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Abstract   

The structure and composition of forest vegetation plays an important role 

in different ecosystem functions and services. This study aimed to 

identifying soil types based on vegetation characteristics using a deep 

learning model in the High Conservation Value (HCV) area of Central 

Kalimantan, spanning 632.04 hectares. The data on vegetation were 

collected using a combination method between line transect and quadratic 

plots were placed. The development of a deep learning model was based on 

the results of a vegetation survey and the processing of aerial photos using 

the Feature Classifier method. The results of applying a deep learning model 

could provide a relatively accurate and consistent prediction in identifying 

soil types (Entisols 62%, Spodosols 90%, Ultisols 90% accuracy). The 

composition of vegetation community in Ultisols was dominated of seedling 

and tree (closed canopy), meanwhile in Entisols and Spodosols was 

dominated of seedling and sapling (dominantly open canopy). Ultisols 

exhibited the highest species richness (57 species), followed by Spodosols 

(31 species) and Entisols (14 species). Ultisols, Entisols, and Spodosols 

displayed even species distribution(J' close to 1) without dominance of 

certain species (D < 0.5). The species diversity index was at a low to 

moderate level (H' < 3), while the species richness index remained at a very 

low level (D_mg > 3.5).   
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Introduction   

The structure and composition of forest vegetation play a pivotal role in 

ecosystem functions and services, such as carbon storage, nutrient cycling, 

and biodiversity conservation (1,2). Changes in forest structure and 

composition due to human activities, such as deforestation, can 

significantly impact forest ecology and the services it provides (3). Broadly, 

forest vegetation can be categorized into different layers based on its 

vertical arrangement (4). The uppermost layer, known as canopy, is 

composed of the tallest trees that creates a continuous leafy cover over the 

forest floor. The lower layer includes small trees, shrubs, and woody plants 

growing beneath the canopy, while the herbaceous layer consists of 

grasses, herbs, and other non-woody plants thriving on the forest floor (5,6). 

The horizontal stand structure delineates the distribution of individual 

species within their habitat (7).  
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 The structure and composition of vegetation in the 
forest refer to the physical composition and variety of 
plant species within the forest ecosystem, as well as the 
continuity of these species (8). Forest vegetation structure 
can be categorized based on tree height and diameter, 
plant cover density, and vertical layers of vegetation (9,10). 
The composition of forest vegetation refers to the plant 
species present, emphasizing the need for inventory 
activities to consider  Indonesian forest types and strata 
(11). Forests exhibit a rich diversity of tree, shrub, 
herbaceous, and grass species, with their presence 
influenced by a variety of factors, including soil type, 
climate, disturbance regimes, and human activities 
(12,13). Vegetation analysis is one of the ways to explore 
the composition of types, forms, and vegetation structures 
of plants (14). 

 The structure and composition of vegetation may 
be directly influenced by soil types, as they are closely 
linked to the areas where the plants thrives (15,16). Addi-
tionally, the plant species that flourishes play a crucial role 
in determining the species of fauna that inhabit these 
ecosystems (17,18). In this study, the soil types used are: 
Entisols, Spodosols, and Ultisols. According to (19), 
Entisols are primarily sandy soils with a minimal soil 
development profile, lacking a distinct lower horizon. 
Spodosols are sandy mineral soils featuring a spodic layer 
<100 cm, marked by an acidic pH, and an accumulation of 
organic matter, Al, and/or lacking Fe oxide in the lower 

horizon (20,21). Ultisols, are clay mineral soils 
characterized by an acidic pH (lowest pH), low base 
saturation, an accumulation of clay in the lower horizon, 
and argillic characteristics (22,23). 

 Research into the structure and composition of 
vegetation typically seeks to enhance our understanding 
of fundamental ecology for the development of 
sustainable forest management (24,25). However, in this 
study, the characteristics of the vegetation were 

developed as a basis for identifying specific soil types. In 
addition to traditional methods, the incorporation of deep 
learning, specially through the Feature Classifier method, 
has proven effective in recognizing and classifying images 
for the identification of land cover and vegetation 
characteristics (26,27). The Feature Classifier is employed  
to categorize images into distinct groups (28,29). This 
study aims to identify soil types in Entisols, Spodosols, and 
Ultisols based on vegetation characteristics and deep 
learning models.   

 

Materials and Methods 

Study Area       

This study was conducted in oil palm plantations located 
in Seruyan Regency and Kotawaringin Timur Regency, 
Central Kalimantan Province, within a HCV area covering 
632.04 Ha (121.93 ha Entisols, 265.75 ha Spodosols,   
244.36 ha Ultisols). The research spanned six months, from 
August 2022 to January 2023. The study site featured a flat 
to slightly undulating topography, with elevations ranging 
from 5 to 32 meters above sea level (m a.s.l). The area 
encompassed six soil orders: Oxisols, Ultisols, Inceptisols, 
Histosols, Spodosols, and Entisols. In this study, Ultisols 
were selected from the subgroups Aquic palaeudult and 
Typic paleaqult, Entisols from Albic Quartzipsamment, and 
Spodosols from Typic haplohumod (Fig.1.) 
 

Procedures        

Research tools and materials        

The necessary tools and materials included a clinometer, 
compass, circumference gauge, 20 m plot thread, 10 m 
plot thread, 5 m plot thread, 2 m plot thread, label, GPS, 
camera, tape measure, wood plot, thermometer, 
hygrometer, soil tester, plastic bags, identification books, 
observation sheets, stationery, label paper, raffia rope, 
and alcohol 70%. 

Fig. 1. Location in oil palm plantations in Seruyan Regency and Kotawaringin Timur Regency, Central Kalimantan Province.  
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Data collection methods        

The collected data encompassed information on the 

number of individuals in the seedling stage and the 

diameter at breast height (DBH) for each phase of 

rejuvenation or vegetation growth. The vegetation data 

collection method involved a combined approach using 

both line transects and quadratic plots (grid system). The 

size of each plot was adjusted to the observed vegetation 

level, with systematic placement carried out by 

establishing transects to the north, south, west and east. 

