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Abstract

Cancer chemotherapeutics kill rapidly dividing cells, which includes cells of the immune sys-

tem. The resulting neutropenia predisposes patients to infection, which delays treatment

and is a major cause of morbidity and mortality. To tackle this problem, we have isolated

several compounds that inhibit bacterial DNA repair, alone they are non-toxic, however in

combination with DNA damaging anti-cancer drugs, they prevent bacterial growth. These

compounds were identified through screening of an FDA-approved drug library in the pres-

ence of the anti-cancer compound cisplatin. Using a series of triage tests, the screen was

reduced to a handful of drugs that were tested for specific activity against bacterial nucleo-

tide excision DNA repair (NER). Five compounds emerged, of which three possess promis-

ing antimicrobial properties including cell penetrance, and the ability to block replication in a

multi-drug resistant clinically relevant E. coli strain. This study suggests that targeting NER

could offer a new therapeutic approach tailor-made for infections in cancer patients, by com-

bining cancer chemotherapy with an adjuvant that targets DNA repair.

Author summary

As the number of antimicrobial resistant bacteria are rising it is imperative to find new

solutions to combat this existential threat. Patients undergoing cancer chemotherapy are

particularly vulnerable to infection due to the damage the immune system receives as a

consequence of chemotherapy. Our focus was to hijack cancer chemotherapy to kill the

invading bacterial cells by compromising their defences. In particular, we focused on

inhibiting DNA repair mechanisms, these are employed by bacteria when threatened by

numerous anti-cancer therapies. To do this, we screened ~3000 approved drugs for an

effect on DNA repair. Of these, three were able to kill bacteria only in the presence of the

anti-cancer drugs, and also showed effectiveness against a multi-drug resistant bacterial

strain found in patients with sepsis. These results offer a promising new approach to the

design of antimicrobials tailored for use with cancer patients, and potentially an avenue

for the development of a new class of antimicrobial.
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Introduction

The fundamental therapeutic approach for cancer chemotherapy is to target rapidly dividing

cells by virtue of their need to replicate DNA [1]. However, this approach causes neutropenia

by off-target killing of circulating immune cells [2]. Coupled with the chemotherapy-induced

degradation of physical barriers such as mucous membranes, pathogen penetration is also

enhanced [3,4], further contributing to bacterial infection, the second most common cause of

death in cancer patients [5].

Anti-cancer compounds function through a variety of mechanisms including damaging cel-

lular DNA. Among these the first platinum based anti-cancer drug, cisplatin (cis-Diaminodi-

chloroplatinum, CIS), was fortuitously discovered because of its ability to inhibit cell division

in Escherichia coli [6]. The mechanism was found to include stalling replication through the

formation of DNA adducts with inter- and intra- strand crosslinks [7]. Cisplatin was subse-

quently found to similarly inhibit human cell proliferation and therefore was exploited to treat

a variety of cancer types [8]. In both bacterial and mammalian cells, cisplatin adducts are

repaired by the specific activity of enzymes in the nucleotide excision DNA repair (NER) path-

way [9,10]. Here the similarities end, bacterial NER uses fewer enzymes with no biochemical

homology to their human counterparts [11]. In bacteria, NER removes a variety of damage

types including cisplatin adducts [12] but is primarily deployed to resolve UV-induced DNA

damage. It begins with recognition and verification of DNA distorting lesions by UvrA2UvrB2,

followed by recruitment of an endonuclease (UvrC) that nicks the DNA on the same strand

either side of the lesion. This damage-containing oligonucleotide is removed by a helicase

(UvrD), before DNA pol I restores the correct DNA [13]. Therefore, with impaired NER, bac-

teria would not be able to repair the damage caused by cisplatin during cancer chemotherapy

[9,14].

In this study, we develop a new potential therapeutic approach for cancer patients by target-

ing bacterial NER to eliminate microbial infection that results as a consequence of cancer che-

motherapeutics and hospitalization. Among the available pathogens we chose E. coli, known to

be responsible for infections in humans [2,15–17] and even for complications in patients

receiving platinum therapies [18]. We have identified a series of NER inhibitors screened from

a library of FDA-approved compounds against E. coli by dosing bacteria with a sub-lethal con-

centration of cisplatin and looking for compounds that halt bacterial growth only in the pres-

ence of cisplatin [16,18]. Inhibition of NER alone does not kill bacteria [14,19], therefore it is

likely that compounds target DNA repair, preventing recovery from exposure to the genotoxic

anticancer compound. To confirm the mechanism of action for our lead candidates as inhibi-

tion of NER, we have further triaged the pool of hits using a series of in vivo, in vitro, in silico
and single-molecule assays. These findings represent a new mode for antimicrobial activity as

an adjuvant to cisplatin. We anticipate that this new class of inhibitors could be administered

directly to patients receiving cisplatin-based cancer chemotherapy, thereby protecting them

from chemotherapy-induced bacterial infection. To provide initial evidence that these treat-

ments may be useful in patients, we have successfully verified the effect of a subset of these

compounds against EC958, a pathogenic multidrug-resistant clinical isolate of E. coli, globally

disseminated and among the major pathogens responsible for urosepsis and hospital acquired

infections [16,20,21].

