Line 10 requires k operations for

each maxActions and line 12 needs kn operations for the agents. Line 11 needs

k time as it is an assignment statement inside the outer loop, however, lines 13,

14 and 15 are the statements in the inner loop including the condition requiring

kn operations. The maxActions and agents generate k × n operations which is

a need of up to kn time. This follows with a while loop in line 19 that needs

k operations. Line 20 requires kn operations for targets. The total number of

131

7. Increasing Covered Area to Capture Moving Targets in a Dynamic
Environment

operations for lines 19-21 is kn. Next is the final loop between lines 22-25. Line

22 needs k operations for clearActions and line 23 generates kn operations to

compute the distance whereas line 24 is an assignment statement that requires

k operations. Therefore, this loop requires kn time. The heuristic search needs

k times in line 26. Line 27 calls this function a second time and requires up

to kn times. Line 28 needs one time operation. Lastly, lines 29 to 33 are the

conditional statements that require one time. Alongside the enhancement in

finding the nearest target in the target assignment, it does not increase the total

time in solving the problem. In addition, PRA* has O(n log n) complexity [173].

Hence, the worst-case complexity of the CRA algorithm is O(n log n+ kn).

7.2.2 Proposed Approach

This subsection introduces a novel algorithm called Cover Dynamic Moving

Target A* (CDMTA*), which involves multiple pursuing agents and multiple

targets and finds the path using the cover heuristic, a surrounding strategy that

outmanoeuvres the targets before being caught. The CDMTA* algorithm is the

enhancement of the CRA algorithm, which is a multi-agent algorithm, that only

engages one moving target in its actions. CRA has been modified to incorporate

multiple moving targets in this section as a new approach. Since this is the

instance of the PAMT problem, a strategy to assign targets is important.

Therefore, another new approach, the assignment strategy algorithm is applied

at the initial state and the number of pursuing agents p are assigned targets t if

p ⩾ t. Assignment strategy is a surjective function. The algorithm helps agents

to decide which targets to follow, one target assigned per pursuer and

significantly reduces the runtime as demonstrated during the experiments in

Section 2.5.1. It can be applied during the test runs where agents dynamically

assess the new positions of all targets, and if necessary, targets are re-assigned.

This method of navigation switches from static to dynamic mode and requires

the use of a predefined parameter, steps. During the test runs, this dynamic

mode halts and evaluates the position of all pursuers and targets. The use of

the assignment strategy is the coupled approach where all agents are counted as

one entity. After assigning the targets, each agent computes its path, a

132

7. Increasing Covered Area to Capture Moving Targets in a Dynamic
Environment

decoupled approach, and takes actions toward the target by assessing the risk

parameter that is mentioned in the previous section.

For search algorithms, chasing a single moving target is challenging, and it

becomes more challenging when multiple targets exist. Knowing which target

to pursue in order to quickly and efficiently catch all targets is another difficult

task. The methods taken to address such problems are detailed in the pseudo-

code of the proposed CDMTA* algorithm at Algorithm 11. Only the changes are

highlighted as this is the enhancement to the CRA algorithm.

Although the algorithm incorporates multiple targets, the assignment strategy

algorithm (coupled approach) assigns a target, assignedTarget, to increase its

performance, and it is a required component that is specified after line 1. The

clearActions vector uses assignedTarget to compute the distance in line 22 and

similarly, it is used in lines 25 and 28 to get a heuristic distance hAction and d.

The next important improvement is the conditional statement in lines 13-15.

The statement compares this pursuing agent’s action to all pursuers, and it

disregards if it is itself. According to the original CRA algorithm, the condition

is met when both this pursuer and the other pursuer have a wait action at the

same position OR this pursuer’s destination is the other pursuer’s position. The

purpose of the cover is to spread out and surround the target, therefore, the

statement should be opposite, and the conditional statement is corrected. Thus,

only the actions that move in different directions are now inserted into the

clearActions vector while looping through actions between lines 10 and 20.

The other enhancement is in line 27 where the delta-cost is normalised by

utilising both values. The variables cover and maxValue have corresponding

values of x and y. In the original formula of CRA, the difference (x − y) is

normalised using the (x−y)/(x+1), however, the denominator only includes the

contribution of x without y. In the revised formula, the contribution of both x

and y are considered, resulting in (x − y)/(x + y + 1). For instance, if x = 0,

the previous formula’s delta-cost would be equal to y, whereas the new formula’s

delta-cost would be equal to 1.

The final enhancement is the risk parameter that identifies the choice of

movement. The authors of the CRA algorithm indicate the drawback of holding

back and remaining still and possibly waiting for other pursuers to come where

133

7. Increasing Covered Area to Capture Moving Targets in a Dynamic
Environment

Algorithm 11 Cover Dynamic Multiple Target A*.
1: function CoverDynamic(a, ρ, ℓ, s)
Input: assignedTarget← assignTarget(target);
2: initialise state for agent a ▷ default 0 for risk ρ, level ℓ, steps s
3: initialise vectors allActions, maxActions, clearActions
4: append available actions for a onto allActions
5: for each allActions n do
6: v ← getCoverageV alue(n);
7: maxV alue← v ▷ the highest cover value
8: append max. or equal value actions onto maxActions
9: end for
10: for each maxActions m do
11: boolean include = true;
12: for each agents p do
13: a = wait action for p and p' at the same position
14: b = p’s destination is the position of p'
15: if ¬(a ∨ b) then
16: include = true;
17: append m onto clearActions
18: end if
19: end for
20: end for
21: for each clearActions c do
22: compute distance da from the action c to the assignedTarget
23: maxAction ← da; ▷ da is the minimum distance
24: end for
25: hAction← runHeuristicSearch; ▷ A* from a to assignedTarget
26: cover ← getCoverageV alue(hAction);
27: ∆c = (maxV alue− cover)/(maxV alue+ cover + 1)
28: compute distance d from a to assignedTarget
29: if d ≤ s then
30: ρ = 1;
31: end if
32: if ∆c > ρ then
33: return maxAction;
34: else
35: return hAction;
36: end if
37: end function
38:
39: function getCoverageValue(coverValue)
40: calculateCover(state);
41: return 2 × (coveredCells / (coveredCells + uncoveredCells)) - 1;
42: end function

the pursuer can quickly reach the target [60]. A new additional steps parameter

is included to prevent local minima. Based on this parameter, the pursuer

determines how close it is to the target and, if it is close, it can avoid assessing

the risk parameter and move directly to capture the target. The algorithm

takes steps parameter in line 1 and the initial value is set to zero unless defined

otherwise in line 2. The conditional statement in lines 29 to 31 checks whether

the distance d is less than or equal to the steps parameter and if it is, then the

risk parameter is set to one, and the pursuer rushes to capture.

134

7. Increasing Covered Area to Capture Moving Targets in a Dynamic
Environment

Similar to Algorithm 10, CDMTA* is a decoupled approach. It runs

independently on each pursuer separately and the time complexity is linear in

regard to the cover heuristics. First, the algorithm commences by assigning a

target that has been provided by Algorithm 1 which has the time complexity of

O(kln). Next, line 2 is an operation with one time that is needed for an

initialisation statement, next is the initialisation statements for three vectors

which require three times in line 3. All available actions of the pursuer to

append onto a vector generate operations up to five times. Then the iterative

statements follow. Line 5 requires k times. Line 6 calls a function that is

included in lines 36-39. This function expands the states to compute the

coverage in line 37 with linear complexity requiring n times and line 38 needs

one time. Consequently, line 6 generates up to kn times. Line 7 is an

assignment statement that needs one time but line 8 has a complexity that is

less than five times. Meanwhile, the statements in lines 10 to 20 have nested

loops. Line 10 requires k operations for each maxActions and line 12 needs kn

operations for the agents. Line 11 needs k time as it is an assignment statement

inside the outer loop, however, lines 13-17 are the statements in the inner loop

including the condition requiring kn operations. The maxActions and agents

generate k × n operations which is a need of up to kn time. This follows with

the final loop between lines 21-24. Line 21 needs k operations for clearActions

and line 22 generates kn operations to compute the distance whereas line 23 is

an assignment statement that requires k operations. Therefore, this loop

requires kn time. Next is the heuristic search that needs k times in line 25. Line

26 calls this function a second time and requires up to kn times. Line 27 needs

one time operation. Line 28 requires k time operation for computing the

distance. After that, the conditional statements in lines 29-31. The if statement

needs one time in line 29 and so does the assignment statement in line 30.

Finally, lines 32 to 37 are the conditional statements, too, that require one

time. Furthermore, the algorithm does not need to loop through the targets as

each target is assigned to the pursuer which reduces the number of time steps.

In this regard, the algorithm conserves the complexity of Algorithm 1 and

Algorithm 10 which is in overall the worst-case is O(kln).

135

7. Increasing Covered Area to Capture Moving Targets in a Dynamic
Environment

7.3 Experimentation and Discussion

This section presents the experimental evaluation of the existing and proposed

approaches in the PAMT environments. Performance is evaluated against an

algorithm that uses the assignment strategy algorithm, STMTA*, and an

algorithm that uses cover heuristics, CRA, and the different variations of the

new proposed CDMTA*. First, the experimental problem setting is described

and followed by a performance analysis of the pathfinding costs and conducts

statistical tests. Additionally, the minimum and the maximum cost, the success

of the results and the runtime measurements are also reported.

7.3.1 Experimental Problem Settings

Although there are several ways to solve the PAMT problems, this study evaluates

an approach that uses a cover heuristic, covered area, method that maximises

the area for pursuers to trap and outmanoeuvre the targets. Since there are

no previous attempts to solve the multi-agent and moving multi-target problem

using the covered area, the proposed method is compared to the CRA algorithm,

which is enhanced to incorporate multiple targets. Additionally, the performance

is also compared to the STMTA* algorithm that employs the assignment strategy

algorithm. The assignment strategy can be optimised using a variety of methods

and the Adaptive Weighted-cost criterion is used as overall it has been optimal

as described in Chapter 6.

Two types of targets were tested against the pursuing agents. The first one

is the SF algorithm [60] which is based on the A* algorithm and attempts to

escape from the approaching pursuers by moving to one of several pre-computed

randomly generated locations on the map. The algorithm moves away from the

pursuers to one of these locations and evaluates its move using the parameters

provided, if the selected location is safe to proceed then it continues to that

location otherwise evaluates the situation and moves to another furthest away

location. The second target algorithm is the MPTM algorithm (Chapter 5) which

is built on a state-of-the-art TrailMax algorithm [78]. With the location of the

pursuers available, MPTM can assess each pursuer’s location and make smart

moves to avoid them all and keep running away until it gets trapped and captured.

136

7. Increasing Covered Area to Capture Moving Targets in a Dynamic
Environment

The experimental results have shown that MPTM is difficult to capture since it

continuously evades pursuers, in comparison to SF with random moves, which

most likely gets caught relatively quickly.

The CDMTA* algorithm is tested with three different modifications. The

delta-cost equation is tested first with the previous formula and the new formula,

line 27 in Algorithm 11. The second is the different steps parameter for dynamic

risk analysis, lines between 28 and 31. The CRA algorithm performs better when

the risk parameter is set to 0.1 and has the highest success rate. Therefore, the

final variation of CDMTA* is tested with the same risk setting. The performance

of CDMTA* and its variations are compared against enhanced CRA. Since the

assignment strategy is used, it is also compared against the STMTA* algorithm.

Altogether, including the variations, 14 algorithms are to be tested.

The general setup of experiments such as the map environment, player

combinations, the movement direction of players, the cost of moves, the number

of test runs for each configuration and the total number of individual tests as

well as the computer settings are detailed in Section 2.5.3.

Numerous testbeds and different sets of scenarios are implemented to better

understand and analyse the behaviour of the algorithms. There are five different

pursuer-to-target combinations for the given environment, pursuers p and targets

t. In the first set, there are three pursuers versus two targets (3 vs 2), then the

pursuers increased to four (4 vs 2), and then the number of targets increased

until p = t , (3 vs 3, 4 vs 3 and 4 vs 4). The pursuers and targets are positioned

on preselected random locations on each map. Four alternative sets of starting

states are provided. There are three starting states that position pursuers first in

the same location on the corner of a map, second in the centre of a map closeby

to each other and third to spread out by the walls of a map. The targets are

always positioned as far away on the opposite side of the map.

7.3.2 Experimental Results and Performance Analysis

The evaluation of presented algorithms and their performance analysis is

conducted with respect to the following key indicators: (i) the pathfinding cost,

(ii) minimum and maximum costs, (iii) success rate and (iv) runtime. The

137

7. Increasing Covered Area to Capture Moving Targets in a Dynamic
Environment

pathfinding cost is the total distance travelled by all pursuers from their

starting location and capturing all targets for successful runs, or if unsuccessful

in capturing then it is the maximum number of permitted steps (timeout). The

results are statistically tested for significance. Similarly, the minimum cost and

maximum costs are the number of steps within one set, corresponding to the

lower and upper bounds. The timeout is excluded from the maximum cost and

is substituted with the second maximum cost. The success rate is measured

when every target is captured and the pursuer is placed in the same state, and

one pursuer is sufficient to claim the occupancy. The runtime is measured in

seconds.

7.3.2.1 Pathfinding Cost

To evaluate previously discussed algorithms, the pathfinding cost is measured

in terms of the number of steps travelled from the initial position to the target

capture. The CDMTA* algorithm takes different parameters for example risk

or steps. Additionally, CDMTA* is tested with different formulas to normalise

the delta-cost and with improved action clearance. Table 7.1 lists all of these

Table 7.1: Code names for the pursuing algorithms.

