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Abstract
This paper provides a comprehensive review of the application of Reinforcement 
Learning (RL) in the domain of finance, shedding light on the groundbreak-
ing progress achieved and the challenges that lie ahead. We explore how RL, a 
subfield of machine learning, has been instrumental in solving complex finan-
cial problems by enabling decision-making processes that optimize long-term 
rewards. Reinforcement learning (RL) is a powerful machine learning technique 
that can be used to train agents to make decisions in complex environments. 
In finance, RL has been used to solve a variety of problems, including optimal 
execution, portfolio optimization, option pricing and hedging, market making, 
smart order routing, and robo-advising. In this paper, we review the recent de-
velopments in RL for finance. We begin by introducing RL and Markov deci-
sion processes (MDPs), which is the mathematical framework for RL. We then 
discuss the various RL algorithms that have been used in finance, with a focus 
on value-based and policy-based methods. We also discuss the use of neural 
networks in RL for finance. Finally, we discuss the results of recent studies that 
have used RL to solve financial problems. We conclude by discussing the chal-
lenges and opportunities for future research in RL for finance.

Key words: Reinforcement learning; machine learning; Markov decision 
process; finance.

JEL classification: G10, G12, G13.

Resumen
Este artículo ofrece una revisión exhaustiva de la aplicación del aprendizaje por 
refuerzo (AR) en el dominio de las finanzas, y arroja una luz sobre el innovador 
progreso alcanzado y los desafíos que se avecinan. Exploramos cómo el AR, 
un subcampo del aprendizaje automático, ha sido instrumental para resolver 
problemas financieros complejos al permitir procesos de toma de decisiones 
que optimizan las recompensas a largo plazo. El AR es una poderosa técnica 
de aprendizaje automático que se puede utilizar para entrenar a agentes a fin 
de tomar decisiones en entornos complejos. En finanzas, el AR se ha utilizado 
para resolver una variedad de problemas, incluyendo la ejecución óptima, la 
optimización de carteras, la valoración y cobertura de opciones, la creación de 
mercados, el enrutamiento inteligente de órdenes y el robo-asesoramiento. En este 
artículo revisamos los desarrollos recientes en AR para finanzas. Comenzamos 
proporcionando una introducción al                     AR y a los procesos de decisión de Markov 
(MDP), que es el marco matemático para el AR.     Luego discutimos los diversos 
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algoritmos de AR que se han utilizado en finanzas, con un enfoque en métodos 
basados en valor y políticas. También discutimos el uso de redes neuronales en 
AR para finanzas. Finalmente, abordamos los resultados de estudios recientes 
que han utilizado AR para resolver problemas financieros. Concluimos discu-
tiendo los desafíos y las oportunidades para futuras investigaciones en AR para 
finanzas.

Palabras clave: aprendizaje por refuerzo; aprendizaje automático; procesos 
de decisión de Markov; finanzas.

Clasificación JEL: G10, G12, G13.

Introduction

Reinforcement Learning (RL) is a powerful machine learning technique that 
can be used to train agents for better decision making in complex environments. 
In finance, RL has been used to solve a variety of problems, including optimal 
order execution, portfolio optimization, option pricing and hedging derivatives, 
market making, smart order routing, and robo-advising.

RL is based on the idea that agents can learn to make good decisions by trial 
and error. In an RL problem, the agent is placed in an environment and must 
learn to take actions that will maximize its reward. The agent’s environment 
can be anything from a simple game to a complex financial market. The agent’s 
actions can be anything from buying or selling a stock to placing an order to trade. 
The agent’s reward can be anything from making a profit to avoiding a loss.

The paper’s analytical approach primarily involves a thorough examination 
of both seminal and recent academic papers, focusing on the application of RL 
algorithms in various financial sectors such as portfolio management, algorithmic 
trading, credit scoring, and risk management. Additionally, we highlight the 
different types of RL algorithms, their strengths, weaknesses, and the contexts 
in which they are most effective.