This study offers a significant step forward in the battle against co-infection during cancer

treatment, which leads to delays in chemotherapy treatment, and directly risks patients’ health.

In addition, by defining bacterial NER as a new drug target, this opens the door to the develop-

ment of new adjuvant drugs that work alongside DNA damaging agents, for wider application

against multi-drug resistant bacteria.

PLOS PATHOGENS Designing combination antimicrobials

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011875 December 7, 2023 2 / 17

Funding: This study was supported by the

Biotechnology and Biological Sciences Research

Council [grant numbers BB/P00847X/1, BB/

M019144/1, BB/T017767/1] to N.M.K. https://

www.ukri.org/councils/bbsrc/. Cancer Research U.

K. [grant number A30456] to N.M.K. https://www.

cancerresearchuk.org/. MRC-IAA [grant number

W596141] to N.M.K. https://www.ukri.org/

councils/mrc/. No funders played any role in the

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.ppat.1011875
https://www.ukri.org/councils/bbsrc/
https://www.ukri.org/councils/bbsrc/
https://www.cancerresearchuk.org/
https://www.cancerresearchuk.org/
https://www.ukri.org/councils/mrc/
https://www.ukri.org/councils/mrc/


Results

Screening for growth inhibitors in E. coli
The screening protocol used in this study is summarized in Fig 1A and is used to identify

FDA-approved compounds that prevent growth of E. coli only in the presence of cisplatin.

Since bacterial NER is the primary mechanism of repair used for UV adduct formation our ini-

tial hits are refined by their ability to inhibit growth following UV treatment of bacteria fol-

lowed by a series of further tests to confirm the mechanism of action as NER inhibition. To

ensure that drug efflux is not a barrier for drug action, thereby maximising the number of hits

from our screen of compounds, we created a drug efflux pump (tolC) knockout strain of E. coli
MG1655 (MG1655 ΔtolC). To understand the role of efflux, all screens were performed in par-

allel with WT MG1655 and MG1655 ΔtolC. The concentration of cisplatin (4 μg/mL or

13.3 μM) used in the screen was just below the minimal inhibitory concentration (MIC) we

recently determined for these strains [14], and all FDA-approved compounds were used at

20 μM. Growth inhibition was determined through the colorimetric resazurin assay (Fig 1B),

which relies on active metabolism to convert the blue coloured resazurin to pink resorufin

[19]. A screen of 2731 compounds revealed 172 potential NER inhibitors.

Validating NER as the inhibitor target

The above data strongly implies that the final set of inhibitors work in combination with cis-

platin to inhibit bacterial growth. However, to confirm the mechanism of action we performed

a series of studies directly testing efficacy against NER in vitro and in vivo.

We screened the initial hits using UV exposure of both our E. coli strains at a sub-MIC dos-

age of 75 J/m2 at 254 nm previously shown to activate NER stalling DNA replication [19]

before introducing the reduced panel of compounds in the absence of cisplatin. This second

Fig 1. Screening pipeline. Phenotypic screening of FDA approved compounds was performed in the presence of

cisplatin using E. coli strains MG1655 and the efflux pump knock-out MG1655 ΔtolC. The latter was used to increase

the search area for active compounds. A) Shows a schematic of the screening strategy, starting at finding compounds

with antimicrobial activity in the presence of cisplatin and then confirming their activity towards NER using a series of

mechanistic assays. Activity against the clinical isolate EC958 identified 3 lead compounds from the original 2731.

Collections I and II include a number of potential antimicrobials for future exploration. B) Growth inhibition assays in

the absence (top) and presence (bottom) of cisplatin. These assays use the colour change of resazurin to indicate

bacterial growth (pink) or its inhibition (blue). The appearance of new blue wells in the bottom plate indicates drug

activity only in the presence of cisplatin. Dual replicate controls are shown on the right lane (top to bottom) for no

drug, sub-lethal cisplatin dose with no drug but containing 2.5% DMSO, and a lethal dose of cisplatin.

https://doi.org/10.1371/journal.ppat.1011875.g001

PLOS PATHOGENS Designing combination antimicrobials

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011875 December 7, 2023 3 / 17

https://doi.org/10.1371/journal.ppat.1011875.g001
https://doi.org/10.1371/journal.ppat.1011875


step resulted in 34 hits (in MG1655 and MG1655 ΔtolC, combined). Based on availability, we

proceeded to fully characterise the best 5 of these hits (Pirarubicin, Mitoxantrone and 9-ami-

noacridine active against MG1655 and L-Thyroxine and Dienestrol only active against

MG1655 ΔtolC). Firstly, we tested for DNA incision in the presence of drug in vitro. This cru-

cial step occurs after damage recognition by UvrAB and precedes the resolution aspects of

repair and is therefore highly specific for NER. The standard approach for testing incision uses

gel-based incision assays [22], however, these are not scalable to high throughput screening

and are poorly quantitative. Therefore, we developed a new fluorescence based assay for inci-

sion (Fig 2A), which is less prone to photobleaching than another recently developed method

[23]. A complementary oligonucleotide pair with a 3’ Cy5 on one strand and 5’ black-hole

quencher (BHQ) on the other is minimally fluorescent. By placing a fluorescein adducted thy-

midine 14 nt away, but on the same strand as the Cy5, results in an NER-based incision 10 nt

from the Cy5-strand end. This leads to the 10 nt fragment leaving the duplex and an increase

in fluorescence (Fig 2A). We expressed and purified UvrA, UvrB and UvrC to quantify the

incision reaction using this fluorescence-based assay (reporting the data as relative