Code-
names

risk
parameter

delta-cost
formula

action
clear

steps
parameter

Pursuing
Algorithms

Enhanced
CRA

CRA 0 - - -
CRA1 0.1 - - -

CDMTA*

CD1 0.1 old no 0-step
CD2 0.1 old yes 0-step
CD3 0.1 old yes 2-step
CD4 0 old yes 0-step
CD5 0 old yes 2-step
CD6 0 old yes 3-step
CD7 0 old yes 5-step
CD8 0 new yes 0-step
CD9 0 new yes 2-step
CD10 0 new yes 3-step
CD11 0 new yes 5-step

STMTA* STMTA* - - - -

138

7. Increasing Covered Area to Capture Moving Targets in a Dynamic
Environment

Figure 7.2: Comparing the pathfinding costs for pursuing algorithms per target
algorithm. The data table at the bottom is the mean for all configurations and
settings.

algorithm modifications, and each CDMTA* algorithm is given a code name for

simpler representation in the tables and graphs that follow. Risk has values

between 0 and 1, where 0 is conservative in its forward attacking moves and

chooses to take the surrounding approach, while 1 is the opposite and attempts

to reach the goal as rapidly as possible without using any strategy. According to

earlier research, the CRA algorithm performs better than others when the risk

parameter is set to 0.1 [60]. Therefore, in this study, the enhanced CRA is tested

with 0 and 0.1 risk settings. The steps parameter is the distance that is left to

catch the target. In the absence of this parameter, the algorithms move to the

last step to determine the kind of actions to execute. The steps parameter can

avoid getting to the deadlock and instead attack the target without considering

the cover action.

Figure 7.2 illustrates a bar chart of all pursuing algorithms and their

139

7. Increasing Covered Area to Capture Moving Targets in a Dynamic
Environment

performance against SF and MPTM target algorithms. In all five sets of maps

and five player combinations, CDMTA* with its variations is compared against

CRA and STMTA*. In the first setting, CRA and CRA1 with risk parameters

set to 0 and 0.1, respectively, are compared and unfortunately, CRA1 did not

perform as expected in benchmarked maps and with moving multi-target

scenarios. Second, CD1, CD2 and CD3 are compared. They use the existing

formula for delta-cost, and their risk parameter is set to 0.1. CD2 and CD3 use

improved action clearance and CD3 sets a 2-step for steps parameter. Among

these three algorithms, CD2 outperforms the other two. Next is the comparison

of CD4, CD5, CD6 and CD7. These methods differ in that they use the existing

formula for delta-cost but with improved action clearance and the steps

parameter is set to 0, 2, 3 and 5, respectively. The results display that CD4 has

a better outcome. The final setting is between CD8, CD9, CD10 and CD11. It

is similar to the previous setting and the only difference is that these algorithms

apply the new revised formula for the delta-cost and CD8 achieves the best

results in this setting.

The findings suggest that neither CRA nor CDMTA* showed outperforming

outcomes when the risk parameter was set at 0.1. Despite using the assignment

strategy, the STMTA* algorithm did not perform as well as CRA or CDMTA*.

The results are not vastly different when STMTA* chases SF targets in contrast

to MPTM, where STMTA* has the worst results with a significant difference.

This might indicate that the optimal approach is not always to attack directly,

instead, and as expected, the cover heuristics are promising with their results.

The steps parameter displays some good performance in some individual player

combinations on maps with narrow corridors when it is set to 2-step. It appears

to perform better against the SF target algorithm. Similar behaviour is also

observed occasionally in the CRA algorithm. Figure 7.2 shows that changing the

delta-cost formula from the old to the new one did not show much effect on these

experiments and the results demonstrate that CD4 and CD8 perform the best in

all of these tests. There is a slight difference between these two, and overall, CD8

exhibits the lowest pathfinding cost.

Statistical tests are conducted to determine whether the pathfinding cost

results are significantly different. The data obtained from the experiments are

140

7. Increasing Covered Area to Capture Moving Targets in a Dynamic
Environment

not normally distributed, and the Friedman test [211, 212] is used for the

analysis of all pursuing algorithms together but separately per target

algorithms. Initially, Friedman uses ranking on the data set for each player

combination setting on each map and ranks number 1 as the best-performing

algorithm. All algorithms’ ranks are obtained per map, and then the overall

ranking value is summed for the final result as shown in Table 7.2.

In addition to rank values, the Friedman test obtains p-values by using these

ranks and 0.5 is used as the level of significance. Table 7.3 presents the results

for p-values. Although the overall pathfinding costs have small differences, there

is very strong evidence suggesting that the results display statistically significant

differences.

7.3.2.2 Minimum and Maximum Cost

Each test set is run 20 times and values for minimum cost and maximum cost

are measured for the performance. The outcomes for the minimum and the

maximum per target algorithm are shown in Table 7.4. Within the test sets,

more occurrences of minimum outcomes and lower values for maximum reduce

the pathfinding cost mean.

SF is a naive algorithm and due to its random movements, it is quicker to

catch it when compared to smart MPTM. The results for SF demonstrate that the

CDMTA* algorithms with 0 risk behave better than CRA or STMTA*, although

the results are not inconsistent. Similar behaviour can be seen for MPTM, but

the minimum cost for catching MPTM is harder by 45%. SF has been caught in

all scenarios, thus there are no timeouts. However, on a few occasions, MPTM

was able to avoid being captured by STMTA* and the CDMTA* algorithms when

the risk parameter was set to 0.1 and the steps parameter was set to 3-step and

5-step. These are the situations where timeout exists, and it has been removed for

the maximum results and indicated with an asterisk. Even with timeout results

removed, the MPTM algorithm manages to escape the pursuers longer than SF

by 90%.

In general, CRA1 has the worst performance in all maps. STMTA* does not

have good performance either but it managed without using cover to display the

141

7
.
In

cre
a
sin

g
C
o
v
e
re
d

A
re
a
to

C
a
p
tu

re
M

o
v
in
g
T
a
rg

e
ts

in
a
D
y
n
a
m
ic

E
n
v
iro

n
m
e
n
t

Table 7.2: Ranking of 14 algorithms based on pathfinding costs for two target algorithms. The bottom of the table
displays the overall ranking. The best performance is ranked no. 1.

CRA CRA1 CD1 CD2 CD3 CD4 CD5 CD6 CD7 CD8 CD9 CD10 CD11 STMTA*

SF algorithm

Sum of

Ranking:
12785.5 21690 18777.5 18727 19089.5 11342.5 11509.5 12513.5 13858 11413 11981.5 12629 13857 19826.5

Rank 7 14 11 10 12 1 3 5 9 2 4 6 8 13

MPTM algorithm

Sum of

Ranking:
10744 21441.5 20301 19945 20810.5 10620 11852.5 12332 13887.5 10549 11723 12338.5 13509.5 19946

Rank 3 14 12 10 13 2 5 6 9 1 4 7 8 11

Average

of Sums:
11764.8 21565.8 19539.3 19336.0 19950.0 10981.3 11681.0 12422.8 13872.8 10981.0 11852.3 12483.8 13683.3 19886.3

Rank 4 14 11 10 13 2 3 6 9 1 5 7 8 12

142

7. Increasing Covered Area to Capture Moving Targets in a Dynamic
Environment

shortest routes on two occasions. In the first case, pursuers are grouped in one

position while targets are dispersed on the AR0503SR map (Figure 7.4), while

in the second case, pursuers and targets are aggregated in the same position but

separated by a distance on the AR0512SR map. CD4 has the lowest result for the

minimum but CD8 has the lowest result for the maximum, although there is a

minor difference. There is a different graphical representation of the findings for

minimum and maximum as illustrated in Figure 7.3. The details of minimum and

maximum for SF from Table 7.4 are depicted in Figure 7.3(a) and similarly, the

details of minimum and maximum for MTPM are from the same table in Figure

7.3(b). The bottom line represents the minimum, and the top line represents

the maximum. The numbers between the lines inside the coloured area show

the difference between the two. The mean for pathfinding cost may result in

a smaller outcome when the top line is closer to the bottom line. Although

Table 7.3: The significance of pathfinding costs displays the p-values for SF (top)
and MPTM (bottom) for each player combination per experimented map.

SF

Maps
Player combinations

3 vs 2 3 vs 3 4 vs 2 4 vs 3 4 vs 4

AR0332SR 2.3E-62 3.2E-45 2.1E-62 3.7E-37 2.8E-44

AR0417SR 2.5E-51 4.8E-34 3.7E-33 1.5E-27 2.5E-19

AR0503SR 4.4E-26 6.8E-08 4.1E-36 4.5E-14 3.8E-14

AR0512SR 4.8E-60 6.5E-50 3.4E-118 4.3E-83 2.7E-77

AR0527SR 2.1E-31 1.5E-42 2.4E-78 1.7E-91 7.1E-103

MPTM

Maps
Player combinations

3 vs 2 3 vs 3 4 vs 2 4 vs 3 4 vs 4

AR0332SR 1.7E-68 4.7E-64 6.0E-62 7.4E-54 7.0E-38

AR0417SR 2.8E-96 6.2E-63 2.7E-129 1.8E-102 1.3E-104

AR0503SR 1.1E-06 1.5E-14 3.0E-23 2.0E-21 1.1E-55

AR0512SR 1.0E-27 5.6E-43 1.2E-24 7.3E-54 4.4E-77

AR0527SR 1.5E-88 8.0E-95 4.4E-89 4.6E-72 3.7E-77

143

7. Increasing Covered Area to Capture Moving Targets in a Dynamic
Environment

the results differ for SF and MTPM, the shape of the coloured representation is

similar. For instance, the graphs clearly display that algorithms with the risk

parameters set to 0.1 do not perform as expected. Also, when the setting for the

steps parameter has a larger number, it shows a decrease in performance.

The results in Table 7.4 and Figure 7.3 suggest that the old formula for delta-

cost works better for SF, whereas the new formula works better for a difficult

target algorithm such as MPTM. CD8 has shown the best outcome when the

average is taken between minimum and maximum. In the previous section, the

pathfinding cost displayed overall the optimal result for CD8 and in this section

the minimum and the maximum support the findings.

Table 7.4: Each algorithm’s minimum cost and the maximum cost mean for all
configurations. The asterisk indicates the removal of timeouts and substituted
with the second maximum cost.

SF MPTM

Minimum Maximum Minimum Maximum

CRA 36.07 41.60 53.09 59.17

CRA1 41.28 54.56 61.37 93.56*

CD1 37.37 50.94 55.86 96.64*

CD2 37.41 50.86 55.38 93.43*

CD3 37.73 54.79 56.02 125.1*

CD4 35.42 40.91 50.58 58.88

CD5 35.45 41.99 50.80 68.25

CD6 35.58 43.77 50.58 74.86*

CD7 35.62 47.74 51.07 92.82*

CD8 35.45 40.78 50.83 58.54

CD9 35.47 42.68 50.81 67.21

CD10 35.57 43.64 50.79 69.69*

CD11 35.65 47.44 50.59 75.48*

STMTA* 37.95 74.50 56.48 250.50*

144

7. Increasing Covered Area to Capture Moving Targets in a Dynamic
Environment

Figure 7.3: The difference between minimum (bottom line) and maximum (top
line) for each pursuing algorithm that is illustrated for (a) SF and (b) MPTM
target algorithms.

145

7. Increasing Covered Area to Capture Moving Targets in a Dynamic
Environment

Figure 7.4: A sample AR0503SR map from Baldur’s Gate video game.

7.3.2.3 Success Rate

The success rate is another performance indicator for multiple pursuers to capture

all moving targets before reaching the maximum number of permitted steps. In

the experiments, at least one pursuer is sufficient to occupy the target’s position

and claim success. Although the number of pursuers outnumbers or is equal to

the targets, it is still possible for the targets to flee and avoid capture. In the

previous Subsection 7.3.2.2, it was mentioned that there was not any timeout

for the SF algorithm and the maximum was displayed without alteration. This

indicates that in every scenario and in every test the SF algorithm was caught,

and this has given a 100% success rate to all pursuers. On the other hand, the

MPTM algorithm with its ability to avoid pursuers managed to escape in some

experiments. The average success rate for each pursuing algorithm across all

maps and player combinations on MPTM is illustrated in Figure 7.5.

Although this study is evaluating the performance of pursuing agents, it is

worth mentioning that MPTM is a successful algorithm among the target

algorithms as the previous studies in Chapter 2 suggested. CRA displayed 100%

success in all experiments, but CRA1 has been successful only on maps with

large open spaces and failed in some situations on maps with narrow corridors

or island-style obstacles. Usually, CRA1 failed in situations where the number

of pursuers and targets are equal and mostly happened once in the same

146

7. Increasing Covered Area to Capture Moving Targets in a Dynamic
Environment

Figure 7.5: The success of the pursuing algorithm is only for MPTM.

starting state. The CDMTA* algorithm variations with the risk parameter set

to 0.1 failed to achieve the 100% success rate. The CDMTA* algorithm

variations with the risk parameter set to 0 perform better. When the steps

parameter is set to 0-step or 2-step, it always catches the target and displays

100% success, but not when it is set to 3-step or 5-step. The failure to catch the

target only happened a few times, most of the time once per player combination

on two maps with narrow passages and island-style obstacles (AR0503SR and

AR0527SR).

Each algorithm is tested 2,000 times on all maps and Figure 7.5 displays

the mean for all 5 maps. The variations of CDMTA* sometimes failed to catch

the targets mostly under 10 occasions and only once on 20 occasions for CD3.

Unfortunately, the STMTA* algorithm demonstrated the worst performance. It

failed on 281 occasions, and it makes an 85.95% success rate, which is the lowest

performance among all. The behaviour of all algorithms per map produced results

that were consistent, which means that the dimensions of the map, the forms

of the static obstacles, the number of empty states and player combinations all

provided similar outcomes. The cover heuristic algorithms such as enhanced CRA

147

7. Increasing Covered Area to Capture Moving Targets in a Dynamic
Environment

Figure 7.6: Runtime differences in seconds are displayed for all pursuing
algorithms per target.

and CDMTA* with 0 or 2 steps parameter setting displayed excellent results, all

100% successful.