RL has been shown to be effective in solving a variety of financial problems. 
For example, RL has been used to develop trading algorithms that can outper-
form human traders. RL has also been used to develop portfolio optimization 
algorithms that can help investors to achieve their financial goals. Our findings 
underscore the significant potential of RL in finance, evidencing its ability to 
outperform traditional methods in several applications. However, we also iden-
tify several challenges and limitations, such as overfitting, instability, and the 
difficulty of interpreting RL models.
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In this paper, we will review the recent developments in RL for finance. 
In the next section we will begin by introducing RL and Markov decision 
processes (MDPs), which is the mathematical framework for RL. The second 
section (ç) discusses the various RL algorithms that have been used in finance 
and discusses the use of neural networks in RL for finance. Finally, we discuss 
the results of recent studies that have used RL to solve financial problems. We 
conclude by discussing the challenges and opportunities for future research in 
RL for finance.

1. Reinforcement Learning

The essence of Reinforcement Learning (RL) is to learn through interaction. 
An RL agent interacts with its environment, and by observing the consequences 
of its actions, can learn to alter its behavior in response to the rewards received. 
Therefore, without the presence of an agent and an environment, RL could not 
materialize. It should be clarified that within these elements, the environment 
is not understood as something deterministic, as even when the same action has 
been given in the same state, the results obtained are different.

However, beyond the agent and the environment, four additional elements 
can be identified that provide inputs to the development of this type of learning. 
The first of these is the policy, which is understood as the behavior of the agent 
at a given moment. It is a mapping of the perceived states of the environment 
to the actions or decisions that must be taken in those specific states. In some 
cases, the policy may be a simple function, a lookup table, or involve extensive 
calculation, like a search process that, in the end, is carried out under behaviors 
performed from stimulus-response associations, attributed mainly to psychology. 
The actions studied are stationary, i.e., they do not depend on time.

At the beginning of each study, a goal must be established, or in RL, a re-
ward, which is responsible for defining the objective through which the agent’s 
behavior will be conditioned. From here arises the second element, the agent’s 
pursuit of maximizing its benefit and obtaining an ever-greater reward, con-
sidering what are favorable or unfavorable events as stochastic functions and 
seeking as a priority its benefit.

In a biological system, we could think that rewards are analogous to experi-
ences of pleasure or pain, they are the immediate and defining characteristics 
of the problem the agent faces, (Sutton & Barto, 2018). The correlation that 
exists between policy and reward is direct: if an action governed by a policy 
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leads to a low reward, the agent opts for a change in the policy that generates 
a different action to finally obtain greater benefits.

Now, the long-term value function thought by the agent as the third element 
of RL should be considered. This means that reward signals are the immediate 
results of previous actions, while the value function gives the long-term results 
of the decision made. The value of a state is the total amount of reward that 
an agent can expect to accumulate in the future from that state, while rewards 
determine the immediate and intrinsic convenience of environmental states 
(Sutton & Barto, 2018). The value function becomes very important in later 
studies because, in the algorithmic application, it is these value functions that 
define decision-making that results in benefit maximization.

The last element is the environment model, established from the situations 
proposed to achieve low-risk experimentation. It is understood as a series of 
inferences about the possible behavior of the environment, given a state and an 
action, the model could predict the next state and its next reward.

In this way, the components that encompass the actors of RL can be syn-
thesized. And additionally, there are a series of criteria related to the balance 
between exploration and exploitation, the acceleration of the learning process, 
and generalization, which influence learning.

The action of delegating to the agent the responsibility of determining the 
strategy to explore the environment, and controlling the training examples 
through the sequence of actions, provides RL with a defining characteristic. 
This is where the agent must find the balance between exploring new states 
to obtain new information and exploit already assimilated and learned actions 
with which they obtain a great reward, which guarantees an accumulated reward 
(Kaelbling et al., 1996).

Since it is impossible to explore and exploit simultaneously with a single 
action selection, “conflicts” are created between exploration and exploitation 
and there are several proposals to achieve the balance between them (Kael-
bling, 1993). There is the E-greedy strategy, optimistic initial values, action 
selection methods based on the Boltzmann distribution, interval estimation 
method, exploration bonus used in Dyna, and competition maps (Sutton, 
1990, 1991).

Regarding the acceleration of learning, it seeks to attack the agent’s need 
to reiterate actions to learn the value function. A weakness that is mitigated with 
the incorporation of information predicted by an external observer or integrat-
ing learning with planning. And considering generalization, which is based on 
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the estimation of optimal values defined over the set of states, represented in a 
tabular manner if they are in small states (Thrun & Möller, 1991).