Fig 2. In vitro and in vivo tests for nucleotide excision repair inhibition. A) Schematic representation of the

fluorescence incision assay to assess inhibition of NER activity using one oligonucleotide with an engineered damaged

site (F = fluorescein) and a reporter (Cy5 = fluorophore); the second complementary oligonucleotide possessed a black

hole quencher (BHQ) to quench the Cy5 fluorescence until the top oligonucleotide is nicked by the NER system

proteins UvrA, UvrB and UvrC (UvrABC). B) Results from the fluorescence incision assay (A) reported as relative

fluorescence units (RFU). UvrABC is the control with no drug, and DNA has no drug or UvrABC. The progress was

checked at the time points indicated and error bars represent the standard error of the mean. * = p� 0.05 (n� 4

replicates) compared with UvrABC. (C) Confirmation of the fluorescence assay with a classical gel-based incision assay

demonstrating the inhibition of NER, U is undamaged pUC18, D is the assay in the presence of drug and UV indicates

the plasmid is damaged with 200 J/m2 UVC (data derives from�2 independent replicates) † = ½ incubation time (15

minute). (D) Inhibition of plasmid DNA repair in vivo. The percent recovery of transformants of pUC18 DNA

carrying ampicillin resistance when damaged with 200 J/m2 UVC (n = 3) after plating onto ampicillin agar is shown on

a scale relative to repair-efficient controls (See S1 and S2 Figs). Although L-thyroxine substantially reduced repair

activity, it remained on the borderline of statistical significance (p = 0.051). Error bars represent the standard error of

the mean.

https://doi.org/10.1371/journal.ppat.1011875.g002
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fluorescence unit (RFU) Fig 2B), but in parallel confirmed the validity of this approach using a

standard gel-based assay (Fig 2C). Pirarubicin (max inhibition of ~97% after 0.5h of incuba-

tion), Mitoxantrone (max inhibition of ~82% after 16h of incubation) and 9-aminoacridine

(max inhibition of ~49% after 2.5h of incubation) exhibited significant reduction in NER

activity, whereas Dienestrol (max inhibition of ~25% after 16h of incubation) showed only

partial inhibition of the pathway. L-thyroxine did not show inhibition in the fluorescence

assay, but in the gel-based assay, when incubated for a shorter period (15 minutes marked †),

did show inhibition (Fig 2C). Pirarubicin and Mitoxantrone are also known to be able to inter-

calate DNA [24,25], however, other intercalators tested were unable to effectively impair the

UvrABC mediated incision (S3 Fig).

To provide a second test that the drugs were targeting NER, we transformed bacteria with a

UVC damaged pUC18 plasmid (254 nm at 200 J/m2), carrying the ampicillin selection marker.

We reasoned that inhibition of the NER pathway would prevent recovery of transformants on

selective agar (S1 Fig shows the results for the ΔuvrA transformation control). The results were

reported as the percentage of colony forming units (CFU) per ml of solution of the treated

samples compared to the untreated bacteria (reported as 100%). As expected, all of the com-

pounds impaired recovery on selective media (Fig 2D) with L-thyroxine at the verge of signifi-

cance. As a control we also showed that the compounds alone did not impair E. coli growth

(S2 Fig).

Drug interactions with the molecules of NER

Having validated that the 5 compounds inhibit NER activity, we investigated how these func-

tion at a molecular level. Upon locating damage UvrA hydrolyses ATP, leading to the loading

of UvrB [26–29]. We directly measured the rate of ATP turnover for purified UvrA with and

without DNA using an in vitro NADH-linked assay [19]. When UvrA was incubated with

20 μM of each shortlisted compound, four were found to significantly affect its ATPase (Fig

3A). Among those, Pirarubicin, Mitoxantrone, Dienestrol and L-thyroxine all inhibited the

ATPase, with the latter two drugs having the strongest effect. To understand how these mole-

cules bind UvrA, we performed in silico docking using AutoDock Vina [30]. ATP was used as

a control during complete surface exploration of UvrA; the search successfully located both of

UvrA’s ATP binding sites based on comparison with crystal structures [31]. The docking pre-

cision was good enough to locate specific interactions with residues K37 (proximal ATP site)

and K646 (distal ATP site), which have been shown previously as essential for UvrA’s ATPase

activity [26]. The docking predicted a binding energy for ATP of -9.2 kcal/mol and -9.6 kcal/

mol, at the proximal and distal sites, respectively. The higher binding affinity of ATP predicted

for the C-terminal site is consistent with a recent kinetic study [32], further validating the

approach. The strongest affinities are shown as binding energies for each compound in Fig 3C

(further data can be found in S1 Table). Two compounds showed interaction only with the

ATP binding sites (Fig 3B); Pirarubicin, which had a stronger affinity than ATP at the proxi-

mal site (-9.8 kcal/mol), and Mitoxantrone, which had a preference for the proximal site over

the distal, although the binding energy of -7.5 kcal/mol was lower than that of ATP. The dock-

ing also revealed two previously unidentified allosteric binding pockets (Fig 3B). Allosteric site

‘BP1’ bound Dienestrol strongly (-8.7 kcal/mol), and the second allosteric site ‘BP2’ close to

the proximal ATPase cassette bound L-thyroxine (-7.0 kcal/mol) strongly.

