Northern Michigan University

NMU Commons

All NMU Master's Theses

Student Works

12-2024

The Mongolian Remodeling and the structure of Anoplocephalid cestode diversity

Mackenzie Grover Northern Michigan University, kgrover@nmu.edu

Follow this and additional works at: https://commons.nmu.edu/theses

Part of the Physical Sciences and Mathematics Commons

Recommended Citation

Grover, Mackenzie, "The Mongolian Remodeling and the structure of Anoplocephalid cestode diversity" (2024). *All NMU Master's Theses*. 766. https://commons.nmu.edu/theses/766

This Open Access is brought to you for free and open access by the Student Works at NMU Commons. It has been accepted for inclusion in All NMU Master's Theses by an authorized administrator of NMU Commons. For more information, please contact kmcdonou@nmu.edu,bsarjean@nmu.edu.

THE MONGOLIAN REMODELING AND THE STRUCTURE OF ANOPLOCEPHALID CESTODE DIVERSITY

By

Mackenzie A. Grover

THESIS

Submitted to Northern Michigan University In partial fulfillment of the requirements For the degree of

MASTER OF SCIENCE

College of Graduate Studies and Research

November 2023

SIGNATURE APPROVAL FORM

THE MONGOLIAN REMODELING AND THE STRUCTURE OF ANOPLOCEPHALID CESTODE DIVERSITY

This thesis by Mackenzie Grover is recommended for approval by the student's Thesis Committee and Department Head in the Department of Biology and by the Dean of Graduate Studies and Research.

Committee Chair: Dr. Kurt Galbreath

First Reader: Dr. Neil Cumberlidge

Second Reader: Dr. Eric Hoberg

Department Head: Dr. Jill Leonard

Dr. Lisa Schade Eckert Dean of Graduate Studies and Research Date

Date

Date

Date

Date

ABSTRACT

THE MONGOLIAN REMODELING AND THE STRUCTURE OF ANOPLOCEPHALID CESTODE DIVERSITY

By

Mackenzie Grover

Ecological disruption plays an important role in structuring diversity of flora and fauna. At the end of the Eocene, climatic change across Asia resulted in a faunal turnover (the Mongolian Remodeling) as rodents diversified and larger mammals declined. Throughout the Oligocene, the landscape in Asia was characterized by episodic climatic and landscape changes resulting in pulses of rodent diversification. The role of historical ecological disruption in Central Asia in structuring the diversity of parasites of small rodents has not been thoroughly investigated. The hyper-diverse *Paranoplocephala* species complex (family: Anoplocephalidae) infect rodents throughout the Holarctic and present an opportunity to investigate the consequences of ecological disruption on the diversity of parasites. I test the hypotheses that the Mongolian Remodeling initiated diversification and subsequent recurrent episodes of climatic change increased the tempo of diversification within this assemblage. Using mitochondrial genome sequencing, I build the most robust phylogenetic tree of seven known species and eight previously unknown lineages of the *Paranoplocephala* species complex and use a clock calibration to estimate the temporal origin of the group. Results indicated multiple trans-Beringian dispersal events and numerous host-colonization events, consistent with ecological disruption playing an important role in structuring parasite diversity. I then used morphological analysis to investigate the identities of five unknown lineages. Results indicated that these specimens represent previously undescribed species, reflecting the need for additional sample collection and curation in biorepositories to understand the extent of global parasite diversity.

i

Copyright by

Mackenzie Ann Grover

ACKNOWLEDGEMENTS

I would like to express my sincerest appreciation to my advisor, Dr. Kurt Galbreath, for his unwavering patience, guidance, and support throughout this project. I would like to thank my committee members, Dr. Eric Hoberg and Dr. Neil Cumberlidge, for their advice, suggestions, feedback, and encouragement. As well, Dr. Steve Greiman for teaching me cestode staining and slide mounting techniques.

This project would not be possible without extensive field collection efforts, so I'd like to thank the people who took part and supported those projects, as well as Dr. Joseph Cook and Mariel Campbell at the Museum of Southwestern Biology for providing me with the necessary samples. Specimens were collected under the Collaborative and Integrative Inventory of Biomes of the Arctic project which was funded in grants to Joe Cook, Eric Hoberg, and Kurt Galbreath by the National Science Foundation (DEB 1256943, 1258010).

I'd like to thank Northern Michigan University and the National Science Foundation (DEB 2120470) for providing funding for this research as well as the American Society of Parasitologists for providing funding for travel to allow me to present my research at professional conferences.

I am forever grateful to my fellow graduate students for their support, thoughtful conversations, and endless expeditions for more coffee. I am especially grateful to my labmate, Hilary Rinsland, for her constant support, guidance, and friendship. Lastly, I'd like to thank my family and friends for their encouragement throughout this project, despite their aversion to my passion of parasites.

This thesis is formatted following the guidelines of the Journal of Parasitology.

TABLE OF CONTENTS

List of Figures((v)
List of Tables	vi)

Chapter 1...... The role of the Mongolian Remodeling on structuring host-parasite communities

Ab	ostract1
1.	Introduction2
2.	Methods5
3.	Results
4.	Discussion
5.	References
Chapter 2	2
Ab	ostract
1.	Introduction
2.	Methods41
3.	Results42
4.	Discussion
5.	References
Appendix	

LIST OF FIGURES

Figure 1. Nearctic sampling localities for anoplocephalids in rodent hosts archived at the Museum of Southwestern Biology and the Northern Museum of Zoology
Figure 2. Palearctic sampling localities for anoplocephalids in rodent hosts archived at the Museum of Southwestern Biology and the Northern Museum of Zoology
Figure 3. Time calibrated phylogeny based on eleven mitochondrial coding sequences (11CDS) generated in BEAST
Figure 4. Bayesian phylogeny of anoplocephalid species based on the <i>cox1</i> gene
Figure 5. Phylogeny for anoplocephalid species based on <i>cox1</i> gene constrained to the topology of well-supported relationships in the 11CDS tree
Figure 6. Lineage through time test for anoplocephalid cestodes based on the constrained <i>cox1</i> phylogeny
Figure 7. <i>Paranoplocephala</i> sp., Unknown lineage 1, in dorsal view
Figure 8. Anoplocephalidae gen. sp., Unknown Lineage 3, in dorsal view
Figure 9. <i>Parandrya</i> sp. Unknown lineage 6, in dorsal view
Figure 10. Anoplocephalidae gen. sp., Unknown Lineage 8, in dorsal view
Figure 11. Anoplocephalidae gen. sp., Unknown Lineage 12, in dorsal view

LIST OF TABLES

Table 1. Meristic data for Paranoplocephala sp. Unknown lineage 1
Table 2. Meristic data for Anoplocephalidae gen. sp., Unknown Lineage 3
Table 3. Meristic data for Parandrya sp. Unknown lineage 6
Table 4. Meristic data for Anoplocephalidae gen. sp., Unknown Lineage 8
Table 5. Meristic data for Anoplocephalidae gen. sp., Unknown Lineage 12
Supplemental Table 6. Species diversity within the <i>Paranoplocephala</i> species complex and <i>Anoplocephaloides</i>
Supplemental Table 7. Sampling data from the Museum of Southwestern Biology (MSB) and the Northern Museum of Zoology
Supplemental Table 8. GenBank accession numbers for nine of the eleven coding sequences69
Supplemental Table 9. Measurement data for <i>Rauschoides arctica</i> from three sampling localities in Siberia (Yamal Penninsula and Western Kolyma) and Canada (Nunavet)
Supplemental Table 10. Measurement data for <i>Arctocestus serratus</i> from three sampling localities
Supplemental Table 11. Measurement data for <i>Parandrya oeconomus</i>
Supplemental Table 12. Measurement data for <i>Gulyaevia longivaginata</i> and <i>G. buryatiensis</i> in <i>Myodes rutilus</i> from South-Central Russia and in <i>Myodes rufocanus</i> from Buryatia respectively
Supplemental Table 13. Measurement data for <i>Paranoplocephala sciuri</i> from two sampling localities in North America
Supplemental Table 14. Measurement data for <i>Paranoplocephala batzlii</i> and <i>Parano. jarrelli</i> in <i>Microtus miurus</i> from Alaska and <i>Microtus oeconomus</i> from Finland respectively
Supplemental Table 15. Measurement data for <i>Paranoplocephala omphalodes</i> and <i>Parano.</i> <i>microti</i> in <i>Microtus agrestis</i> from the Palearctic and <i>Microtus ochrogaster</i> in the Nearctic respectively
Supplemental Table 15. Measurement data for <i>Paranoplocephala kirbyi</i> from <i>Microtus californicus</i> in California77

Chapter 1: The role of the Mongolian Remodeling on structuring host-parasite communities

ABSTRACT

Ecological disruption plays an important role in structuring diversity of flora, fauna, and their parasites. At the end of the Eocene, climatic change across Asia resulted in a faunal turnover (the Mongolian Remodeling) as rodents diversified and larger mammals declined. Throughout the Oligocene, the landscape in Asia was characterized by episodic climatic and landscape changes resulting in pulses of rodent diversification. The role of historical ecological disruption in Central Asia in structuring the diversity of parasites of small rodents has not been thoroughly investigated. The hyper-diverse Paranoplocephala species complex (family: Anoplocephalidae) infect rodents throughout the Holarctic and present an opportunity to investigate the consequences of ecological disruption on the diversity of parasites. Here, I use whole mitogenome sequencing to produce a well-resolved phylogeny showing relationships within the "arvicolinae clade" of the Paranoplocephala species complex. I test the hypotheses that the Mongolian Remodeling initiated diversification and subsequent recurrent episodes of climatic change increased the tempo of diversification within this parasite assemblage. Using mitochondrial genome sequencing, I build the most robust phylogenetic tree of seven known species and eight previously unknown lineages. To include additional diversity into the analysis, I constrained analysis of the mitochondrial cox1 gene to the topology of the mitogenome tree and perform ancestral host association and biogeographic analysis. A clock calibration estimate put the temporal origin of the Paranoplocephala species complex approximately 42 MYA and lineage through time tests showed more diversification occurred in deeper time. Results indicated multiple trans-Beringian dispersal events and numerous host-colonization events, consistent with ecological disruption playing an important role in structuring parasite diversity.

INTRODUCTION

The landscape in Central Asia underwent significant transformations between the end of the Eocene and mid-Miocene epochs as a result of changing climates. During the warm and humid Eocene, Central Asian landscapes were densely forested. In the late Eocene, the proto-Paratethys sea, a major source of Central Asian humidity, retreated, which led to aridification (Kaya et al., 2019). With the transition to the Oligocene (36.4 million years ago), the climate became cooler (Barbolini et al., 2020). The most severe cooling occurred just after the Eocene-Oligocene boundary, approximately 33.5 million years ago. This climatic change led to a transition from densely forested landscapes to open grasslands (Meng & McKenna, 1998). The landscape transition resulted in a faunal turnover as the dominant mammals of the Eocene (perissodactyls) declined and smaller mammals such as rodents and lagomorphs diversified (Gomes Rodrigues et al., 2012; Kraatz & Geisler, 2010; Zhang et al., 2012). This biotic shift has been called the Mongolian Remodeling (Meng & McKenna, 1998).

After the onset of the Oligocene, approximately 31 million years ago, the landscape continued to aridify during a period known as the Early Oligocene Aridification Event (EOAE). Throughout this time the mammal communities remained fairly unchanged (Harzhauser et al., 2016). However, after the EOAE certain components of mammal communities started to diversify, including small mammals, ungulates, and carnivores (Harzhauser et al., 2016). Diversity peaked approximately 28 million years ago. Large herbivore and carnivore diversity subsequently declined, resulting in a strong species turnover. The mid-Chattian stage of the Oligocene consisted of warm, stable environmental conditions and another increase in small mammal diversity, followed by the Late Oligocene Extinction Event (LOEE; 25.6 million years ago), which resulted in a drastic loss (approximate 48%) of mammal diversity. This was

probably caused by another aridification event. During the transition into the Miocene, the climate became increasingly variable, with an increase in humidity and precipitation (Harzhauser et al., 2016).

The fluctuating diversity and distribution of rodents in Central Asia was likely accompanied by diversification of their parasites. Because parasites have phylogenetic histories unique from their hosts, they can inform complex patterns of dispersal and diversification (Hoberg et al., 2015; Hoberg & Brooks, 2008; Galbreath et al., 2020; Nieberding et al., 2004). Within the cestode family Anoplocephalidae, the *Paranoplocephala* species complex (*Paranoplocephala* sensu lato) parasitizes voles across the Holarctic and represents a hyperdiverse assemblage consisting of 23 genera and 72 species (Haukisalmi et al., 2014). Investigating the geographic origin and tempo of diversification of this diverse group could provide insight into the role climatic change has on structuring parasite diversity. For example, if an increased rate of diversification is observed in deeper history, around the time of the Mongolian Remodeling, this could indicate that the extreme climatic changes of this period were an initial driver of parasite diversity and faunal assembly.

Based on current understandings of phylogenetic relationships, it has been proposed that the *Paranoplocephala* species complex originated in Central Asia (Haukisalmi et al., 2014). However, prior to that proposal there had been very limited sampling in Central Asia, which is necessary to evaluate the geographic origins of a group that spans the Holarctic. Further, though some past phylogenetic analyses of the *Paranoplocephala* species complex included extensive taxonomic sampling, phylogenies were primarily based only on the mitochondrial protein-coding *cox1* gene (Haukisalmi et al., 2004, 2006, 2008, 2014, 2016; Wickström et al., 2005). Efforts to apply other protein-coding genes, the mitochondrial *nad1* and nuclear 18s and 28s ribosomal

subunits, were only partially successful. Existing primers for the *nad1* gene do not reliably amplify across all *Paranoplocephala* s.l. lineages, whereas the nuclear 18s and 28s ribosomal subunits reveal minimal genetic diversity across species. Phylogenies constructed using only the *cox1* gene show limited resolution beyond clustering of individuals into distinct clades representing separate species. In addition, the use of a single gene for phylogenetic analyses only evaluates one perspective of an organism's evolutionary history, but the different genetic markers are in some instances phylogenetically discordant, producing trees with different topologies (Haukisalmi et al., 2014). Building a more robust phylogeny of this diverse group is necessary to better understand the timing, tempo, and biogeography of diversification, and the factors that structured host-parasite associations across time. Therefore, completing additional gene sequencing is necessary to resolve phylogenetic relationships among anoplocephalid cestodes.

With a more robust phylogeny, we will also be in a better position to estimate divergence dates. A clock calibration has been calculated for concatenated *cytb*, 12s and 16s genes of another lineage of anoplocephalid cestodes, genus *Schizorchis* (Galbreath et al., 2020). However, the *cytb* gene has yet to be sequenced for members of the *Paranoplocephala* species complex. Acquiring additional loci, including *cytb*, will facilitate estimating divergence dates. Considering the significant array of host genera, the *Paranoplocephala* species complex can inhabit, resolving phylogenetic relationships will also provide a framework for mapping out the history of host colonization in the group, which could yield insight into historical episodes of ecological disruption that created opportunities for parasites to colonize new host lineages (e.g., Hoberg and Brooks, 2008; Brooks et al., 2019). For example, arvicoline rodents are the primary definitive hosts of the *Paranoplocephala* species complex. Repeated pulses of diversification have been

observed in murid phylogenetic history (Conroy & Cook, 2000). The genus *Microtus* encompasses the rodent species that are the most common hosts of *Paranoplocephala* s.l., and likely have a geographic origin in Eurasia. Multiple pulses of diversification have been observed in *Microtus*, occurring between 2 to 5 MYA. The second most common host genus of the *Paranoplocephala* species complex, *Myodes*, also dates back to 2 to 3 MYA (Kohli et al., 2014). If the *Paranoplocephala* species complex did originate around the time of the Mongolian Remodeling, their persistence would indicate a long history of host-colonization events. Alternatively, given the relatively recent evolution of the primary host taxa, the *Paranoplocephala* species complex could have evolved around the time their current hosts appeared on the landscape, followed by rapid diversification over the last 5 MY.

In this study, I use whole mitochondrial genome sequencing to acquire sequences for 11 protein coding genes from an array of species within the *Paranoplocephala* species complex in order to resolve phylogenetic relationships. I test the hypothesis that the Mongolian Remodeling played an important role in structuring the diversity of the *Paranoplocephala* species complex. In addition, I apply a clock calibration to the phylogeny and estimate the temporal origin of the group and the tempo of diversification across geologic time, testing the prediction that there will be an increased rate of diversification in deeper time coinciding with the repeating episodes of climatic change throughout the Oligocene and Miocene.

METHODS

Study System:

Mongolia is located in Central Asia and has six ecological zones distributed across it. These can be divided into three major latitudinal zones; alpine, forest, and forest steppe in the north and west, desert in the south and east, and steppe habitats lying between them (Angerer et al., 2008). It has a continental climate, meaning that it experiences climatic extremes, including severely cold winters and hot, dry summers.

Voles (subfamily Arvicolinae), the primary hosts of the *Paranoplocephala* species complex, can be found throughout Mongolia and occupy an array of habitat types, including open prairies and dense forests. Almost all voles are herbivorous, but they hunt and eat insects as well (Novikovskaya et al., 2021), which increases the potential for cestode infection by trophic transmission of metacestodes in the intermediate hosts, which are oribatid mites for anoplocephalids (Denegri, 1993).

I acquired cestodes from the Museum of Southwestern Biology (MSB) in Albuquerque, New Mexico, and the Northern Museum of Zoology at Northern Michigan University. These specimens had been provisionally identified as anoplocephalids and were collected from 287 hosts representing 28 species (Supplemental Table 7). In addition, I acquired 96 samples of isolated DNA from cestodes putatively identified as anoplocephalids, but not identified to species, collected in Alaska and eastern Siberia. In total, my data represented sampling from 46 localities, 35 in the Nearctic and 11 in the Palearctic (Figs. 1, 2).

Figure 1. Nearctic sampling localities for anoplocephalids in rodent hosts archived at the Museum of Southwestern Biology and the Northern Museum of Zoology.

Figure 2. Palearctic sampling localities for anoplocephalids in rodent hosts archived at the Museum of Southwestern Biology and the Northern Museum of Zoology.