In that sense, the elements that interact within RL are exposed, as seen in 
Figure 1, within an environment of actions and rewards for the agent. Likewise, 
the criteria in which such learning is developed and where knowledge has been 
used for its employability, being State 𝑆𝑡 the initial moment, with the interaction 
of an agent (Agent) who performs an action (Action 𝑎𝑡 ) in a certain environ-
ment (Environment) and that finally, obtains a reward (Reward 𝑟) that must be 
greater than the initial one (Reward 𝑆𝑡 +1) (Kapoor et al., 2022).

Figure 1: Reinforcement learning: Interaction between agent and environment

Source: Kapoor et al. (2022).

One of the conclusions the evaluator must reach is that the studied agent must 
accept success or failure through the previously mentioned processes. However, 
such learning must be focused on understanding the environment and its behav-
ior through rewards or punishments. Similarly, two cross-sectional stages are 
recognized for evaluating any model: prediction and control.

On the one hand, according to the associations of stimuli and their deriva-
tions, it is possible to propose an evaluation of the future given a policy, without 
the need to depend on time. On the other hand, control allows for the future to 
be optimized with the application of accurate conjectures to find the best policy.

Referring to the term of optimal control describes the problem of design-
ing a dynamic controller over time, known in dynamic programming, which, 
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despite being considered one of the essential systems in solving general 
problems, suffers from “the curse of dimensionality” due to the exponential 
growth of computational requirements, and, when introduced in a stochastic 
version, Markovian decision processes (MDP) are produced (Gosavi, 2009). In 
this way, all these methods are RL because they require complete knowledge 
of the system to control or decipher.

Then, the modern field of trial and error learning begins, measuring the level 
of satisfaction or dissatisfaction that produces a strengthening or weakening in 
the agent’s behavior and decisions (Thorndike, 1911). The above gives rise to 
the Law of Effect because it describes the effect of reinforcing events on the 
tendency to select actions and is widely considered a basic principle underlying 
many behaviors at the base of influential learning.

The trial and error methodology was also implemented in computers that 
converge at the beginnings of artificial intelligence. Minsky (1954) discussed 
computational models of reinforcement learning and described his construction 
of an analog machine composed of components he called SNARC (Stochastic 
Neural-Analog Reinforcement Calculators) designed to resemble modifiable 
synaptic connections in the brain. This found a lot of applicability in predictions 
and expectations compared to what is currently being had, all this affecting 
real-time decisions.
Likewise, in the functionalities of trial and error, there is the Stella system that 
learned by interaction with its environment (Andreae, 1963). Menace (Matchbox 
Educable Naughts and Crosses Engine) was also developed. It was a system to 
learn to play tic-tac-toe that consisted of a matchbox for each game position. 
Each box contained several colored beads, a different color for each possible 
move from that position (Michie & Chambers, 1968).

In the same way, the adoption of reinforcement learning with trial and 
error was carried out in classic economic models, specifically in game theory 
(Camerer, 2003), as one of the many uses of this branch.

As a third methodology, RL revolutionized the temporal dimension, driven 
by the differences between temporally successive estimates of the same quan-
tity that influence the final decision of the agent and leveraged by the notion of 
secondary reinforcers. That is, temporal dimensions learn from primary events 
or primary reinforcers such as food or pain and acquire similar properties 
(Minsky, 1954), to the initial ones that would be the secondary reinforcers and 
support previous behavior.
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In summary, Markov processes are created from decision processes. MDPs 
are sequential decision-making problems in which a control (action) must be 
selected at each decision- making state visited by the system in question. These 
methods integrate three important methods: again, Dynamic Programming, 
Monte Carlo, and Finite Differences Learning.

Sequential decision-making is part of processes with incentives for agents. 
In such a way that, the decision for the best policy will be influenced by two 
important factors: immediate rewards and subsequent rewards. And these de-
cision processes can only present two unique states, either truth or lie. Given 
decision-making, and the use of methods and incentives that Markov’s models 
presented, lies Dynamic Programming. The main objective is the calculation 
of optimal policies (Tesauro, 1995).