To understand if the allosteric binding sites directly affected UvrA binding to DNA we

turned to single molecule visualization. Based on our previous data indicating C-terminal

fusion of a fluorescent protein to UvrA does not affect its function [27], we constructed and

expressed C-terminally fused UvrA-mNeonGreen (UvrA-mNG). Our recent findings showed
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Fig 3. Inhibition of E. coli UvrA binding to DNA by selected hits. A) NADH-coupled ATPase assay showing the

effect of the hits on UvrA’s ATPase activity expressed as percentage of that in the absence of drug (dotted line). Both

the untreated controls (± DNA) were respectively considered 100% to allow direct comparison with the treated

samples. The untreated control showed a 56% increase in catalytic activity in the presence of DNA. The error bars

represent the standard error of the mean. Asterisks mark significance: p� 0.05, n = 3 independent replicates. B) The

AlphaFold-calculated structure of the E. coli UvrA monomer showing the best docking conformation of the

compounds with the greatest effect on UvrA’s ATPase activity. The zoomed in image clearly shows ATP (red),

Pirarubicin (magenta), Dienestrol (blue) Mitoxantrone (green), L-thyroxine (yellow) docking. Remarkably L-

thyroxine and Dienestrol bind to previously undetected locations on the surface of UvrA. C) The minimum binding

energy for each compound reveals a range of affinities, although the absolute understanding of these affinities is not

clear the values are close or exceed that of ATP (-9.6 kcal/mol). D) Using the C-trap, binding of UvrA-mNG to a single

molecule of DNA could be observed. In the absence of any compounds the average combined fluorescence image from

PLOS PATHOGENS Designing combination antimicrobials
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how UvrA lacks efficient DNA binding activity when in the absence of ATP [27,33]. L-thyrox-

ine and Dienestrol both bind to allosteric sites and have the strongest reduction in ATPase,

and have not been identified as DNA intercalators (unlike Mitoxantrone and Pirarubicin

[24,25]) making them ideal compounds for single molecule visualization. In this assay, we sus-

pended a single molecule of DNA between two beads caught in optical traps using the Lumicks

C-trap system. Using microfluidics, we created two channels one with UvrA alone and the

other with UvrA plus drug. The single molecule of DNA was moved between these channels

using the laser tweezers. In the absence of drug, UvrA binds well to the DNA (Fig 3D top),

however with either 20 μM L-thyroxine or 20 μM Dienestrol we observed a huge reduction in

UvrA binding to the DNA (Fig 3D middle and bottom). Quantification of these interactions

was achieved by measuring the number of binders per minute over a 10-minute acquisition,

this enabled us to demonstrate a statistically significant reduction in binding (Fig 3E and 3F).

Do NER inhibitors enhance cisplatin cytotoxicity in bacteria?

To study the combined effects of the compounds identified with cisplatin we performed check-

erboards assays which are two-dimensional survival assays. For stronger clinical relevance

these were performed on the wild-type strain, which restricted the pool of compounds to Pir-

arubicin, Mitoxantrone and 9-aminoacridine.

A diagram of a checkerboard assay is shown in Fig 4A, the top row shows a serial dilution

of the drug to determine the MIC, and the rightmost column corresponds to the serial dilution

of cisplatin in the absence of the drug. As the drug concentration is raised (right to left in col-

umns) the MIC for cisplatin drops (yellow arrow), this indicates the drug and cisplatin posi-

tively cooperate to inhibit bacterial growth. Each step is a two-fold change in concentration;

therefore, the yellow arrow indicates a 16-fold reduction in cisplatin’s MIC. Similarly, increas-

ing cisplatin concentration (bottom to top rows) identifies the maximum cooperative effect on

drug dosing (green arrow), in the example this corresponds to an 8-fold reduction in MIC.

This process was used to determine the highest shift for both compounds able to inhibit

growth (Fig 4B). The results were also used to estimate the degree of the cooperation according

to the widely used FIC index [34] (Fig 4A). Mitoxantrone, 9-aminoacridine and Pirarubicin all

showed 2-fold or greater decrease in MIC. 9-aminoacridine was most potent with an increase

in antibacterial activity of 8-fold and increase in cisplatin activity of 4-fold in WT MG1655.

The FIC index indicated Mitoxantrone had an additive effect (FICi = 1) with cisplatin, while

9-aminoacridine and Pirarubicin showed partial synergy (FICi = 0.625). Furthermore, we

measured the combination of these compounds with the DNA damaging agent 4-NQO [19] to

further ensure that the antimicrobial effect observed was due to NER. The results shown in S5

Fig show a clear cooperation of the two agents supporting our previous data.