From the MSB collection, I subsampled one to three distal proglottids and extracted whole genomic DNA using a Masterpure Complete DNA and RNA Purification Kit from Biosearch Technologies. These DNA isolates were then used for PCR amplification of the mitochondrial *cox1* gene using primers COX-F (forward, 5'

GATGTTTTCTTTACATTTATCTGGTG 3') and COX-R (reverse, 5'

GCCACCACAAATCAAGTATC 3') (Haukisalmi et al., 2004). Thermocycling conditions consisted of initial denaturation at 95 degrees for 8 minutes, 35 cycles of denaturation at 95 degrees for 30 seconds, annealing at 53 degrees for 60 seconds, and primer extension at 72 degrees for 60 seconds, followed by final extension at 72 degrees for 7 minutes (Haukisalmi et

al. 2004). PCR amplification was confirmed by gel electrophoresis in 1.5% Tris-EDTA agarose gel. Ethidium bromide staining was used for PCR product detection. Successfully amplified PCR products were purified using exo-sap before being sent to Elim Biopharmaceuticals, Inc., for bidirectional sequencing. Electropherograms were assembled and evaluated using Geneious v6. Preliminary species identification was made using NCBI's BLAST database. Supplementary *cox1* sequences were acquired from Voitto Haukisalmi and from Genbank, representing samples with morphologically confirmed species identification, which provided a reference for DNA sequence-based species identification.

Sequences were aligned in MEGA-11 (Tamura et al., 2021) using MUSCLE (Edgar, 2004) based on default parameters, and alignments were visually confirmed. Some sequences introduced single or double nucleotide gaps. Single or double nucleotide gaps in a protein coding gene would result in a shift of reading frame and are therefore likely to be the result of sequencing errors. Because electropherograms were not available for sequences provided by Voitto Haukisalmi, I was unable to evaluate sequence quality. Therefore, these insertions were presumed to be spurious results from low-quality sequencing runs and their positions were excluded from the final alignments.

To identify genetic lineages that may represent previously undescribed species, I developed a genetic distance threshold by calculating the mean uncorrected intraspecific pairwise genetic distances among validated species in the dataset. Groups that differed by genetic distances greater than this threshold were considered to potentially represent new species-level diversity and were treated as distinct lineages for species tree analysis. In instances where sequences from multiple individuals of a given species were available, discerned by sequence comparisons that showed a genetic distance less than the uncorrected intraspecific pairwise

distance threshold, I selected a single representative specimen for subsequent phylogenetic analyses.

In order to select samples for whole genome sequencing, I evaluated DNA extract quality for all samples using a NanoDrop instrument. I considered good quality DNA extractions to have concentrations over 10 ng/ul, and a 130/160 value around 2.0. I constructed a neighbor-joining tree in MEGA-11 (Tamura et al., 2021), and then selected samples from each major clade that had acceptable DNA quality. More precise DNA concentration measurements were taken using a Qubit Fluorometer and I selected one to two samples per species (or putative species) with the highest DNA concentration for genomic sequencing. These samples were then sent to New England Biolabs for analysis by Bioanalyzer to quantify DNA fragment sizes in order to determine appropriate reaction conditions for DNA shearing during library preparation. Prior to whole mitochondrial genome sequencing, I prepared libraries using the NEBNext FFPE DNA Library Prep Kit with NEBNext UltraShear Enzymatic Fragmentation kit. First, DNA samples were repaired using NEBNext FFPE DNA Repair v2 mix, followed by fragmentation where the DNA was sheared using NEBNext UltraShear Enzymatic Fragmentation Enzyme mix (15 minute) incubation. Next, the ends of the sheared DNA fragments were prepared using Ultra II End Prep Enzyme mix followed by adaptor ligation. SPRIselect Sample Purification Beads were used to isolate adaptor-ligated DNA fragments from extraneous fragments and free adaptors. Samples then underwent a PCR amplification step, which appended unique identifying barcodes to samples representing separate individuals. SPRIselect beads were again used to isolate barcoded fragments. Desired DNA fragments were eluted using 0.1X TE. Final libraries were sent to the Van Andel Institute in Grand Rapids, MI, for sequencing.

Upon receipt of fastq files for each sequenced sample, reads were trimmed and poorquality reads removed using fastqp Version 0.3.4. The clean files were then analyzed and the mitochondrial genome assembled using MEANGS (Song et al., 2022). To reduce computational demands of the analysis, only the first three to five million sequences from cleaned data files were used, but this provided ample coverage across the mitochondrial genome. The final assembled sequences were evaluated and edited in Geneious v6. Because non-coding regions contained numerous indels which made it difficult to assess homology between sequences derived from different species, I focused on the protein coding regions, which were isolated using MEGA-11 (Tamura et al., 2021). The coding regions *cox2* and *nad4l* contained sequences with numerous ambiguity codes and were removed from the data set. In total, 11 coding regions were retained for analysis.

The 11 coding sequences were partitioned and aligned to the correct reading frame using MEGA 11 (Tamura et al., 2021). Next, I used BEAST Version 2.7.5 (Bouckaert et al., 2019) to remove third codon positions from the 11 coding sequences, as initial analyses suggested a high degree of homoplasy at these positions. I constructed a phylogeny by linking the trees for all the loci and using a GTR+I+G model of nucleotide evolution. The analysis ran for 500 million generations, sampling every 50000 generations, and I confirmed that the analysis converged on stable parameter values in Tracer Version 1.7.1 (Rambaut et al., 2018). To estimate timing, I applied a clock calibration of 0.00426 mutations per site per million years (Galbreath et al., 2020) to the *cytb* gene in BEAST (Bouckaert et al., 2019) and ran 100 million generations. Analysis convergence was confirmed in Tracer Version 1.7.1 (Rambaut et al., 2018) (Fig.3).

To investigate the relationships between species represented in the mitogenome dataset and other anoplocephalid species that were not included in that dataset, I conducted a

phylogenetic analysis of just the *cox1* dataset, including 49 sequences. I completed this analysis using BEAST Version 2.7.5 (Fig.4) and constrained the topology of the tree to the three major clades that were supported by statistically significant posterior probabilities (>0.95) in the 11CDS analysis. All species within the *Paranoplocephala* species complex were constrained to a monophyletic clade to differentiate between *Anoplocephaloides* Baer, 1923 and

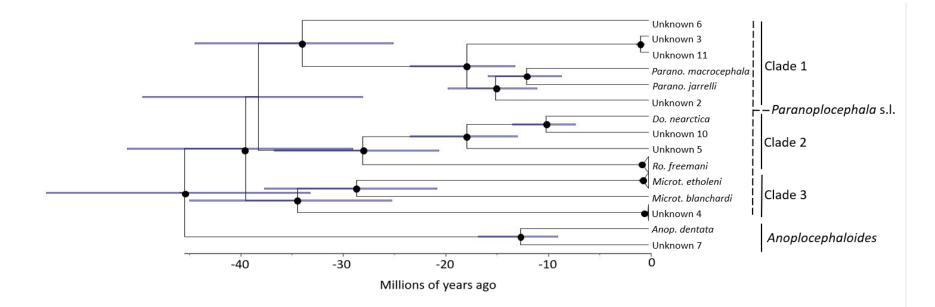
Paranoplocephala s.l. Further clade constraints were applied by specifying MRCA priors in BEAUti (Bouckaert et al., 2019) and incorporating rogues to allow the analysis to include other taxa within the specified clades. The constrained clades were as follows: Anoplocephaloides: Anop. dentata (Galli-Valerio, 1905), Anop. kontrimavichusi Rausch, 1976, Anop. lemmi (Rausch, 1952), unknown lineage 7; Clade 1: Microticola spp. Haukisalmi et al., 2014, unknown lineage 4; Clade 2: Parano. jarrelli Haukisalmi, Henttonen & Hardman, 2006, Parano. macrocephala (Douthitt, 1915), unknown lineage 2, unknown lineage 3, unknown lineage 11; Clade 3: Rodentocestus freemani (Haukisalmi et al., 2014), unknown lineage 5, unknown lineage 10. All other species were set as rogues for the three clades within *Paranoplocephala* sensu lato. No outgroups were used and unknown lineage 9 was removed due to its deep divergence from Anoplocephaloides and the Paranoplocephala species complex. The analysis was run for 100 million generations, sampling every 5,000 generations using tools in the CIPRES web portal (www.phylo.org; Miller et al., 2010). Analysis convergence was confirmed using Tracer (Rambaut et al., 2018). The consensus tree file was constructed using in TreeAnnotator (Bouckaert et al., 2019).

To test for an elevated tempo of diversification in deeper history, I ran a lineage through time test and gamma test on the constrained *cox1* tree in R (R Core Team, 2021), which tests if a phylogenetic assemblage diversified at a constant rate (Pybus & Harvey, 2000). A gamma value

greater than zero indicates more diversification occurred closer to the tips of the phylogeny, while a gamma less than zero suggests more diversification occurred in deeper time than would be expected under a pure birth process.

Historical host-associations were estimated for nodes within the phylogeny using Bayesian Binary Markov chain Monte Carlo (Ronquist & Huelsenbeck, 2003) implemented in RASP (Yu et al., 2015). Each extant lineage in the tree was assigned to its primary host's tribe, which were Microtini, Dicrostonychini, Lemmini, Myodini, Phenacomyini, Apodemini, Marmotini, Arvicolini, and the maximum number of host tribes that could be assigned to nodes was set to two (Mammal Diversity Database).

To examine the biogeographic history of the group, I used the R program BioGeoBEARS to estimate the ancestral ranges (Matzke, 2018). I used the constrained *cox1* consensus tree and assigned each taxon in the tree to one of four geographic regions: North America, Beringia, Asia, and Europe. The maximum geographic range was set to two, but ranges including North America and Asia, and Beringia and Europe were excluded. I calculated raw and corrected AIC scores to arbitrate among six models; dispersal extinction cladogenesis (DEC), dispersal-vicariance likelihood (DIVALIKE), BayArea likelihood (BAYAREALIKE), and each of these models incorporating the jump parameter, which incorporates jump-dispersal estimation into the biogeographic reconstruction.


RESULTS

The final *cox1* dataset consisted of 365 sequences, 103 of which were unique haplotypes. This dataset represented 19 genera and 36 known species. The mean intraspecific genetic distance for *cox1* sequences from validated species was 2.35%. I used this value as a minimum divergence threshold for inferring interspecific lineage comparisons. I identified 11 unknown

lineages that did not phylogenetically group closely with any described species. The mean genetic distance between all unknown lineages and their closest relatives was greater than the 2.35% threshold, supporting their status as unique species. These lineages were assigned numeric identifiers. From each distinct genetic lineage, one sequence was used for further phylogenetic analysis, resulting in a total of 47 *cox1* sequences.

The phylogeny based on the 11CDS dataset has strong support, with all but one of the nodes having statistically significant posterior probabilities (Fig. 3). Within this tree, Unknown lineage 7 groups with *Anoplocephaloides*, and together these lineages are sister to *Paranoplocephala* sensu lato. The other seven unknown lineages group within the *Paranoplocephala* species complex. Unknown lineages 2, 3, and 11 group with genus *Paranoplocephala* s.s. (Clade 1), lineages 5 and 10 fall out with *Rodentocestus* and *Douthittia nearctica* (Haukisalmi & Henttonen, 2007) (Clade 2), and unknown lineage 4 is sister to *Microticola* (Clade 3). Unknown lineage 6 stems from a deep node and is most closely related to *Paranoplocephala* s.s. in Clade 1. The only node with poor support (70.65% posterior probability) leaves uncertainty regarding the relationships among Clades 1, 2 and 3.

The time calibration estimates put the divergence date between the *Paranoplocephala* species complex and *Anoplocephaloides* approximately 45MYA. The estimated origin of *Paranoplocephala* s.l. is about 39 million years ago.

Figure 3. Time calibrated phylogeny based on eleven mitochondrial coding sequences (11CDS) generated in BEAST. Strongly supported relationships with posterior probabilities >95% represented by black circles. Blue bars indicate 95% highest posterior density. Calibrated time scale applied based on an estimate for the age of the basal node of 45 million years. This estimate was calculated using a rate of molecular evolution estimated for *cytb* (Galbreath et al., 2020) applied to an analysis of *cytb* alone.

In the phylogeny based on the *cox1* gene alone I identified four major clades within the *Paranoplocephala* species complex, arbitrarily named Clades 1 through 4, although only monophyly of Clade 1 was strongly supported. This phylogeny shares similarities with the 11CDS tree; the *Anoplocephaloides* diverged from an ancestor common to all of the *Paranoplocephala* species complex, unknown lineage 4 groups with *Microticola*, and lineages 5 and 10 fall out together. However, this tree varies in that lineage 7 is sister to *Eurotaenia gracilis* instead of *Anoplocephaloides*, and lineage 11 does not group with lineages 2 and 3. In addition, some genera are polyphyletic, including *Parano. omphalodes, Microticola blanchardi* and *Micro. etholeni*. These issues have been noted in previous studies (Haukisalmi et al., 2014). Interestingly, unknown lineage 9 falls out with an outgroup, *Catenotaenia*, and is deeply divergent from *Anoplocephaloides* and *Paranoplocephala* sensu lato.

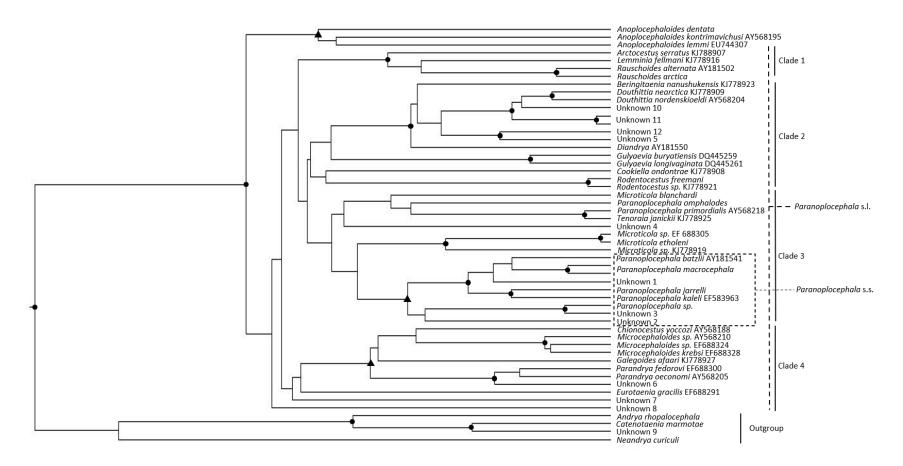
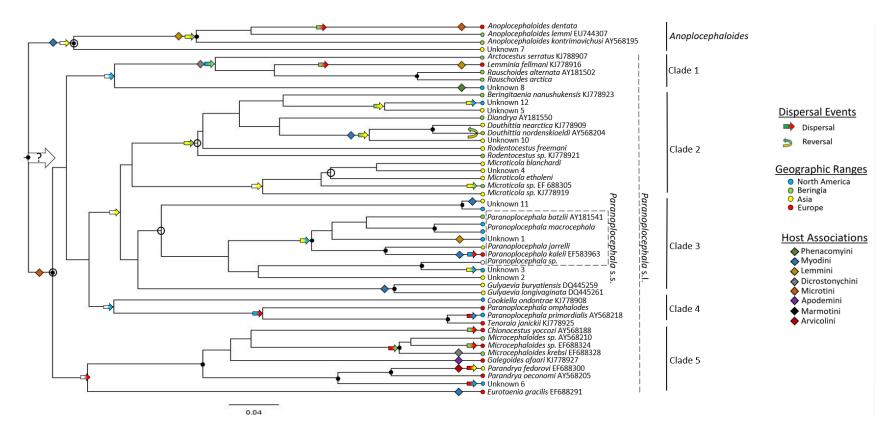



Figure 4. Bayesian phylogeny of anoplocephalid species based on the cox1 gene. Nodes with statistically significant posterior probabilities

(>95%) are indicated with black circles. A node with support >94% is indicated with a black triangle.

Cox1 tree constrained to 11CDS:

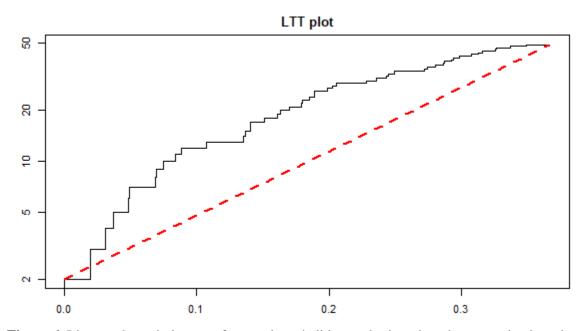

The *cox1* tree constrained to conform to the topology of the 11CDS tree (Fig.5) has more support at the basal and more recent nodes but loses resolution at the interior relationships. Compared to the unconstrained *cox1* tree, there are overall fewer well supported nodes. Within the *Paranoplocephala* species complex, five deeply divergent clades are apparent, although none with strong support. None of these clades are characterized by apparent unifying hostassociations, distributions, or morphological characteristics (as described in Haukisalmi et al., 2014).

Figure 5. Phylogeny for anoplocephalid species based on *cox1* gene constrained to the topology of well-supported relationships in the 11CDS tree. Constrained relationships are indicated by a black circle on the node of the most recent common ancestor of constrained taxa. Strongly supported relationships with posterior probabilities >95% are represented by black circles. Dispersal events inferred by RASP are indicated by colored arrows, where the leftmost color indicates the area the organism dispersed from and the rightmost color indicates the area dispersed to. Arrows with white portions represent dispersal from unknown regions. Colored circles at the tips of the tree indicate the current geographic distribution of taxa. Colored diamonds indicate host-colonization events inferred by RASP where color corresponds to the colonized host tribe.

Tempo of diversification:

Lineage through time tests based on the constrained *cox1* phylogeny showed greater diversification occurred early in the phylogeny than would be expected under exponential growth (Fig.6). The Pybus and Harvey gamma value of -3.966 and a significant p-value of 0.0001 supports an increased rate of diversification occurring towards the root of the tree as opposed to the tips.

Figure 6. Lineage through time test for anoplocephalid cestodes based on the constrained *cox1* phylogeny. The observed accrual of species is indicated by the black line, while the expectation under the exponential speciation model is indicated by the red dotted line.

Biogeography:

The DIVALIKE+J model had the strongest support by raw and corrected AIC scores. Under this model, the ancestral range is ambiguous. Estimated ranges in the Palearctic followed by a geographic range inferred to be in Beringia or the Nearctic were inferred as eastward dispersal, and vice-versa for westward dispersal. The total number of trans-Beringian dispersal events included six eastward and two westward dispersal events with one and no reversals respectively (Fig.5). European dispersal events included six dispersing from the Nearctic to Europe, and three from Europe to the Nearctic. Five of these dispersal events coincide with host-colonization events.