Observations of the undergrowth focused on non-woody 

plants, generally located above the forest floor. The 

observations of forest structure and composition involved 

categorizing the vegetation into different stages according 

to the following criteria: (Fig. 2). 

1) Seedling: A sapling with a height of less than 150 cm. 

2) Sapling: A sapling with  a height of more than         

150 cm, but had a trunk diameter of less than       

10 cm. 

3) Pole: A young tree with a diameter ranging from     

10 to 20 cm. 

4) Tree: A woody plant with a diameter exceeding       

20 cm.  

 In each observation station, a total of four quadratic 

transects were positioned. Each plant within the plot were 

labeled to facilitate data collection. Every individual 

present in each plot at the observed station was 

documented on the observation sheet. Subsequently, the 

number of individuals per species in each quadrat was 

calculated to determine the importance value of each 

species. Plant species were captured using a photo 

camera, and identification was performed using an 

identification book. Sampling Intensity (SI) for forest area 

< 1000 Ha was set at 10% of the area. 

 

Sampling Intensity (SI) =  

 

n  = Number of Plots/ PU 

LPU = Plot Area/ PU 

LH   = Forest area inventoried 

Data preparation with the feature classifier method        

A deep learning model was developed based on the 

findings from a vegetation survey and the processing of 

aerial photos using the Feature Classifier method. The 

data utilized in this study consisted of plot data gathered 

during field surveys to determine the relative abundance 

and diversity of forest plant species within each of the 

Entisols, Spodosols and Ultisols soil types at the study site. 

The survey plot data were then employed to train a 

prediction model for soil types at the study site, which 

encompasses seven locations, each characterized by its 

specific soil type. The total number of sample plots used as 

training data amounted to 86 plots (Fig. 3).  

 The preparation of training data was executed using 

GIS software, resulting in generation of image data and 

label data for each image section (Fig. 4). A total of 1302 

image chunks, each measuring 512x512 pixels, were 

employed in creating the deep learning model.  

Data analysis       

Relative abundance        

Relative abundance represents the percentage 

composition of organisms of a specific type in relative to 

the total number of organisms in a given area, 

encompassing vegetation frequency, density, dominance, 

and the importance value index. Different populations 

within a community coexist in varying relative proportions. 

Vegetation frequency serves as an attribute that describes 

the probability of finding a species in a particular area. The 

probability is determined based on the specie’s 

occurrence in a series of sample units. Frequency acts a 

measure of uniformity or distribution. The presence of a 

certain frequency type describes the distribution pattern 

of that type, indicating whether it is spread throughout an 

area or concentrated within a specific group. 

 

Absolute Frequency, 

 

 

Relative Frequency, 

 

 

 Vegetation density is the percentage of a particular 
species of vegetation or plants that inhabit a certain area. 

This metric reveals the number of individual species within 

a defined unit area, providing a quantitative description of 

the species abundance at the observation site. 

 

Fig. 2. Research sampling sketch.  
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Fig. 3. Distribution of field survey plots used as training data for the deep learning model. The red dot is the location of the field survey plots.  (a) and (b) show the 
distribution of samples for areas with a soil type of Entisols. (c), (d) and (e) show the distribution of samples for areas with a soil type of Ultisols.   (f) and (g) show 
the distribution of samples for areas with a soil type of Spodosols.  
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Absolute Density, 

 

 

Relative Density, 

 

 Dominance can be interpreted as the dominance of 
one species over another. It can be in terms of space, light, 

and others. This dominance is often expressed through 

matrix like abundance and density, cover percentage and 

basal area (BA), volume, biomass, importance value index 

(IVI). 

 

Absolute Dominance, 

 

 

Relative Dominance, 

 

 Importance Value Index (IVI) is an analytical tool 

employed to assess the dominance of a species within a 

particular community. This index is calculated by summing 

the value of relative density, relative dominance, and 

relative frequency, with the maximum possible total being 

300%. The higher the IVI value of a particular species 

indicates a greater degree of dominance within the 

community. 

 

Importance Value Index (IVI) of Herbs/Seedling 

 

 

Importance Value Index (IVI) of Sapling, Pole & Tree 

Species diversity       

Species diversity is defined as the number of different 

species in an ecosystem and their relative abundance. 

 
 

 

H'  = Shannon-Wiener diversity index 

Pi = the proportion of the entire community made up of 
species 

Fig. 4.  Image chunks as data for the creation of deep learning model are provided with the label information of soil type.  
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ni = number of individuals of a species i 

N = total number of individuals 

 Two key components of measuring species diversity 

are species richness and species evenness. Species 

richness quantifies the number of genetically or 

functionally related groups of individuals. In most 

vegetation surveys, richness is expressed as the number of 

species, and is commonly referred to as species richness. 

 

 

Dmg = Margalef’s index 

S     = total number of species 

N     = total number of individuals in the sample 

Ln    = natural logarithm 

 

 Species evenness, another component of diversity, 

is the proportion of species or functional groups present in 

a habitat. Greater evenness indicates a more 

proportionally distribution of species, signifying a 

balanced representation of various organisms. Conversely, 

a habitat with low evenness indicates that several species 

dominate that habitat, creating an uneven distribution 

where certain species hold greater influence. 

 

 

J'          = evenness value (between 0 – 1) 

H'         = Shannon-Wiener diversity index 

Dmax         = maximum value of diversity index 

 

Deep learning modeling with the feature classifier 

method       

The deep learning model was developed using the Jupyter 

Notebook software, incorporating the Python libraries 

arcpy and arcgis.learn. The Object Classification Models, 

specially the Feature Classifier in the arcgis.learn library, 

were used to construct the deep learning model for the 

images within the provided training data. It is essential to 

note that to utilize the arcpy and arcgis.learn libraries, a 

valid license for ArcGIS Pro software with the Image 

Analyst extension is required.  