To move closer to future clinical studies, we also examined if our successful hits were effec-

tive against the multidrug-resistant urosepsis-causing E. coli clinical isolate, EC958 [35]. Cis-

platin’s MIC against EC958 was 3.13 μg/ml and 12.5 μg/ml respectively in absence and

presence of 2.5% DMSO (S4 Fig). These values are identical to that previously reported for

WT MG1655 [14], further supporting the use of this approach against multi-drug resistant

bacteria. Remarkably, all three drugs showed enhanced activity with cisplatin: Pirarubicin

enhanced the cisplatin MIC 8-fold, 9-aminoacridine 2-fold and Mitoxantrone 4-fold (Fig 4C).

a 10-minute video of DNA shows clear decoration with UvrA (top). In the presence of L-thyroxine (middle) or

Dienestrol (bottom) very few molecules bind DNA. (E & F) Quantification of DNA binding was provided by the

number of binders per minute. This revealed the number of UvrA molecules bound to DNA is significantly reduced in

presence L-thyroxine (n = 6 strands, p<0.05) or in the presence of Dienestrol (n = 6 strands, p<0.05).

https://doi.org/10.1371/journal.ppat.1011875.g003
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Furthermore, Pirarubicin appeared to have a synergistic effect (FICi = 0.5), whereas Mitoxan-

trone was partially synergistic (FICi = 0.75) and 9-aminoacridine additive (FICi = 1).

Discussion

Utilizing compounds that inhibit DNA repair offers a unique approach to tackle infection in

immunocompromised cancer chemotherapy patients. This has particular relevance for tack-

ling nosocomial infections in patients that are admitted to hospital. In this study we have

developed a new approach to the discovery and testing of adjuvant drugs that possess an

enhanced anti-bacterial activity in the presence of the cancer chemotherapy drug, cisplatin.

Confirmed using a number of evaluation screens and assays, the adjuvants target nucleotide

excision DNA repair. Five compounds were narrowed down from these screens, and among

these, three were also shown to possess activity, in combination with cisplatin, against the

multi-drug resistant E. coli clinical isolate, EC958.

Bacterial nucleotide excision repair represents an ideal target for drug development due to

the absence of any structural homology with the human counterparts. For instance, the closest

sequence homology between UvrA and any homo sapiens protein is ~30% (blast searching

UniProt and Protein Data Bank databases). To our knowledge, there has only been one study

that has successfully developed a bacterial NER inhibitor. In that study the investigators used

UV to damage bacterial DNA and screened ~40k compounds for effects against mycobacterial

NER, [36]. A single effective compound was isolated, however its clinical application is limited

because of its poor solubility and potency [19], along with the difficulty of co-administering

with UV. Therefore, our approach using cisplatin as the DNA damaging agent and screening

for adjuvants from an FDA-approved library offers the potential to rapidly progress to the

clinic. The compounds thus discovered are currently used in a number of applications ranging

from endocrinology to anti-cancer therefore we don‘t anticipate effects against eukaryotic pro-

teins different from the already tested activity and therefore we didn‘t perform tests on human

cell lines or proteins. The latter application is not surprising, given the overlap between antimi-

crobials and antineoplastics has been well established since, both aim to kill rapidly dividing

Fig 4. Inhibitory activity of selected hits against MG1655 and EC958 in the presence and absence of cisplatin. A)

A representative checkerboard assay plate, drug concentration is decreased left to right and cisplatin decreases bottom

to top. The yellow arrow indicates the greatest decrease in MIC for cisplatin (~16-fold) and for the drug (8-fold) this is

shown as the green arrow, the asterisk represents the well with the most efficient combination (lowest simultaneous

amount for both the drugs). B) Bar chart representation of the median fold decrease in MIC for MG1655 when the

drug and cisplatin were combined (as shown by the arrows in panel A). C) Same as (B) but for EC958 The panel was

limited to these drugs because of their ability to evade the efflux pump TolC. Data points are derived from three

independent replicates and error bars are the standard error of the mean.

https://doi.org/10.1371/journal.ppat.1011875.g004
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cells [37,38]. As a consequence, this raises the tantalizing prospect that simply changing the

anti-cancer drug treatment regimen might have immediate benefits to patients in terms of

reducing nosocomial infection.

Potential clinical significance of three compounds

Three of the lead compounds were effective against clinical isolates, therefore possessing lead

like characteristic and possibly offering the possibility of rapid advancement to the clinic.

9-aminoacridine is currently used as an externally applied antiseptic, however its use as an

antineoplastic agent has recently been proposed due to its action on PI3K [39]. Interestingly,

9-aminoacridine has also been used to derivatize cisplatin for improved DNA damaging capa-

bilities [40]. It is therefore possible that 9-aminoacridine functions with cisplatin to severely

damage the DNA, which overwhelms NER. This would be consistent with the lack of effect on

UvrA’s ATPase, however, the clear reduction in incision could equally derive from effects on

the other NER proteins. Furthermore, evidences suggest a link between recombination repair

and nucleotide excision repair to allow for survival after DNA damage [41]. Therefore, we can-

not exclude a 9-aminoacridine toxic effect on other bacterial DNA repair proteins. Mitoxan-

trone and Pirarubicin are both antineoplastic topoisomerase inhibitors and the mechanism of

action for these compounds includes DNA intercalation, although the anthracycline Pirarubi-

cin additionally functions through the generation of reactive oxygen species [42]. It is easy to

dismiss the effective drug properties of these compounds because they are mediated through

DNA intercalation, however, we demonstrated that both Mitoxantrone and Pirarubicin

directly inhibit UvrA’s ATPase activity in the presence and absence of DNA. The latter point is

extremely important, since inhibition is seen without DNA this indicates that intercalation

cannot be the sole mechanism of action. To support this, we also studied a Mitoxantrone ana-

logue (Pixantrone) and known DNA intercalators from the Camptothecin family (S3 Fig);

none of these compounds were able to inhibit NER in vitro.