Host Associations:

The ancestral host-associations of the *Paranoplocephala* species complex are with tribes Microtini and Myodini. Five colonization events of Myodini from Microtini are inferred, as well as three colonization events of tribe Lemmini, and two of Dicrostonychini. All other host tribes have one inferred colonization event.

DISCUSSION

Systematics

The phylogeny of the *Paranoplocephala* species complex generated from the 11 mitochondrial coding sequences is the most robust phylogenetic reconstruction of the arvicolinae-associated clade of *Paranoplocephala* s.l. to date and demonstrates the existence of previously undescribed lineages. Most of the lineages are primarily associated with *Microtus* hosts and are found in Asia. Within each clade there are several morphological types evident (as described in Haukisalmi et al., 2014, see Supplemental Table 6 for body type categories), and species with similar anatomies do not cluster into monophyletic groups.

The well-resolved 11CDS tree unambiguously clarified some of the questionable taxonomic arrangements among the *Paranoplocephala* species complex and related taxa. For example, phylogenetic reconstructions using the *nad1* gene previously showed *Paranoplocephala* s.l. to be paraphyletic with respect to the *Anoplocephaloides* clade while *cox1* data suggests that these two groups are sister (Haukisalmi et al., 2014). The 11CDS tree

generated in this study supports reciprocal monophyly of Paranoplocephala s.l. and Anoplocephaloides (including lineage 7) with respect to each other. Morphological characteristics also indicate that unknown lineage 7 belongs to genus Anoplocephaloides, as it has a wedge-shaped strobila and lack of a neck, which are characteristic of the genus. However, this lineage is sister to *E. gracilis* in the *cox1* tree. The strong nodal support of the 11CDS tree confirms the generic assignment of this lineage. Microticola blanchardi and Microt. etholeni are thought to belong to the same genus based on 28s, *nad1*, and morphological data, but they are polyphyletic in the cox1 dataset. These two taxa were sister in the 11CDS tree with strong support, confirming their assignment to *Microticola*. However, given the limited number of taxa represented in the 11CDS dataset, it does not fully address questionable relationships in the cox1 phylogeny. For example, *P. primordialis* and *T. janickii* are only represented in the cox1 phylogeny, where they appear to have diverged from the same clade as Microticola, and more recently than the divergence between Microt. etholeni and Microt. blanchardi. It is unlikely this reflects the true taxonomic relationships of *Tenoraia* and *Microticola* as they are considerably different morphologically. These questionable taxonomic relationships in the *cox1* phylogeny reflect the limitations of *cox1* as a phylogenetic marker to resolve relationships across diverse genera.

Biogeography

The history of the Holarctic has been characterized by the outcomes of climatic cycling with alternating episodes of ecological perturbation and relative stability (Barnosky, 2005; Hoberg et al., 2017). Recurrent climatic oscillations established thermal gradients and subsequently resulted in the episodic opening and closing of the Bering Land Bridge, an intermittent connection between present-day north-eastern Siberia and Alaska, which is also

known as Beringia (Hultén, 1937). Beringia provided a dispersal corridor, with thermal gradients, for organisms to cross between the contents. Because Beringia opened and closed multiple times, organisms crossed it in pulses. Evidence for multiple events of faunal expansion and isolation across the Bering Land Bridge is consistent with the biogeography and mosaic assembly of other cestode taxa parasitizing small mammals, including some of the same host groups (Cook et al., 2004; Hoberg et al., 2012; Galbreath et al., 2023; Repenning, 2001). Most evidence suggests that small mammals and their parasites primarily dispersed eastward across Beringia into the Nearctic (Galbreath et al., 2020; Rausch, 1994; Waltari et al., 2007). For example, five independent and three temporally distinct trans-Beringian dispersal events are inferred for another lineage of cestodes, genus Arostrilepis, parasitizing the host genera Myodes, Microtus, and Lemmus (Haas et al., 2020). This group of cestodes colonized North America relatively recently; once in association with Microtus hosts during the early Pleistocene, and twice with *Myodes* hosts. The first North American colonization in association with *Myodes* occurred during the mid-Pleistocene and a more recent North American colonization with M. rutilus prior to the last glacial maximum (Hass et al., 2020; Galbreath et al., 2023).

Range estimates using the constrained *cox1* phylogeny suggested multiple dispersal events in both eastward and westward directions, though the analysis left ambiguity regarding the geographic range of ancestral nodes. Therefore, my results support multiple trans-Beringian dispersal events, which is similar to the history of *Arostrilepis*, although the inferred reversal into Asia is unique to the *Paranoplocephala* species complex.

Multiple waves of dispersal across Beringia have been recorded in the biogeographic history of the hosts of the *Paranoplocephala* species complex. The first recognized trans-Beringian dispersal by arvicoline rodents from Asia to North America was likely by a progenitor

of *Lemmiscus* around 4 MYA (Abramson et al., 2021), while the earliest fossils of *Myodes rutilus* found in North America date back only to the Holocene (Cook et al., 2004). The broad range of time in which these dispersal events occurred support multiple waves of trans-Beringian dispersal by the *Paranoplocephala* species complex. However, without a time calibration to the *cox1* tree, estimating specific timing of dispersals is problematic. Additional whole mitochondrial genome sequencing efforts, incorporating the breadth of diversity within *Paranoplocephala* s.l. and the application of a time calibration, may further clarify these patterns.

Dispersal events from Beringia and North America to Europe are also implied by the biogeographic results. Due to the uncertainty around which direction dispersal from the Nearctic to Europe occurred (westward across Beringia via Asia or eastward across the Thulean land bridge), the directionality of European/Nearctic dispersal events could not be identified. These results may indicate that the Thulean land bridge, which once connected North America and Europe via Greenland (Brikiatis, 2014), played a role in the dispersal and diversification of this group. For this to be the case, the ancestors of the *Paranoplocephala* species complex would have evolved with now long extinct rodent faunas, a phenomenon that has been observed in other studies (for example, Galbreath et al., 2020). However, timing estimates put the two Thulean bridge formations around 57 and 55.8 MYA. Because the divergence of the *Paranoplocephala* species complex and *Anoplocephaloides* is estimated to be 45MYA, a European colonization directly from North America is unlikely.

An Asian origin of the *Paranoplocephala* species complex has been proposed in other studies. The Qinghai-Tibet Plateau (QTP) in China is characterized by rich rodent diversity shaped by the uplift of the plateau leading to allopatric speciation. The plateau lifted between 20

and 13 MYA, although an earlier uplift around 40 MYA has also been proposed (Chung et al., 1998). It has been suggested that diversification in the order Cyclophyllidea was driven by the uplift of the plateau (Wu et al., 2022). The point estimate of the *Paranoplocephala* species complex origin, 42 MYA, is close to the initial inferred uplift of the QTP.

Diversification

The results of this study support a temporal origin of the *Paranoplocephala* species complex of approximately 42 MYA, which is inconsistent with my hypothesis of an origin coinciding with the Mongolian Remodeling, approximately 30 MYA. However, my results do show an increase in the tempo of diversification between approximately 27 and 15 MYA. Repeating climatic shifts continued through the end of the Oligocene and into the Miocene, and therefore my results are consistent with the hypothesis that ecological disruption in Central Asia contributed to structuring the diversity of the group through repeating episodes of refugial isolation and range expansion.

In contrast to my results, a 2022 study also attempted to identify the geographic and temporal origin of some Cyclophyllidean cestodes using a clock calibration calculated from the divergence dates of two *Taenia* species and two *Schistosoma* species applied to available mitochondrial protein coding genes. They placed the temporal origin of *Paranoplocephala* s.s. to the Pleistocene (Wu et al., 2022). In contrast my results show a divergence date between *Parano. jarrelli* and *Parano. macrocephala* to be around 12 MYA. The clock calibration used in my study was generated for the *cytb* gene from another lineage of anoplocephalid cestode (Galbreath et al., 2020), and may provide a more accurate estimate of timing, though an internally derived clock calibration for *Paranoplocephala* would undoubtedly improve the estimate.

The evolution of the hosts of the *Paranoplocephala* species complex is generally characterized by pulses of diversification over the last 5-10 MYA (Kohli et al., 2014). Arvicolinae diversity first radiated around 7 MYA (Abramson et al., 2021). Estimates of host diversification have suggested that modern species appeared on the landscape in the last 3 to 5 MYA (Conroy & Cook, 1999). The extant species of the Microtini tribe are estimated to have originated around the late Pleistocene and experienced rapid diversification. The Myodini tribe diverged from *Microtus* and *Dicrostonyx*-like species between 5 and 7 MYA, followed by a steady rate of diversification of genera within the tribe (Kohli et al., 2014). Several host-colonization events are inferred close to the tips of the constrained *cox1* tree, which may correlate to pulses of host diversification. However, due to the lack of a time calibration on the constrained *cox1* gene, this is speculative.

The recent evolution of the hosts relative to the apparent antiquity of the *Paranoplocephala* species complex suggests these cestodes initially evolved with host taxa that are now extinct. This pattern has been noted in other parasite assemblages as well (Hoberg and Brooks 2008). For example, the biogeographic history of another genus of anoplocephalid cestode, *Schizorchis*, revealed an ancient association between the parasite and a now-extinct host species of the genus *Ochotona*. This "ghost assemblage" persisted until it encountered another host species that acquired the ancient cestode lineage before the original host went extinct (Galbreath et al., 2020).

Therefore, my results indicating the *Paranoplocephala* species complex experienced many host-colonization events are consistent with previously observed patterns of host-parasite association assembly. These host-colonization events could have facilitated diversification through factors proposed in the Stockholm Paradigm (Hoberg and Brooks, 2015).

Stockholm Paradigm and the diversification of Paranoplocephala s.l.

Repeating patterns of ecological disruption and stability drive diversification and structure complex host-parasite associations (Hoberg and Brooks, 2008, 2015; Brooks et al., 2019; Galbreath et al., 2023; Kafle et al., 2020). The Stockholm Paradigm (Brooks et al., 2019) is a synthesis providing an explanation of host-parasite evolution through the integration of four evolutionary and ecological concepts: The taxon pulse (Erwin, 1985), ecological fitting (Janzen, 1985), oscillation (Janz & Nylin, 2008), and the geographic mosaic of coevolution (Thompson, 2005). Temporally repeating cycles of ecological disruption result in echoing shifts of the geographic ranges of species is referred to as taxon pulses (Erwin, 1985). When conditions change, parasites may have opportunities to encounter new hosts resulting in expansion in host range. This reflects the capacity for colonization based on their existing suite of characteristics if the host offers the necessary resources for them to complete their life cycle. The potential for organisms to colonize new environments without significant adaptive change describes ecological fitting (Janzen, 1985). Oscillations refer to an oscillating pattern of apparent trends in host range by parasites. As parasites coevolve with their hosts during periods of ecological stability (exploitation mode; Agosta and Brooks, 2020), they appear to be host-specific and when they encounter and colonize new hosts during periods of ecological disruption they appear to be host-generalists (exploration mode; Agosta and Brooks, 2020; Janz & Nylin, 2008). The microevolutionary processes that result in apparent coevolution between organisms describes the geographic mosaic of coevolution (Thompson, 2005). Together, these evolutionary and ecological processes describe the mechanisms that structure diverse and complicated hostparasite associations and can be observed by studying the phylogenetic and biogeographic

histories of organisms and their parasites (Brooks and McLennan, 2002; Araujo et al., 2015; Erwin, 1985; Hoberg & Brooks, 2010; Hoberg & Brooks, 2008; Janz & Nylin, 2008).

The evolutionary significance of my results can be better understood through the synthesis outlined and proposed in the Stockholm Paradigm. The multiple events of host-colonization I identified are consistent with ecological fitting and reflect taxon pulse dynamics as parasites entered novel geographic space and encountered new potential hosts. The increased rate of diversification coinciding with periods of climatic instability suggest oscillations between host-parasite coevolution in isolated populations, leading to allopatric speciation, and host generalization via colonization during geographic expansion, the alternating phases of the taxon pulse. Therefore, the climatic and environmental oscillation(s) in Central Asia since the middle Cenozoic played an important role in structuring parasite diversity.

REFERENCES

- Abramson, N. I., Bodrov, S. Y., Bondareva, O. V., Genelt-Yanovskiy, E. A., & Petrova, T. V. (2021). A mitochondrial genome phylogeny of voles and lemmings (Rodentia: Arvicolinae): Evolutionary and taxonomic implications. *PLoS One*, *16*(11), e0248198. https://doi.org/10.1371/journal.pone.0248198
- Agosta, Salvatore J., and Daniel R. Brooks. *The Major Metaphors of Evolution: Darwinism Then and Now.* Vol. 2. Evolutionary Biology - New Perspectives on Its Development. Springer, 2020.
- Angerer, J., Han, G., Fujisaki, I., & Havstad, K. (2008). Climate Change and Ecosystems of Asia With Emphasis on Inner Mongolia and Mongolia. *Rangelands*, 30(3), 46–51. https://doi.org/10.2111/1551-501X(2008)30[46:CCAEOA]2.0.CO;2
- Araujo, S. B. L., Braga, M. P., Brooks, D. R., Agosta, S. J., Hoberg, E. P., von Hartenthal, F. W., & Boeger, W. A. (2015). Understanding host-switching by ecological fitting. *PLOS ONE*, *10*(10), Article e0139225. https://doi.org/10.1371/journal.pone.0139225
- Barbolini, N., Woutersen, A., Dupont-Nivet, G., Silvestro, D., Tardif, D., Coster, P. M. C., Meijer, N., Chang, C., Zhang, H.-X., Licht, A., Rydin, C., Koutsodendris, A., Han, F., Rohrmann, A., Liu, X.-J., Zhang, Y., Donnadieu, Y., Fluteau, F., Ladant, J.-B., ... Hoorn, C. (2020). Cenozoic evolution of the steppe-desert biome in Central Asia. *Science Advances*, 6(41), eabb8227. https://doi.org/10.1126/sciadv.abb8227
- Barnosky, A. D. (2005). Effects of Quaternary Climatic Change on Speciation in Mammals. *Journal of Mammalian Evolution*, 12(1), 247–264. https://doi.org/10.1007/s10914-005-4858-8
- Bouckaert, R., Vaughan, T. G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A., Heled, J., Jones, G., Kühnert, D., Maio, N. D., Matschiner, M., Mendes, F. K., Müller, N. F., Ogilvie, H. A., Plessis, L. du, Popinga, A., Rambaut, A., Rasmussen, D., Siveroni, I., ... Drummond, A. J. (2019). BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. *PLOS Computational Biology*, *15*(4), Article e1006650. https://doi.org/10.1371/journal.pcbi.1006650
- Brikiatis, L. (2014). The De Geer, Thulean and Beringia routes: Key concepts for understanding early Cenozoic biogeography. *Journal of Biogeography*, *41*(6), 1036–1054.
- Brooks, D.R., & McLennan, D.A. (2002). *The Nature of Diversity: An Evolutionary Voyage of Discovery*. University of Chicago Press, Chicago, USA, p. 668.
- Brooks, D. R., Hoberg, E. P., & Boeger, W. A. (2019). *The Stockholm Paradigm: Climate Change and Emerging Disease*. University of Chicago Press.

- Chung, S.-L., Lo, C.-H., Lee, T.-Y., Zhang, Y., Xie, Y., Li, X., Wang, K.-L., & Wang, P.-L. (1998). Diachronous uplift of the Tibetan plateau starting 40 Myr ago. *Nature*, *394*(6695), 769. https://doi.org/10.1038/29511
- Conroy, C. J., & Cook, J. A. (1999). MtDNA Evidence for Repeated Pulses of Speciation Within Arvicoline and Murid Rodents. *Journal of Mammalian Evolution*, 6(3), 26.
- Cook, J. A., Runck, A. M., & Conroy, C. J. (2004). Historical biogeography at the crossroads of the northern continents: Molecular phylogenetics of red-backed voles (Rodentia: Arvicolinae). *Molecular Phylogenetics and Evolution*, 30(3), 767–777. https://doi.org/10.1016/S1055-7903(03)00248-3
- Cook JA, Galbreath KE, Bell KC, Campbell ML, Carrière S, Colella JP, Dawson NG, Dunnam JL, Eckerlin RP, Greiman SE, Federov V, Haas GMS, Haukisalmi V, Henttonen H, Hope AG, Jackson D, Jung T, Koehler AVA, Kinsella M, Krejsa D, Kutz SJ, Liphardt S, MacDonald SO, Malaney JL, Makarikov A, Martin J, Mclean B, Mulders R, Nyamsuren B, Talbot SL, Tkach V, Tsvetkova A, Toman HM, Waltari E, Whitman J, Hoberg EP. (2017). The Beringian Coevolution Project: Holistic collections of mammals and associated parasites reveal novel perspectives on changing environments in the north. *Arctic Science*, 3: 585-617. dx.doi.org/10.1139/as-2016-0042
- Denegri, G. M. (1993). Review of oribatid mites as intermediate hosts of tapeworms of the Anoplocephalidae. Experimental & Applied Acarology, 17(8), 567–580. https://doi.org/10.1007/BF00053486
- Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Research*, *32*(5), 1792–1797. https://doi.org/10.1093/nar/gkh340
- Erwin, T. L. (1985). The taxon pulse: A general pattern of lineage radiation and extinction among carabid beetles. In Ball, George E. (Ed.), *Taxonomy, phylogeny, and* zoogeography of beetles and ants: A volume dedicated to the memory of Philip Jackson Darlington, Jr., 1904-1983 (pp. 437–472). Dr. W. Junk.
- Galbreath, K. E., Makarikov, A. A., Bell, K. C., Greiman, S. E., Allen, J. M., Haas, G. M. S., Li, C., Cook, J. A., & Hoberg, E. P. (2023). Late Cenozoic history and the role of Beringia in assembling a Holarctic cestode species complex. *Molecular Phylogenetics and Evolution*, 183, 107775. https://doi.org/10.1016/j.ympev.2023.107775
- Galbreath, K. E., Toman, H. M., Li, C., & Hoberg, E. P. (2020). When parasites persist: Tapeworms survive host extinction and reveal waves of dispersal across Beringia. *Proceedings of the Royal Society B: Biological Sciences*, 287(1941), Article 20201825. https://doi.org/10.1098/rspb.2020.1825
- Gomes Rodrigues, H., Marivaux, L., & Vianey-Liaud, M. (2012). Expansion of open landscapes in Northern China during the Oligocene induced by dramatic climate changes:

Paleoecological evidence. *Palaeogeography, Palaeoclimatology, Palaeoecology, 358–360, 62–71.* https://doi.org/10.1016/j.palaeo.2012.07.025

- Haas, G. M. S., Hoberg, E. P., Cook, J. A., Henttonen, H., Makarikov, A. A., Gallagher, S. R., Dokuchaev, N. E., & Galbreath, K. E. (2020). Taxon pulse dynamics, episodic dispersal and host colonization across Beringia drive diversification of a Holarctic tapeworm assemblage. *Journal of Biogeography*, 47(11), 2457–2471. https://doi.org/10.1111/jbi.13949
- Harzhauser, M., Daxner-Höck, G., López-Guerrero, P., Maridet, O., Oliver, A., Piller, W. E., Richoz, S., Erbajeva, M. A., Neubauer, T. A., & Göhlich, U. B. (2016). Stepwise onset of the Icehouse world and its impact on Oligo-Miocene Central Asian mammals. *Scientific Reports*, 6(1), Article 1. https://doi.org/10.1038/srep36169
- Haukisalmi, V., Hardman, L. M., Fedorov, V. B., Hoberg, E. P., & Henttonen, H. (2016).
 Molecular systematics and Holarctic phylogeography of cestodes of the genus Anoplocephaloides Baer, 1923 s. S. (Cyclophyllidea, Anoplocephalidae) in lemmings (*Lemmus, Synaptomys*). Zoologica Scripta, 45(1), 88–102. https://doi.org/10.1111/zsc.12136
- Haukisalmi, V., Hardman, L. M., Hardman, M., Laakkonen, J., Niemimaa, J., & Henttonen, H. (2006). Morphological and molecular characterisation of *Paranoplocephala buryatiensis* n. Sp. And *P. longivaginata* Chechulin & Gulyaev, 1998 (Cestoda: Anoplocephalidae) in voles of the genus *Clethrionomys. Systematic Parasitology*, 66(1), 55–71. https://doi.org/10.1007/s11230-006-9059-1
- Haukisalmi, V., Hardman, L. M., Hardman, M., Rausch, R. L., & Henttonen, H. (2008).
 Molecular systematics of the Holarctic *Anoplocephaloides variabilis* (Douthitt, 1915) complex, with the proposal of *Microcephaloides* n. G. (Cestoda: Anoplocephalidae).
 Systematic Parasitology, 70(1), 15–26. https://doi.org/10.1007/s11230-008-9129-7
- Haukisalmi, V., Hardman, L. M., Hoberg, E. P., & Henttonen, H. (2014). Phylogenetic relationships and taxonomic revision of *Paranoplocephala* Lühe, 1910 sensu lato (Cestoda, Cyclophyllidea, Anoplocephalidae). *Zootaxa*, 3873(4), 371. https://doi.org/10.11646/zootaxa.3873.4.3
- Haukisalmi, V., Wickstrom, L. M., Henttonen, H., Hantula, J., & Gubanyi, A. (2004). Molecular and morphological evidence for multiple species within *Paranoplocephala omphalodes* (Cestoda: Anoplocephalidae) in *Microtus* voles (Arvicolinae). *Zoologica Scripta*, 33(3), 277–290. https://doi.org/10.1111/j.0300-3256.2004.00148.x
- Hoberg, E. P., Agosta, S. J., Boeger, W. A., & Brooks, D. R. (2015). An integrated parasitology: Revealing the elephant through tradition and invention. *Trends in Parasitology*, 31(4), 128–133. https://doi.org/10.1016/j.pt.2014.11.005

- Hoberg, E.P., Brooks, D.R. (2010). Beyond vicariance: Integrating taxon pulses, ecological fitting and oscillation in historical biogeography and evolution. In: *The Geography of Host-Parasite Interactions*. S. Morand and B. Krasnov (eds.). Oxford University Press. pp. 7-20.
- Hoberg, E. P., & Brooks, D. R. (2008). A macroevolutionary mosaic: Episodic host-switching, geographical colonization and diversification in complex host-parasite systems. *Journal* of Biogeography, 35(9), 1533–1550. https://doi.org/10.1111/j.1365-2699.2008.01951.x
- Hoberg, E.P. & Brooks, D.R. (2015). Evolution in action: Climate change, biodiversity dynamics and emerging infectious disease. *Philosophical Transactions of the Royal Society B*, 370: 20130553. dx.doi.org/10.1098/rstb.2013.0553
- Hoberg, E.P., Galbreath, K.E., Cook, J.A., Kutz, S.J., & Polley, L. (2012). Northern host-parasite assemblages: History and biogeography on the borderlands of episodic climate and environmental transition. D. Rollinson and S.I. Hays (eds.). Elsevier. Advances in Parasitology, 79: 1-97.
- Hoberg EP, Cook JA, Agosta SJ, Boeger W, Galbreath KE, Laaksonen S, Kutz SJ, Brooks DR. (2017). Arctic systems in the Quaternary: Ecological collision, faunal mosaics and the consequences of wobbling climate. *Journal of Helminthology*, 91: 409–421. doi: 10.1017/S0022149X17000347
- Hultén, E. (1937). Outline of the history of the arctic and boreal biota during the Quaternary period; their evolution during and after the glacial period as indicated by the equiformal progressive areas of present platn species. Bokforlags Aktiebolgaet.d
- Janzen, D. H. (1985). On ecological fitting. *Oikos*, 45(3), 308–310. https://doi.org/10.2307/3565565
- Janz & Nylin. (2008). The Oscillation Hypothesis of Host-Plant Range and Speciation. In Specialization, Speciation, and Radiation: The Evolutionary Biology of Herbivorous Insects (pp. 203–215). University of California Press. http://ebookcentral.proquest.com/lib/nmich/detail.action?docID=470991
- Thompson. (2005). *The Geographic Mosaic of Coevolution*. University of Chicago Press. https://search.ebscohost.com/login.aspx?direct=true&db=e000xna&AN=605928&site=eh ost-live
- Kafle P, Peller P, Massolo A, Hoberg EP, Leclerc L-M, Tomaselli M, Kutz S. (2020). Range expansion of muskox lungworms track rapid Arctic warming: Implications for geographic colonization under climate forcing. *Scientific Reports*, 10:17323 | https://doi.org/10.1038/s41598-020-74358-5.
- Kaya, M. Y., Dupont-Nivet, G., Proust, J.-N., Roperch, P., Bougeois, L., Meijer, N., Frieling, J., Fioroni, C., Özkan Altıner, S., Vardar, E., Barbolini, N., Stoica, M., Aminov, J.,

Mamtimin, M., & Zhaojie, G. (2019). Paleogene evolution and demise of the proto-Paratethys Sea in Central Asia (Tarim and Tajik basins): Role of intensified tectonic activity at ca. 41 Ma. *Basin Research*, *31*(3), 461–486. https://doi.org/10.1111/bre.12330

- Kohli, B. A., Speer, K. A., Kilpatrick, C. W., Batsaikhan, N., Damdinbaza, D., & Cook, J. A. (2014). Multilocus systematics and non-punctuated evolution of Holarctic Myodini (Rodentia: Arvicolinae). *Molecular Phylogenetics and Evolution*, 76, 18–29. https://doi.org/10.1016/j.ympev.2014.02.019
- Kraatz, B. P., & Geisler, J. H. (2010). Eocene–Oligocene transition in Central Asia and its effects on mammalian evolution. *Geology*, *38*(2), 111–114. https://doi.org/10.1130/G30619.1
- Kutz, S. J., Hoberg, E. P., Polley, L., & Jenkins, E. J. (2005). Global warming is changing the dynamics of Arctic host–parasite systems. *Proceedings of the Royal Society B: Biological Sciences*, 272(1581), 2571–2576. https://doi.org/10.1098/rspb.2005.3285
- Matzke, N. J. (2018). *Nmatzke/Biogeobears: Biogeobears: Biogeography With Bayesian (And Likelihood) Evolutionary Analysis With R Scripts* [Computer software]. Zenodo. https://doi.org/10.5281/ZENODO.1478250
- Meng, J., & McKenna, M. C. (1998). Faunal turnovers of Palaeogene mammals from the Mongolian Plateau. *Nature*, 394(6691), 364–367. https://doi.org/10.1038/28603
- Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. *Proceedings of the Gateway Computing Environments Workshop (GCE)*, 1–8. https://doi.org/DOI: 10.1109/GCE.2010.5676129
- Nieberding, C., Morand, S., Libois, R., & Michaux, J. R. (2004). A parasite reveals cryptic phylogeographic history of its host. *Proceedings of the Royal Society B: Biological Sciences*, 271(1557), 2559–2568. https://doi.org/10.1098/rspb.2004.2930
- Novikovskaya, A., Kizilova, E., Levenets, J., Panteleeva, S., Lopatina, N., Litvinov, Y., & Reznikova, Z. (2021). Hunting behaviour in arvicoline rodents. *IOP Conference Series: Earth and Environmental Science*, 908(1), 012021. https://doi.org/10.1088/1755-1315/908/1/012021
- Poulin, R. (1998). Comparison of Three Estimators of Species Richness in Parasite Component Communities. *The Journal of Parasitology*, 84(3), 485–490. https://doi.org/10.2307/3284710
- Pybus, O. G., & Harvey, P. H. (2000). Testing macro-evolutionary models using incomplete molecular phylogenies. *Proceedings of the Royal Society of London*, 267(1459), 2267-2272.

- R Core Team. (2021). *R: A language and environment for statistical computing*. [Computer software]. R Foundation for Statistical Computing. https://www.R-project.org/
- Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. *Systematic Biology*, 67(5), 901–904. https://doi.org/10.1093/sysbio/syy032
- Rausch, R. L. (1994). Transberingian dispersal of cestodes in mammals. *International Journal for Parasitology*, 24(8), 1203–1212. https://doi.org/10.1016/0020-7519(94)90191-0
- Repenning, C. A. (2001). Beringian climate during intercontinental dispersal: A mouse eye view. *Quaternary Science Reviews*, 20(1), 25–40. https://doi.org/10.1016/S0277-3791(00)00133-5
- Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics*, 19(12), 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
- Song, M.-H., Yan, C., & Li, J.-T. (2022). MEANGS: An efficient seed-free tool for *de novo* assembling animal mitochondrial genome using whole genome NGS data. *Briefings in Bioinformatics*, 23(1), bbab538. https://doi.org/10.1093/bib/bbab538
- Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. *Molecular Biology and Evolution*, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120
- Waltari, E., Hoberg, E. P., Lessa, E. P., & Cook, J. A. (2007). Eastward ho: Phylogeographical perspectives on colonization of hosts and parasites across the Beringian nexus. *Journal of Biogeography*, 34(4), 561–574. https://doi.org/10.1111/j.1365-2699.2007.01705.x
- Wickström, L. M., Haukisalmi, V., Varis, S., Hantula, J., & Henttonen, H. (2005). Molecular Phylogeny and Systematics of Anoplocephaline Cestodes in Rodents and Lagomorphs. *Systematic Parasitology*, 62(2), 83–99. https://doi.org/10.1007/s11230-005-5488-5
- Wu, Y.-D., Dai, G.-D., Li, L., Littlewood, D. T. J., Ohiolei, J. A., Zhang, L.-S., Guo, A.-M., Wu, Y.-T., Ni, X.-W., Shumuye, N. A., Li, W.-H., Zhang, N.-Z., Fu, B.-Q., Fu, Y., Yan, H.-B., & Jia, W.-Z. (2022). Expansion of Cyclophyllidea Biodiversity in Rodents of Qinghai-Tibet Plateau and the "Out of Qinghai-Tibet Plateau" Hypothesis of Cyclophyllideans. *Frontiers in Microbiology*, *13*, 747484. https://doi.org/10.3389/fmicb.2022.747484
- Yu, Y., Harris, A. J., Blair, C., & He, X. (2015). RASP (Reconstruct Ancestral State in Phylogenies): A tool for historical biogeography. *Molecular Phylogenetics and Evolution*, 87, 46–49. https://doi.org/10.1016/j.ympev.2015.03.008

Zhang, R., Kravchinsky, V. A., & Yue, L. (2012). Link between global cooling and mammalian transformation across the Eocene–Oligocene boundary in the continental interior of Asia. *International Journal of Earth Sciences*, 101(8), 2193–2200. https://doi.org/10.1007/s00531-012-0776-1

Chapter 2: Morphological analysis of undescribed anoplocephalid cestode diversity

ABSTRACT

It has been estimated that only one quarter of global parasite diversity has been described. The use of molecular systematics has facilitated the discovery of parasite diversity that is morphologically cryptic. For example, one group of cestodes, *Paranoplocephala* sensu lato (family Anoplocephalidae), was partitioned across a species complex that includes 12 genera and 26 species. It is likely that there is additional undescribed diversity within this assemblage across large, unsampled regions of the Holarctic. Here I investigate the diversity of specimens consistent with *Paranoplocephala* s.l. that were collected from North America and present morphological data for five putative and previously unrecognized species. My results highlight the need for continued widespread sampling and museum archiving of cestode specimens in order to better understand the scope of parasite diversity in terrestrial systems across spatial scales.

INTRODUCTION

Parasitism is among the most successful life-history strategies, as indicated by the number of independent origins of parasitism and the number of parasitic species (Poulin & Morand, 2000). Cyclophyllidean cestodes are found in every vertebrate group except teleostean and chondrichthyan fishes (Hoberg, 1999). However, the full extent of parasite diversity is not yet known. Current estimates put the number of cestode species at approximately 20,000, but only about 4,000 species are currently described (Caira & Jensen, 2017), leaving a vast gap in our understanding of cestode diversity.

The Anoplocephalidae family of cyclophyllidean cestodes is a diverse, Holarctic group that can infect diverse host lineages including rodents, lagomorphs, and ungulates. Within this family is the hyper-diverse *Paranoplocephala* species complex. Species in this complex are usually found in rodents, most commonly voles of tribes Microtini and Myodini (sub-family Arvicolinae), and use oribatid mites as intermediate hosts (Denegri, 1993). Cestodes within the *Paranoplocephala* species complex have short necks and scolexes lacking armed rostella.

The type species of *Paranoplocephala* s.s. was first described as *Anoplocephaloides omphalodes* in 1783 (Hermann, 1783), as a parasite in *Microtus*, before being attributed to the newly erected genus *Paranoplocephala* Luhe, 1910. Subsequently, two other species of *Anoplocephaloides, Anoplocephaloides variabilis* (Douthitt, 1915), which is now under genus *Microcephaloides* Haukisalmi et al., 2008, and *Anoplocephaloides infrequens* (Douthitt, 1915), were also assigned to *Paranoplocephala*, and the subspecies *Paranoplocephala variabilis borealis* was raised to species level (*P. borealis*) (Rausch & Schiller, 1949).

In the following years, investigations into the morphological differences between species, their distributions, and host specificity led to a restructuring of the genera *Paranoplocephala* and Anoplocephaloides (Rausch, 1976). Species with a tubular early uterus were transferred to Anoplocephaloides, which then consisted of 17 species. These were considered to be from diverse lines that had achieved similar morphology through convergent evolution. However, lack of clarity regarding phylogenetic relationships and uncertainty regarding the taxonomic significance of morphological characteristics precluded further taxonomic reorganization, such as establishment of additional genera. Species within Anoplocephaloides were organized into two categories; those that parasitize squirrels and have long, ribbon-like strobilae (A. transversaria (Krabbe, 1879), A. ryjikovi (Spasskii, 1950), and A. wigginsi (Rausch, 1954); and those that parasitize arvicolids, leporids, or murid rodents, and have short, wedge-shaped strobilae, (A. dentata (Galli-Valerio, 1905), A. troeschi (Rausch, 1946), A. lemmi (Rausch, 1952), A. kontrimavichusi Rausch, 1976, A. wimerosa (Moniez, 1880), and A. baeri (Rausch, 1976). The genus Aprostatandrya Kirshenblat, 1938 was reduced as a synonym of Paranoplocephala, which then consisted of Parano. omphalodes, Parano. macrocephala (Douthitt, 1915), along with species from Aprostatandrya and Andrya Railliet, 1893. An accurate reflection of species diversity was confounded by inadequate taxonomic resolution of these genera based on incomplete and misinterpreted morphological data. Subsequent morphological analyses supported the synonymy of Aprostatandrya and Paranoplocephala (Haukisalmi et al., 2004; Haukisalmi & Henttonen, 2003), and Aprostatnadrya was reduced to junior synonym.

Paranoplocephala macrocephala was originally described in pocket gophers of the genus *Geomys* and assigned to *Andrya* (Douthitt, 1915), but probably represents a species complex given wide variation in the distribution and number of testes, a diverse array of hosts, and a broad geographic distribution (Rausch, 1976). It was later reported and characterized from three different host families across North America and Europe (Haukisalmi & Henttonen, 2003).

Molecular systematic analysis of the mitochondrial *cox1* gene clarified some phylogenetic relationships within *Paranoplocephala* and also revealed extensive hidden diversity (Haukisalmi et al., 2004, 2014). For example, it led to the description of three new species within *Paranoplocephala omphalodes*, including *Parano. jarrelli* Haukisalmi, Henttonen & Hardman, 2006, *Parano. batzlii* Haukisalmi, Henttonen & Hardman, 2006, *Parano. freemani* (Haukisalmi, Henttonen & Hardman, 2006) (Haukisalmi et al., 2004). Ultimately, the genus *Paranoplocephala* was revised and divided into 12 genera and 26 species (Haukisalmi et al., 2014).

Molecular systematics also provided a gateway for unambiguous species distinctions that clarified which morphological characteristics are phylogenetically informative (Haukisalmi et al., 2004, 2014; Haukisalmi, Hardman, et al., 2006). Many morphological similarities were found to demonstrate homoplasy (convergence) and therefore are not informative for reconstructing relationships among the genera (Haukisalmi et al., 2014). However, certain characters are informative. For example the structure and position of the early uterus and position of the testes distinguish among genera that had been subsumed within *Paranoplocephala* and other anoplocephalids, including species in *Andrya, Andryoides* Haukisalmi, 2023, and *Neandrya* Haukisalmi & Wickstrom, 2005 (Haukisalmi, 2023).