 The "prepare_data()" function serves to divide the 

training data into training and validation datasets, 

maintain a division ratio of 50:50.Subsequently, the 

"model.lr_find()" function is used to determine the 

optimal learning rate, which is established at 0.00069 for 

the model fitting process. The training of the model is 

executed using the “model.fit” function, iterating through 

39 epochs until the process is automatically halted due to 

the model accuracy plateauing and showing minimal 

changes (Table 1). Upon inspecting the graph, it is evident 

that the formed model does not exhibit signs of overfitting 

(Fig. 5).  

 The evaluation of model performance through the 

Confusion Matrix method, applied to the validation data, 

reveals a high level of accuracy. The deep learning model 

effectively distinguishes images within the training data, 

categorizing them based on each soil type (Fig. 6). 

 Subsequently, the previously developed deep 

learning model was employed to categorize soil types 

within the research area. Before applying the model, it was 

necessary to create a grid overlay on the aerial 

photographs of the study site, with each plot measuring 20 

x 20 meters. Consequently, a total of 11,203 plots were 

established across the entire research area. Precision, 

recall and f1-score values were computed through the 

calculation of true & false positives, as well as true & false 

negatives (Fig. 7). 

 True Negative (TN) occurs when a plot that should 

have a soil type of non-Entisols or non-Spodosols, or non-

Ultisols is predicted as a soil type of non-Entisols, or non-

Spodosols, or non-Ultisols, respectively.  

 True Positive (TP) occurs when a plot that should 

have a soil type of Entisols, or Spodosols, or Ultisols is pre-

dicted as a soil type of Entisols, or Spodosols, or Ultisols, 

respectively. 

 

EPOCH TRAIN_LOSS VALID_LOSS ACCURACY TIME 

0 1.963028 1.301305 0.401163 0:55 

1 1.838040 1.232017 0.445736 0:58 

2 1.777831 1.109779 0.496124 0:54 

3 1.623583 0.959240 0.569767 0:50 

4 1.466226 0.917420 0.583333 0:52 

… … … … … 

34 0.158218 0.033353 0.988372 0:50 

35 0.169254 0.018230 0.996124 0:50 

36 0.170862 0.027969 0.988372 0:50 

37 0.140715 0.016946 0.996124 0:50 

38 0.117391 0.021682 0.990310 0:50 

Table 1. Train_Loss, Valid_Loss, Accuracy and Processing Time per Epoch 
values 

Fig. 5. Graph of Train_Loss and Validation_Loss during the creation of the 
deep learning model.  
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 False Negative (FN) (type-2 error) occurs when a 

plot that should have a soil type of Entisols, or Spodosols, 

or Ultisols is predicted as a soil type of non-Entisols, or non

-Spodosols, or non-Ultisols, respectively. 

 False Positive (FP) (type-1 error) occurs when a plot 

that should have a soil type of non-Entisols, or non-

Spodosols, or non-Ultisols is predicted as a soil type of 

Entisols, or Spodosols, or Ultisols, respectively. 

 Precision, recall and f1-score values are calculated 

using the formula below : 
 

precision = TP / (TP + FP)  .....................................................(1) 

recall        = TP / (TP + FN).......................................................(2) 

f1-score   = 2*(recall*precision) / (recall + precision)...........(3) 

accuracy  = (TP + TN) / (TP + FP + TN + FN)...........................(4) 

 Precision incorporates the False Positive (FP) 

variable, and recall involves the False Negative (FN) 

variable. Consequently, a smaller False Positive (FP) 

results in a higher precision value, while a  smaller False 

Negative (FN) leads to greater recall. The f1-score falls 

within a range of 0 – 1, with value closer to 1 indicating 

superior precision and recall values for the formed deep 

learning model formed. Meanwhile, accuracy describes 

how accurate the deep learning model’s proficiency in 

accurately classifying soil types within the research area.  

 

Results and Discussion  

Number of Vegetation Species and Individuals in Entisols, 

Spodosols, and Ultisols        

Examining Fig. 3, it is evident that all vegetation levels 

(seedling, sapling, pole, tree) in Ultisols exhibited a higher 

number of species compared to Entisols and Spodosols. 

Entisols had the lowest number of species, particularly at 

the tree vegetation level. The number of species observed 

at the sapling vegetation level surpassed those at the 

seedling, pole, and tree levels. Interestingly, both 

Spodosols and Ultisols exhibited the same number of 

species at the pole and tree vegetation level. 

 The abundance of species does not always correlate 
with the overall number of individuals in a given area, as 

evident in the comparison between Fig. 8 and 9. Despite 

Ultisols having a higher number of species (seedling and 

sapling vegetation level) compared to Spodosols, the 

latter exhibited a greater total number of individual. At the 

pole and tree vegetation levels in Ultisols, the total 

number of individuals exceeded those in Spodosols and 

Entisols. Within the studied vegetation community, 

Entisols consistently displayed the lowest number of 

individuals and the least presence at the tree vegetation 

level. In compared to Spodosols and Ultisols, Entisols had 

Fig. 6. The Confusion Matrix of performance test of the deep learning model 
against validation data.  

Fig. 7. The Matrix of TP, FP, FN, TN, Precision, Recall dan Accuracy.  

Fig. 8. Number of species in the vegetation community of Entisols, Spodosols 
and Ultisols.  

Fig. 9. Total individuals in the vegetation community of Entisols, Spodosols 
and Ultisols.  
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the fewest species, totaling 14. Spodosols, on the other 

hand, harboured 31 species across the seedling, sapling, 

pole, and tree vegetation levels, while  Ultisols boasted the 

highest species diversity, with 57 identified species. 