7.3.2.4 Runtime

Runtime is the measurement to evaluate the time for each algorithm during the

same experiments that measured the pathfinding cost, minimum, maximum and

success rate. Similar to the previous sections, the time is recorded for all

pursuers per target algorithms and the mean is illustrated in Figure 7.6. The

bar chart provides each algorithm’s results, which are displayed in seconds.

Table 2.3 contains information about the maps. Larger-sized maps and maps

with more empty states increase the runtime, for instance, on average the

AR0332SR map has the highest runtime and the AR0527SR has the lowest.

The graph in Figure 7.6 presents the mean of runtime for all player

combinations and maps. When each pursuing algorithm is considered

separately, it becomes clear that CRA, CRA1 or STMTA* have consistently

148

7. Increasing Covered Area to Capture Moving Targets in a Dynamic
Environment

been slow on both target algorithms, unlike the CDMTA* algorithm and its

variations. The results also show that the algorithms displayed poor-performing

outcomes when the risk parameter was set to 0.1. The graph clearly shows that

catching the MPTM algorithm requires more time than the SF algorithm, and

of course, the timeouts also have an impact on the outcomes. When algorithms

were evaluated on SF, CD9 performed well, and when comparable experiments

were conducted on MPTM, CD8 displayed better results. Overall, CD8

produces the best performance.

7.4 Conclusion

Recently, there has been an increase in attempts to find solutions for PAMT

problems. In this study, this problem is addressed not only to static multiple

targets but to moving targets by using cover heuristics. The existing CRA

algorithm has been enhanced to adapt to multiple targets and based on this

algorithm, a modified, improved, and new CDMTA* algorithm is introduced.

CDMTA* uses the assignment strategy algorithm to identify which targets to

follow and if applicable re-assign as well as using the cover heuristics. It is

enhanced with its dynamic risk parameter to address the problem with

deadlocks, and two additional improvements one for action clearance and the

second for the delta-cost formula for normalisation. The empirical analysis is

conducted using CRA, STMTA* and CDMTA* with its variations.

Whilst the enhanced CRA algorithm has satisfactory outcomes, it is preferred

that the new CDMTA* algorithm performs better. It was indicated that CRA

behaves better when the risk parameter was set to 0.1, unfortunately in these

benchmarked environments, the results were the opposite. For this reason, CRA

is the benchmark for the new algorithms. In terms of pathfinding cost, the

empirical evaluation displays that both algorithms are fast and have close results

with a cost mean of 47.2 for CRA and 46.0 for CD8. Similar outcomes are seen

for minimum and maximum mean, CRA with 47.5 and CD8 with 46.4, the lower

the result, the better it is. The success rate is certainly 100% for both. These are

promising results, but the CDMTA* algorithm and its variations are quicker than

the CRA algorithm. The runtime is 3.4596 seconds for CRA and 2.6641 seconds

149

7. Increasing Covered Area to Capture Moving Targets in a Dynamic
Environment

for CD8. Hence, it can be concluded that CRA and CD8, both are successful

algorithms in catching targets and they always deliver 100% results. They have

similar outputs but CD8 is slightly faster in terms of costs, as results displayed

for the pathfinding cost, minimum, and maximum. However, in terms of runtime,

CD8 is much quicker than CRA by 30%. Thus, CD8 is the CDMTA* algorithm

with improved action clearance, the new formula for delta-cost and the assignment

strategy algorithm (Adaptive Weighted-cost) can display a similar cost to CRA

but it catches the moving targets quicker. It is possible to conclude that an

algorithm can perform faster and produce optimal results when the assignment

strategy is used with a combination of cover heuristics, that is the surrounding

or outmanoeuvring strategy.

There are limitations in the number of pursuing agents used in the

experiments. The PAMT problem is NP-hard and with more pursuers, it grows

exponentially. As a future study, one way to solve the problem could be to

subdivide the number of agents and then consider this subdivision as one team

with assigning strategy per team. Another solution to the problem is to reduce

the search space which also improves the computation costs. It can be solved by

partitioning a map into four search spaces and pursuers within each portioned

space are computed.

150

Chapter 8

Conclusion and Future Work

8.1 Thesis Summary

The work undertaken in this thesis has presented a range of novel contributions

to search algorithms that are applicable in many real-world applications of

multi-agent systems. The pursuing agents coordinate their efforts and employ

assignment strategies to assign targets, which can improve performance and find

a path for their actions that leads to the target with an optimal solution. The

proposed approach enables two stages, coupled and decoupled, where pursuing

agents were able to identify and assign targets in the first stage, and once the

targets were assigned to each pursuer then they independently chased the

moving targets in the second stage.

The thesis specifically focused on multi-agent pathfinding algorithms that

chase multiple moving targets in a dynamic environment. The research

presented in this thesis achieved that by investigating and implementing

multi-agent algorithms in scenarios with moving targets, where the information

about the position of the targets changes when they move to another state on

the map. Thus, the change of positions requires computing a new path for both

pursuing agents and targets at each time step. The approach for the new path

used two different distance metrics: distance heuristics (the shortest path to

rush-in) and cover heuristics (maximised covered area to surround). Although

this research was conducted to provide an optimal solution for pursuing agents,

151

8. Conclusion and Future Work

an additional new method was developed for a target that intelligently evades

the pursuing agents.

In summary, throughout this research, this thesis contributes:

- An enhanced framework for MAS where multiple pursuers and multiple

targets can be evaluated.

- A development of two novel pursuing agent algorithms that are capable of

chasing moving targets.

- An investigation of assignment strategy algorithms to find an optimal

criterion and implement six new assignment strategy algorithms.

- Extending the state-of-the-art target algorithm with proposes with the

smart escaping method.

- A comprehensive experimental evaluation with various pursuer-to-target

ratios on benchmarked gaming maps to measure the pathfinding cost,

success rate and runtime.

The remaining sections in this chapter summarise the concluding remarks

drawn from the thesis and outline a possible direction of some future research.

8.2 Concluding Remarks

The research presented in this thesis has demonstrated the plausibility of

developing an enhanced framework for multi-agent systems that enables

multiple agents and multiple targets in the same scenario. The thesis initially

provided a simple solution to multi-agent pathfinding problems using an

assignment strategy to assign targets and find a path to the moving targets by

using repetitive A* searches. Then, efforts were made to explore novel ways of

assigning targets and introduced six new assignment strategy algorithms that

compute an optimal combination. Alongside, the thesis developed a novel

algorithm for pursuing agents that can surround and outmanoeuvre multiple

moving targets. Moreover, the contribution comprises one novel target

152

8. Conclusion and Future Work

algorithm that can make smart moves to avoid capture. Besides all these

algorithms, comprehensive experimental evaluations with various

pursuer-to-target ratios on benchmarked gaming maps measured the

pathfinding cost, success rate and runtime. The concluding remarks regarding

the various aspects of the work in this thesis are presented in the remaining

section.

8.2.1 Coordinating Multiple Agents with Assignment

Strategy to Pursue Multiple Moving Targets

In Chapter 3, the new STMTA* algorithm was proposed to find the solution for

multiple pursuers in a dynamic environment while chasing multiple moving

targets. The presented algorithm is divided into two approaches, coupled and

decoupled. The coupled approach coordinates all pursuers to find the

combination using the assignment strategy algorithm which runs all possible

pursuer-to-target combinations at the initial position using the given criteria

and the optimal combination was selected that assigned one target to each

pursuer. In the decoupled approach the pursuers independently computed their

path towards the moving target at each time step.

The proposed approach in this thesis was investigated more thoroughly in

this chapter on multi-agent and multi-target scenarios using benchmark

environments. Detailed experiments were carried out using ten purposely made

and commercial gaming benchmark testbeds with six different player

combinations. During these experiments, the number of steps and success rate

were measured, and for statistical analysis, the Wilcoxon rank-sum test was

applied. The study in this chapter established that the proposed algorithm

captured targets quicker and produced a higher rate of success, approximately

by 16%, in scenarios with multiple moving targets. This algorithm, therefore,

provided a useful approach in dealing with scenarios where multiple moving

targets were present

153

8. Conclusion and Future Work

8.2.2 Multi-agent Path Planning Approach Using

Assignment Strategy Variations in Pursuit of

Moving Targets

The research presented in Chapter 4 investigated and identified more new

alternative methods for assignment strategies in multi-agent scenarios in order

to increase efficiency. The proposed methods such as Twin-cost, Cover-cost and

Weighted-cost criteria have been experimented with, and performance analysis

measured the number of steps travelled and the success of completed test runs

on grid-based gaming maps. These findings highlighted the potential usefulness

of these methods and evaluated the strengths and weaknesses during the

experiments. It was suggested that the use of the proposed criteria made the

algorithms more efficient than those currently used including the Mixed-cost

criterion. The results obtained from experiments suggested that the

Weighted-cost criteria depending on parameters have performed the best.

8.2.3 A Strategy-based Algorithm for Moving Targets in

an Environment with Multiple Agents

The work presented in Chapter 5 of this thesis was to provide a solution for

multi-agent multi-target pathfinding problems and develop a target algorithm

that would consider multiple pursuers and make a smart escape. Numerous

interesting studies have been conducted on search algorithms, and among them

were solutions to the frameworks with multiple pursuing agents. However, only

a few studies have been carried out on target algorithms, especially in

multi-target environments.

This research in this chapter showed that TrailMax is a successful algorithm

for control of targets if developed further for dealing with multiple pursuers.

The amendments were proposed to the TrailMax algorithm to make it work as a

strategy for multi-agent multi-target search problems in dynamic environments.

The resulting MPTM algorithm has been shown to outperform other target

algorithms for the same scenario, and that could make pursuit and evasion

scenarios in computer games more challenging, meaningful, and interesting. The

154

8. Conclusion and Future Work

results clearly showed that the MPTM algorithm performed far better, with at

least doubling capture cost and escaping success by 13% on the gaming maps

used for benchmarking.

8.2.4 Adaptive Weighted-Cost Assignment Strategy for

Efficient Multi-Agent Path Planning

The study presented in Chapter 6 proposed new approaches for coupled

planning in developing assignment strategy algorithms for multiple pursuing

agents in the dynamic environment. The proposed methods such as Adaptive

Weighted-cost, Joint Weighted-cost and Joint Twin-cost algorithms provided

combinations that help to increase the performance by reaching the targets

most cost-effectively. These newly introduced algorithms were analysed and

compared against the existing overall best approach, the Weighted-cost

algorithm which was introduced in Chapter 4.

The proposed approaches in this thesis were experimentally evaluated in

terms of the pathfinding cost, the minimum cost per test set, the success of the

completed test runs and the computation time for assigning targets. The results

highlighted that using dynamic weight parameters for the Adaptive

Weighed-cost algorithm with the adjusted method displayed the best overall

performance. Furthermore, it succeeded with a rate of 99.9% and was proven to

be statistically significant. To conclude, the new proposed approach was more

efficient and gave better performance over other assignment strategy algorithms.

8.2.5 Increasing Covered Area to Capture Moving

Targets in a Dynamic Environment

The study in Chapter 7 of this thesis employed cover heuristics to address the

problem of moving targets in addition to static multiple targets. The existing

CRA algorithm was modelled only to one target, and it was enhanced to adapt

to multiple targets. Hence, a modified, improved, and new CDMTA* algorithm

was introduced. CDMTA* used the assignment strategy algorithm, which was

introduced in Chapter 6, to identify which targets to follow and if applicable

155

8. Conclusion and Future Work

re-assign as well as using the cover heuristics. It was enhanced with its dynamic

risk parameter to address the problem with deadlocks, and two additional

improvements one for action clearance and the second for the delta-cost formula

for normalisation. The empirical experiments were conducted using CRA,

STMTA* and CDMTA* with its variations. CRA with default parameter

settings was the benchmark for the new algorithms. In terms of pathfinding

cost, the empirical evaluation displayed that both algorithms were fast and had

close results with a cost mean. Similar outcomes were seen for minimum and

maximum mean values. The success rate was certainly 100% for both. Besides,

these results were promising, the CDMTA* algorithm and its variations were

quicker than the CRA algorithm. It was possible to conclude that an algorithm

could perform faster and produce optimal results when the assignment strategy

was used with a combination of cover heuristics, that was the surrounding or

outmanoeuvring strategy.

8.3 Limitations

This section states some of the current limitations of the presented algorithms

for pursuing agents, assignment strategies and the target algorithm. Current

pathfinding solutions in this thesis solve the problem while searching the whole

Table 8.1: The total number of combinations is required for the assignment
strategy algorithm per agent count.

Number of Pursuers Total Combinations

2 2

3 6

4 24

5 120

6 720

7 5,040

8 40,320

9 362,880

10 3,628,800

156

8. Conclusion and Future Work

path before even making any move. The reason for this is that, if the path from

the starting position to the goal position is not found, the optimal first step cannot

be guaranteed. For a better optimal solution, the assignment strategy algorithms

improve the performance, however, with multiple pursuers, it is an exhaustive

computation process. Table 8.1 displays the number of pursuers and the total

number of combinations to assign targets to the pursuers. It can be seen that

the growth is exponential with the number of pursuers. The assignment strategy

algorithm is a coupled approach and finding an optimal combination for 5 pursuers

is a difficult task and with limited computer resources it becomes impossible for

10 pursuers that require millions of combinations.

The complexity of the assignment strategy algorithm is dominated by the total

number of pursuers. In the experiments, the algorithm can efficiently explore

pathfinding solutions that involve up to 5 pursuers. This limitation is not critical

in practice, for instance, it can be well suited to the Perfect Heist 2 [213] cop and

robber video game where the setting of two to four players on each team works

the best. Moreover, it is not known a solution or alternative approach to scale the

problem in coupled state for multiple pursuing agents. However, this would seem

that the coupled approach does not work necessary in some multi-agent problem

instances such as robotics, where a large number of robots solve the problem by

decoupling into a set of sub-problems [13] or merging their plan to the current

coordinated plan sets [214].