Within the *Paranoplocephala* species complex, the morphology of the scolex and neck are most informative for discriminating between genera. A narrow neck and large scolex with large, protruding, and anteriorly directed suckers are characteristic of genus *Paranoplocephala* s.s., and characterize the first of three groups (Haukisalmi et al., 2014). The second group contains cestodes with a wide neck relative to the scolex and non-protruding suckers, and

includes the genera *Gulyaevia, Chionocestus, Microticola, Beringitaenia, Parandrya,* and *Hunkeleriella.* The third group includes cestodes with a narrow neck and non-protruding suckers, and can be further subdivided into two categories based on the length of the vagina; 3.1, medium/long vagina; 3.2, short vagina relative to cirrus sac. Group 3.1 includes genera *Arctocestus, Rauschoides, Eurotaenia, Douthittia, Afrojoyeuxia,* and *Lemminia,* and group 3.2 includes the genera *Tenoraia, Cookiella,* and *Rodentocestus.* Additional anatomical characteristics useful in discerning between genera and species includes the pattern of testes distribution (extensive, reaching the poral osmoregulatory canals; overlapping ovary; restricted, reaching antiporal margin of ovary), and the distribution of the female glands (poral or median).

Recent studies evaluating the evolutionary relationships and diversity of the *Paranoplocephala* species complex have used samples primarily collected from Beringia, Europe, and Russia (for example, Haukisalmi et al., 2004, 2007, 2009; Haukisalmi, Henttonen, et al., 2006; Haukisalmi & Henttonen, 2005; Vlasenko et al., 2019; Wickström et al., 2005). By comparison, fewer studies have investigated the diversity of the *Paranoplocephala* species complex in North America; there also remains a general paucity of comprehensive knowledge of helminth faunas among rodents across continental North America (e.g., Hoberg et al., 2012, 2016). This represents a weakness in our current understanding of diversity and evolutionary history within the assemblage. Given the diversity within this assemblage and the limited sampling of parasite diversity across the planet (Cook et al., 2005, 2017; Haukisalmi et al., 2014), it is likely that additional species are yet to be described. In this study I present morphological data contributing to characterization of a series of previously unrecognized species of anoplocephalids collected from localities across northwestern North America.

METHODS

Previous research identified nine unknown genetic lineages within the *Paranoplocephala* species complex based on comparison of *cox1* gene sequences from described anoplocephalid species (see Chapter 1). Twelve specimens, including representatives of five of the unknown lineages and 4 described species, were available for morphological analysis. However, representatives of the other four unknown lineages were not available for analysis. The unknown specimens were sampled from the northwestern region of the contiguous United States and were collected in four different host species (Supplemental Table 7). All specimens were stored in -20-degree freezer in 70% ethanol, at either the Museum of Southwestern Biology in Albuquerque, University. Slide-mounted specimens are archived in permanent collections at the Museum of Southwestern Biology in Albuquerque, New Mexico.

Morphological Methods:

Prior to staining, specimens were soaked in distilled water for up to 30 minutes to remove traces of ethanol from the tissues. Specimens were then stained in Mayer's hematoxylin and destained in a 1% solution of HCl and distilled water. Contrast of internal anatomical features was improved by transferring stained worms to 0.5% ammonium hydroxide for up to 5 minutes before straightening in 70% ETOH and slide mounting. Worms were dehydrated through a series of ethanol washes up to absolute ethanol, then soaked in xylene to clear. A solution of Canada balsam and xylene was used as mounting medium and prepared slides were left to dry in a slide oven for several weeks. Drawings of scoleces and mature proglottids were sketched on paper after slide mounting using a drawing-tube, then edited in Adobe Illustrator using a drawing tablet. Morphological measurement data was collected using an Olympus UC90 camera mounted

on an Olympus BX53 microscope. Proglottid measurements were averaged across the number of mature proglottids examined (tables 1-5).

RESULTS

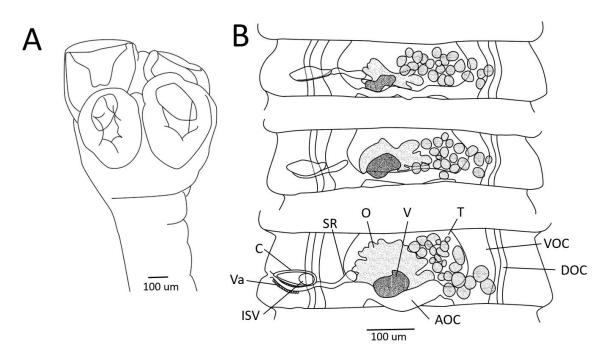
Of the twelve specimens morphologically examined, seven represented four known species: *Paranoplocephala jarrelli, Parano. omphalodes, Microticola blanchardi,* and *Rodentocestus freemani.* The morphology of these specimens was consistent with published species descriptions and redescriptions (Haukisalmi et al., 2014).

The five unknown lineages available for morphological examination included lineages 1, 3, 6, 8, and 12 (see Chapter 1). Of these, unknown lineages 3 and 8 were morphologically distinct relative to known genera and species, while lineages 1, 6, and 12 appeared to belong to genera *Paranoplocephala, Parandrya,* and *Douthittia* respectively. Here I describe the morphology of the five lineages for which specimens were available.

Paranoplocephala sp. Unknown Lineage 1 (Fig.7, Table 1)

Description: Small anoplocephalid cestodes. Maximum body length 28 mm, maximum width of proglottids 1.1 mm. Scolex large with prominent, anteriorly directed, crateriform suckers. Neck narrow relative to scolex. Proglottids consistently wider than long; average length to width of mature proglottids 0.108X0.625 mm, length: width ratio averages 1:5.77. Genital ducts passing dorsal to osmoregulatory canals. Genital pore, dextral in dorsal view, in middle of segment margin. Osmoregulatory system with wide posterior anastomosing canal. Testes antiporal, overlapping ovary, extending across ventral osmoregulatory canal. Cirrus sac attains dorsal osmoregulatory canal. Vagina approximately half the length of cirrus sac, covered by a glandular

cell layer. Seminal receptacle elongate. Ovary lobate, slightly poral of midline. Vitellarium globular, median, ventral, with respect to ovary.


Host: Lemmiscus curtatus (Tomas, 1912) (catalog number NMU:Mamm:2683)

Locality: from Double Springs Pass in central Idaho, U.S.A.; georef coordinates: 44.26392004, - 113.806273; date: 10 Aug, 2018; collector: Kurt Galbreath.

Specimen: NMU:Para:903, strobila barcode NT11AE. One sample collected; one sample examined.

Remarks: Testes in the specimen studied reach the antiporal margin of the vitellarium and substantially overlap the antiporal ventral osmoregulatory canal. In contrast, testes in *Parano. maseri*, as originally described, extend to the poral margin of the vitellarium and do not overlap with the antiporal ventral osmoregulatory canal. Further, the specimen characterized here is morphologically inconsistent with other species of *Paranoplocephala* for which molecular data is not available; those being *Parano. microti* and *Parano. kirbyi* which have a poral position for the ovary and vitellarium and *Parano. rauschi* in which the testes do not overlap the antiporal ventral osmoregulatory canal. Morphology and phylogeny are consistent with this specimen belonging to *Paranoplocephala*, but it likely represents a previously undescribed species. Genetic sampling of *Parano. maseri* would allow a test of this hypothesis.

Phylogenetics: Based on *cox1* sequences, lineage 1 groups within the *Paranoplocephala* s.s. clade in the constrained and unconstrained *cox1* tree (see Chapter 1).

Figure 7. *d* A. Scolex and neck. B. Mature proglottids, in ventral view. C: cirrus sac, Va: vagina, ISV: internal seminal vesicle, SR: seminal receptacle, O: ovary, V: vitellaria, T: testes, VOC: ventral osmoregulatory canal, DOC: dorsal osmoregulatory canal, AOC: anastomosing osmoregulatory canal.

Table 1. Meristic data for *Paranoplocephala* sp. *Unknown lineage 1*, specimen NT11AE. All measurements are in micrometers except BL which is in millimeters. Abbreviations are as follows. BL: strobila length; ScD: scolex diameter; SuD: sucker diameter; Length by width (LxW)- T: testes; CS: cirrus sac; ISV: internal seminal vesicle; O: ovary; Vi: vitellarium; Va: vagina; SR; seminal receptacle.

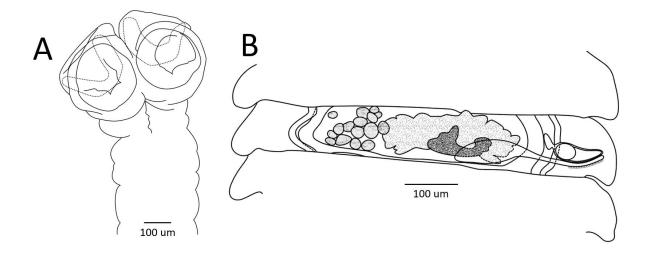
	NT11AE			
	Mean	Range	No. meas	
BL (mm)	28	-	1	
ScD	586	599-572	2	
SuD	269	285-253	4	
T (LxW)	24x20	25x25-22x17	6	
CS (LxW)	122x31	185x39-66x24	12	
ISV (LxW)	29x22	57x27-17x18	4	
O (LxW)	162x84	173x95-147x67	8	
Vi (LxW)	85x20	111x28-64x11	8	
Va (LxW)	89x6	106x7-71x5	7	
SR (LxW)	112x34	163x54-81x22	7	

Anoplocephalidae gen. sp., Unknown Lineage 3 (Fig. 8, Table 2)

Description: Small to medium anoplocephalid cestodes. Maximum body length 70 mm, maximum proglottid width 1.2 mm. Scolex large with prominent, protruding, crateriform anteriorly directed suckers. Neck narrow relative to scolex. Proglottids consistently wider than long; average length to width measurements of mature proglottids 0.127x0.896 mm, length to width ratio of mature proglottids averages 1:7.05. Genital pores irregularly alternating. Genital pore near middle of segment margin. Genital ducts passing dorsal to osmoregulatory canals. Testes antiporal, overlapping ovary but not antiporal ventral osmoregulatory canal. Cirrus sac not attaining ventral osmoregulatory canal. Seminal vesicle short, not attaining ventral osmoregulatory canal. Vagina greater than half the length of cirrus sac, cell layer present. Seminal receptacle elongated with long, narrow neck. Ovary sparsely lobed, on midline. Vitellarium poral with respect to ovary.

Hosts: Specimen in Microtus longicaudus (catalog number NMU:Para:3267).

Localities: In *Microtus longicaudus* (Merriam, 1888) from Pilot Knob in western Wyoming; georef coordinates: 43.71213801, -110.036841; date: 12 Aug. 2018; collector: Kurt Galbreath; and in *Myodes sp.*, from Northwest Territories, Canada; georef coordinates: 60.31699, -123.31075; date: 26 July, 2013; collector: Kurt Galbreath.


Specimen: NMU:Para:3267, strobila barcode NT11YT. One specimen available for morphological analysis.

Remarks: Specimens representing lineage 3 are consistent with *Paranoplocephala* in possessing a large scolex, prominent, anteriorly directed suckers, and narrow neck. These characteristics are unique to *Paranoplocephala* s.s. and can differentiate this genus from all other genera in *Paranoplocephala* sensu lato (Haukisalmi et al., 2014).

There are three species of *Paranoplocephala* s.s. for which molecular data do not exist. Of these, the specimen from our survey is most morphologically similar to *Parano. microti*, although the testes of this specimen do not overlap the ventral osmoregulatory canal whereas the testes of *Parano. microti* do. The reported host of *Parano. microti* is *Microtus ochrogaster*, but the host species of the current specimen is unknown. Additional specimens phylogenetically similar to this one are necessary for additional morphological analysis to confirm if this specimen is conspecific with *Parano. microti*.

Of the other two species lacking molecular data, the current specimen is dissimilar to *Parano. kirbyi* in that the testes do not overlap with the antiporal ventral osmoregulatory canal. The scolex and suckers of *Parano. rauschi* are much larger, the strobila much smaller, and the osmoregulatory canals are much narrower than these attributes in the current specimen (Table 2, Supplemental Tables 3-10).

Phylogenetics: Based on *cox1* sequences, lineage 3 is sister to an unknown lineage of *Paranoplocephala* identified by Voitto Haukisalmi, and groups with *Paranoplocephala* s.s., although not with strong support.

Figure 8. Anoplocephalidae gen. sp., Unknown Lineage 3, in dorsal view. A. Scolex and neck. B. Mature proglottid, dorsal view. Details are the same as in Figure 7.

	NT11YT			
	Mean	No. meas		
BL (mm)	70	-	1	
ScD	530	538-521	2	
SuD	233	235-230	4	
T (LxW)	78x79	86x89-64x66	4	
CS (LxW)	114x41	129x49-97x33	5	
ISV (LxW)	24x24	-	1	
O (LxW)	276x93	290x95-255x88	4	
Vi (LxW)	123x19	131x22-108x16	4	
Va (LxW)	101x9	-	1	
SR (LxW)	216x81	241x91-185x72	6	

 Table 2. Meristic data for Anoplocephalidae gen. sp., Unknown Lineage 3; Specimen NT11YT. Details

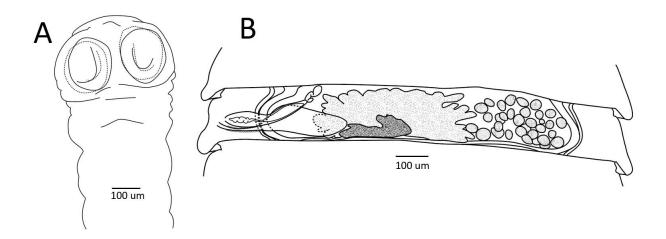
 are the same as in Table 1.

Parandrya sp. Unknown lineage 6 (Fig. 9, Table 3)

Description: Large anoplocephalid cestodes. Maximum body length 7000 mm, maximum proglottid width 0.86 mm. Scolex small with laterally directed suckers partially embedded within scolex. Neck wide relative to scolex. Proglottids consistently wider than long; average length to width measurements of mature proglottids 0.172x1.099 mm, length to width ratio of mature proglottids averages 1:6.37. Genital pores irregularly alternating, opening in middle of segment margin. Genital ducts dorsal to osmoregulatory canals. Testes entirely antiporal, marginal to ovary, not overlapping antiporal osmoregulatory canals. Cirrus sac long, wide, reaching margin of ventral osmoregulatory canal. Seminal vesicle elongate, extending anteriad along margin of ovary. Vagina approximately ³/₄ length of cirrus sac, covered by cell layer. Seminal receptacle

elongate. Ovary lobate, median, not extending to osmoregulatory canals. Vitellarium poral of midline relative to ovary.

Host: Specimen in Microtus richardsoni (catalog number NMU:Mamm:2509).


Locality: Sabe Mountain, northern Idaho, U.S.A.; georef coordinates: 45.64064596, -

114.905908; date: 2 Aug, 2028; collector: Kurt Galbreath.

Specimen: NMU:Para:3273. One specimen available for morphological analysis.

Remarks: A single specimen examined appears attributable to *Parandrya* based on presence of a wide neck, transversely elongate proglottids, primarily antiporal distribution of the testes, and an elongate seminal receptacle. as a putative undescribed species. Independent status as a putative undescribed taxon appears demonstrated based on a sister-species relationship and deep genetic divergence relative to *Parand. fedorovi* and *Parand. oeconomi* (see Chapter 1) In contrast to genera morphologically similar to *Parandrya*, the lack of a "neck swelling", prominent cirrus spines, and the primarily antiporal distribution of testes distinguishes it from *Microticola*, *Beringitaenia*, and *Chionocestus* respectively. This is apparently the first record of this genus from North America (Haukisalmi et al., 2014).

Phylogenetics: Based on *cox1* sequences, lineage 6 is sister to *Parandrya* with strong support, and groups within a clade including *Microcephaloides* and *Galegoides*.

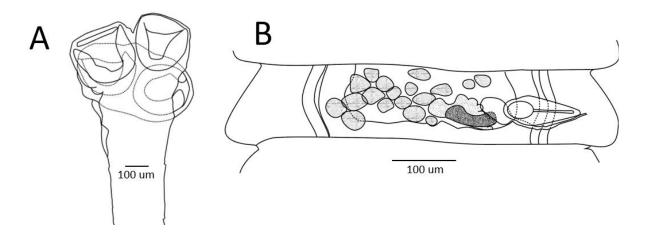
Figure 9. *Parandrya* sp. Unknown lineage 6, in dorsal view. A. Scolex and neck. B. Mature proglottid, ventral view. Details are the same as in Figure 7.

Table 3. Meristic data for *Parandrya* sp. Unknown lineage 6; (NMU:Para:3273). Details are the same asin Table 1.

	NMU:Para:3273			
	Mean	Range	No. meas	
BL (mm)	7000	-	1	
ScD	455	-	1	
SuD	170	-	1	
T (LxW)	24x21	28x26-22x18	6	
CS (LxW)	125x48	147x52-110x43	8	
ISV (LxW)	-	-	-	
O (LxW)	386x149	654x229-191x98	17	
Vi (LxW)	113x17	119x23-106x13	5	
Va (LxW)	135x10	149x12-119x9	5	
SR (LxW)	194x77	389x145-116x47	8	

Anoplocephalidae gen sp., Unknown Lineage 8 (Fig.10, Table 4)

Description: Small anoplocephalid cestodes. Maximum body length 54 mm, maximum body width 0.6mm. Scolex of medium dimensions with anteriorly directed, partially embedded suckers. Neck narrow relative to scolex. Proglottids consistently wider than long; average length to width measurements of mature proglottids are 0.091x0.345 mm and of gravid proglottids are 0.411x0.595 mm, length to width ratio of mature proglottids averages 1:5.99. Genital pores irregularly alternating; opening in middle of segment margin. Genital ducts passing dorsal to osmoregulatory canals. Testes largely antiporal of ovary, overlapping antiporal ventral osmoregulatory canal; extending in poorly defined row anterior to ovary. Cirrus sac large, extending past ventral osmoregulatory canal. Vagina lacking prominent cellular layer. Seminal receptacle with elongated neck. Ovary slightly lobed, poral of midline, vitellarium poral of midline.


Host: Specimen in Phenacomys intermedius (catalog number NMU:Mamm:2543).
Locality: Salmon Mountain in north-central Idaho, U.S.A.; georef coordinates: 45.70361903, 114.620431; date: 4 Aug. 2018; collector: Kurt Galbreath.

Specimen: NMU:Para:918, strobila barcode NT11XN. Four specimens of this lineage identified; one specimen morphologically examined, the remaining 3 specimens preserved in 80% ETOH at the Northern Museum of Zoology.