 At the seedling level, Ultisols boasted 26 species, 

totaling 4,901 individual plants. Spodosols, with 17 

species, exhibited the highest total number of individual 

plants at 13,841. Entisols had the least number of species 

(6 species) and the lowest total number of individual 

plants, amounting to 819. Moving to sapling level, Ultisols 

led with the highest number of species at 41 species      

(923 plants). However, Spodosols, despite having                

25 species, recorded the highest total number of individual 

at  1,497. Entisols, with 12 species, had the lowest total 

number of individual plants, totaling 94. At the pole level,  

Ultisols excelled with the highest number of species         

(29 species) and total individuals (152 plants), surpassing 

Spodosols (14 species, 113 plants) and Entisols (8 species, 

23 plants). Remarkably, Entisols exhibited only one species 

with a mere 2 individual plants, markedly lower than 

Ultisols with 28 species and 6,111 individual plants, and 

Spodosols with 14 species and 79 individual plants  

 Based on the provided data, Ultisols exhibited the 

highest number of species at the seedling, sapling, pole, 

and tree levels, consistent with the total number of 

individual plants at the pole and tree levels. However, at 

the seedling and sapling levels, Spodosols recorded the 

highest number of individuals despite having a lower 

number of species. Spodosols hosted only 4 plant species 

at the study site: Barringtonia sp, Calophyllum hosei, 

Ochanostachys sp, and Polyalthia glauca. In Entisols, 4 

plant species were identified, namely Acacia mangium, 

Alstonia scholaris, Cocos nucifera, and Syzygium sp2. 

Ultisols, on the other hand, harbored a unique set of 29 

plant species at the study site, including Aglaia sp, 

Aquilaria malacensis, Campnosperma coriaceum, 

Compassia excelsa, Cratoxylum sp., Cryptocarya nitensyang  

and other species outlined in Table 2. 

Vegetation Characteristics Based on Vegetation Commu-

nity Level         

The overall vegetation community in Entisols at the study 

site was predominantly characterized by the seedling 

level. In Entisols, no species emerged as dominant in the 

community (D value < 0.5), except at the tree vegetation 
Table 2. The names of plants found in each type of soil  
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level where only 1 species was identified in the sample 

plot. The vegetation community of Entisols exhibited very 

low level of species richness (Dmg )at the seedling, sapling, 

pole, and tree levels, all scoring below 3.5 (Table 3). 

Species diversity (H' ) was moderate at the  

seedling,sapling, pole, and tree levels, while at the 

seedling and tree levels, it was classified as low in Entisols, 

with an index value of H' < 1.5. The species          

abundance/species evenness (J'  ) values in Entisols was 

close to 1, indicating an absence of species dominance in 

the overall vegetation community, except at the tree level 

where only 1 tree data point was collected  across all 

samples at the location.   

 The overall vegetation community in Spodosols at 

the study site was predominantly characterized by the 

seedling level. In Spodosols, no species emerged as 

dominant in the community, with a D value less than 0.5. 

The vegetation community in Spodosols exhibited a low 

level of species richness (Dmg) at the seedling, sapling, pole, 

and tree levels, all scoring below 3.5. At all levels of the 

vegetation community in Spodosols, species diversity (H') 

was moderate, with an index value of (H' ) less than 1.5. 

The species abundance/evenness (J' ) value in Spodosols 

was close to 1, indicating an absence of species 

dominance in the overall vegetation community (Table 3). 

 Similarly, the overall vegetation community in 

Ultisols at the study site was dominated by the seedling 

Fig. 10. Vegetation structure and composition in Entisols (left), Spodosols (middle) and Ultisols (right).  

Index in Entisols Index in Spodosols Index in Ultisols 
Soil Type  

Dmg D H'  J'  Dmg D H'  J'  Dmg D H'  J'  

Seedling 0.75 0.22 1.43 0.80 1.68 0.13 2.02 0.71 2.94 0.12 1.84 0.57 

Sapling 2.42 0.11 2.13 0.86 3.28 0.13 2.26 0.70 6.01 0.09 2.70 0.72 

Pole 2.23 0.16 1.87 0.90 2.75 0.18 1.94 0.74 5.37 0.10 2.63 0.79 

Tree 0.00 1.00 0.00 0.00 2.98 0.17 1.96 0.74 5.50 0.18 2.25 0.68 

Table 3. The comparison of species richness index, dominance index, species diversity index and species evenness index in Entisols, Spodosols, and Ultisols  
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and tree levels. In Ultisols, no species emerged as 

dominant in the community, with a D value less than 0.5. 

The vegetation community in Ultisols exhibited a low level 

of species richness (Dmg) at the seedling level, with an index 

value below 3.5, but had a high level of species richness 

from the sapling to tree vegetation levels, with an index 

value of 5 or greater. At all levels of the vegetation 

community in Ultisols, species diversity (H') was moderate, 

with an index value of H' less than 1.5. The species 

abundance/evenness (J') value in Ultisols was close to 1, 

indicating an absence of species dominance in the overall 

vegetation community (Table 3).  

 Based on Table 3, the highest species richness index 
was observed in Ultisols, followed by Spodosols and 

Entisols. Although Entisols exhibited a higher dominance 

index due to the presence of a dominant plant, overall, 

there were no dominant species in Entisols, Spodosols, 

and Ultisols (D < 0.5). The species diversity index (H') in 

Ultisols was higher compared to Spodosols and Entisols. 

The value of species abundance/species evenness (J') in 

Entisols, Spodosols, and Ultisols was close to 1, indicating 

an absence of species dominance in the vegetation 

community as a whole. Aerial photos revealed differences 

in color and density in the vegetation of Entisols, 

Spodosols, and Ultisols, as illustrated in Fig. 11. The results 

suggest that Ultisols in the study site were dominated by 

the seedling and tree levels, forming a closed canopy. In 

contrast, Entisols and Spodosols were dominated by the 

seedling and sapling levels, resulting in a more open 

canopy. 

Vegetation Characteristics Based on Vegetation Struc-
ture         

Based on the vegetation structure at each rejuvenation 

level on Entisols land, the highest Importance Value Index 

(IVI) value indicates the dominant vegetation species. The 

IVI can be interpreted based on its value, where a higher 

Fig. 11. The vegetation development of Entisols (top), Spodosols (middle) and Ultisols (bottom) as seen from the aerial photos from 2007 to 2021.  
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value signifies a greater level of dominance in the 

community, and vice versa. Table 4 below presents the 

three most dominant vegetation species in each 

vegetation level stratum at the study site, along with the 

individual potential estimate per hectare. At the seedling 

level, dominance was observed for Syzygium tawahense, 

Syzygium sp, and Rhodomyrtus tomentosa. Each vegetation 

level exhibited different dominant species, as illustrated in 

Table 4, reflecting variations in species composition in the 

sapling (Baeckea frutescens, Rhodomyrtus tomentosa, 

Syzygium zeylanicum), pole (Tristaniopsis Merguensis, 

Syzygium sp, Baeckea frutescens), and tree (Tristaniopsis 

Merguensis) stages. 