Similarly, the target algorithm, MPTM, considers multiple pursuers and

evaluates their position for its escape to a further position on the map. The

suggested smart moves in Chapter 5 require improving the computation process

as it is exhaustive and intensive with larger player combinations.

Each assignment strategy algorithm assigns targets at the current position of

pursuers before the test run starts and this leads to chasing the initial assigned

target while another target might be nearby which could potentially change the

outcome. However, Chapter 6 introduces a more dynamic procedure to

periodically stop and evaluate the new positions of yet non-caught targets and if

needed re-assign targets. Even though this might be a good idea, unfortunately,

the experiments demonstrated that this repetitive assessment increases the

computation cost on the maps with larger open spaces where the distance to the

157

8. Conclusion and Future Work

targets is far away. This is time-consuming and resource-engaging for the whole

team of pursuers.

Section 2.5.3 mentions a constraint that allows pursuing agents to be in the

same position as other agents. During the experiments, sometimes this can

continue longer until the pursuers spread out or capture the target. This limits

correctly utilising the resources and delays the success of the results. Pursuers

should be required to split and surround targets if they happen to be in the

same position for specified time steps.

There is also a limitation of experiments when the pursuers are outnumbered

by targets. For instance, when there are not enough resources in search and rescue

situations or in warehouse management operations with insufficient resources to

allocate tasks to the agents and then complete them.

Although the experiments were carried out on benchmarked gaming maps,

large-sized gaming maps or city-shaped maps [215] derived from actual capital

cities of the world can be considered with respect to pursuer-to-target

combinations and computing resources. It is possible to scale to the larger maps

and it is achievable with a decoupled approach which subdivides pathfinding

problems into smaller search problems [197]. However, the experiments were

carried out on various-sized Baldur’s Gate gaming maps in [114] where the

results demonstrate that the total pre-processing time for larger maps is about

5 times slower than other maps.

It is not possible to use pursuer (STMTA* or CDMTA*) or target (MPTM)

algorithms in large-scale real-time applications, due to their computation cost and

also they cannot perform an action unless the whole path towards the target is

known. As a result of this unavoidable cost, the optimal solutions and scalability

of problems are restricted to relatively non-large problems in practice.

8.4 Directions for Future Works and

Recommendations

Based on the work presented in this thesis, this section identifies several potential

directions for future research and recommendations:

158

8. Conclusion and Future Work

8.4.1 Assignment Strategy

• A further direction for studies needs to explore methods to reduce the search

space for algorithms and improve computational costs. One of the possible

ways to reduce the computation cost is to compute all possible combinations

for the agents offline and provide the best combination in advance.

• Another interesting area is to dynamically evaluate the assignment strategy

without the predefined number of steps parameter. The algorithm measures

the distance and assesses the combination, if a different combination is

found then the targets are re-assigned.

• Further studies should be undertaken to confirm the success of new

assignment strategies that are introduced in Chapter 4 and Chapter 6

with thorough experiments on the problem introduced in this thesis.

Moreover, the possible experiments could be on MAPF problems where

targets are static.

8.4.2 Multi-Agent Algorithms

• A potential direction to extend the work of this thesis is to find another

solution to the problem which reduces the search space and also improves

the computation costs. It can be solved by partitioning a map into four

search spaces and pursuers within each portioned space are computed. A

similar study conducted an offline computation of the map for pathfinding

with compressed path databases [114] or reduced the size of the search space

[34, 216].

• There are limitations in the number of pursuing agents used in the

experiments. The problem with multiple pursuing agents is NP-hard and

with more pursuers, it grows exponentially. As a future study, one way to

solve the problem could be to subdivide the number of agents and then

consider this subdivision as one team with an assigned strategy per team.

• It will be interesting to extend the work to develop a paradigm with

various responsibilities, where different roles and strategies are assigned to

159

8. Conclusion and Future Work

the pursuers, and/or add more mechanisms for coordination between

them.

• Although this thesis presented comprehensive experiments with various

pursuing algorithms and target algorithms, the experimental evaluation

conducted between pursuers and targets was the chase, on grid-based

benchmarked gaming maps. However, further exploration of the behaviour

and evaluation of the performance of novel multi-agent algorithms on

directed maps, such as road maps, could be a study of future work.

• During the empirical evaluation, the constraints can be relaxed for search

algorithms, such that pursuing agents or targets are restricted and not

allowed to occupy the same state; the environment can have moving

obstacles; the size of agents could vary, for instance, in military video

games a soldier can occupy one space where trucks or tanks will need a

few; or in disaster search and rescue operations, the travelling speed of

players could be various, and the number of agents can be less than many

survivors.

8.4.3 Target Algorithms

• The issue of comparatively high computational costs could be explored in

further research, for example, by exploring the use of heuristics that cut off

parts of the search space or removing symmetric path segments from grid

maps [217, 218, 219].

• Although the study in Chapter 5 focused on a single target’s evasion from

multiple pursuing agents, further investigation to extend the MPTM

algorithm to collaborate with other targets would be very interesting

research.

160

Appendix A

Here is the list of all algorithms presented in the thesis displayed in the tables

below. The targets are in Table A1 and the pursuing algorithms are in Table A2.

Table A1: List of target algorithms mentioned in the thesis.

No Algorithm Name Year
1 Greedy 1950s
2 Minimax 2006
3 Dynamic Abstract Minimax (DAM) 2006
4 Simple Flee (SF) 2008
5 TrailMax 2009
6 Multiple Pursuers TrailMax (MPTM) 2022

161

A
p
p
e
n
d
ix

A
Table A2: List of pursuing algorithms mentioned in thesis and ordered by year.

No Algorithm Name Year
Agents Type Target or Goal Destination

Single

Multiple
Incremental Real-Time

Fixed

Dynamic

Single

Multiple

1 A* 1968 single yes fixed single

2 Learning Real-Time A*(LRTA*) 1990 single yes dynamic single

3 Real-Time A* (RTA*) 1990 single yes dynamic single

4 Moving Target Search (MTS) 1991 single yes dynamic single

5 Moving Target Search with Commitment and Deliberation 1992 single yes dynamic single

6 Dynamic A* (D*) 1994 single yes single

7 Focused Dynamic A* 1995 yes single

8 D* Lite 2002 single yes fixed single

9 Lifelong Planning A* (LPA*) 2002 yes single

10 Anytime A* 2002 single yes single

11 Multiple Agents Moving Target (MAMT) 2003 multiple yes dynamic

12 Anytime Repairing A* (ARA*) 2003 single yes single

13 Adaptive A* 2005 single yes fixed single

14 Anytime Dynamic A* 2005

15 Hierarchical Cooperative A* (HCA*) 2005 multiple yes

16 Partial-Refinement A* (PRA*) 2005 single dynamic single

17 Window Hierarchical Cooperative A* (WHCA*) 2005 multiple yes dynamic single

18 Local Repair A* (LRA*) 2005 single single

19 Real-Time Adaptive A* 2006 single yes dynamic single

20 MT-Adaptive A* 2007 single yes single

21 Anytime Weighted A* 2007 single yes single

22 Real-Time Moving Target Evaluation Search (MTES) 2007 single yes single

23 Efficient Path Planning (eMIP) 2007 multiple

24 Cover with Risk and Abstraction (CRA) 2008 multiple yes dynamic

25 Flow Annotation Replanning (FAR) 2008 multiple yes

26 Generalized Adaptive A* (GAA*) 2008 single yes fixed, dynamic single

27 Abstraction MTS (A-MTS) 2009 multiple yes fixed single

28 Fringe-Retrieving A* 2009 single yes single

29 Fuzzy MTS (F-MTS) 2009 multiple yes fixed single

30 Path Adaptive A* (Path-AA*) 2009 single yes single

162

A
p
p
e
n
d
ix

A
Table A2 continued from previous page

No Algorithm Name Year
Agents Type Target or Goal Destination

Single

Multiple
Incremental Real-Time

Fixed

Dynamic

Single

Multiple

31 Generalized Fringe-Retrieving A* (G-FRA*) 2010 single yes single

32 Moving Target D* Lite 2010 single yes dynamic single

33 Field D* 2010 single yes single

34 Multi-Target Adaptive A* 2010 multiple yes multiple

35 Independence Detection (ID) 2010 multiple fixed multiple

36 Operator Decomposition (OD) 2010 multiple fixed multiple

37 Conflict Based Search (CBS) 2011 multiple fixed multiple

38 Tree Adaptive A* (Tree-AA*) 2011 single yes single

39 Incremental Anytime Repairing A* (I-ARA*) 2012 single yes single

40 Time-Bounded Adaptive A* (TBAA*) 2012 single yes single

41 Meta-Agent CBS (MA-CBS) 2012 multiple fixed multiple

42 Moving Target Search with Compressed Paths (MtsCopa) 2013 single yes dynamic

43 Agent Decomposition Planner (ADP) 2013 multiple single

44 Multipath Adaptive A* (MPAA*) 2014 multiple yes

45 Multipath Generalized Adaptive A* (MPGAA*) 2015 single yes dynamic

46 Moving Target Search with Subgoal Graphs (MTSub) 2015 single yes dynamic

47 Distributed Multi-agent Path Planning (DMAPP) 2015 multiple

48 Meet in the Middle (MM) 2016 multiple fixed single

49 Conflict-Based Min-Cost-Flow (CBM) 2016 multiple fixed multiple

50 Distributed Multi-agent Path Planning (DiMPP) 2017 multiple yes fixed

51 Token Passing (TP) 2017 multiple fixed multiple

52 Token Passing with Task Swap (TPTS) 2017 multiple fixed multiple

53 Multi-label A* (MLA*) 2019 multiple single

54 Task Assignment and Prioritized (TA-Prioritized) 2019 multiple

55 Task Assignment and Hybrid (TA-Hybrid) 2019 multiple

56 Multi-Directional Meet in the Middle (MM*) 2020 multiple fixed single

57 Multi-Objective Path-Based D* Lite (MOPBD*) 2022 multiple yes multiple

58 Strategy Multiple Target A* (STMTA*) 2022 multiple yes dynamic multiple

59 Cover Dynamic Moving Target A* (CDMTA*) 2022 multiple yes dynamic multiple

163

References

[1] Rachel Kirby, Reid Simmons, and Jodi Forlizzi, “Variable sized grid

cells for rapid replanning in dynamic environments”, in 2009 IEEE/RSJ

International Conference on Intelligent Robots and Systems, IROS. IEEE,

2009, pp. 4913–4918.

[2] Dave Ferguson and Anthony Stentz, “The Delayed D* algorithm for

efficient path replanning”, in Proceedings of the 2005 IEEE International

Conference on Robotics and Automation, ICRA, April 2005, pp. 2045–2050.

[3] Damien Pellier, Humbert Fiorino, and Marc Métivier, “Planning when

goals change: A moving target search approach”, in Advances in

Practical Applications of Heterogeneous Multi-Agent Systems. The PAAMS

Collection, Yves Demazeau, Franco Zambonelli, Juan M. Corchado, and

Javier Bajo, Eds., vol. 8473 of Lecture Notes in Computer Science, pp.

231–243. Springer, Salamanca, Spain, 2014.

[4] Jingjin Yu and Steven M LaValle, “Optimal multirobot path planning on

graphs: Complete algorithms and effective heuristics”, IEEE Transactions

on Robotics, vol. 32, no. 5, pp. 1163–1177, 2016.

[5] Roni Stern, “Multi-agent path finding – an overview”, in Artificial

Intelligence. Lecture Notes in Computer Science, Gennady S. Osipov,

Aleksandr I. Panov, and Konstantin S Yakovlev, Eds., vol. 11866, pp. 96–

115. Springer International Publishing, Cham, 2019.

[6] Keisuke Okumura, Yasumasa Tamura, and Xavier Défago, “Time-

independent planning for multiple moving agents”, in Proceedings of the

164

REFERENCES

35th AAAI Conference on Artificial Intelligence. 2021, vol. 35, p. 11299 –

11307, AAAI Press.

[7] Hang Ma, “Graph-based multi-robot path finding and planning”, Current

Robotics Reports, vol. 3, pp. 77–84, 2022.

[8] Simon M. Lucas, “Computational intelligence and games: Challenges and

opportunities”, International Journal of Automation and Computing, vol.

5, no. 1, pp. 45–57, 2008.

[9] Daniel Johnson and Janet Wiles, “Computer games with intelligence”, in

Proceedings of the 10th IEEE International Conference on Fuzzy Systems,

2001, vol. 3, pp. 1355–1358.

[10] Georgios N. Yannakakis and Julian Togelius, “A panorama of artificial

and computational intelligence in games”, IEEE Transactions on

Computational Intelligence and AI in Games, vol. 7, pp. 317–335, 2015.

[11] Stuart Russell and Peter Norvig, Artificial intelligence: A modern approach

(Global edition), Pearson Education Limited, 4 edition, 2021.

[12] Stephen Kloder and Seth Hutchinson, “Path planning for permutation-

invariant multirobot formations”, IEEE Transactions on Robotics, vol. 22,

pp. 650–665, 2006.

[13] Jur Van Den Berg, Jack Snoeyink, Ming Lin, and Dinesh Manocha,

“Centralized path planning for multiple robots: Optimal decoupling into

sequential plans”, in Proceedings of Robotics: Science and Systems, Jeff

Trinkle, Yoky Matsuoka, and Jose A. Castellanos, Eds., vol. 5, p. 137 –

144. MIT Press Journals, Seattle, USA, 2009.

[14] Jiaoyang Li, Graeme Gange, Daniel Harabor, Peter J. Stuckey, Hang

Ma, and Sven Koenig, “New techniques for pairwise symmetry breaking

in multi-agent path finding”, in Proceedings of the 13th International

Symposium on Combinatorial Search, SoCS, 2020, vol. 30, pp. 193–201.