UvrA may have a distinct allosteric binding pocket

Using in silico docking we modelled interactions between the compounds and UvrA. Interest-

ingly, Dienestrol and L-thyroxine showed strong affinity for two binding pockets distinct from

the ATPase sites. These compounds reduced the ATPase activity of UvrA by >70% in the

absence of DNA and ~60% in the presence of DNA, indicating these previously unidentified

pockets may act allosterically and offer potentially new druggable targets on UvrA. Further-

more, Dienestrol and L-thyroxine do not intercalate with DNA or inhibit bacterial growth

alone, but did impair bacterial cell division when combined with cisplatin or UV radiation.

Using single molecule imaging we showed that this was likely due to severely disrupted DNA

binding of UvrA. This finding indicates that these compounds can cooperate with these treat-

ments and opens up the possibility of finding more active analogues based on their chemical

scaffold.

Potential considerations of drug administration

Cisplatin is a widely used anticancer agent with a well-established antibacterial activity

[6,8,43]. However, the platinum compounds are unable to reach sufficiently high concentra-

tions to exert their antibacterial effects during cancer chemotherapy. The incidence of infec-

tion in cancer patients is significantly elevated due to neutropenia and exacerbated by time

spent in hospitals leading to nosocomial infection [44,45]. Interestingly, cisplatin has been

reported to have significant antibacterial properties, even being able to eradicate persister cells

of different species [43], indicating a possible strong bactericidal effect. Therefore, we reasoned
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that an adjuvant able to disrupt bacterial NER will lower cisplatin’s MIC sufficiently to allow

the platinum compound to act as an antibiotic alongside its therapeutic effect against cancer

cells. Since the administration of drugs in this study requires the presence of a DNA damaging

agent, this limits the period over when the drugs will be active. The pharmacokinetics of both

drugs will define the therapeutic window; however, the cooperative nature of the combination

means that lower drug concentrations are required to halt bacterial growth, lengthening the

interval during which the combination might provide beneficial effects. Furthermore, this

pilot study was conducted in defined media and in the presence of DMSO, which has been

shown to be detrimental for cisplatin activity [14,46], meaning that it may be more effective in
vivo. During drug administration in patients cisplatin can reach considerably higher concen-

trations (up to 75.5 μg.h/ml during a three hour infusion) [47] than required to inhibit bacte-

rial growth, coupled with our adjuvants this will facilitate bacterial cell death. This fixed and

very high administered concentration of anticancer drug means that we need only titrate up

the concentration of the adjuvant reducing risks from their combination, although future stud-

ies will be required to evaluate these risks. At present, we are engaged with further understand-

ing the combined pharmacokinetics and the effects of clinically relevant growth conditions as

a precursor for further developments.

In summary, here we have developed a screening strategy to find existing compounds that

work in combination with the anticancer therapeutic, cisplatin, which opens up huge potential

for the development of new antimicrobials. The compounds we have identified offer a starting

point for entry to the cancer clinic, either through direct application or for chemical modifica-

tion. The approach we have developed of screening in combination with DNA damaging

agents can be used to develop NER as a target; potentially offering a much-needed new class of

antimicrobial.

Materials and methods

Bacterial strains, media, and culture conditions

The strains used in this study include E. coli MG1655, MG1655 ΔuvrA, MG1655 ΔtolC,

MG1655 ΔuvrA ΔtolC, BL21 ΔuvrA ΔuvrB and EC958 [35]. The knockout strains were previ-

ously generated [19] using P1 transduction of the respective gene deletions from the Keio col-

lection [48]. Luria Bertani broth and agar was used for primary culture and maintenance of

bacterial strains. Strains were sub-cultured in MOPS (Melford, Berkshire, UK) minimal media

(pH 7.4) [49] supplemented with 0.4% glucose, 1.32 mM K2HPO4 and 0.1 μg/ml thiamine. All

strains were grown at 37˚C with vigorous shaking.

Antimicrobials and chemicals

The library of 2731 FDA-approved drugs were purchased from MedChemExpress, cisplatin

and 9-aminoacridine were purchased from Sigma, Dorset, UK. All other compounds used for

testing antimicrobial activity were purchased from MedChemExpress.

Cloning, expression and purification of E. coli UvrA, UvrB and UvrC

Unlabelled UvrB and UvrC (amplified from E coli MG1655, NC_0009313.3) were cloned into

the IPTG inducible vector pJB using primer pairs—UvrB.gibson_F (5’-ATGAGATCCTCT-

CATAGTTAATTTC-3’) and UvrB.gibson_R (5’-GGCGCGCCTTCAGGTAGC-3’) for UvrB

and UvrC.gibson_F (5’-ATGAGATCCTCTCATAGTTAATTTC-3’) and UvrC.gibson_R (5’-

GGCGCGCCTTCAGGTAGC-3’) for UvrC. Proteins were engineered with a flexible C-termi-

nal linker, followed by an AviTag, TEV protease site and 6X His-tag for purification using a
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Ni-NTA column. The unlabelled and mNeonGreen-tagged UvrA used in this study were

expressed, purified and stored as described previously [19], with the exception that the salt

concentration was increased to 100 mM KCl and 400 mM KCl for the storage of UvrB and

UvrC, respectively.