Remarks: An apparently unknown anoplocephalid represented by lineage 8 is phylogenetically most closely related to *Lemminia, Arctocestus,* and *Rauschoides* based on DNA sequences (see Chapter 1). Further, specimens of lineage 8 are morphologically inconsistent with species of these genera (Haukisalmi et al., 2014) as the testes of this specimen do not extend beyond the antiporal ventral osmoregulatory canal, as they do in these other genera. In contrast, the elongate

vagina, large cirrus sac, and small, rounded seminal receptacle are consistent with species in the genus *Douthittia* (Haukisalmi et al., 2014). The current specimen, however, lacks a distinct vaginal cell-layer and the scolex is more strongly pronounced with larger, protruding suckers. Consequently, the taxonomic placement of this specimen remains unclear. The unique morphological characteristics and deep phylogenetic divergence may support a proposal for a novel generic level taxon for lineage 8.

Phylogenetics: Based on *cox1* sequences, lineage 8 is sister to a clade including *Rauschoides*, *Lemminia*, and *Arctocestus*, although not with strong support and it is deeply divergent.

Figure 10. Anoplocephalidae gen. sp., Unknown Lineage 8, in dorsal view. A. Scolex and neck. B. Mature proglottid, dorsal view. Details are the same as in Figure 7.

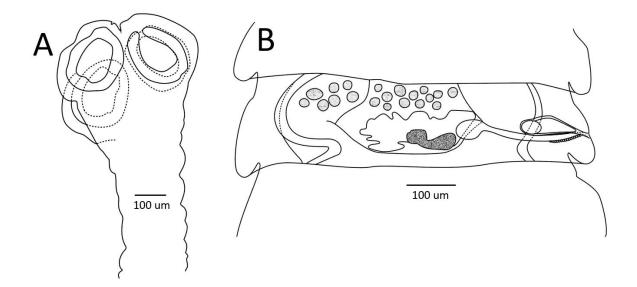
	NT11XN				
	Mean	Mean Range			
BL (mm)	54	-	1		
ScD	0.483	0.516-0.449	2		
SuD	0.234	0.243-0.225	4		
T (LxW)	0.037x0.026	0.043x0.048-0.032x0.020	6		
CS (LxW)	0.097x0.038	0.100x0.041-0.093x0.036	3		
ISV (LxW)	0.023x0.022	-	1		
O (LxW)	0.229x0.081	0.239x0.090-0.223x0.074	2		
Vi (LxW)	0.119x0.017	0.134x0.021-0.105x0.011	5		
Va (LxW)	0.085x0.004	0.108x0.08-0.062x0.002	3		
SR (LxW) 0.088x0.044		0.096x0.048-0.077x0.037	6		

 Table 4. Meristic data for Anoplocephalidae gen. sp., Unknown Lineage 8. NT11XN. Details are the same as in Table 1.

Douthittia sp., Unknown Lineage 12 (Fig.11, Table 5)

Description: Small anoplocephalid cestodes. Maximum body length 45 mm, maximum body width 3 mm. Scolex small with antero-laterally directed, partially embedded suckers. Neck wide relative to scolex. Proglottids consistently wider than long; average length to width measurements of mature proglottids are 0.185x0.882 mm, length to width ratio of mature proglottids averages 1:4.74. Genital pores irregularly alternating, opening marginally in middle of segment. Genital ducts passing dorsal to osmoregulatory canals. Ventral osmoregulatory canals, strongly distended in mature proglottids. Testes entirely anterior to ovary, attaining midline in distribution; overlapping antiporal ventral osmoregulatory canal. Cirrus sac elongate, overlapping poral ventral osmoregulatory canal. Vagina approximately half length of cirrus sac,

cell layer present. Seminal receptacle short with elongated neck. Center of female organs on median line; ovary lobate, vitellarium positioned in posterior of proglottid.


Host: Specimen in Microtus longicaudus (catalog number NMU:Mamm:2578).

Locality: Nez Perce Peak, Wyoming, U.S.A.; georef coordinates: 45.70603897, -114.616046; date: 4 Aug, 2018; collector: Kurt Galbreath.

Specimen: NMU:Para:933, strobila barcode NT11EM. One sample available for morphological analysis.

Remarks: Consistent with genus *Douthittia* based on narrow strobila of moderate length; the scolex gradually merging with the neck; anterior testes distribution, overlapping with antiporal ventral osmoregulatory canal; a wide cirrus sac, extending across the osmoregulatory canals; a vagina as long as the cirrus sac; a spherical seminal receptacle; median ovary filling up most of the space between the osmoregulatory canals. Therefore, given the morphological similarities and the close phylogenetic relationship to *Douthittia* (see Chapter 1) this specimen appears to be a previously unrecognized species attributable to *Douthittia*.

This specimen differs further from species among genera morphologically similar to *Douthittia* relative to distribution of the testes. In this apparently unknown species of *Douthittia*, the testes do not extend laterally beyond the antiporal osmoregulatory canals (versus testes that extend beyond the antiporal osmoregulatory canal in *Arctocestus, Lemminia,* and *Rauschoides*). *Phylogenetics*: Based on *cox1* sequences, lineage 12 is sister to *Beringitaenia,* although not with strong support, and falls out in a clade including *Douthittia, Diandrya,* and *Rodentocestus.*

Figure 11. Anoplocephalidae gen. sp., Unknown Lineage 12, in dorsal view. A. Scolex and neck. B. Mature proglottid. Details are the same as in Figure 7

 Table 5. Meristic data for Anoplocephalidae gen. sp., Unknown Lineage 12. NT11EM. Details are the same as in Table 1.

	NT11EM			
	Mean	Range	No. meas	
BL (mm)	45	-	1	
ScD	310	-	1	
SuD	114	147-142	4	
T (LxW)	27x23	29x25-25x21	2	
CS (LxW)	141x51	150x57-119x45	5	
ISV (LxW)	45x29	61x65-26x25	4	
O (LxW)	259x71	281x82-234x62	6	
Vi (LxW)	130x32	138x39-124x28	5	
Va (LxW)	100x7	107x7-88x6	3	
SR (LxW)	240x62	326x99-189x42	8	

DISCUSSION

Nine unknown lineages of cestode belonging to the *Paranoplocephala* species complex have been identified (see Chapter 1). Comparative morphological analyses for five of these unknown lineages provisionally supported delineation of five previously unrecognized species and potentially two new genera. Current analyses and a robust integrated pathway to fully characterize these putative taxa, along with patterns of morphological variation, are hindered by a paucity of specimens held in museum collections (e.g., Haukisalmi et al., 2014; Hoberg et al., 2016). Additional samples suitable for morphological analysis are necessary for completion and evaluation of species descriptions for unknown lineages 3, 8, and 12; only one specimen of each was used for this project. Furthermore, specimens are needed for morphological analyses of the 4 genetic lineages for which no strobilae were available to assess their status as potentially distinct species. All the unknown lineages were from regions that were not represented in earlier investigations (for example, Haukisalmi et al., 2007, 2014; Haukisalmi & Henttonen, 2005; Wickström et al., 2003). The northwest region of the contiguous U.S.A., where these specimens were collected, represents a poorly studied area where considerable cestode diversity apparently remains to be discovered (for example, Makarikov & Hoberg, 2016; Makarikov et al., 2020).

The first record for a species of *Parandrya* in North America suggests considerable additional diversity within this genus is likely to be recognized. Species of *Microtus* and *Arvicola* from Eurasia (Haukisalmi et al., 2014) are the hosts of *Parand. oeconomi* and *Parand. fedorovi*. The host of unknown lineage 6, *Microtus richardsoni*, has a relatively narrow distribution in North America (Ludwig, 1984), and the oldest fossil record of this species in North America dates back to the Pleistocene (Burns, 1982). Given the deep phylogenetic history of lineage 6 (see Chapter 1) the persistence and presence of this assemblage in North America may imply numerous episodes of geographic expansion and host-colonization linking faunas in Eurasia. In addition, presuming a Eurasian origin of *Parandrya* (see Chapter 1), their presence in North America reflects trans-Beringian dispersal. The ecological instability that punctuated the time periods around the emergence of the Bering Land Bridge, and numerous geographic and hostcolonization events likely played an important role in promoting diversification of this assemblage (e.g., Hoberg et al., 2012). Additional geographically extensive and site intensive sampling of mammalian hosts and parasites is necessary to understand the full extent of diversity and an extended history for the mosaic assembly of the North American and Holarctic fauna.

REFERENCES

- Burns, J. A. (1982). Water vole *Microtus richardsoni* (Mammalia, Rodentia) from the Late Pleistocene of Alberta. *Canadian Journal of Earth Sciences*, *19*(3), 628–631. https://doi.org/10.1139/e82-051
- Caira, J. N., & Jensen, K. (2017). *Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth*. Natural History Museum, University of Kansas. https://kuscholarworks.ku.edu/handle/1808/24421
- Cook, J. A., Galbreath, K. E., Bell, K. C., Campbell, M. L., Carrière, S., Colella, J. P., Dawson, N. G., Dunnum, J. L., Eckerlin, R. P., Fedorov, V., Greiman, S. E., Haas, G. M. S., Haukisalmi, V., Henttonen, H., Hope, A. G., Jackson, D., Jung, T. S., Koehler, A. V., Kinsella, J. M., ... Hoberg, E. P. (2017). The Beringian Coevolution Project: Holistic collections of mammals and associated parasites reveal novel perspectives on evolutionary and environmental change in the North. *Arctic Science*, *3*(3), 585–617. https://doi.org/10.1139/as-2016-0042
- Cook, J. A., Hoberg, E. P., Koehler, A., Henttonen, H., Wickström, L., Haukisalmi, V.,
 Galbreath, K., Chernyavski, F., Dokuchaev, N., Lahzuhtkin, A., MacDonald, S. O., Hope,
 A., Waltari, E., Runck, A., Veitch, A., Popko, R., Jenkins, E., Kutz, S., & Eckerlin, R.
 (2005). Beringia: Intercontinental exchange and diversification of high latitude mammals
 and their parasites during the Pliocene and Quaternary. *Mammal Study*, *30*(sp1).
 https://doi.org/10.3106/1348-6160(2005)30[33:BIEADO]2.0.CO;2
- Denegri, G. M. (1993). Review of oribatid mites as intermediate hosts of tapeworms of the Anoplocephalidae. *Experimental & Applied Acarology*, *17*(8), 567–580. https://doi.org/10.1007/BF00053486
- Haukisalmi, V. (2023). *Andryoides* gen. n. And morphological key features in cestodes of the family Anoplocephalidae sensu stricto (Cyclophyllidea) in mammals. *Folia Parasitologica*. https://doi.org/10.14411/fp.2023.006
- Haukisalmi, V., Hardman, L. M., Hoberg, E. P., & Henttonen, H. (2014). Phylogenetic relationships and taxonomic revision of *Paranoplocephala* Lühe, 1910 sensu lato (Cestoda, Cyclophyllidea, Anoplocephalidae). *Zootaxa*, 3873(4), 371. https://doi.org/10.11646/zootaxa.3873.4.3
- Haukisalmi, V., Hardman, L., Niemimaa, J., & Henttonen, H. (2007). Taxonomy and genetic divergence of *Paranoplocephala kalelai* (Tenora, Haukisalmi et Henttonen, 1985) (Cestoda, Anoplocephalidae) in the grey-sided vole *Myodes rufocanus* in northern Fennoscandia. *Acta Parasitologica*, 52(4), 335–341. https://doi.org/10.2478/s11686-007-0043-y

- Haukisalmi, V., & Henttonen, H. (2003). What is *Paranoplocephala macrocephala* (Douthitt, 1915) (Cestoda: Anoplocephalidae)? *Systematic Parasitology*, *54*(1), 53–69. https://doi.org/10.1023/A:1022141809571
- Haukisalmi, V., & Henttonen, H. (2005). Description of *Paranoplocephala yoccozi* n. sp. (Cestoda: Anoplocephalidae) from the snow vole *Chionomys nivalis* in France, with a review of anoplocephalid cestodes of snow voles in Europe. *Parasite*, 12(3), 203–211. https://doi.org/10.1051/parasite/2005123203
- Haukisalmi, V., Henttonen, H., Hardman, L., Hardman, M., Laakkonen, J., Murueva, G., Niemimaa, J., Shulunov, S., & Vapalahti, O. (2009). Review of tapeworms of rodents in the Republic of Buryatia, with emphasis on anoplocephalid cestodes. *ZooKeys*, 8, 1–18. http://dx.doi.org.nmu.idm.oclc.org/10.3897/zookeys.8.58
- Haukisalmi, V., Henttonen, H., & Hardman, L. M. (2006). Taxonomy and diversity of *Paranoplocephala* spp. (Cestoda: Anoplocephalidae) in voles and lemmings of Beringia, with a description of three new species. *Biological Journal of the Linnean Society*, 89(2), 277–299. https://doi.org/10.1111/j.1095-8312.2006.00672.x
- Haukisalmi, V., Wickstrom, L. M., Henttonen, H., Hantula, J., & Gubanyi, A. (2004). Molecular and morphological evidence for multiple species within *Paranoplocephala omphalodes* (Cestoda: Anoplocephalidae) in *Microtus* voles (Arvicolinae). *Zoologica Scripta*, 33(3), 277–290. https://doi.org/10.1111/j.0300-3256.2004.00148.x
- Hoberg, E. P. (1999). Phylogenetic analysis among the families of the Cyclophyllidea (Eucestoda) based on comparative morphology, with new hypotheses for co-evolution in vertebrates. *Systematic Parasitology*, 42(1), 51–73. https://doi.org/10.1023/A:1006100629059
- Hoberg, E.P., Galbreath, K.E., Cook, J.A., Kutz, S.J., & Polley, L. (2012). Northern host-parasite assemblages: History and biogeography on the borderlands of episodic climate and environmental transition. D. Rollinson and S.I. Hays (eds.). Elsevier. *Advances in Parasitology*, 79: 1-97.
- Hoberg EP, Makarikov AA, Tkach V, Meagher SA, Nims TN, Eckerlin RE, Galbreath KG.
 (2016) Insights on the host associations and geographic distribution of *Hymenolepis* folkertsi (Cestoda: Hymenolepididae) among rodents across temperate latitudes of North America. Parasite Research, 115: 4627-4638. DOI 10.1007/s00436-016-5255-3

Ludwig, D. R. (1984). Microtus richardsoni. Mammalian Species, 223, 1-6.

Makarikov, Arseny A., and Hoberg, Eric P. 2016. "Broadening Diversity in the Arostrilepis horrida Complex: Arostrilepis kontrimavichusi n. Sp. (Cyclophyllidea: Hymenolepididae) in the Western Red-Backed Vole Myodes Californicus (Merriam) (Cricetidae: Arvicolinae) from Temperate Latitudes of the Pacific Northwest, North America." Systematic Parasitology 93(5): 467–77.

- Makarikov, A. A., Galbreath, K. E., Eckerlin, R. P., & Hoberg, E. P. (2020). Discovery of *Arostrilepis* tapeworms (Cyclophyllidea: Hymenolepididae) and new insights for parasite species diversity from Eastern North America. *Parasitology Research*, 119(2), 567–585. https://doi.org/10.1007/s00436-019-06584-4
- Poulin, R., & Morand, S. (2000). The Diversity of Parasites. *The Quarterly Review of Biology*, 75(3), 277–293.
- Rausch, R. L. (1976). The genera Paranoplocephala Lühe, 1910 and Anoplocephaloides Baer, 1923 (Cestoda: Anoplocephalidae), with particular reference to species in Rodents. Annales de Parasitologie Humaine et Comparée, 51(5), 513–562. https://doi.org/10.1051/parasite/1976515513
- Rausch, R., & Schiller, E. (1949). Some Observations on Cestodes of the Genus Paranoplocephala Luehe, Parasitic in North American Voles (Microtus Spp.). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. https://digitalcommons.unl.edu/parasitologyfacpubs/851
- Tenora, F., Gubányi, A., & Murai, É. (1999). Paranoplocephala maseri n. Sp. (Cestoda, Anoplocephalidae), a parasite of sagebrush voles Lemmiscus curtatus (Rodentia) in the USA. Systematic Parasitology, 42(2), 153–158. https://doi.org/10.1023/A:1006077930526
- Vlasenko, P., Abramov, S., Bugmyrin, S., Dupal, T., Fomenko, N., Gromov, A., Zakharov, E., Ilyashenko, V., Kabdolov, Z., Tikunov, A., Vlasov, E., & Krivopalov, A. (2019). Geographical distribution and hosts of the cestode *Paranoplocephala omphalodes* (Hermann, 1783) Lühe, 1910 in Russia and adjacent territories. *Parasitology Research*, *118*(12), 3543–3548. https://doi.org/10.1007/s00436-019-06462-z
- Wickström, L. M., Haukisalmi, V., Varis, S., Hantula, J., & Henttonen, H. (2005). Molecular Phylogeny and Systematics of Anoplocephaline Cestodes in Rodents and Lagomorphs. *Systematic Parasitology*, 62(2), 83–99. https://doi.org/10.1007/s11230-005-5488-5

APPENDIX

	Body		
Paranoplocephala s.1.	type	Host Species	Range
Afrojoyeuxia gundii Haukisalmi, 2013	3.1	Ctenodacylus gundi	Afrotropical
Arctocestus serratus (Haukisalmi & Henttonen, 2000)	3.1	Dicrostonyx groenlandicus	Amphiberingian
Beringitaenia nanushukensis Haukisalmi et al., 2014	2	Microtus miurus	Amphiberingian
Chionocestus yoccozi (Haukisalmi & Henttonen, 2005)	2	Chionomys nivalis	Palearctic
Cookiella ondatrae (Rausch, 1948)	3.2	Microtus Montanus	Nearctic
Douthittia bairdi (Schad, 1954)	3.1	Phenacomys sp., Arborimus sp.	Nearctic
		Dicrostonyx groenlandicus, Microtus oeconomus, Microtus	
Do. nordenskioeldi (Haukisalmi et al., 2001)	3.1	miurus	Amphiberingian
Do. nearctica (Haukisalmi & Henttonen, 2007)	3.1	Myodes rutilus	Amphiberingian
Do. primordialis (Douthitt, 1915)	3.1	Sciurus hudsonica	Nearctic
Eurotaenia gracilis (Tenora & Murai, 1980)	3.1	Myodes glareolus	Palearctic
Gulyaevia buryatiensis (Haukisalmi et al., 2007)	2	Myodes rufocanus	Palearctic
Gu. Longivaginata (Chechulin & Gulyaev, 1998)	2	Myodes rutilus	Palearctic
Hunkeleriella dasymidis (Hunkeler, 1972)	2	Dasymys incomtus	Afrotropical
Lemminia fellmani (Haukisalmi & Henttonen, 2001)	3.1	Lemmus lemmus	Palearctic
L. gubanovi (Gulyaev & Krivopalov, 2003)	3.1	Mypous schizticolor	Palearctic
Microticola etholeni (Haukisalmi et al., 2002)	2	Microtus pennsylvanicus	Amphiberingian
Microt. Blanchardi (Moniez, 1891)	2	Microtus sp.	Palearctic
Parandrya fedorovi Gulyaev & Chechulin, 1996	2	Microtus sp.	Palearctic
Parand. oeconomi (Gubanui & Murai, 2002)	2	Microtus oeconomus	Palearctic
Paranoplocephala batzlii Haukisalmi, Henttonen &			
Hardman, 2006	1	Microtus miurus	Amphiberingian
Paran. Omphalodes (Hermann, 1783)	1	Microtus agrestis	Palearctic

Supplemental Table 6. Species diversity within the *Paranoplocephala* species complex and *Anoplocephaloides*. Body type score described in Haukisalmi et al., (2014).