[15] Hang Ma, Sven Koenig, Nora Ayanian, Liron Cohen, Wolfgang Hönig,

T K Kumar, Tansel Uras, Hong Xu, Craig Tovey, and Guni Sharon,

165

REFERENCES

“Overview: Generalizations of multi-agent path finding to real-world

scenarios”, in Proceedings of the 2nd International Workshop on Multi-

Agent Path Finding co-located with 25th International Joint Conference on

Artificial Intelligence, IJCAI, 2016, pp. 1–4.

[16] Yiming Liu, Mengxia Chen, and Hejiao Huang, “Multi-agent pathfinding

based on improved cooperative A* in Kiva system”, in 2019 5th

International conference on control, automation and robotics, ICCAR,

2019, pp. 633–638.

[17] Arturo Rankin, Mark Maimone, Jeffrey Biesiadecki, Nikunj Patel, Dan

Levine, and Olivier Toupet, “Mars curiosity rover mobility trends during

the first 7 years”, Journal of Field Robotics, vol. 38, pp. 759 – 800, 2021.

[18] Neil Abcouwer, Shreyansh Daftry, Tyler Del Sesto, Olivier Toupet,

Masahiro Ono, Siddarth Venkatraman, Ravi Lanka, Jialin Song, and

Yisong Yue, “Machine learning based path planning for improved rover

navigation”, in IEEE Aerospace Conference Proceedings, 2021, vol. 2021-

March.

[19] Liviu Panait and Sean Luke, “Cooperative multi-agent learning: The state

of the art”, Autonomous Agents and Multi-Agent Systems, vol. 11, no. 3,

pp. 387–434, 2005.

[20] Hazem El-Alfy and Amr Kabardy, “A new approach for the two-player

pursuit-evasion game”, in 2011 8th International Conference on Ubiquitous

Robots and Ambient Intelligence, URAI, 2011, pp. 396–397.

[21] Fedor V Fomin, Petr A Golovach, and Daniel Lokshtanov, “Cops and

robber game without recharging”, Theory of Computing Systems, vol. 50,

no. 4, pp. 611–620, 2012.

[22] Toru Ishida and Richard E. Korf, “Moving target search”, in Proceedings of

the 12th International Joint Conference on Artificial Intelligence, IJCAI,

1991, vol. 1, pp. 204–210.

166

REFERENCES

[23] Peter R. Wurman, Raffaello D’Andrea, and Mick Mountz, “Coordinating

hundreds of cooperative, autonomous vehicles in warehouses”, AI

Magazine, vol. 29, no. 1, pp. 9, 2008.

[24] Michal Čáp, Peter Novák, Jǐŕı Vokř́ınek, and Michal Pěchouček, “Multi-

agent RRT*: Sampling-based cooperative pathfinding”, in Proceedings of

the 12th International Conference on Autonomous Agents and Multiagent

Systems, AAMAS, Maria Gini, Onn Shehory, Takayuki Ito, and Catholijn

Jonker, Eds., Saint Paul, Minnesota, USA, 2013, vol. 2, p. 1263–1264,

International Foundation for Autonomous Agents and Multiagent Systems,

(IFAAMAS).

[25] Yugang Liu and Goldie Nejat, “Robotic urban search and rescue: A survey

from the control perspective”, Journal of Intelligent and Robotic Systems:

Theory and Applications, vol. 72, no. 2, pp. 147–165, 2013.

[26] Andreas Kolling, Alexander Kleiner, Michael Lewis, and K. Sycara,

“Computing and executing strategies for moving target search”, in

Proceedings of the 2011 IEEE International Conference on Robotics and

Automation, ICRA, 2011, pp. 4246–4253.

[27] Toru Ishida, “Moving target search with intelligence”, in Proceedings of

the 10th National Conference on Artificial Intelligence, AAAI, 1992, vol. 92,

pp. 525–532.

[28] Sven Koenig and Maxim Likhachev, “D* Lite”, in Proceedings of the 18th

National Conference on Artificial Intelligence, AAAI, 2002, vol. 15, pp.

476–483.

[29] Çağatay Ündeğer and Faruk Polat, “RTTES: Real-time search in dynamic

environments”, Applied Intelligence, vol. 27, no. 2, pp. 113–129, 2007.

[30] Sven Koenig and Maxim Likhachev, “Adaptive A*”, in Proceedings of

the 4th International Conference on Autonomous Agents and Multiagent

Systems, AAMAS, New York, NY, USA, 2005, p. 1311–1312, Association

for Computing Machinery.

167

REFERENCES

[31] Ko Hsin Cindy Wang and Adi Botea, “Fast and memory-efficient multi-

agent pathfinding”, in ICAPS 2008 - Proceedings of the 18th International

Conference on Automated Planning and Scheduling, 2008, p. 380 – 387.

[32] David Silver, “Cooperative pathfinding”, in Proceedings of the 1st AAAI

Conference on Artificial Intelligence and Interactive Digital Entertainment,

AIIDE, 2005, vol. 1, pp. 117–122.

[33] Guni Sharon, Roni Stern, Ariel Felner, and Nathan Sturtevant, “Meta-

agent conflict-based search for optimal multi-agent path finding”, in

Proceedings of the 5th International Symposium on Combinatorial Search,

SoCS, 2012, p. 97 – 104.

[34] Nathan Sturtevant and Michael Buro, “Partial pathfinding using map

abstraction and refinement”, in Proceedings of the 20th National Conference

on Artificial Intelligence, AAAI, Pittsburgh, Pennsylvania, 2005, vol. 3, pp.

1392–1397, AAAI Press.

[35] Mark Goldenberg, Alexander Kovarsky, Xiaomeng Wu, and Jonathan

Schaeffer, “Multiple agents moving target search”, in Proceedings of the

18th International Joint Conference on Artificial Intelligence, IJCAI, 2003,

p. 1536 – 1538.

[36] Peter K.K. Loh and Edmond C. Prakash, “Novel moving target search

algorithms for computer gaming”, Computers in Entertainment (CIE),

vol. 7, no. 2, pp. 1–16, 2009.

[37] Lucia Pallottino, Vincenzo G. Scordio, Antonio Bicchi, and Emilio Frazzoli,

“Decentralized cooperative policy for conflict resolution in multi-vehicle

systems”, IEEE Transactions on Robotics, vol. 23, no. 6, pp. 1170–1183,

2007.

[38] Michael Wooldridge, An introduction to multiagent systems, John wiley &

sons, Hoboken, N.J. : Chichester, 2 edition, 2009.

[39] Nicholas R. Jennings, Katia Sycara, and Michael Wooldridge, “A roadmap

of agent research and development”, Autonomous Agents and Multi-Agent

Systems, vol. 1, pp. 7 – 38, 1998.

168

REFERENCES

[40] Balaji Parasumanna Gokulan and Dipti Srinivasan, “An introduction

to multi-agent systems”, in Innovations in multi-agent systems and

applications-1, Dipti Srinivasan and Lakhmi C. Jain, Eds., pp. 1–27.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[41] Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern

Approach, Pearson Education Limited, Harlow, United Kingdom, 3 edition,

2016.

[42] Jorge Rocha, Inês Boavida-Portugal, and Eduardo Gomes, “Introductory

chapter: Multi-agent systems”, in Multi-agent Systems, Jorge Rocha, Ed.,

chapter 1. IntechOpen, Rijeka, 2017.

[43] Vicente Julian and Vicente Botti, “Multi-agent systems”, Applied Sciences,

vol. 9, no. 7, pp. 1402, 2019.

[44] Gerhard Weiss, Multiagent Systems, The MIT Press, 2 edition, 2013.

[45] Ross Graham, Hugh Mccabe, and Stephen Sheridan, “Pathfinding in

computer games”, The ITB Journal, vol. 4, pp. 57–81, 2003.

[46] Meir Goldenberg, Ariel Felner, Roni Stern, Guni Sharon, Nathan

Sturtevant, Robert C. Holte, and Jonathan Schaeffer, “Enhanced partial

expansion A*”, Journal of Artificial Intelligence Research, vol. 50, pp.

141–187, 2014.

[47] Sven Koenig, “A comparison of fast search methods for real-time situated

agents”, in Proceedings of the 3rd International Conference on Autonomous

Agents and Multiagent Systems, AAMAS. IEEE Computer Society, 2004,

vol. 3, pp. 864–871.

[48] Ryan Luna and Kostas E. Bekris, “Push and swap: Fast cooperative

path-finding with completeness guarantees”, in Proceedings of the 22nd

International Joint Conference on Artificial Intelligence, IJCAI, 2011, p.

294 – 300.

[49] Pavel Surynek, “Time-expanded graph-based propositional encodings for

makespan-optimal solving of cooperative path finding problems”, Annals of

Mathematics and Artificial Intelligence, vol. 81, no. 3-4, pp. 329–375, 2017.

169

REFERENCES

[50] Hang Ma and Sven Koenig, “AI buzzwords explained: Multi-agent path

finding (MAPF)”, AI Matters, vol. 3, pp. 15–19, 2017.

[51] Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner, “The

increasing cost tree search for optimal multi-agent pathfinding”, in

Proceedings of the 22nd International Joint Conference on Artificial

Intelligence, IJCAI, 2011, p. 662 – 667.

[52] Aysu Bogatarkan, Volkan Patoglu, and Esra Erdem, “A declarative method

for dynamic multi-agent path finding”, in Proceedings of the 5th Global

Conference on Artificial Intelligence, (GCAI), Diego Calvanese and Luca

Iocchi, Eds., vol. 65 of EPiC Series in Computing, pp. 54–67. EasyChair,

Bozen/Bolzano, Italy, 2019.

[53] Fan Xie, Adi Botea, and Akihiro Kishimoto, “A scalable approach to

chasing multiple moving targets with multiple agents”, in Proceedings of

the 26th International Joint Conference on Artificial Intelligence, IJCAI,

2017, vol. 0, p. 4470 – 4476.

[54] Malcolm R.K. Ryan, “Exploiting subgraph structure in multi-robot path

planning”, Journal of Artificial Intelligence Research, vol. 31, pp. 497–542,

2008.

[55] Malcolm Ryan, “Graph decomposition for efficient multi-robot path

planning”, in Proceedings of the 20th International Joint Conference on

Artificial Intelligence, IJCAI, 2007, pp. 2003–2008.

[56] Anders Jonsson and Michael Rovatsos, “Scaling up multiagent planning:

A best-response approach”, in ICAPS 2011 - Proceedings of the 21st

International Conference on Automated Planning and Scheduling, 2011, p.

114 – 121.

[57] Alejandro Torreño, Eva Onaindia, Antońın Komenda, and Michal Štolba,

“Cooperative multi-agent planning: A survey”, ACM Computing Surveys

(CSUR), vol. 50, no. 6, pp. 1–32, 2017.

170

REFERENCES

[58] Daniel Borrajo, “Multi-agent planning by plan reuse”, in Proceedings of

the 12th International Conference on Autonomous Agents and Multiagent

Systems, AAMAS, 2013, vol. 2, p. 1141 – 1142.

[59] Dor Atzmon, Jiaoyang Li, Ariel Felner, Eliran Nachmani, Shahaf

Shperberg, Nathan Sturtevant, and Sven Koenig, “Multi-directional

heuristic search”, in Proceedings of the 29th International Joint Conference

on Artificial Intelligence, IJCAI, 2020, pp. 4062–4068.

[60] Alejandro Isaza, Jieshan Lu, Vadim Bulitko, and Russell Greiner, “A cover-

based approach to multi-agent moving target pursuit”, in Proceedings

of the 4th Artificial Intelligence and Interactive Digital Entertainment

Conference, AIIDE, 2008, p. 54 – 59.

[61] Carsten Moldenhauer and Nathan R. Sturtevant, “Optimal solutions for

moving target search”, in Proceedings of the 8th International Conference

on Autonomous Agents and Multiagent Systems, AAMAS, 2009, vol. 2, pp.

1249–1250.

[62] Satyendra Singh Chouhan and Rajdeep Niyogi, “DiMPP: a complete

distributed algorithm for multi-agent path planning”, Journal of

Experimental and Theoretical Artificial Intelligence, vol. 29, no. 6, pp. 1129–

1148, 2017.

[63] Trevor Scott Standley and Richard E. Korf, “Complete algorithms for

cooperative pathfinding problems”, in Proceedings of the 22nd International

Joint Conference on Artificial Intelligence, IJCAI, 2011, p. 668 – 673.

[64] Malcolm Ryan, “Multi-robot path-planning with subgraphs”, in

Proceedings of the 19th Australasian Conference on Robotics and

Automation, ACRA, 2006, pp. 1–8.

[65] Craig Tovey, Michail G. Lagoudakis, Sonal Jain, and Sven Koenig, “The

generation of bidding rules for auction-based robot coordination”, in Multi-

Robot Systems. From Swarms to Intelligent Automata - Proceedings from

the 2005 International Workshop on Multi-Robot Systems, 2005, vol. 3, p.

3 – 14.

171

REFERENCES

[66] Jonathan Vermette, “A survey of path-finding algorithms employing

automatic hierarchical abstraction”, Journal of the Association for

Computing Machinery, vol. 377, pp. 383, 2011.

[67] Meir Goldenberg, Ariel Felner, Alon Palombo, Nathan Sturtevant, and

Jonathan Schaeffer, “The compressed differential heuristic”, AI

Communications, vol. 30, pp. 393 – 418, 2017.

[68] Ian Millington and John Funge, Artificial intelligence for games, CRC

Press, 2 edition, 2009.

[69] Matthew David Crosby, Multiagent classical planning, PhD thesis, The

University of Edinburgh, Edinburgh, UK, 2014.

[70] Blizzard Entertainment, “World of warcraft”, Microsoft Windows, 2004.

[71] Westwood Studios, “Command and conquer”, Microsoft Windows, 1995.