High-throughput screening

The FDA-approved library of 2731 compounds were screened against MG1655 and MG1655

ΔtolC in the presence of 4 μg/mL cisplatin in MOPS minimal medium [49] as described in Fig

1A. The compounds were screened at a final concentration of 20 μM and resazurin was used

to determine growth inhibition (Fig 1B). After initial screening, compounds exhibiting growth

inhibition in the presence of cisplatin were screened in the presence of UV at 75 J/m2 at 254

nm using a UV cross-linker (UVP/Analytik Jena UV Crosslinker CX-2000). Compounds

which retained antibacterial activity in the presence of 75 J/m2 UV were moved forwards and

those that did not show synergy in the presence of UV irradiation were kept aside for future

characterisation. The shortlisted compounds were subsequently characterised as described in

Fig 1A.

Antibacterial susceptibility testing

The minimum inhibitory concentration of antimicrobial compounds used in this study was

determined adapting CLSI guidelines [50] against MG1655, MG1655 ΔuvrA, MG1655 ΔtolC,

and MG1655 ΔuvrA ΔtolC, in MOPS minimal medium [49]. Resazurin was used to determine

the MIC as described previously [19].

Checkerboard assay

The checkerboard assay was used to assess activity of test compounds in the presence of cis-

platin. The broth microdilution-based checkerboard assay was used with a few modifications

[51,52]. A 2-fold series dilution of drugs in DMSO were plated across the plates ([DMSO] =

2.5%). Subsequently a 2-fold dilution of cisplatin in 0.9% v/v saline was plated (2.5 μl) in the

microplate carefully without mixing the two solutions. Finally, 95 μL of a bacterial suspension

in MOPS minimal medium prepared adapting CLSI guidelines was added to the wells [49,50]

to ensure activity of cisplatin [14]. For the calculation of the synergy the FIC index formula

was used: FICi = FICA + FICB where FICA = MICA combination / MICA alone and FICB =

MICB combination / MICB [34].

NADH-linked ATPase assay

This assay was modified from the previously described protocol [19] to enable larger numbers

of compounds to be assessed in a 96-well plate format. A 50 nM UvrA master mix (50 mM

Tris (pH 7.5), 50 mM KCl, 10 mM MgCl2, 0.5 mM phosphoenolpyruvate, 1 mM DTT, 210 μM

NADH, 2% v/v pyruvate kinase (600–1000 U/ml) and lactate dehydrogenase (900–1400 U/ml,

premixed stock from Merck)) was prepared for each independent replicate. Each reaction well

consisted of a 200 μL of the above master mix and 20 μM of drug. In addition, an untreated

control containing 200 μL 50 nM UvrA master mix and 2.5% DMSO were performed per

plate, this yielded the basal activity of UvrA. The components were incubated at room temper-

ature for ~5 minutes and then the reaction was started with the addition of 1 mM ATP. After

~6 minutes 0.1 ng/μl pUC18 DNA was added to the reaction mix. All results were reported as

a percentage of this basal activity. The experiments were performed in triplicate and the error

bars represent the standard error of the mean.
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Agarose gel-based DNA incision assay

Each incision reaction was carried out in 20 μL final volume of ABC Buffer (50 mM Tris (pH

7.5), 50 mM KCl, 10 mM MgCl2, 0.0001% sodium azide) containing 5 mM DTT, 1 mM ATP,

100 nM UvrA, 200 nM UvrB, 100 nM UvrC, 2.8 nM of pUC18 DNA irradiated at 200 J/m2 at

254 nm in the UV crosslinker (or undamaged DNA), and 20 μM of compound when indi-

cated. The mixtures were incubated at 37˚C for 30 mins and the reaction was stopped by heat

inactivation at 65˚C for 10 mins. DNA was separated and visualised on a 0.8% agarose gel.

Fluorescence-based incision assay

Two complementary oligonucleotides were designed to incorporate a fluorescein modified

thymine as a substrate for NER [53]. /BHQ/GT AAC TAA GCT TGA CGA TGG AGC CGT

AAC AGT ACG TAG TCT G and CAG ACT ACG TAC TGT TAC GGC TCC ATC /FT/TC

AAG CTT AGT TAC /Cy5/ (Integrated DNA Technologies, IDT, UK). At the 3’ terminus of

the damage (fluorescein) containing strand we placed a Cy5 fluorophore, and the 5’ terminus

of the complementary strand was labelled with an Iowa black hole quencher (BHQ) to quench

Cy5 fluorescence when annealed. UvrC incision of the fluorescein containing oligonucleotide

(14 bases on 3‘and 27 bases on 5‘) would produce a 10-base long oligonucleotide with a melt-

ing temperature of approximately 16˚C. Since the experiment is performed at 37˚C the

10-based oligo will detach relieving the fluorophore from the quencher and producing an

increase in fluorescence. The total volume per reaction in each well of a 384-well fluorescence

plate was 25 μl. Each reaction mix contained 5 mM DTT, 200 nM UvrA, 400 nM UvrB, 200

nM UvrC, and 1 mM ATP in ABC buffer and was prepared on ice. 100 nM of the DNA sub-

strate, pre-annealed by heating to 95˚C for 5 minutes and then slow cooling to room tempera-

ture was added to initiate the reaction. Cy5 fluorescence readings were taken from the bottom

after 0.5/1.5/2.5/16 h at 37˚C. The outer wells were filled with water to generate a humid envi-

ronment in the plate to minimize evaporation. The experiments were repeated at least twice

with 2 technical replicates each, the error was reported as the standard error of the mean

(n�4).