 The Importance Value Index (IVI) on Spodosols re-

veals different dominant species compared to Entisols and 

Ultisols. Table 5 presents the three most dominant vegeta-

tion species in each stratum of the vegetation level in 

Spodosols at the study site, along with the individual    

potential estimate per hectare. Each vegetation level     

exhibited distinct IVI values for seedling (Syzygium        

zeylanicum, Cratoxylum arborescens, Tristaniopsis 

merguensis), sapling (Cratoxylum arborescens,                Tris-

taniopsis merguensis, Melaleuca Leucadendron), pole 

(Cratoxylum arborescens, Combretocarpus rotundatus, 

Syzygium tawahense), and tree (Shorea balangeran,      Cra-

toxylum arborescens, Combretocarpus rotundatus). 

 Table 6 illustrates the Importance Value Index (IVI) 

in Ultisols, presenting the three most dominant vegetation 

species in each stratum of the vegetation level at the study 

site, along with the individual potential estimate per 

hectare. Distinct IVI values were observed for seedling 

(Baeckea frutescens, Syzygium tendens, Cratoxylum 

arborescens), sapling (Melaleuca leucadendron, Cratoxylum 

arborescens, Syzygium tawahense), pole (Schima wallichii, 

Melaleuca Leucadendron, Syzygium tawahense), and tree 

(Schima wallichii, Syzygium tawahense, Macaranga 

gigantea). Notably, at the seedling vegetation level, there 

was species similarity between the IVI of Ultisols and 

Spodosols, specifically Cratoxylum arborescens. 

Conversely, there was no species similarity in Entisols. The 

similarity in species between the IVI of Ultisols and 

Spodosols was also observed at the sapling (Melaleuca 

leucadendron) and pole (Syzygium tawahense) levels. 

Additionally, a species similarity between the IVI of 

Entisols and Ultisols was found at the sapling level, namely 

Cratoxylum arborescens. However, there was no species 

similarity at the tree vegetation level in Entisols, 

Spodosols, or Ultisols. 

 Several dominant plant species were identified to 

expedite the identification of soil types, specifically 

Ultisols, Entisols, and Spodosols, across various 

vegetation levels, including seedling, sapling, pole, and 

tree. To ascertain more precise dominant plant species, 

Vegetation Species Vernacular Individual Potential (ha) IVI (%) 

Seedling 

Syzygium tawahense Ubar merah 46,250 56.14 

Syzygium sp3 Galam tikus 44,375 54.68 

Rhodomyrtus tomentosa Karamunting 19,219 45.02 

Sapling 

Baeckea frutescens Ujung atap 250 51.30 

Rhodomyrtus tomentosa Karamunting 750 50.91 

Syzygium zeylanicum Nasi nasi 275 35.28 

Pole 

Tristaniopsis merguensis Pelawan 38 67.71 

Syzygium sp2 Galam tikus 31 58.71 

Baeckea frutescens Ujung atap 25 56.92 

Tree Tristaniopsis merguensis Pelawan 3 300 

Table 4. Importance Value Index (IVI) for the Entisols land  

Vegetation Species Vernacular Individual Potential (ha) IVI (%) 

Seedling 

Syzygium zeylanicum Nasi nasi 252,500 43.94 

Cratoxylum arborescens Geronggang 203,676 35.67 

Tristaniopsis merguensis Pelawan 183,015 32.77 

Sapling 

Cratoxylum arborescens Geronggang 4,859 75.21 

Tristaniopsis merguensis Pelawan 3,329 48.97 

Melaleuca leucadendron Galam 2,059 35.19 

Pole 

Cratoxylum arborescens Geronggang 124 102.88 

Combretocarpus rotundatus Tumih 65 53.26 

Syzygium tawahense Ubar merah 41 37.22 

Tree 

Shorea balangeran Belangeran 17 87.95 

Cratoxylum arborescens Geronggang 16 72.60 

Combretocarpus rotundatus Tumih 8 31.75 

Table 5. Importance Value Index (IVI) for the Spodosols land  
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the researchers employed an approach based on the 

Importance Value Index (IVI) results at different vegetation 

levels, providing a comprehensive understanding. IVI 

effectively elucidates the density, dominance, and 

frequency of plant species within a given location. In 

Ultisols, characterized by a higher value of species 

diversity (H'), determining the dominant plant species 

became challenging due to the abundance of diverse 

species. As per Table 6, several dominant plants in Ultisols 

were identified, encompassing Baeckea frutescens, 

Melaleuca Leucadendron, and Schima wallichii.  

 In Entisols, the predominant plant species 

identified at the study site is Baeckea frutescens, 

particularly at the sapling and pole levels. Conversely, in 

Spodosols, the prevailing plant species is Cratoxylum 

arborescens, found across the seedling, sapling, pole, and 

tree levels. Both Baeckea frutescens and Cratoxylum 

arborescens exhibit characteristics that make them well-

suited for sandy soils. These adaptations contribute to 

their ability to thrive in less fertile and well-drained soil 

conditions.One shared characteristic is their extensive and 

deep-rooted systems, allowing efficient absorption of 

available water and nutrients from sandy soils. This 

adaptability enables these plants to endure conditions 

with lower fertility. Additionally, both Baeckea frutescens 

and Cratoxylum arborescens demonstrate drought 

tolerance, surviving in areas with limited water availability. 