[72] Nathan R. Sturtevant, Devon Sigurdson, Bjorn Taylor, and Tim Gibson,

“Abstraction and refinement in games with dynamic weighted terrain”, in

AAAI 2020 - 34th AAAI Conference on Artificial Intelligence, 2020, vol. 34,

pp. 13697–13699.

[73] Kaushlendra Sharma and Rajesh Doriya, “Path planning for robots:

an elucidating draft”, International Journal of Intelligent Robotics and

Applications, vol. 4, pp. 294 – 307, 2020.

[74] Omar Souissi, Rabie Benatitallah, David Duvivier, Abedlhakim Artiba,

Nicolas Belanger, and Pierre Feyzeau, “Path planning: A 2013 survey”,

in Proceedings of 2013 International Conference on Industrial Engineering

and Systems Management, IEEE - IESM 2013, 2013, pp. 1–8.

[75] Enric Galceran and Marc Carreras, “A survey on coverage path planning

for robotics”, Robotics and Autonomous Systems, vol. 61, pp. 1258–1276,

2013.

[76] Wikipedia contributors, “Euclidean distance — Wikipedia, the free

encyclopedia”, 2023, [Online; accessed 24-July-2023].

172

REFERENCES

[77] Daniel Rolf Wichmann, “Automated route finding on digital terrains”,

Master’s thesis, University of Auckland, Auckland, New Zealand, 2004.

[78] Carsten Moldenhauer and Nathan R. Sturtevant, “Evaluating strategies

for running from the cops”, in Proceedings of the 21st International Joint

Conference on Artificial Intelligence, IJCAI, 2009, p. 584 – 589.

[79] Çağatay Ündeğer and Faruk Polat, “Multi-agent real-time pursuit”,

Autonomous Agents and Multi-Agent Systems, vol. 21, pp. 69–107, 2010.

[80] Xiaoxun Sun, William Yeoh, and Sven Koenig, “Moving target D* Lite”,

in Proceedings of the 9th International Conference on Autonomous Agents

and Multiagent Systems, AAMAS, 2010, vol. 1, pp. 67–74.

[81] Thierry Siméon, Stéphane Leroy, and Jean-Paul Laumond, “Path

coordination for multiple mobile robots: A resolution-complete algorithm”,

IEEE Transactions on Robotics and Automation, vol. 18, pp. 42–49, 2002.

[82] Richard E. Korf, “Artificial intelligence search algorithms”, in Algorithms

and Theory of Computation Handbook, Mikhail J. Atallah, Ed., Chapman

& Hall/CRC Applied Algorithms and Data Structures series. CRC Press,

1999.

[83] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael, “A formal basis for

the heuristic determination of minimum cost paths”, IEEE Transactions

on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[84] Wikipedia contributors, “A* search algorithm — Wikipedia, the free

encyclopedia”, 2023, [Online; accessed 7-July-2023].

[85] Çağatay Ündeğer, Single and multi agent real-time path search in dynamic

and partially observable environments, PhD thesis, Middle East Technical

University, Çankaya, Ankara, Turkey, 2007.

[86] Trevor Standley, “Finding optimal solutions to cooperative pathfinding

problems”, in Proceedings of the 24th National Conference on Artificial

Intelligence, AAAI, 2010, vol. 1, p. 173 – 178.

173

REFERENCES

[87] Glenn Wagner and Howie Choset, “Subdimensional expansion for

multirobot path planning”, Artificial Intelligence, vol. 219, pp. 1–24, 2015.

[88] Dave Ferguson, Maxim Likhachev, and Anthony Stentz, “A guide

to heuristic-based path planning”, in Proceedings of the International

Workshop on Planning under Uncertainty for Autonomous Systems,

International Conference on Automated Planning and Scheduling, ICAPS,

June 2005, pp. 9–18.

[89] Sven Koenig, Maxim Likhachev, Yaxin Liu, and David Furcy, “Incremental

heuristic search in artificial intelligence”, Artificial Intelligence Magazine,

vol. 25, no. 2, pp. 99 – 112, 2004.

[90] Sven Koenig and Xiaoxun Sun, “Comparing real-time and incremental

heuristic search for real-time situated agents”, Autonomous Agents and

Multi-Agent Systems, vol. 18, pp. 313 – 341, 2009.

[91] Ravikiran A S, “A* algorithm concepts and implementation”, 2021,

[Online; accessed 7-July-2023].

[92] Thaddeus Abiy, Hannah Pang, Beakal Tiliksew, Karleigh Moore, and Jimin

Khim, “A* search”, 2016, [Online; accessed 7-July-2023].

[93] Richard E. Korf, “Real-time heuristic search”, Artificial intelligence, vol.

42, no. 2-3, pp. 189–211, 1990.

[94] Xiaoxun Sun, Sven Koenig, and William Yeoh, “Generalized Adaptive A*”,

in Proceedings of the 7th International Conference on Autonomous Agents

and Multiagent Systems, AAMAS, 2008, vol. 1, p. 462 – 469.

[95] Sven Koenig, Maxim Likhachev, and Xiaoxun Sun, “Speeding up moving-

target search”, in Proceedings of the 6th International Conference on

Autonomous Agents and Multiagent Systems, AAMAS, 2007, pp. 1–8.

[96] Sandip Aine and Maxim Likhachev, “Truncated incremental search”,

Artificial Intelligence, vol. 234, pp. 49 – 77, 2016.

[97] Carlos Hernández, Jorge Baier, Tansel Uras, and Sven Koenig, “Position

paper: Incremental search algorithms considered poorly understood”, in

174

REFERENCES

Proceedings of the 5th International Symposium on Combinatorial Search,

SoCS, 2012, vol. 3, p. 159 – 161.

[98] Sven Koenig, Maxim Likhachev, and David Furcy, “Lifelong planning A*”,

Artificial Intelligence, vol. 155, no. 1-2, pp. 93–146, 2004.

[99] Sven Koenig and Maxim Likhachev, “Incremental A*”, in Proceedings

of the Advances in neural information processing systems 14, Thomas G.

Dietterich, Suzanna Becker, and Zoubin Ghahramani, Eds., vol. 2, pp.

1539–1546. MIT Press, Vancouver, British Columbia, Canada, 2001.

[100] Anthony Stentz, “Optimal and efficient path planning for partially-known

environments”, in Proceedings of the 1994 IEEE International Conference

on Robotics and Automation, ICRA, San Diego, CA, USA, 1994, vol. 4, pp.

3310–3317, IEEE Computer Society.

[101] Anthony Stentz, “The Focussed D* algorithm for real-time replanning”,

in Proceedings of the 14th International Joint Conference on Artificial

Intelligence, IJCAI, August 1995, vol. 2, pp. 1652–1659.

[102] Sven Koenig and Maxim Likhachev, “Fast replanning for navigation in

unknown terrain”, IEEE Transactions on Robotics, vol. 21, no. 3, pp. 354–

363, 2005.

[103] Zhongqiang Ren, Sivakumar Rathinam, Maxim Likhachev, and Howie

Choset, “Multi-objective path-based D* Lite”, IEEE Robotics and

Automation Letters, vol. 7, no. 2, pp. 3318 – 3325, 2022.

[104] Xiaoxun Sun, William Yeoh, and Sven Koenig, “Efficient incremental search

for moving target search”, in Proceedings of the 21st International Joint

Conference on Artificial Intelligence, IJCAI, 2009, p. 615 – 620.

[105] Xiaoxun Sun, William Yeoh, and Sven Koenig, “Generalized Fringe-

Retrieving A*: faster moving target search on state lattices”, in Proceedings

of the 9th International Conference on Autonomous Agents and Multiagent

Systems, AAMAS, 2010, vol. 2, pp. 1081–1088.

175

REFERENCES

[106] Luis Henrique Oliveira Rios and Luiz Chaimowicz, “A survey and

classification of A* based best-first heuristic search algorithms”, in Brazilian

Symposium on Artificial Intelligence. Springer, 2010, vol. 6404 LNAI, pp.

253–262.

[107] Dave Ferguson and Anthony Stentz, “Field D*: An interpolation-based

path planner and replanner”, in Robotics Research. Springer Tracts in

Advanced Robotics, Sebastian Thrun, Rodney Brooks, and Hugh Durrant-

Whyte, Eds., Berlin, Heidelberg, 2007, vol. 28, pp. 239–253, Springer Berlin

Heidelberg.

[108] Rong Zhou and Eric A. Hansen, “Multiple sequence alignment using

Anytime A*”, in Proceedings of the 18th National Conference on Artificial

Intelligence, AAAI, 2002, pp. 975–977.

[109] Maxim Likhachev, Dave Ferguson, Geoff Gordon, Anthony Stentz, and

Sebastian Thrun, “Anytime search in dynamic graphs”, Artificial

Intelligence, vol. 172, pp. 1613 – 1643, 2008.

[110] Maxim Likhachev, Geoff Gordon, and Sebastian Thrun, “ARA*: Anytime

A* with provable bounds on sub-optimality”, in Advances in Neural

Information Processing Systems 16, Sebastian Thrun, Lawrence K. Saul,

and Bernhard Schölkopf, Eds., vol. 16, pp. 767–774. MIT Press, Vancouver

and Whistler, British Columbia, Canada, 2003.

[111] Maxim Likhachev, Dave Ferguson, Geoff Gordon, Anthony Stentz, and

Sebastian Thrun, “Anytime Dynamic A*: An anytime, replanning

algorithm”, in ICAPS 2005 - Proceedings of the 15th International

Conference on Automated Planning and Scheduling, 2005, vol. 5, pp. 262–

271.

[112] Eric A. Hansen and Rong Zhou, “Anytime heuristic search”, Journal of

Artificial Intelligence Research, vol. 28, pp. 267–297, 2007.

[113] Xiaoxun Sun, Tansel Uras, Sven Koenig, and William Yeoh, “Incremental

ARA*: An incremental anytime search algorithm for moving-target

search”, in ICAPS 2012 - Proceedings of the 22nd International Conference

176

REFERENCES

on Automated Planning and Scheduling, Lee McCluskey, Brian Charles

Williams, José Reinaldo Silva, and Blai Bonet, Eds., Atibaia, São Paulo,

Brazil, 2012, p. 243 – 251, AAAI.

[114] Adi Botea, “Ultra-fast optimal pathfinding without runtime search”, in

Proceedings of the 7th AAAI Conference on Artificial Intelligence and

Interactive Digital Entertainment, AIIDE, 2011, p. 122 – 127.

[115] Adi Botea, “Fast, optimal pathfinding with compressed path databases”, in

Proceedings of the 5th International Symposium on Combinatorial Search,

SoCS, 2012, vol. 3, p. 204 – 205.

[116] Adi Botea, Jorge A. Baier, Daniel Harabor, and Carlos Hernández,

“Moving target search with compressed path databases”, in ICAPS 2013

- Proceedings of the 23rd International Conference on Automated Planning

and Scheduling, 2013, p. 288 – 292.

[117] Jorge A. Baier, Adi Botea, Daniel Harabor, and Carlos Hernández, “Fast

algorithm for catching a prey quickly in known and partially known game

maps”, IEEE Transactions on Computational Intelligence and AI in

Games, vol. 7, pp. 193–199, 2015.

[118] Doron Nussbaum and Alper Yörükçü, “Moving target search with subgoal

graphs”, in ICAPS 2015 - Proceedings of the 25th International Conference

on Automated Planning and Scheduling, 2015, vol. 2015-January, pp. 179–

187.

[119] Sven Koenig and Maxim Likhachev, “Real-time Adaptive A*”, in

Proceedings of the 5th International Conference on Autonomous Agents and

Multiagent Systems, AAMAS, 2006, pp. 281–288.

[120] Kengo Matsuta, Hayato Kobayashi, and Ayumi Shinohara, “Multi-target

Adaptive A*”, in Proceedings of the 9th International Conference on

Autonomous Agents and Multiagent Systems, AAMAS, 2010, vol. 1, pp.

1065–1072.

177

REFERENCES

[121] Carlos Hernández, Xiaoxun Sun, Sven Koenig, and Pedro Meseguer, “Tree

Adaptive A*”, in Proceedings of the 10th International Conference on

Autonomous Agents and Multiagent Systems, AAMAS, 2011, pp. 123–130.

[122] Carlos Hernández, Pedro Meseguer, Xiaoxun Sun, and Sven Koenig, “Path-

adaptive A* for incremental heuristic search in unknown terrain”, in ICAPS

2009 - Proceedings of the 19th International Conference on Automated

Planning and Scheduling, 2009, p. 358 – 361.

[123] Carlos Hernández, Jorge A Baier, Tansel Uras, and Sven Koenig, “Time-

bounded Adaptive A*”, in Proceedings of the 11th International Conference

on Autonomous Agents and Multiagent Systems, AAMAS, 2012, pp. 997–

1006.

[124] Carlos Hernández, Roberto Aśın, and Jorge A Baier, “Reusing previously

found A* paths for fast goal-directed navigation in dynamic terrain”,

in Proceedings of the 29th National Conference on Artificial Intelligence,

AAAI, 2015, vol. 2, p. 1158 – 1164.

[125] Carlos Hernández, Jorge A. Baier, and Roberto Aśın, “Making A* run

faster than D* Lite for path-planning in partially known terrain”, in ICAPS

2014 - Proceedings of the 24th International Conference on Automated

Planning and Scheduling, 2014, vol. 24, pp. 504–508.

[126] Toru Ishida, “Real-time search for autonomous agents and multiagent

systems”, Autonomous Agents and Multi-Agent Systems, vol. 1, no. 2, pp.

139–167, 1998.

[127] Makoto Yokoo and Yashiko Kitamura, “Multiagent real-time-A* with

selection: Introducing competition in cooperative search”, in Proceedings of

the 2nd International Conference on Multiagent Systems, ICMAS-96, 1996,

pp. 409–416.