Paran. jarrelli Haukisalmi, Henttonen & Hardman, 2006

2000
Paran. kaleli Tenora, Haukisalmi & Henttonen, 1985
Paran. kirbyi Voge, 1948
Paran. macrocephala (Douthitt, 1915)
Paran. maseri Tenora, Gubanyi & Murai, 1999
Paran. microti (Hansen, 19947)
Paran. rauschi (Fair, Schmidt & Wertheim, 1990)
Rodentocestus aquaticus (Genov, Vasileva &
Georgiev, 1996)
Ro. Freemani (Haukisalmi, Henttonen & Hardman,
2006)
Ro. sciuri (Rausch, 1947)
Rauschoides arctica (Rausch, 1952)
Ra. alternata (Haukisalmi et al., 2001)
Tenoraia janickii (Tenora, Murai &Vaucher, 1985)
Diandrya composita Darrah, 1930
Gallegoides arfaai (Mobedi & Ghadirian, 1977)
Microcephaloides variabilis (Douthitt, 1915)
Microcephaloides neofibrinus (Rausch, 1952)
Microcephaloides mascomai (Murai, Tenora &
Rocamora, 1980)
Microcephaloides krebsi (Haukisalmi et al., 2001)

Microtus oeconomus Holarctic Palearctic Myodes rufocanus Microtus californicus californicus Nearctic Microtus longicaudus Nearctic *Lemmiscus curtatus* Nearctic Microtus ochrogaster Nearctic *Microtus guentheri* Palearctic Arvicola terrestris, Ondontra 3.2 zibethica Palearctic 3.2 Microtus xanthognathus Amphiberingian 3.2 Glaucomys sbaarinus macrotis Nearctic 3.1 Dicrostonyx groenlandicus Amphiberingian 3.1 Dicrostonyx groenlandicus Amphiberingian 3.2 *Microtus arvalis* Palearctic Marmota caligata Amphiberingian Apodemus sylvaticus Palearctic Geomys, Thomomys Nearctic Neofiber alleni Nearctic Microtus cabrerae Palearctic

Other species

Anoplocephaloides dentata (Galli-Valerio, 1905) Anop. lemmi (Rausch, 1952) Anop. kontrimavichusi Rausch, 1976 Anop. troeschi (Rasuch, 1946) Anop. dentatoides Sato et al., 1993

Microtus sp., Chionomys nivalis Palearctic Amphiberingian Lemmus sibiricus Amphiberingian Synaptomys borealis Nearctic Microtus sp. Palearctic Myodes rufocanus

Amphiberingian

Dicrostonyx groenlandicus

1

1

1

1

1

1

Supplemental Table 7. Sampling data from the Museum of Southwestern Biology (MSB) and the Northern Museum of Zoology. NK, AF, and NMU:Mamm numbers are host specimen identifiers. Consecutive rows with shaded/unshaded cells indicate specimens derived from a single host. NK#: MSB Genomic Resources collection number; Lot Barc: barcode for the parent vial from which individual cestode specimens were acquired; Stro Barc: individual specimen barcode; DNA Ex: DNA extraction barcode.

NK #	Host ID	Geography	Lot Barc.	Stro Barc.	DNA Ex	Identification
270946	Mic. oeconomus	Uvs, Mongolia	A3NLY	NT11U5	A014287	Parano. jarrelli
270946	Mic. oeconomus	Uvs, Mongolia	A3NLY	NT11W2	A014285	Parano. jarrelli
272072	Myo. rufocanus	Uvs, Mongolia	АЗОНІ	NT11T5	A014284	Parano. jarrelli
272072	Myo. rufocanus	Uvs, Mongolia	АЗОНІ	NT11C6	A014286	Parano. jarrelli
270505	Mic. oeconomus	Bayan-Olgii, Mongolia	A3MXO	NT11Z4	A014283	unknown 4
270505	Mic. oeconomus	Bayan-Olgii, Mongolia	A3MXO	NT11W4	A014282	unknown 4
270505	Mic. oeconomus	Bayan-Olgii, Mongolia	A3MXO	NT11DC	A014281	unknown 4
270505	Mic. oeconomus	Bayan-Olgii, Mongolia	A3MXO	NT11YR	A014280	unknown 4
270508	Mic. oeconomus	Bayan-Olgii, Mongolia	A3MY5	NT11B3	A014279	unknown 4
270525	Mic. oeconomus	Bayan-Olgii, Mongolia	A3MY8	NT11Y3	A014112	unknown 5
270892	Microtus sp.	Uvs, Mongolia	A3NMB	NT11UB	A014113	Parano. jarrelli
270884	Microtus sp.	Uvs, Mongolia	A3NIF	NT11EG	A014117	unknown 5
270884	Microtus sp.	Uvs, Mongolia	A3NIF	NT11C5	A014122	unknown 5
270884	Microtus sp.	Uvs, Mongolia	A3NIF	NT11T1	A014124	unknown 5
270446	Myo. rufocanus	Bayan-Olgii, Mongolia	A3MXY	NT1105	A014119	unknown 5
270514	Myo. rutilus	Bayan-Olgii, Mongolia	-	NT11T3	A014508	Do. nearctica
270514	Myo. rutilus	Bayan-Olgii, Mongolia	-	NT11D6	A014274	Do. nearctica
270193	Alticola strelzowi	Bayan-Olgii, Mongolia	A3MTC	NT11T8	A014066	unknown 2
270269	Myo. rufocanus	Bayan-Olgii, Mongolia	A3MU5	NT11SL	A014074	unknown 7
270269	Myo. rufocanus	Bayan-Olgii, Mongolia	A3MU5	NT11SL	A014074	unknown 7
270269	Myo. rufocanus	Bayan-Olgii, Mongolia	A3MU5	NT11SL	A014074	unknown 7
270701	Mic. gregalis	Uvs, Mongolia	A3N76	NT11AX	A014064	An. dentata
270336	Myo. rufocanus	Bayan-Olgii, Mongolia	A3MWL	NT11X7	A014082	unknown 2
270419	Myo. rufocanus	Bayan-Olgii, Mongolia	A3MY2	NT11V7	A014080	unknown 7
270419	Myo. rufocanus	Bayan-Olgii, Mongolia	A3MY2	NT11AJ	A014088	unknown 7

270376	Myo. rufocanus	Bayan-Olgii, Mongolia	A3MWO	NT11YI	A014095	unknown 7
272007	Mic. oeconomus	Uvs, Mongolia	A3NLH	NT11AZ	A014096	Parano. jarrelli
272007	Mic. oeconomus	Uvs, Mongolia	A3NLH	NT119Y	A014097	Parano. jarrelli
270301	Myo. rufocanus	Bayan-Olgii, Mongolia	A3MW8	NT11YB	A014100	unknown 10
270862	Mic. oeconomus	Uvs, Mongolia	A3NIE	NT11ZA	A014183	unknown 5
272228	Mic. oeconomus	Khovsgol, Mongolia	A3OHV	NT11UV	A014184	Parano. jarrelli
272168	Mic. oeconomus	Khovsgol, Mongolia	A3OIL	NT11YV	A014185	Parano. jarrelli
272167	Mic. oeconomus	Khovsgol, Mongolia	A3OLD	NT11YK	A014186	Parano. jarrelli
270526	Mic. gregalis	Bayan-Olgii, Mongolia	A3N0I	NT11CF	A014208	unknown 2
289444	Mic. mongolicus	Khentii, Mongolia	A4I1R	NT11UL	A014511	Parano. jarrelli
289293	Mic. oeconomus	Khentii, Mongolia	A4I0I	NT11TR	A014512	Parano. jarrelli
289327	Mic. maximowiczii	Khentii, Mongolia	A4I0N	NT11AL	A014515	Microt. blanchardi
289359	Mic. maximowiczii	Khentii, Mongolia	A4I13	NT11WV	A014516	Parano. jarrelli
289234	Mic. mongolicus	Khentii, Mongolia	A4HOM	NT11XV	A014519	Parano. omphalodes
289382	Mic. oeconomus	Khentii, Mongolia	A4I15	NT11SU	A014520	Parano. omphalodes
289247	Mic. mongolicus	Khentii, Mongolia	A4HOU	NT11VB	A014521	Parano. jarrelli
289042	Mic. oeconomus	Bulgan, Mongolia	A4HFR	NT11AI	A014522	Parano. jarrelli
289667	Microtus	Dornod, Mongolia	A4HZW	NT11D1	A014524	Parano. jarrelli
289354	Mic. mongolicus	Khentii, Mongolia	A4HTL	NT11D9	A014525	Parano. jarrelli
289354	Mic. mongolicus	Khentii, Mongolia	A4HTL	NT11YY	A014526	Parano. jarrelli
289357	Mic. maximowiczii	Khentii, Mongolia	A4HTM	NT11AT	A014527	Parano. jarrelli
289357	Mic. maximowiczii	Khentii, Mongolia	A4HTM	NT11VY	A014528	Parano. jarrelli
289311	Mic. maximowiczii	Khentii, Mongolia	A4I0L	NT11DR	A014529	Parano. jarrelli
289342	Mic. maximowiczii	Khentii, Mongolia	A4I2Q	NT11VP	A014530	Parano. jarrelli
289388	Mic. mongolicus	Khentii, Mongolia	A4HTQ	NT11SK	A014535	Parano. jarrelli
289036	Myo. rufocanus	Bulgan, Mongolia	A4HG9	NT11BC	A014537	unknown 7
289036	Myo. rufocanus	Bulgan, Mongolia	A4HG9	NT11YZ	A014538	unknown 7
289036	Myo. rufocanus	Bulgan, Mongolia	A4HG9	NT11SH	A014539	unknown 7
289366	Mic. mongolicus	Khentii, Mongolia	A4I2U	NT11AW	A014540	Microt. blanchardi
289225	Mic. maximowiczii	Khentii, Mongolia	A4HOR	NT11UE	A014541	Parano. jarrelli
289119	Myo. rufocanus	Bulgan, Mongolia	A4HJ1	NT11BL	A014543	G. buryatiensis

289229	Mic. maximowiczii	Khentii, Mongolia	A4HLI	NT11A6	A014544	Parano. jarrelli
289702	Microtus	Dornod, Mongolia	A4I23	NT11UM	A014615	Parano. jarrelli
289835	Mic. fortis	Dornod, Mongolia	A4IL1	NT11CB	A014547	Parano. jarrelli
289248	Mic. maximowiczii	Khentii, Mongolia	A4HOV	NT11U6	A014550	Parano. jarrelli
289759	Mic. fortis	Dornod, Mongolia	A4IAL	NT11V2	A014551	Parano. jarrelli
289562	Mic. fortis	Dornod, Mongolia	A4HZB	NT11XT	A014552	Parano. jarrelli
289562	Mic. fortis	Dornod, Mongolia	A4HZB	NT11XZ	A014555	Parano. jarrelli
289562	Mic. fortis	Dornod, Mongolia	A4HZB	NT11BX	A014554	Parano. jarrelli
289562	Mic. fortis	Dornod, Mongolia	A4HZB	NT11WW	A014553	Parano. jarrelli
289827	Mic. fortis	Dornod, Mongolia	A4IIA	NT11CX	A014556	Parano. jarrelli
289100	Mic. oeconomus	Bulgan, Mongolia	A4HH7	NT11VO	A014557	Parano. jarrelli
289766	Mic. fortis	Dornod, Mongolia	A4IA8	NT119R	A014558	Parano. jarrelli
289478	Mic. mongolicus	Khentii, Mongolia	A4I3D	NT11DO	A014563	Microt. blanchardi
289264	Mic. mongolicus	Khentii, Mongolia	A4HOW	NT11EH	A014564	Microt. blanchardi
289264	Mic. mongolicus	Khentii, Mongolia	A4HOW	NT11WB	A014565	Microt. blanchardi
289655	Microtus	Dornod, Mongolia	A4HZU	NT11EK	A014566	Parano. jarrelli
289477	Mic. maximowiczii	Khentii, Mongolia	A4HU8	NT11TO	A014570	Microt. blanchardi
289477	Mic. maximowiczii	Khentii, Mongolia	A4HU8	NT11B5	A014571	Microt. blanchardi
289558	Microtus	Dornod, Mongolia	A4HYW	NT11XU	A014572	Parano. jarrelli
289558	Microtus	Dornod, Mongolia	A4HYW	NT11A2	A014573	Parano. jarrelli
289362	Mic. mongolicus	Khentii, Mongolia	A4I2T	NT11WJ	A014575	Parano. jarrelli
289358	Mic. maximowiczii	Khentii, Mongolia	A4HTO	NT11A9	A014576	Parano. jarrelli
289358	Mic. maximowiczii	Khentii, Mongolia	A4HTO	NT11TS	A014577	Parano. jarrelli
289303	Mic. maximowiczii	Khentii, Mongolia	A4HP2	NT11C7	A014578	unknown 7
289281	Mic. mongolicus	Khentii, Mongolia	A4HOZ	NT11VN	A014579	Parano. jarrelli
289281	Mic. mongolicus	Khentii, Mongolia	A4HOZ	NT11TV	A014581	Parano. jarrelli
289333	Microtus	Khentii, Mongolia	A4HPD	NT11XS	A014582	Parano. jarrelli
289360	Mic. mongolicus	Khentii, Mongolia	A4I12	NT11AB	A014584	Parano. jarrelli
289914	Microtus	Dornod, Mongolia	A4IJJ	NT11DA	A014589	Ro. freemani
289893	Mic. maximowiczii	Dornod, Mongolia	A4IM9	NT11BP	A014592	Parano. jarrelli
289244	Mic. mongolicus	Khentii, Mongolia	A4HT8	NT11YH	A014596	Parano. jarrelli

289244	Mic. mongolicus	Khentii, Mongolia	A4HT8	NT11VK	A014597	Parano. jarrelli
289771	Mic. fortis	Dornod, Mongolia	A4ILB	NT11Z2	A014598	Parano. jarrelli
289771	Mic. fortis	Dornod, Mongolia	A4ILB	NT11AP	A014599	Parano. jarrelli
289771	Mic. fortis	Dornod, Mongolia	A4ILB	NT11WF	A014600	Parano. jarrelli
289600	Mic. fortis	Dornod, Mongolia	A4HZ4	NT11SN	A014602	Ro. freemani
289600	Mic. fortis	Dornod, Mongolia	A4HZ4	NT11VZ	A014601	Ro. freemani
289600	Mic. fortis	Dornod, Mongolia	A4HZ4	NT11DX	A014603	Parano. jarrelli
289600	Mic. fortis	Dornod, Mongolia	A4HZ4	NT11SS	A014604	Parano. jarrelli
289600	Mic. fortis	Dornod, Mongolia	A4HZ4	NT11EE	A014605	Ro. freemani
289796	Mic. fortis	Dornod, Mongolia	A4IL6	NT11TH	A014606	Parano. jarrelli
289796	Mic. fortis	Dornod, Mongolia	A4IL6	NT11X4	A014607	Parano. jarrelli
289796	Mic. fortis	Dornod, Mongolia	A4IL6	NT11AQ	A014608	Parano. jarrelli
289810	Mic. fortis	Dornod, Mongolia	A4IL5	NT11WS	A014609	Parano. jarrelli
289778	Mic. fortis	Dornod, Mongolia	A4IC8	NT11B2	A014610	Parano. jarrelli
289778	Mic. fortis	Dornod, Mongolia	A4IC8	NT11VW	A014611	Parano. jarrelli
289778	Mic. fortis	Dornod, Mongolia	A4IC8	NT11DG	A014612	Parano. jarrelli
289044	Mic. oeconomus	Bulgan, Mongolia	A4HGC	NT11CZ	A014614	Parano. jarrelli
272233	Mic. oeconomus	Khovsgol, Mongolia	A3OLT	NT11V1	A010600	Parano. jarrelli
289044	Mic. oeconomus	Bulgan, Mongolia	A4HGC	NT11UH	A010578	Parano. jarrelli
289814	Mic. fortis	Dornod, Mongolia	A4IAS	NT119W	A010502	Parano. jarrelli
289802	Mic. fortis	Dornod, Mongolia	A4ICD	NT11X6	A010595	Parano. jarrelli
289829	Mic. fortis	Dornod, Mongolia	A4ICK	NT11DU	A010556	Parano. jarrelli
289316	Mic. maximowiczii	Hentiy	A4HPC	NT11VL	A010596	Parano. jarrelli
289287	Mic. mongolicus	Hentiy	A4HP0	NT11Y6	A010575	Parano. jarrelli
289563	Mic. maximowiczii	Dornod, Mongolia	A4HZQ	NT1287	A014717	Ro. freemani
289587	Mic. fortis	Dornod, Mongolia	A4HZ5	NT128N	A014725	Parano. jarrelli
289672	Mic. fortis	Dornod, Mongolia	A4I07	NT1289	A010571	Parano. jarrelli
289672	Mic. fortis	Dornod, Mongolia	A4I07	NT128K	A010562	Parano. jarrelli
289205	Mic. mongolicus	Hentiy	A4HLD	NT128M	A010574	Parano. jarrelli
289313	Mic. maximowiczii	Hentiy	A4HP5	NT1293	A010754	Parano. jarrelli
289696	Mic. fortis	Dornod, Mongolia	A4IA0	NT124L	A010623	Parano. jarrelli