The small leaves of these plants reduce water evaporation, 

while their robust root systems facilitate moisture 

absorption in sandy soils, making them suitable for 

regions with low rainfall or during dry seasons. A study by 

(30) indicated that the native vegetation of Spodosols 

primarily consists of gelam plants (Melaleuca 

leucodendron), with Fibrimstylis sp and Lalang grass 

(Imperata cylindrica) being common secondary vegetation. 

Another study by Hartati (31) added that Spodosols with 

disturbed vegetation mainly comprise pioneer species like 

Lalang (Imperata cylindrica) and ferns (Pteridophytasp). 

 As illustrated in Fig. 12, Baeckea frutescens exhibits 

a leaf morphology that is narrower compared to 

Cratoxylum arborescens. This distinction is a key factor 

contributing to the dominant growth of Baeckea frutescens 

on Entisols. The narrower leaves indicate a higher 

tolerance to evaporation and water scarcity (32), which 

aligns well with the lower water availability in Entisols 

compared to Spodosols (33).While the water availability in 

Spodosols is relatively better than in Entisols, cultivating 

Spodosols requires more intensive treatment efforts. This 

is attributed to the presence of a spodic layer in Spodosols 

(20). The spodic horizon in Spodosols has a limited 

capacity to retain nutrients, resulting in the degradation of 

organic matter and the loss of nutrient availability from 

fertilizers through percolation water (34–36). Despite these 

challenges, many planters, including both PBN and PBS, 

persist in cultivating oil palm plantations on Spodosols. 

Current technology for managing oil palm on Spodosols 

focuses on aspects such as improving the growing media, 

breaking hardpan and mounding, enhancing the 

microclimate, and implementing proper fertilization (37). 

 In various Entisols landscapes, the potential for 
dominant plant species to thrive can vary. Nevertheless, 

plants that typically grow on sandy soils generally share 

morphological characteristics similar to Baeckea 

frutescens. Plants adapted to less fertile and water-

deficient conditions, such as sandy soils, typically exhibit 

distinctive morphological features (38). These include a 

deep and well-developed root system that extends into 

the deeper layers of sandy soils to access water sources 

(39–41). Furthermore, these plants demonstrate stability 

and optimize water absorption under environmental 

stress through morphological adaptations, involving 

changes in the structure and composition of root tissue 

(42,43). Adaptation mechanisms, such as increasing the 

number of lateral roots and root hairs, are observed in 

plants thriving in water-scarce environments (32,44). Li 

(45) also highlighted that certain plants on sandy soils 

develop adventitious roots to cope with water shortages 

and enhance water absorption. 

 Ultisols exhibit a higher species diversity value (H'), 

posing a challenge in identifying a specific dominant plant  

 

Vegetation Species Vernacular Individual Potential (ha) IVI (%) 

Seedling 

Baeckea frutescens Ujung atap 156,351 48.35 

Syzygium tendens Ubar putih 50,135 37.87 

Cratoxylum arborescens Geronggang 48,649 22.65 

Sapling 

Melaleuca leucadendron Galam 2,486 57.16 

Cratoxylum arborescens Geronggang 1,632 44.93 

Syzygium tawahense Ubar merah 681 24.34 

Pole 

Schima wallichii Gandawari 132 81.41 

Melaleuca leucadendron Galam 38 23.88 

Syzygium tawahense Ubar merah 27 20.71 

Tree 

Schima wallichii Gandawari 45 121.88 

Syzygium tawahense Ubar merah 5 20.15 

Macaranga gigantea Mahang 3 14.54 

Table 6. Importance Value Index (IVI) for the Ultisols land  
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 species. However, to distinguish between Entisols and 

a a 

b b 
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Spodosols, reference can be made to the values of species 

diversity (H') and species richness (D_mg) in the 

vegetation's structure and composition. This is attributed 

to the fertility of Ultisols, contributing to a more abundant 

diversity and richness of plant species (46). Ultisols 

possess physical and chemical properties conducive to 

plant growth and diversity, including higher organic 

matter and nutrient content, resulting in elevated 

productivity and plant diversity (47,48). Additionally, 

regional and topographical factors influence plant 

dominance in Ultisols, as observed in studies correlating 

plant growth requirements with the distribution of plant 

species in specific areas (8). Recent research by Ott (3) and 

Xiang (49) has emphasized the impact of topography on 

habitat diversity and quality, extending to fauna as well. 

 Each region exhibits a distinct structure and 

composition of vegetation, and these variations are 

generally influenced by soil characteristics (physical, 

chemical, biological), climate, topography, and the 

presence of invasive species that interact with the soil, 

contributing to unique vegetation features for each soil 

type (50–53). These discrepancies in the structure and 

composition of vegetation can serve as indicative signs or 

general characteristics for the rapid identification of soil 

types. Differences resulting from variations in vegetation 

structure and composition in different areas and climates 

may include species diversity, vegetation height and 

density, species composition, water availability, and 

resilience to drought or excess water (54–56). 

Vegetation Characteristics Based on Feature Classifier 

Method        

The GIS software utilized the Classify Objects Using Deep 

Learning function along with the pre-trained deep learning 

model for predicting soil types in each plot. The software 

analyzed the image or spatial data of the plots employing 

the developed algorithm. The outcomes of the soil type 

prediction were visually displayed on the map (Fig. 13), 

offering crucial information for users to discern and 

comprehend the soil characteristics in each plot. 

Leveraging GIS and deep learning technology rendered 

this process efficient and accurate. The deep learning 

model could discern patterns and distinctive features from 

past soil data, facilitating the classification of soil types 

with a high degree of accuracy. This information proved 

valuable in various contexts, enhancing decision-making 

and resource utilization efficiency based on the unique soil 

characteristics in each plot. 

c c 
Fig. 12. Dominant species in the Entisols land vegetation (a). Baeckea frutescens , Spodosols (b). Cratoxylum arborescens  and Ultisols (c) Schima walichi.  
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 Table 2 presents a comparison between the number 

of plots with actual soil types and the predicted soil types. 