[128] Vadim Bulitko, Nathan Sturtevant, Jieshan Lu, and Timothy Yau, “Graph

abstraction in real-time heuristic search”, Journal of Artificial Intelligence

Research, vol. 30, pp. 51–100, 2007.

178

REFERENCES

[129] Peter K.K. Loh and Edmond C. Prakash, “Performance simulations of

moving target search algorithms”, International Journal of Computer

Games Technology, vol. 2009, 2009.

[130] Carlos Hernández and Jorge A. Baier, “Avoiding and escaping depressions

in real-time heuristic search”, Journal of Artificial Intelligence Research,

vol. 43, pp. 523–570, 2012.

[131] Toru Ishida and Richard E. Korf, “Moving-target search: A real-time search

for changing goals”, IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 17, no. 6, pp. 609–619, 1995.

[132] Çağatay Ündeğer and Faruk Polat, “Moving target search in grid worlds”,

in Proceedings of the 6th International Conference on Autonomous Agents

and Multiagent Systems, AAMAS, 2007, pp. 1–3.

[133] Çağatay Ündeğer and Faruk Polat, “Real-time moving target search”,

in Agent Computing and Multi-Agent Systems. Pacific Rim International

Conference on Multi-Agents (PRIMA 2007), Aditya Ghose, Guido

Governatori, and Ramakoti Sadananda, Eds., Berlin, Heidelberg, 2009, vol.

5044, pp. 110–121, Springer Berlin Heidelberg.

[134] Nerea Luis, Susana Fernández, and Daniel Borrajo, “Plan merging by reuse

for multi-agent planning”, Applied Intelligence, vol. 50, pp. 365–396, 2020.

[135] Aniello Murano, Giuseppe Perelli, and Sasha Rubin, “Multi-agent path

planning in known dynamic environments”, in 18th International conference

on principles and practice of multi-agent systems, PRIMA, 2015, vol. 9387,

pp. 218–231.

[136] Carlos Hernández, Tansel Uras, Sven Koenig, Jorge A. Baier, Xiaoxun

Sun, and Pedro Meseguer, “Reusing cost-minimal paths for goal-directed

navigation in partially known terrains”, Autonomous Agents and Multi-

Agent Systems, vol. 29, pp. 850–895, 2015.

[137] Benjamin Aminof, Aniello Murano, Sasha Rubin, and Florian Zuleger,

“Verification of agent navigation in partially-known environments”,

Artificial Intelligence, vol. 308, pp. 103724, 2022.

179

REFERENCES

[138] Ariel Felner, Roni Stern, Asaph Ben-Yair, Sarit Kraus, and Nathan

Netanyahu, “PHA*: Finding the shortest path with A* in an unknown

physical environment”, Journal of Artificial Intelligence Research, vol. 21,

pp. 631–670, 2004.

[139] Christopher Dragert, Jörg Kienzle, and Clark Verbrugge, “Statechart-based

AI in practice”, in Proceedings of the 8th AAAI Conference on Artificial

Intelligence and Interactive Digital Entertainment, AIIDE, 2012, p. 136 –

141.

[140] Bryan Stout, “Smart moves: Intelligent pathfinding”, Game developer

magazine, vol. 10, pp. 28–35, 1996.

[141] Nathan R. Sturtevant, Devon Sigurdson, Bjorn Taylor, and Tim Gibson,

“Pathfinding and abstraction with dynamic terrain costs”, in Proceedings of

the 15th AAAI Conference on Artificial Intelligence and Interactive Digital

Entertainment, AIIDE, 2019, vol. 15, pp. 80–86.

[142] Ronen I. Brafman and Carmel Domshlak, “From one to many: Planning

for loosely coupled multi-agent systems”, in ICAPS 2008 - Proceedings of

the 18th International Conference on Automated Planning and Scheduling,

2008, vol. 8, pp. 28–35.

[143] Raz Nissim, Ronen I. Brafman, and Carmel Domshlak, “A general, fully

distributed multi-agent planning algorithm”, in Proceedings of the 9th

International Conference on Autonomous Agents and Multiagent Systems,

AAMAS, 2010, vol. 2, p. 1323 – 1330.

[144] Jonas Kvarnström, “Planning for loosely coupled agents using partial order

forward-chaining”, in ICAPS 2011 - Proceedings of the 21st International

Conference on Automated Planning and Scheduling, 2011, p. 138 – 145.

[145] Matt Crosby and Michael Rovatsos, “Heuristic multiagent planning with

self-interested agents”, in Proceedings of the 10th International Conference

on Autonomous Agents and Multiagent Systems, AAMAS, 2011, vol. 2, pp.

1213–1214.

180

REFERENCES

[146] Matthew Crosby, Michael Rovatsos, and Ronald P.A. Petrick, “Automated

agent decomposition for classical planning”, in ICAPS 2013 - Proceedings of

the 23rd International Conference on Automated Planning and Scheduling,

2013, vol. 23, pp. 46–54.

[147] Hang Ma, Jiaoyang Li, T. K.Satish Kumar, and Sven Koenig, “Lifelong

multi-agent path finding for online pickup and delivery tasks”, in

Proceedings of the 16th International Conference on Autonomous Agents

and Multiagent Systems, AAMAS, 2017, vol. 2, pp. 837–845.

[148] Qinghong Xu, Jiaoyang Li, Sven Koenig, and Hang Ma, “Multi-goal multi-

agent pickup and delivery”, in 2022 IEEE/RSJ International Conference on

Intelligent Robots and Systems, IROS, 2022, vol. 2022-October, pp. 9964–

9971.

[149] Florian Grenouilleau, Willem-Jan van Hoeve, and John N Hooker, “A

multi-label A* algorithm for multi-agent pathfinding”, in ICAPS 2019 -

Proceedings of the 29th International Conference on Automated Planning

and Scheduling, 2019, vol. 29, pp. 181–185.

[150] Robert C. Holte, Ariel Felner, Guni Sharon, and Nathan R. Sturtevant,

“Bidirectional search that is guaranteed to meet in the middle”, in

Proceedings of the 30th AAAI Conference on Artificial Intelligence, 2016,

vol. 30, p. 3411 – 3417.

[151] Robert C. Holte, Ariel Felner, Guni Sharon, Nathan R. Sturtevant, and

Jingwei Chen, “MM: A bidirectional search algorithm that is guaranteed

to meet in the middle”, Artificial Intelligence, vol. 252, pp. 232 – 266, 2017.

[152] Amarjeet Singh, William Kaiser, Maxim Batalin, Andreas Krause, and

Carlos Guestrin, “Efficient planning of informative paths for multiple

robots”, in Proceedings of the 20th International Joint Conference on

Artificial Intelligence, IJCAI, 2007, p. 2204 – 2211.

[153] Satyendra Singh Chouhan and Rajdeep Niyogi, “DMAPP: A

distributed multi-agent path planning algorithm”, in Proceedings of the

28th Australasian Joint Conference on Artificial Intelligence, Bernhard

181

REFERENCES

Pfahringer and Jochen Renz, Eds., vol. 9457 of Lecture Notes in Computer

Science, pp. 123–135. Springer, Canberra, Australia, 2015.

[154] Oren Salzman and Roni Stern, “Research challenges and opportunities

in multi-agent path finding and multi-agent pickup and delivery problems

blue sky ideas track”, in Proceedings of the 19th International Conference

on Autonomous Agents and Multiagent Systems, AAMAS, 2020, vol. 2020-

May, p. 1711 – 1715.

[155] Minghua Liu, Hang Ma, Jiaoyang Li, and Sven Koenig, “Task and path

planning for multi-agent pickup and delivery”, in Proceedings of the 18th

International Conference on Autonomous Agents and Multiagent Systems,

AAMAS, 2019, vol. 2, p. 1152 – 1160.

[156] Pavel Surynek, “Multi-goal multi-agent path finding via decoupled and

integrated goal vertex ordering”, in Proceedings of the 35th AAAI

Conference on Artificial Intelligence, 2021, vol. 35, pp. 12409–12417.

[157] Sumanth Varambally, Jiaoyang Li, and Sven Koenig, “Which MAPF

model works best for automated warehousing?”, in Proceedings of the 15th

International Symposium on Combinatorial Search, SOCS, 2022, vol. 15,

pp. 190–198.

[158] Jiaoyang Li, Andrew Tinka, Scott Kiesel, Joseph W. Durham, T. K. Satish

Kumar, and Sven Koenig, “Lifelong multi-agent path finding in large-scale

warehouses”, in Proceedings of the 35th AAAI Conference on Artificial

Intelligence, 2021, vol. 35, pp. 11272–11281.

[159] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant,

“Conflict-based search for optimal multi-agent path finding”, in Proceedings

of the 26th National Conference on Artificial Intelligence, AAAI, Ontario,

Canada, 2012, vol. 1, p. 563 – 569, AAAI Press.

[160] Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner, “The

increasing cost tree search for optimal multi-agent pathfinding”, Artificial

Intelligence, vol. 195, pp. 470 – 495, 2013.

182

REFERENCES

[161] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant,

“Conflict-based search for optimal multi-agent pathfinding”, Artificial

Intelligence, vol. 219, pp. 40–66, 2 2015.

[162] Ko Hsin Cindy Wang and Adi Botea, “Mapp: A scalable multi-agent path

planning algorithm with tractability and completeness guarantees”, Journal

of Artificial Intelligence Research, vol. 42, pp. 55–90, 2011.

[163] Hang Ma and Sven Koenig, “Optimal target assignment and path finding

for teams of agents”, in Proceedings of the 15th International Conference

on Autonomous Agents and Multiagent Systems, AAMAS, 2016, p. 1144 –

1152.

[164] Jingjin Yu and Steven M. Lavalle, “Multi-agent path planning and

network flow”, in Algorithmic foundations of robotics X, Springer Tracts in

Advanced Robotics, Emilio Frazzoli, Tomas Lozano-Perez, Nicholas Roy,

and Daniela Rus, Eds., Berlin, Heidelberg, 2013, vol. 86, pp. 157–173,

Springer Berlin Heidelberg.

[165] Jiaoyang Li, Ariel Felner, Eli Boyarski, Hang Ma, and Sven Koenig,

“Improved heuristics for multi-agent path finding with conflict-based

search”, in Proceedings of the 28th International Joint Conference on

Artificial Intelligence, IJCAI, 2019, vol. 2019-August, pp. 442–449.

[166] Xinyi Zhong, Jiaoyang Li, Sven Koenig, and Hang Ma, “Optimal and

bounded-suboptimal multi-goal task assignment and path finding”, in

Proceedings of the 2022 EEEI International Conference on Robotics and

Automation, ICRA, 2022, pp. 10731–10737.

[167] Jiaoyang Li, Pavel Surynek, Ariel Felner, Hang Ma, T. K. Satish Kumar,

and Sven Koenig, “Multi-agent path finding for large agents”, in

Proceedings of the 33rd AAAI Conference on Artificial Intelligence, 2019,

vol. 33, pp. 7627–7634.

[168] Wolfgang Honig, Scott Kiesel, Andrew Tinka, Joseph W. Durham, and

Nora Ayanian, “Persistent and robust execution of mapf schedules in

warehouses”, IEEE Robotics and Automation Letters, vol. 4, pp. 1125–

1131, 2019.

183

REFERENCES

[169] Nir Greshler, Ofir Gordon, Oren Salzman, and Nahum Shimkin,

“Cooperative multi-agent path finding: Beyond path planning and collision

avoidance”, in 2021 International Symposium on Multi-Robot and Multi-

Agent Systems, MRS 2021, 2021, pp. 20–28.

[170] Devon Sigurdson, Vadim Bulitko, William Yeoh, Carlos Hernández, and

Sven Koenig, “Multi-agent pathfinding with real-time heuristic search”,

in IEEE Conference on Computatonal Intelligence and Games, CIG, 2018,

vol. 2018-August, pp. 1–8.

[171] Vadim Bulitko and Nathan Sturtevant, “State abstraction for real-time

moving target pursuit: A pilot study”, in AAAI Workshop: Learning For

Search, 2006, vol. WS-06-11, pp. 72–79.

[172] Edmund K. Burke and Graham Kendall, Search Methodologies:

Introductory Tutorials in Optimization and Decision Support Techniques,

Springer, 2 edition, 2014.

[173] Alejandro Isaza, “A heuristic-based approach to multi-agent moving-

target search”, Master’s thesis, University of Alberta, Edmonton, Alberta,

Canada, 2008.

[174] William B. Kinnersley, “Cops and robbers is exptime-complete”, Journal

of Combinatorial Theory, Series B, vol. 111, pp. 201–220, 2015.

[175] Alessandro Berarducci and Benedetto Intrigila, “On the cop number of a

graph”, Advances in Applied Mathematics, vol. 14, pp. 389–403, 1993.

[176] Alejandro Torreño, Eva Onaindia, and Óscar Sapena, “FMAP: Distributed

cooperative multi-agent planning”, Applied Intelligence, vol. 41, no. 2, pp.

606–626, 2014.

[177] Akihiro Kishimoto, Alex Fukunaga, and Adi Botea, “Scalable, parallel

best-first search for optimal sequential planning”, in ICAPS 2009 -

Proceedings of the 19th International Conference on Automated Planning

and Scheduling, 2009, vol. 19, pp. 201–208.

184

REFERENCES

[178] Nathan R. Sturtevant, “Benchmarks for grid-based pathfinding”, IEEE

Transactions on Computational Intelligence and AI in Games, vol. 4, no.

2, pp. 144–148, 2012.

[179] Hang Ma, Craig Tovey, Guni Sharon, T K Kumar, and Sven Koenig,

“Multi-agent path finding with payload transfers and the package-exchange

robot-routing problem”, in Proceedings of the 30th AAAI Conference on

Artificial Intelligence, 2016, vol. 30, p. 3166 – 3173.