To achieve optimization within the choice and fulfillment of policies and 
their consequences, it is important that a division of the evaluated problem is 
carried out. This situation will create recurrent sub-problems, and if a solution 
is found, they should start with the next situation evaluated, which later leads 
to a state of combination between all the disputes (Kohl, 2004).

Recurrent sub-problems establish a compliance pattern. Firstly, the interac-
tion of generalized policies, characterized by the interaction between evaluation 
and work in favor of policies. Second, the interaction of values, the one that 
intercalates policy evaluation among minors of policies, and where a scan is 
necessary. Lastly, the efficiency of dynamic programming interrelates between 
actions and states (Errecalde et al., 2000).

From the subdivision and a better evaluation of recurrent problems, model-
free prediction must be made. Among these is Monte Carlo Learning, with 
sample episodes. Policy evaluation, first sight methods, and all sights. Finally, 
temporal differences learning, which contains both immediate experiences and 
dynamic programming. To understand the way these methods, behave and are 
fed back, you can see in the image that the RL algorithms in dynamic program-
ming, temporal differences, exhaustive search, and Monte Carlo correlate in 
the bootstrapping techniques to simple supports, which are presented in the 
behavior of the Actor (Policy).

Even though Reinforcement Learning (RL) presented successful research 
and applications, the lack of scalability in its approaches and limitations to 
low-dimension problems became more and more apparent. For this reason, 
various studies began to emerge, branching out from RL, and seeking to solve 
the complexity constraints shared by RL algorithms like any other algorithm. 
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Among these problems, the complexity of memory, computational complex-
ity, and sample complexity were found, which will be attacked from different 
approaches (Schlegel et al., 2019).

Considering that modern RL science has emerged from a synthesis of no-
tions from four different fields: classic Dynamic Programming (DP), AI with 
temporal differences, stochastic approximation (simulation), and function 
approximation which contemplate regression, the Bellman error, and neural 
networks; it is necessary to analyze the connection of the mentioned problems 
and the techniques used in learning, which will be indispensable for future 
research (Torres et al., 2017).

It is stated again that these evolutions begin with a Markov Decision Process 
(MDP). The system is driven by underlying Markov chains that randomly jump 
from one state to another in discrete time steps, and where the probability of 
transition from the current state to the next depends only on the current state 
and not on where the system has been before (Taylor & Stone, 2009). Because 
of this, the system tries to find the policy that optimizes the performance metric 
and its infinite temporal horizon. MDPs are related to the evolution of Classic 
Dynamic Programming (CDP). Given that, it is responsible for the breakdown 
and for fulfilling the requirement to compose, store, and manipulate the transi-
tion probability matrices (TPMs) in the policy and value iterations. However, like 
many MDP processes, it has gaps like the phenomena of the curse of modeling; 
where it is not possible to calculate the values of the transition probabilities, the 
curse of dimensionality with storage processes, or manipulation of the value 
function (Foerster, 2016).

Analogously, RL with Q-Values is based on the dynamic programming of a 
discrete event. CDP is based on two forms of the Bellman equation: the Bell-
man Optimization Equation (BOE) and the Bellman Policy Equation (BPE). 
The Bellman optimality principle can be found applied to corporate financial 
structure, which seeks to find the optimal point of indebtedness, which in this 
case is represented by the maximum difference between the fiscal benefit ob-
tained by contracting debt and the respective financial costs incurred (Ziebart 
et al., 2008).

Referring to the advances that have provided new tools for learning in deep 
neural networks, improving tasks such as object detection, voice recognition, 
and language translation (Bengio et al., 2013). The start is given to Deep Rein-
forcement Learning (DRL). The most important property of DRL is that deep 
neural networks can automatically find compact low-dimension representations 
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(features) of high-dimension data (images, text, and audio). By creating induc-
tive biases in neural network architectures, particularly that of hierarchical 
representations, machine learning professionals have achieved effective progress 
in addressing the curse of dimensionality (LeCun et al., 2015). This advance 
allows RL to adapt to decision-making problems in high-dimension action and 
state environments.