In Entisols, depicted in Fig. 13 (a) and (b), the deep 

learning model exhibited an accuracy of 75% in predicting 

the total number of plots designated as Entisols. Notably, 

there was a percentage error of 14% where Entisols were 

incorrectly predicted as Spodosols and a 12% error where 

Entisols were predicted as Ultisols. Moving to Spodosols, 

illustrated in Fig. 13 (f) and (g), the deep learning model 

demonstrated a commendable accuracy of 91% in 

predicting the total plots assigned to Spodosols. The 

prediction errors were minimal, with a 2% error where 

Fig. 13. The results of the prediction of soil types in plots at the study site.  
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Spodosols were predicted as Entisols and a 7% error 

where Spodosols were predicted as Ultisols. Regarding 

Ultisols, as shown in Fig. 13 (c), (d), and (e), the deep 

learning model achieved an accuracy of 86% in predicting 

the total plots categorized as Ultisols. However, there were 

errors, with 8% of Ultisols predicted as Entisols and 6% 

predicted as Spodosols. This analysis underscores that the 

deep learning model yielded generally satisfactory results 

in predicting soil types for each plot, albeit with a level of 

error that requires attention. 

 Moreover, to assess the performance of the 

employed deep learning model, the confusion matrix 

method was applied using the scikit-learn Python Library. 

The process was executed via a Jupyter notebook, as 

depicted in Fig. 14. This method facilitated the 

presentation of the results of the model's performance 

evaluation through a graphical representation of the 

confusion matrix, offering a visual depiction of the model's 

capability to accurately classify soil types. Additionally, the 

evaluation outcomes were presented in tabular format, 

encompassing precision, recall, and f1-score metrics for 

each predicted soil type. The results also included 

accuracy values for the deep learning model, macro 

average, and balanced average based on weighted 

average, as illustrated in Table 7. This comprehensive 

evaluation furnished detailed insights into the 

performance and reliability of the deep learning model in 

soil type prediction, serving as a crucial reference for 

further assessment and refinement of the model. 

 The precision values for the deep learning model in 

predicting the soil types of Entisols, Spodosols, and 

Ultisols were 0.62, 0.9, and 0.9, respectively. The deep 

learning model exhibited accurate predictions relative to 

the total positive predictions, achieving an accuracy rate 

of 62% for Entisols, 90% for Spodosols, and 90% for 

Ultisols. In this context, the precision value served as a 

crucial indicator for evaluating the model's ability to 

classify soil types with a high degree of accuracy. A higher 

precision value reflected the model's enhanced capacity to 

minimize errors in positive predictions. 

 The recall values for the deep learning model in 

predicting the soil types of Entisols, Spodosols, and 
Ultisols were 0.75, 0.91, and 0.86, respectively. This 
signifies that the deep learning model successfully 
identified and classified soils correctly, relative to the total 
negative estimates, achieving a success rate of 75% for 

Entisols, 91% for Spodosols, and 86% for Ultisols in the 
study area. In this context, the recall value played a crucial 
role in evaluating the model's proficiency in accurately 
identifying and classifying positive soils. A higher recall 
value indicated the model's improved ability to detect and 
correctly classify the intended soil type. 

 When evaluating the performance of the deep 
learning model, precision and recall values, along with f1-
score and accuracy values, were considered. The f1-score 
value illustrated the harmony between precision and 
recall, offering insight into the overall quality of the 
model's predictions. The evaluation revealed f1-scores of 
68% for Entisols, 90% for Spodosols, and 88% for Ultisols. 
The deep learning model demonstrated a good balance 
between precision and overall predictions, performing 
well in predicting the soil types of Spodosols and Ultisols. 
Furthermore, accuracy served as a measure of the overall 
model performance, with a value of 87% for predicting the 
three soil types. This indicated a high success rate in 
classifying the correct soil type overall. Despite achieving 

good f1-score and accuracy values, it is essential to 
emphasize continuous evaluation and correction of the 
model's performance, addressing any inaccuracies 
encountered in predicting soil types. Several factors 
contribute to differences in the confusion matrix results for 
identifying soil types in this study, including: 

Fig. 14. The left side of the confusion matrix graph shows the number of plots, while the right side shows the precision value of the prediction results.  

  Precision Recall F1-Score Support 

Entisols 0.62 0.75 0.68 1170 

Spodosols 0.90 0.91 0.90 4740 

Ultisols 0.90 0.86 0.88 5293 

accuracy   0.87 11203 

macro avg 0.81 0.84 0.82 11203 

weighted avg 0.87 0.87 0.87 11203 

Table 7. Performance evaluation values of the deep learning model  
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Factors of the vegetation community composition         

The composition of the vegetation community can 

significantly impact the outcomes of the confusion matrix 

in soil type identification, particularly for Ultisols, Entisols, 

and Spodosols. In Ultisols, the prevalence of high levels of 

seedling and tree vegetation (closed canopy) tends to 

dominate the overall vegetation composition. This 

dominance has the potential to influence the confusion 

matrix results, enhancing the model's capacity to 

accurately classify Ultisols. The closed canopy formed by 

these trees imparts distinct characteristics to the Ultisols, 

facilitating the deep learning model in recognizing specific 

patterns and features associated with this soil type. 

 Conversely, in Entisols and Spodosols, the soil type 

exhibited a vegetation composition dominated by seedling 

and sapling stages, characterized by a predominantly 

open canopy. The prevalence of seedlings and saplings 

imparts distinct features to the soil types of Entisols and 

Spodosols. The deep learning model is inclined to identify 

and classify these soil types by considering the 

characteristics associated with the vegetation 

composition, primarily characterized by seedling and 

sapling stages. Consequently, the confusion matrix for 

Spodosols may reflect a high level of accuracy in 

classifying this particular soil type. 

 The lower accuracy observed in Entisols compared 

to Spodosols may be attributed to variations in vegetation 

composition. Entisols exhibited a lower tree vegetation 

level, whereas the seedling and sapling stages had a higher 

prevalence. This imbalance could pose challenges for the 

deep learning model in discerning and classifying 

numerous small plants. Given the dominance of small 

plants in Entisols, the deep learning model might 

encounter difficulties in distinguishing and recognizing 

distinctive features associated with the Entisols soil type. 