289462	Mic. mongolicus	Hentiy	A4I1T	NT126F	A010753	Parano. jarrelli
289270	Mic. maximowiczii	Hentiy	A4HT9	NT123X	A010770	Parano. jarrelli
289218	Mic. oeconomus	Hentiy	A4HOG	NT12G5	A010784	Parano. jarrelli
231448	Mic. pennsylvanicus	Saskatchewan, Canada	-	C1	A013609	Parano. macrocephala
231397	Myo. gapperi	Saskatchewan, Canada	-	C2	A013606	unknown 11
231468	Mic. pennsylvanicus	Saskatchewan, Canada	-	C1	A013607	Parano. macrocephala
231605	Mic. pennsylvanicus	Manitoba, Canada	-	C1A	A013608	Parano. macrocephala
231461	Myo. gapperi	Saskatchewan, Canada	-	C2	A013622	Parano. macrocephala
231463	Myo. gapperi	Saskatchewan, Canada	-	C1B	A013652	unknown 11
231463	Myo. gapperi	Saskatchewan, Canada	-	C1A	A013636	unknown 11
231434	Tamiasciurus hudsonicus	Saskatchewan, Canada	-	C1A	A013653	unknown 11
231515	Mic. pennsylvanicus	Manitoba, Canada	-	C1A	A013656	Parano. macrocephala
231517	Mic. pennsylvanicus	Manitoba, Canada	-	C1A	A013657	Parano. macrocephala
231447	Mic. pennsylvanicus	Saskatchewan, Canada	-	C1A	A013638	An. dentata
231537	Myo. gapperi	Manitoba, Canada	-	C1	A013643	unknown 11
231381	Myo. gapperi	Saskatchewan, Canada	-	C1	A013646	Do. nearctica
231478	Mic. pennsylvanicus	Manitoba, Canada	-	C1	A013655	Parano. macrocephala
231019	Myodes sp.	NWT, Canada	-		A013675	Parano. omphalodes
231280	Mic. pennsylvanicus	NWT, Canada	-	C1A	A013668	Microt. etholeni
231216	Mic. pennsylvanicus	NWT, Canada	-	C1	A013669	Parano. macrocephala
231291	Mic. pennsylvanicus	NWT, Canada	-	SIA	A013684	Microt. etholeni
231292	Mic. pennsylvanicus	NWT, Canada	-	SIA	A013672	Parano. macrocephala
231276	Mic. pennsylvanicus	NWT, Canada	-	C1B	A013678	Microt. etholeni
231276	Mic. pennsylvanicus	NWT, Canada	-	C2A	A013673	Microt. etholeni
231287	Mic. pennsylvanicus	NWT, Canada	-	А	A013679	Microt. etholeni
270190	Alticola sp.	Bayan-Olgii, Mongolia	-	A3JTN	A013909	Parano. macrocephala
270190	Alticola sp.	Bayan-Olgii, Mongolia	-	A3JTL	A013932	unknown 2
270407	Arvicola amphibius	Bayan-Olgii, Mongolia	-	A3JTS	A013910	Parano. omphalodes
270192	Alticola strelzowi	Bayan-Olgii, Mongolia	-	A3JSF	A013920	unknown 2
270192	Alticola strelzowi	Bayan-Olgii, Mongolia	-	A3JSC	A013907	unknown 2
270251	Alticola strelzowi	Bayan-Olgii, Mongolia	-	A3JSJ	A013922	unknown 2

			Lot Barc.ode			
AF#	Host ID	Geography	#	Stro A Barc.	DNA Ex	ID
38157	Myo. rufocanus	Magadan Oblast, Russia	-	c1	-	An. dentata
46204	Dicrostonyx groenlandicus	Alaska, U.S.A.	-	c2	-	Ra. alternata
46389	Mic. oeconomus	Alaska, U.S.A.	-	c2	-	Parano. jarrelli
48486	Mic. oeconomus	Alaska, U.S.A.	-	c1	-	Parano. jarrelli
48684	Mic. oeconomus	Alaska, U.S.A.	-	c1	-	Parano. jarrelli
49642	Mic. oeconomus	Alaska, U.S.A.	-	-	-	Parano. jarrelli
49675	Mic. oeconomus	Alaska, U.S.A.	-	-	-	Parano. jarrelli
54313	Mic. oeconomus	Alaska, U.S.A.	-	c1	-	Parano. jarrelli
NMU:		~ .		a		
Para#	Host ID	Geography	Lot Barc.	Stro A Barc.	DNA Ex	ID
903	Lemmiscus curtatus	Idaho, U.S.A.	A08668	NT11AE	A013440	unknown 1
908	Mic. longicaudus	Idaho, U.S.A.	A08667	NT11DZ	A013452	An. dentata
915	Myo. gapperi	Idaho, U.S.A.	A08066	NT11TA	A013457	unknown 11
918	Phenacomys intermedius	Idaho, U.S.A.	A08069	NT11XN	A013458	unknown 8
923	Phenacomys intermedius	Idaho, U.S.A.	A08253	NT11WO	A013462	unknown 8
2504	Phenacomys intermedius	Idaho, U.S.A.	A08253	NT11SW	A013447	unknown 8
2504	Phenacomys intermedius	Idaho, U.S.A.	A08253	NT11TT	A013461	unknown 8
926	Mic. pennsylvanicus	Michigan, U.S.A.	A09633	NT11WQ	A013474	An. dentata
929	Mic. longicaudus	Montana, U.S.A.	A08006	NT11A1	A013480	An. dentata
933	Mic. longicaudus	Wyoming, U.S.A.	A08508	NT11EM	A013490	unknown 12
2715	Mic. longicaudus	Wyoming, U.S.A.	A013168	NT11YT	A013488	unknown 3
2715	Mic. longicaudus	Wyoming, U.S.A.	A013159	NT11UC	A013489	unknown 11
3273	Mic. richardsoni	Idaho, U.S.A.	A08272	-	A013467	unknown 6

DNA Ex	atp6	cob	cox2	nad1	nad2	nad3	nad4l	nad5	nad6
A014282	OR787578	OR804556	OR804572	OR804588	OR804606	OR804624	OR804641	OR804659	OR804677
A014279	OR787577	OR804555	OR804571	OR804587	OR804605	OR804623	OR804640	OR804658	OR804676
A014124	OR787576	OR804554	-	OR804586	OR804604	OR804622	OR804639	OR804657	OR804675
A014521	OR787579	OR804558	OR804573	OR804590	OR804608	OR804626	OR804643	OR804661	OR804679
A014538	OR787580	OR804559	OR804574	OR804591	OR804609	OR804627	OR804644	OR804662	OR804680
A014540	OR787581	OR804560	-	OR804592	OR804610	OR804628	OR804645	OR804663	OR804681
A014589	OR787582	OR804561	OR804575	OR804593	OR804611	OR804629	OR804646	OR804664	OR804682
A014605	OR787583	OR804562	OR804576	OR804594	OR804612	OR804630	OR804647	OR804665	OR804683
A013638	OR787570	OR804548	OR804566	OR804580	OR804598	OR804616	OR804634	OR804651	OR804669
A013646	OR787571	OR804549	OR804567	OR804581	OR804599	OR804617	OR804635	OR804652	OR804670
A013668	OR787572	OR804550	OR804568	OR804582	OR804600	OR804618	OR804636	OR804653	OR804671
A013684	OR787574	OR804552	OR804570	OR804584	OR804602	OR804620	OR804637	OR804655	OR804673
A013672	OR787573	OR804551	OR804569	OR804583	OR804601	OR804619	-	OR804654	OR804672
A013922	OR787575	OR804553	-	OR804585	OR804603	OR804621	OR804638	OR804656	OR804674
A013488	OR787567	OR804546	OR804564	OR804578	OR804596	OR804614	OR804632	OR804649	OR804667
A013489	OR787568	OR804547	OR804565	OR804579	OR804597	OR804615	OR804633	OR804650	OR804668
A013467	OR787566	OR804545	OR804563	OR804577	OR804595	OR804613	OR804631	OR804648	OR804666

Supplemental Table 8. GenBank accession numbers for nine of the eleven coding sequences.

Supplemental Table 9. Measurement data for *Rauschoides arctica* from three sampling localities in Siberia (Yamal Penninsula and Western Kolyma) and Canada (Nunavet). BL: body length; ScD: scolex diameter; SuD: sucker diameter; T: testes; CS: cirrus sac; ISV: internal seminal vesicle; O: ovary; Vi: vitellarium; Va: vagina; SR; seminal receptacle; (L): length; (LxW): length by width. Measurement data in micrometers, except BL which is in millimeters. Source: Wickstrom et al. (2001).

			Ra	uchoide	es arctica (Ra	usch, 1952)			
		Yamal Pennin	sula	Western Kolyma			Nunavut		
	Mean	Range	Ν	Mean	Range	Ν	Mean	Range	Ν
BL (mm)	106	74-123	3	112.9	90-136	7	94	74-123	9
ScD	275	260-290	6	339	300-390	8	280	240-320	10
SuD	154	150-165	5	166	155-180	8	159	140-180	10
T (LxW)	-	-	-	-	-	-	-	-	-
CS (L)	483	430-503	7	340	400-500	8	449	400-500	12
ISV (LxW)	-	-	-	-	-	-	-	-	-
O (LxW)	-	-	-	-	-	-	-	-	-
Vi (LxW)	-	-	-	-	-	-	-	-	-
Va (LxW)	-	-	-	-	-	-	-	-	-
SR (L)	519	400-610	7	657	400-800	8	610	450-900	12

Supplemental Table 10. Measurement data for *Arctocestus serratus* from three sampling localities. BL: body length; ScD: scolex diameter; SuD: sucker diameter; T: testes; CS: cirrus sac; ISV: internal seminal vesicle; O: ovary; Vi: vitellarium; Va: vagina; SR; seminal receptacle; (L): length; (W): width; (LxW): length by width. Measurement data in micrometers, except BL which is in millimeters. Source: Haukisalmi & Henttonen (2000)

			Arctocestu	s serrat	<i>us</i> (Haukisal	mi & Hentto	onen, 20	00)	
		Mainland Si	beria	Wrangel Island, Siberia			North America		
	Mean	Range	No. meas	Mean	Range	No. meas	Mean	Range	No. meas
BL (mm)	127	106-186	5	100		1	124.4	95-146	5
ScD	390	280-470	8	380	350-370	2	380	370-390	2
SuD	180	160-20	8	170	160-170	2	170	170-180	2
T (LxW)	-	-	-	-	-	-	-	-	-
CS(L)	350	270-380	25	270	250-300	5	240	200-330	18
CS (W)	110	90-130	27	107	100-120	6	10	80-130	18
ISV (L)	90	50-130	26	80	70-100	6	70	40-120	17
ISV (W)	70	40-110	26	60	50-90	6	60	40-80	17
0 (L)	240	180-280	10	240	200-270	3	220	190-250	12
O (W)	480	370-590	13	310	300-320	3	360	290-440	12
Vi (L)	120	90-170	27	110	90-130	6	90	60-160	16
Vi (W)	210	120-300	27	150	130-180	6	160	120-210	16
Va (L)	260	220-320	19	200	200-210	2	170	130-240	10
Va (W)	50	40-60	16	50	40-60	4	40	30-50	9
SR (L)	230	180-310	26	220	180-250	6	220	150-320	16
SR (W)	130	100-170	26	120	100-160	6	120	80-200	6

Supplemental Table 11. Measurement data for *Parandrya oeconomus*. BL: body length; ScD: scolex diameter; SuD: sucker diameter; T: testes; CS: cirrus sac; ISV: internal seminal vesicle; O: ovary; Vi: vitellarium; Va: vagina; SR; seminal receptacle; (L): length; (W): width; (LxW): length by width. Measurement data in micrometers, except BL which is in millimeters. Source: Haukisalmi et al. (2003).

		Parandry	a oeconomi (Gubanyi a	& Murai, 2002))		
		Finland			Alaska			
	Mean	Range	No. meas	Mean	Range	No. meas		
BL (mm)	183.1	142-235	-	167	141-195	-		
ScD	775	505-910	-	853	690-1030	-		
SuD	338	280-378	-	351	295-390	-		
T (LxW)	-	-	-	-	-	-		
CS(L)	217	170-265	-	232	200-257	-		
ISV (LxW)	-	-	-	-	-	-		
O (W)	608	390-818	-	578	500-716	-		
Vi (W)	280	200-348	-	287	230-390	-		
Va (LxW)	-	_	-	-	_	-		
SR (LxW)	-	-	-	-	-	-		

Supplemental Table 12. Measurement data for *Gulyaevia longivaginata* and *G. buryatiensis* in *Myodes rutilus* from South-Central Russia and in *Myodes rufocanus* from Buryatia respectively. BL: body length; ScD: scolex diameter; SuD: sucker diameter; T: testes; CS: cirrus sac; ISV: internal seminal vesicle; O: ovary; Vi: vitellarium; Va: vagina; SR; seminal receptacle; (L): length; (W): width; (LxW): length by width. Source: Haukisalmi et al. (2006).

		<i>Gulyaevia longiv</i> echulin & Guly			<i>Gulyaevia buryatiensis</i> (Haukisalmi et al., 2007)			
	Mean	Range	Ν	Mean	Range	Ν		
BL (mm)	-	198-225	3	-	148-277	-		
ScD	-	650-770	4	-	660-770	-		
SuD	-	250-330	16	-	240-350	-		
T (LxW)	-	-	-	-	-	_		
CS (L)	-	300-430	4	-	260-420	-		
ISV (LxW)	-	-	-	-	-	-		
O (W)	-	40-70	7	-	60-1100	-		
Vi (W)	-	210-360	7	-	230-410	-		
Va (L)	-	410-510	7	-	470-650	-		
SR (L)	-	150-350	12	-	200-450	-		

Supplemental Table 13. Measurement data for *Paranoplocephala sciuri* from two sampling localities in North America. BL: body length; ScD: scolex diameter; SuD: sucker diameter; T: testes; CS: cirrus sac; ISV: internal seminal vesicle; O: ovary; Vi: vitellarium; Va: vagina; SR; seminal receptacle; (L): length; (W): width; (LxW): length by width. Source: Rausch & Haukisalmi (2007).

		Rodentocestus sciuri (Rausch, 1947)								
	Wis	consin (Rau	sch, 1947)		Oregon					
	Mean	Range	No. meas	Mean	Range	No. meas				
BL (mm)	-	170	-	-	160	1				
ScD	-	380	-	-	500-590	4				
SuD	-	150	-	-	200-240	136				
T (LxW)	-	-	-	-	-	-				
CS(L)	200	-	-	-	560-790	14				
ISV (LxW)	-	-	-	-	-	-				
O (W)	-	-	-	-	560-790	14				
Vi (W)	-	-	-	-	210-330	13				
Va (W)	-	-	-	-	340-590	6				
SR (L)	-	420	-	-	500-650	6				

Supplemental Table 14. Measurement data for *Paranoplocephala batzlii* and *Parano. jarrelli* in *Microtus miurus* from Alaska and *Microtus oeconomus* from Finland respectively. BL: body length; ScD: scolex diameter; SuD: sucker diameter; T: testes; CS: cirrus sac; ISV: internal seminal vesicle; O: ovary; Vi: vitellarium; Va: vagina; SR; seminal receptacle; (L): length; (W): width; (LxW): length by width. Source: Measurement data in micrometers, except BL which is in millimeters. Haukisalmi et al. (2006).

		Paranoplocephala s.s.										
		<i>aranoplocephald</i> Haukisalmi et al.			Paranoplocephala jarrelli Haukisalmi et al., 2006							
	Mean	Range	No. meas	Mean	Range	No. meas						
BL (mm)	-	170-246	-	-	96-235	-						
ScD	-	910-1220	-	-	550-1180	-						
SuD	-	370-510	-	-	270-470	-						
T (LxW)	-	-	-	-	-	-						
CS(L)	-	160-320	-	-	170-320	-						
ISV (LxW)	-	-	-	-	-	-						
O (W)	-	-	-	-	-	-						
Vi (W)	-	-	_	-	-	-						
Va (LxW)	-	170-220	_	-	130-210	_						
SR (LxW)	-	270-400	-	-	200-540	-						

Supplemental Table 15. Measurement data for *Paranoplocephala omphalodes* and *Parano. microti* in *Microtus agrestis* from the Palearctic and *Microtus ochrogaster* in the Nearctic respectively. BL: body length; ScD: scolex diameter; SuD: sucker diameter; T: testes; CS: cirrus sac; ISV: internal seminal vesicle; O: ovary; Vi: vitellarium; Va: vagina; SR; seminal receptacle; (L): length; (W): width; (LxW): length by width. Measurement data in micrometers, except BL which is in millimeters. Source: Haukisalmi et al. (2006).

	Paranoplocephala s.s.					
	Paranoplocephala omphalodes (Herman, 1747)			Paranoplocephala microti (Hansen, 1947)		
	Mean	Range	Ν	Mean	Range	Ν
BL (mm)	-	112-204	-	-	157	-
ScD	-	840-1130	-	-	230	-
SuD	-	340-500	-	-	1160	-
T (LxW)	-	-	-	-	410x690	-
CS (L)	-	160-320	-	-	178-233	-
CS (W)	-	-	-	-	550-690	-
ISV (LxW)	-	-	-	-	-	-
0 (L)	-	-	-	-	247-575	-
O (W)	-	-	-	-	164-274	-
Vi (W)	-	-	-	-	-	-
Va (L)	-	110-180	-	-	140-168	-
SR (LxW)	-	80-350	-	-	20-370	-

Supplemental Table 16. Measurement data for *Paranoplocephala kirbyi* from *Microtus californicus californicus* in California. BL: body length; ScD: scolex diameter; SuD: sucker diameter; T: testes; CS: cirrus sac; ISV: internal seminal vesicle; O: ovary; Vi: vitellarium; Va: vagina; SR; seminal receptacle; (L): length; (W): width; (LxW): length by width. Measurement data in micrometers, except BL which is in millimeters. Source: Haukisalmi et al. (2006).

	Paranoplocephala s.s.					
	Paranoplocephala kirbyi Voge, 1948					
	Mean	Range	Ν			
BL (mm)	-	16000-27000	-			
ScD	940	880-1029	-			
SuD	365	332-398	-			
T (diameter)	34	25-49	-			
CS (LxW)	166x64	144x46-199x83	-			
ISV (LxW)	-	-	-			
O (W)	-	-	-			
Vi (W)	-	-	-			
Va (LxW)	-	-	_			
SR (LxW)	-	-	_			