Repair assay for a UV damaged plasmid

Chemically competent cells of MG1655 ΔtolC and MG1655 ΔuvrA ΔtolC were prepared

according to the method previously described [54] and stored at -80˚C. Prior to transforma-

tion 50 μl of cells were thawed on ice for 20 minutes before 100 ng of pUC18 DNA, irradiated

at 200 J/m2 at 254 nm, was added and incubated on ice for 30 minutes. Subsequently, cells

were incubated at 42˚C for 30 seconds and then immediately placed on ice for two minutes.

Cells were then transferred to 350 μl LB broth containing 2x MIC of selected antimicrobial

agents and incubated for an hour at 37˚C with aeration. Cells were pelleted and resuspended

in pre-warmed 350 μl LB. Aliquots where then plated in LB agar containing ampicillin

(100 μg/mL) and incubated at 37˚C overnight.

To ensure that growth inhibition in this repair assay was due to activity against NER instead

of the compounds directly killing the bacteria, an additional control was performed. Cells were

grown to 0.5 (OD600) from an overnight culture and after pelleting were resuspended in LB to

a volume commensurate with the same cell concentration present in the UV damage repair

assay. These cells were incubated for one hour in presence or absence of drug and at the end of

the incubation period the bacteria were pelleted and resuspended in fresh LB broth. 5 μl were

then streaked onto an LB agar plate and incubated at 37˚C overnight. In parallel, 100 μl of the

cell suspension was transferred into a microtiter plate for OD600 measurement.

PLOS PATHOGENS Designing combination antimicrobials

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011875 December 7, 2023 12 / 17

https://doi.org/10.1371/journal.ppat.1011875


In silico drug docking

To study possible binding of the selected compounds to UvrA computational docking of UvrA

was performed following the adapted protocol described previously [19]. Since no E. coli UvrA

structure is available E. coli UvrA’s protein structure was retrieved from the AlphaFold data-

base [55,56], and then converted into pdbqt using AutoDock tools 1.5.7 [57]. The 3D struc-

tures of the compounds were downloaded from PubChem or Zinc databases [58,59], energy

minimized, and converted into the pdbqt format using OpenBabel [60]. AutoDock Vina [30]

was used to explore the possible binding of the most interesting compounds to UvrA. The

search space was maximised to include the entirety of the protein and the exhaustiveness

increased 1000 times (to 8000 from the standard setting of 8) to minimize the effect of a large

search space and thus obtaining more accurate docking. As a control, ATP was docked and

found to bind the distal and proximal ATPase cassettes validating the ability of the algorithm

to find reliable results. Both the docking models and the binding energy were analysed to find

possible binding sites on the protein and hypothesize a mechanism of action.

Single molecule microscopy

To directly visualize protein binding to DNA we used optical tweezers coupled with fluores-

cence imaging (C-trap, Lumicks, NL). This system uses microfluidics to allow the capture of a

single end-biotinylated Lambda DNA molecule between two streptavidin-coated silica beads.

To visualise UvrA-mNeonGreen binding to DNA we transformed a plasmid containing the C-

terminally tagged UvrA-mNeonGreen into BL21 ΔuvrA ΔuvrB [19] and grew the cells to mid-

log phase (0.4–0.6 OD600) before induction of expression with 0.5 mM IPTG at 37˚C for 3

hours. Cells were spun at 20000 rpm for 30 minutes at 4˚C and resuspended in buffer (50 mM

NaH2PO4, 500 mM NaCl, 15 mM imidazole pH 8). 100 μg/ml lysozyme was used with sonica-

tion to ensure complete cell lysis in the presence of protease inhibitor cocktail (no EDTA)

(ThermoFisher) and 1mM PMSF. The cell debris were spun from solution at 20000 rpm for 30

mins at 4˚C, and the concentration of UvrA-mNeonGreen in the supernatant was determined

by absorption at 506 nm (extinction coefficient = 116000 M-1cm-1). Prior to imaging, the lysate

was diluted in ABC buffer supplemented with 5 mM DTT and 1 mM ATP to a final UvrA-

mNeonGreen concentration of 5nM. Finally, the solution was clarified using a 0.22 μm syringe

filter before being applied to the system.

Using the microfluidics capacity of the C-trap, we recorded UvrA-mNeonGreen binding to

DNA in a channel with no compound present (untreated), followed by measuring binding to

the same strand of DNA in the compound-containing channel (treated), and vice versa (n = 6

strands total). Each video was recorded for 10 minutes with a 200 ms exposure at a framerate

of 2 Hz using exposure synchronisation. Videos were analysed using the TrackMate plugin of

Fiji (ImageJ), to objectively count the number of binders.
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