[180] Matteo Bellusci, Nicola Basilico, and Francesco Amigoni, “Multi-agent

path finding in configurable environments”, in Proceedings of the 19th

International Conference on Autonomous Agents and Multiagent Systems,

AAMAS, 2020, vol. 2020-May, pp. 159–167.

[181] Jack Edmonds and Richard M. Karp, “Theoretical improvements in

algorithmic efficiency for network flow problems”, Journal of the ACM

(JACM), vol. 19, pp. 248–264, 1972.

[182] John E. Hopcroft and Richard M. Karp, “An n5/2 algorithm for maximum

matchings in bipartite graphs”, SIAM Journal on Computing, vol. 2, pp.

225–231, 1973.

[183] Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma,

Thayne T. Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish

Kumar, Eli Boyarski, and Roman Barták, “Multi-agent pathfinding:

Definitions, variants, and benchmarks”, in Proceedings of the 12th

International Symposium on Combinatorial Search, SoCS, 2019, p. 151 –

158.

[184] Adi Botea, Bruno Bouzy, Michael Buro, Christian Bauckhage, and Dana

Nau, “Pathfinding in games”, in Artificial and Computational Intelligence

in Games, Simon M. Lucas, Michael Mateas, Mike Preuss, Pieter Spronck,

and Julian Togelius, Eds., vol. 6, pp. 21–31. Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, Dagstuhl, Germany, 2013.

[185] Amit Patel, “Heuristics”, 1999, [Online; accessed 14-July-2023].

185

REFERENCES

[186] Nathan Sturtevant and Michael Buro, “Improving collaborative pathfinding

using map abstraction”, in Proceedings of the 2nd Artificial Intelligence and

Interactive Digital Entertainment Conference, AIIDE, 2006, pp. 80–85.

[187] Christopher Wilt and Adi Botea, “Spatially distributed multiagent

path planning”, in ICAPS 2014 - Proceedings of the 24th International

Conference on Automated Planning and Scheduling, 2014, vol. 24, pp. 332–

340.

[188] Jiŕı Švancara, Marek Vlk, Roni Stern, Dor Atzmon, and Roman Barták,

“Online multi-agent pathfinding”, in Proceedings of the 33rd AAAI

Conference on Artificial Intelligence, 2019, vol. 33, pp. 7732–7739.

[189] Xiaoming Zheng and Sven Koenig, “K-swaps: Cooperative negotiation for

solving task-allocation problems”, in Proceedings of the 21st International

Joint Conference on Artificial Intelligence, IJCAI, 2009, p. 373 – 378.

[190] Jiaoyang Li, Zhe Chen, Daniel Harabor, Peter J. Stuckey, and Sven

Koenig, “Anytime multi-agent path finding via large neighborhood search”,

in Proceedings of the 30th International Joint Conference on Artificial

Intelligence, IJCAI, 2021, pp. 4127–4135.

[191] Fatih Semiz and Faruk Polat, “Incremental multi-agent path finding”,

Future Generation Computer Systems, vol. 116, pp. 220–233, 2021.

[192] Yinbin Shi, Biao Hu, and Ran Huang, “Task allocation and path planning of

many robots with motion uncertainty in a warehouse environment”, in 2021

IEEE International Conference on Real-Time Computing and Robotics,

RCAR, 2021, p. 776 – 781.

[193] Ben Strasser, Daniel Harabor, and Adi Botea, “Fast first-move queries

through run-length encoding”, in Proceedings of the International

Symposium on Combinatorial Search, 2014, vol. 5, pp. 157–165.

[194] Carsten Maple, Edmond Prakash, Wei Huang, and Adnan N. Qureshi,

“Taxonomy of optimisation techniques and applications”, International

Journal of Computer Applications in Technology, vol. 49, no. 3-4, pp. 251–

262, 2014.

186

REFERENCES

[195] Ko-Hsin Cindy Wang, “Massively multi-agent pathfinding made tractable,

efficient, and with completeness guarantees”, in Proceedings of the 10th

International Conference on Autonomous Agents and Multiagent Systems,

AAMAS, 2011, vol. 2, pp. 1343–1344.

[196] Alborz Geramifard, Pirooz Chubak, and Vadim Bulitko, “Biased cost

pathfinding”, in Proceedings of the 2nd AAAI Conference on Artificial

Intelligence and Interactive Digital Entertainment, AIIDE, 2006, vol. 2,

pp. 112–114.

[197] Ko Hsin Cindy Wang and Adi Botea, “Tractable multi-agent path planning

on grid maps”, in Proceedings of the 21st International Joint Conference

on Artificial Intelligence, IJCAI, 2009, vol. 9, p. 1870 – 1875.

[198] Richard M. Karp, “Probabilistic analysis of partitioning algorithms for

the traveling-salesman problem in the plane”, Mathematics of operations

research, vol. 2, pp. 209–224, 1977.

[199] Jacopo Banfi, Nicola Basilico, and Francesco Amigoni, “Intractability of

time-optimal multirobot path planning on 2D grid graphs with holes”,

IEEE Robotics and Automation Letters, vol. 2, pp. 1941–1947, 2017.

[200] Mathijs De Weerdt, Adriaan Ter Mors, and Cees Witteveen, “Multi-agent

planning: An introduction to planning and coordination”, Tech. Rep., In:

Handouts of the European Agent Summer, 2005.

[201] Ard C M Al and Mark Hoogendoorn, “Moving target search using theory of

mind”, in Proceedings - 2011 IEEE/WIC/ACM International Conference

on Intelligent Agent Technology, IAT. IEEE, 2011, vol. 2, pp. 66–71.

[202] Tng C. H. John, Edmond C. Prakash, and Narendra S. Chaudhari,

“Strategic team AI path plans: Probabilistic pathfinding”, International

Journal of Computer Games Technology, vol. 2008, pp. 1–6, 2008.

[203] Wikipedia contributors, “Mann–whitney u test — wikipedia, the free

encyclopedia”, 2022, [Online; accessed 23-November-2022].

187

REFERENCES

[204] Zeyad Abd Algfoor, Mohd Shahrizal Sunar, and Afnizanfaizal Abdullah,

“A new weighted pathfinding algorithms to reduce the search time on grid

maps”, Expert Systems with Applications, vol. 71, pp. 319–331, 4 2017.

[205] Wikipedia contributors, “Breadth-first search — wikipedia, the free

encyclopedia”, 2022, [Online; accessed 23-November-2022].

[206] Wikipedia contributors, “Dijkstra’s algorithm — wikipedia, the free

encyclopedia”, 2022, [Online; accessed 23-November-2022].

[207] Carsten Moldenhauer, “Game tree search algorithms for the game of cops

and robber”, Master’s thesis, University of Alberta, Edmonton, Alberta,

Canada, 2010.

[208] Rafa M. Kasim, “Interaction effect”, in Encyclopedia of Survey Research

Methods, Paul J. Lavrakas, Ed., pp. 340–342. Sage Publications, Thousand

Oaks, 2008, [Online; accessed 23-November-2022].

[209] Michal Čáp, Peter Novák, Jǐŕı Vokř́ınek, and Michal Pěchouček, “Multi-

agent RRT*: Sampling-based cooperative pathfinding”, arXiv preprint

arXiv:1302.2828, 2013.

[210] Stanley Melax, “New approaches to moving target search.”, in Proceedings

of the AAAI Fall Symposium, Games: Planning and Learning, 1993, pp.

30–38.

[211] Wikipedia contributors, “Friedman test — wikipedia, the free

encyclopedia”, 2022, [Online; accessed 23-November-2022].

[212] Janez Demšar, “Statistical comparisons of classifiers over multiple data

sets”, The Journal of Machine learning research, vol. 7, pp. 1–30, 2006.

[213] yeswecamp, “Perfect heist 2”, Microsoft Windows, 2021.

[214] Rachid Alami, Frédéric Robert, Félix Ingrad, and Sho’ji Suzuki, “Multi-

robot cooperation through incremental plan-merging”, in Proceedings of

1995 IEEE International Conference on Robotics and Automation, ICRA,

1995, vol. 3, p. 2573 – 2579.

188

REFERENCES

[215] Eli Boyarski, Shao-Hung Chan, Dor Atzmon, Ariel Felner, and Sven Koenig,

“On merging agents in multi-agent pathfinding algorithms”, in Proceedings

of the 15th International Symposium on Combinatorial Search, SoCS, 2022,

vol. 15, pp. 11–19.

[216] Adi Botea, Martin Müller, and Jonathan Schaeffer, “Near optimal

hierarchical path-finding”, Journal of game development, vol. 1, pp. 1–30,

2004.

[217] Daniel Harabor and Adi Botea, “Breaking path symmetries on 4-connected

grid maps”, in Proceedings of the 6th AAAI Conference on Artificial

Intelligence and Interactive Digital Entertainment, AIIDE, 2010, p. 33 –

38.

[218] Daniel Harabor and Alban Grastien, “Online graph pruning for pathfinding

on grid maps”, in Proceedings of the 25th National Conference on Artificial

Intelligence, AAAI, 2011, vol. 2, p. 1114 – 1119.

[219] Yue Hu, Daniel Harabor, Long Qin, and Quanjun Yin, “Regarding

goal bounding and jump point search”, Journal of Artificial Intelligence

Research, vol. 70, pp. 631 – 681, 2021.

189

	Dedication
	Acknowledgements
	Abstract
	Publications
	Nomenclature
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Overview of the Research
	1.1.1 Multi-Agent Systems
	1.1.2 Pathfinding
	1.1.3 Assignment Strategy

	1.2 Research Aim and Objectives
	1.3 Scope of The Research
	1.4 Original Contributions of the Thesis
	1.5 Thesis Outline

	2 Literature Review
	2.1 Introduction
	2.2 Single-Agent Algorithms
	2.2.1 A* Algorithm
	2.2.2 Incremental Heuristic Algorithms
	2.2.3 Real-Time Algorithms

	2.3 Multi-Agent Algorithms
	2.3.1 Pursuers and Single Target
	2.3.2 Pursuers and Multiple Targets

	2.4 Target Algorithms
	2.5 Design and Structure of the Experiments
	2.5.1 Problem Formulation and Description
	2.5.2 Existing Criteria for Assignments
	2.5.2.1 Summation-cost
	2.5.2.2 Makespan-cost
	2.5.2.3 Mixed-cost
	2.5.2.4 Complexity analysis

	2.5.3 Experimental Problem Settings

	2.6 Discussion

	3 Coordinating Multiple Agents with Assignment Strategy to Pursue Multiple Moving Targets
	3.1 Introduction
	3.2 Problem Formulation
	3.2.1 Assignment Strategies
	3.2.2 Strategy Multiple Target A*

	3.3 Empirical Evaluation
	3.3.1 Experimental Setup
	3.3.2 Experimental Results

	3.4 Conclusion

	4 Multi-Agent Path Planning Approach Using Assignment Strategy Variations in Pursuit of Moving Targets
	4.1 Introduction
	4.2 Proposed Assignment Strategies
	4.2.1 Twin-cost
	4.2.2 Weighted-cost
	4.2.3 Cover-cost

	4.3 Experimentation and Discussion
	4.3.1 Experimental Setup
	4.3.2 Performance Analysis

	4.4 Conclusion

	5 A Strategy-Based Algorithm for Moving Targets in an Environment with Multiple Agents
	5.1 Introduction
	5.2 Multiple Pursuers TrailMax: Proposed Approach
	5.2.1 The MPTM Algorithm
	5.2.2 Further Improvements

	5.3 Empirical Evaluations
	5.3.1 Experimental Setup
	5.3.2 Experimental Results

	5.4 Discussion
	5.5 Conclusion

	6 Adaptive Weighted-Cost Assignment Strategy for Efficient Multi-Agent Path Planning
	6.1 Introduction
	6.2 Pathfinding Problem and Current Methods for Assignment Strategies
	6.2.1 Pathfinding Problem for Multiple Agents
	6.2.2 Existing Assignment Strategy Methods

	6.3 Proposed New Methods for Assignment Strategies
	6.3.1 Adaptive Weighted-Cost
	6.3.2 Joint Weighted-Cost
	6.3.3 Joint Twin-Cost
	6.3.4 Combinations and Navigation Mode

	6.4 Experimentation and Discussion
	6.4.1 Experimental Problem Settings
	6.4.2 Performance Analysis
	6.4.2.1 Pathfinding Cost
	6.4.2.2 Minimum Cost
	6.4.2.3 Success Rate
	6.4.2.4 Assignment Runtime

	6.5 Conclusion

	7 Increasing Covered Area to Capture Moving Targets in a Dynamic Environment
	7.1 Introduction
	7.2 Methods
	7.2.1 Existing Approches
	7.2.1.1 The Cover Heuristic
	7.2.1.2 Cover with Risk and Abstraction and Multi-Target

	7.2.2 Proposed Approach

	7.3 Experimentation and Discussion
	7.3.1 Experimental Problem Settings
	7.3.2 Experimental Results and Performance Analysis
	7.3.2.1 Pathfinding Cost
	7.3.2.2 Minimum and Maximum Cost
	7.3.2.3 Success Rate
	7.3.2.4 Runtime

	7.4 Conclusion

	8 Conclusion and Future Work
	8.1 Thesis Summary
	8.2 Concluding Remarks
	8.2.1 Coordinating Multiple Agents with Assignment Strategy to Pursue Multiple Moving Targets
	8.2.2 Multi-agent Path Planning Approach Using Assignment Strategy Variations in Pursuit of Moving Targets
	8.2.3 A Strategy-based Algorithm for Moving Targets in an Environment with Multiple Agents
	8.2.4 Adaptive Weighted-Cost Assignment Strategy for Efficient Multi-Agent Path Planning
	8.2.5 Increasing Covered Area to Capture Moving Targets in a Dynamic Environment

	8.3 Limitations
	8.4 Directions for Future Works and Recommendations
	8.4.1 Assignment Strategy
	8.4.2 Multi-Agent Algorithms
	8.4.3 Target Algorithms

	Appendix A
	References