In contrast, Spodosols, with its distinct vegetation 

composition, facilitated easier identification and 

classification by the deep learning model. The diverse 

characteristics of the vegetation composition in each soil 

type offer specific cues that deep learning models can 

leverage to enhance the accuracy of soil type 

identification. A detailed understanding of vegetation 

patterns and canopy structures associated with specific 

soil types contributes to refining the performance and 

precision of the confusion matrix results in soil type 

identification using the deep learning model. 

Factors of species diversity         

The greater diversity of soil types in Ultisols provides an 

advantage in utilizing deep learning models for soil type 

identification. Ultisols, with 57 species, exhibit higher 

diversity compared to Spodosols (31 species) and Entisols 

(14 species). The model, trained on a more extensive range 

of soil types, can learn and recognize diverse patterns and 

characteristics, leading to improved accuracy in classifying 

soil types. This is evident in the 90% accuracy achieved for 

Ultisols. Spodosols, characterized by lower soil type 

diversity, may encounter challenges in classifying soil 

types that are infrequently represented in the training 

data. Although Spodosols still maintain a relatively high 

accuracy of 90%, the limited variety of soil types can 

impact the model's ability to recognize and classify those 

not well-represented in the training data. Entisols, with the 

lowest soil type diversity, may face difficulties classifying 

rarely appearing soil types in the training data, 

contributing to the lower accuracy of 62%. The restricted 

number of soil type variations can influence the model's 

capacity to recognize and classify types that were not well-

represented in the training data. 

 The diversity of soil types within the training data 

significantly influences the accuracy of soil type 

identification in the confusion matrix. A higher diversity of 

plant species in the training data enhances the deep 

learning model's ability to recognize and classify soil types 

with greater accuracy. The diversity of plant species plays 

a crucial role in enriching the dataset with a variety of 

features and patterns. A broader representation of plant 

species in the training data provides the deep learning 

model with more opportunities to learn and comprehend 

the distinct characteristics associated with each soil type. 

This comprehensive understanding allows the model to 

identify soil types more effectively, leading to higher 

accuracy results in the confusion matrix. Therefore, 

ensuring that the training data encompasses a wide range 

of plant species is essential for the model to develop a 

thorough understanding of the relationships between soil 

types and existing vegetation communities. 

 In addition to the factors mentioned above, several 
crucial elements influence the outcomes of the confusion 

matrix evaluation in soil type identification. The quality 

and representativeness of the training data are pivotal in 

determining the model's predictive accuracy (57,58). If the 

training data lack diversity in soil types, the model might 

struggle to classify rarely occurring types or those 

inadequately represented (59). Moreover, the choice of an 

algorithm or model that aligns with the soil data's 

characteristics significantly impacts prediction results 

(60).The quality and representativeness of the test data 

also emerge as critical factors, as test data failing to 

capture variations in soil types can lead to prediction 

errors (61,62). Human-related factors, including sampling 

or labeling errors, sampling angle, aerial photo resolution, 

and data quality, exert a notable influence on prediction 

outcomes (63,64). Additionally, establishing the threshold 

for classifying soil types becomes a crucial determinant 

affecting prediction results and the configuration of the 

confusion matrix (65). Comprehensive understanding of 

these factors underscores the importance of meticulous 

and ongoing evaluation of the confusion matrix to 

optimize model performance and ensure accurate 

decision-making in soil type classification applications.  

 

Conclusion   

The analysis of vegetation characteristics, incorporating 

both the examination of vegetation structure and 

composition and the application of the deep learning 

model, yielded relatively accurate and consistent 
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predictions in identifying Entisols, Spodosols, and Ultisols 

soil types in the study area. The deep learning model 

exhibited high accuracy in predicting total positive 

outcomes, with precision values for Entisols (62%), 

Spodosols (90%), and Ultisols (90%). Furthermore, the 

model demonstrated its capacity to accurately identify soil 

types relative to the total negative estimates, achieving 

recall values of Entisols (75%), Spodosols (91%), and 

Ultisols (86%). The deep learning model showcased 

commendable performance in soil type classification, 

achieving f1-score values of Entisols (68%), Spodosols 

(90%), and Ultisols (88%). It is worth noting that variations 

in the composition of the vegetation community and the 

diversity of plant species can contribute to differences in 

the confusion matrix results when identifying soil types in 

Entisols, Spodosols, and Ultisols. 

 The vegetation community composition in Ultisols 

was characterized by a prevalence of seedlings and trees, 

forming a closed canopy. In contrast, the composition of 

the vegetation community in Entisols and Spodosols was 

dominated by seedlings and saplings, indicating a 

predominantly open canopy. Ultisols exhibited superior 

fertility and suitability for plant growth compared to sandy 

soils (Spodosols and Entisols), as evidenced by the highest 

number of species in Ultisols (57 species), followed by 

Spodosols (31 species) and Entisols (14 species). Ultisols 

boasted the highest number of species at the seedling 

level (26 species, 4,901 plants) and sapling level                     

(43 species, 923 plants). However, the overall number of 

individuals was lower than Spodosols, which had fewer 

species at the seedling level (17 species, 13,841 plants) and 

sapling level (25 species, 1,497 plants). The distribution of 

species in Ultisols, Entisols, and Spodosols was even         

(J' close to 1), indicating the absence of dominance by 

specific species (D < 0.5). The species diversity index was at 

a low to moderate level (H' < 3), and the species richness 

index was at a very low level (Dmg > 3.5).The dominant 

plants in Entisols (Baeckea frutescens) and Spodosols 

(Cratoxylum arborescens) exhibited similar morphologies, 

characterized by narrow leaves. However, C. arborescens 

had wider leaves. Ultisols displayed a more abundant 

species diversity value (H') due to its higher fertility level, 

making it challenging to identify a specific dominant plant 

species. Dominance was more influenced by regional 

factors and topography, directly impacting the conditions 

for plant growth.   
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