The development of an algorithm for Atari videogames at a superhuman 
level trained by agents in raw and high-dimension observations, based on a 
single reward signal, is contributed by Deep Reinforcement Learning (DRL) 
as one of its first successes. Subsequently, the development of a hybrid system, 
AlphaGo (Silver 2016), which defeated the human world champion in Go, was 
presented. AlphaGo was composed of neural networks, trained using super-
vised and reinforcement learning, and combined with a traditional heuristic 
search algorithm. Parallel to IBM’s Deep Blue’s historic achievement in chess 
two decades earlier and IBM’s Watson DeepQA system (Ferrucci, 2010), all 
these agents have the utility of “meta-learning” or learning to learn, allowing 
them to generalize complex visual environments they have never seen before 
(Duan et al., 2016).

Although algorithms can process high-dimension inputs, it is rarely feasible 
to train RL agents directly on visual inputs in the real world, due to the large 
number of samples required. To accelerate learning in DRL, it is possible to 
exploit previously acquired knowledge from related tasks, which come in vari-
ous forms: transfer learning, multitask learning, and curriculum learning, to 
name a few (Nath et al., 2020).

2. Reinforcement Learning in Finance

Reinforcement Learning (RL) has emerged as a significant tool in the field of 
finance, driving a surge in research and publications. The ability of RL to op-
timize decisions over time, learn from interaction with the environment, and 
adapt to changing circumstances makes it particularly suited to the dynamic and 
complex nature of financial markets. It has found applications in various areas 
of finance, including portfolio management, credit scoring, and algorithmic 
trading. The recent increase in papers published on this topic reflects the grow-
ing recognition of RL’s potential in finance. Researchers are exploring innova-
tive ways to apply RL to solve complex financial problems, improve financial 
decision-making, and create more efficient and robust financial systems. The 
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following figures show this relevance achieved in recent years by the academic 
community.

Figure 2 shows a relevant increase in the papers published about RL and 
finance, with special behavior from the last five years, with almost sixty docu-
ments published in 2020.

Figure 2: Documents published by year with the key 
“Reinforcement Learning and Finance”

Source: Scopus.

Figure 3: Documents published by type with the key 
“Reinforcement Learning and Finance”

Source: Scopus.
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Figure 3 shows that scientific articles and conference are equivalent to 85% 
of the publications in RL and finance, revealing that is an important topic for 
cutting edge research in the world.

The rapid changes in the finance industry due to the increasing amount of 
data have revolutionized the techniques on data processing and data analysis 
and brought new theoretical and computational challenges. Given that traditional 
approaches to financial decision-making heavily rely on model assumptions, 
reinforcement learning (RL) can make full use of the large amount of financial 
data with fewer model assumptions and improve decisions in complex financial 
environments. This section aims to review the recent developments and use of 
RL approaches in finance, with a focus on value and policy-based methods that 
do not require any model assumptions. It also discusses the potential benefits of 
using RL approaches in finance, such as improving decision-making, reducing 
transaction costs, and capturing complex patterns in financial data.

RL approaches can make full use of the large amount of financial data with 
fewer model assumptions and improve decisions in complex financial environ-
ments. RL algorithms can be applied in a variety of decision-making problems 
in finance, including optimal order execution, portfolio optimization, option 
pricing and hedging, market making, and risk management. RL algorithms can 
help in developing trading strategies that can adapt to changing market condi-
tions and improve the overall performance of the portfolio. RL algorithms can 
also help in reducing transaction costs and market impact costs by optimizing 
the execution of trades. The use of deep RL algorithms can help in capturing 
complex patterns in financial data and improve the accuracy of predictions 
(Hambly et al., 2021).

One of the most exciting implications of RL in finance, is portfolio manage-
ment. Hu and Lin (2019) discuss the application of Deep Reinforcement Learn-
ing (DRL) for optimizing finance portfolio management. The authors address 
several research issues related to policy optimization for finance portfolio 
management. They propose the use of a deep recurrent neural network (RNN) 
model, specifically Gated Recurrent Units (GRUs), to weigh the influences 
of earlier states and actions on policy optimization in non-Markov decision 
processes. They also propose a risk-adjusted reward function for searching for 
an optimal policy.

The authors discuss the integration of Reinforcement Learning (RL) and 
Deep Learning (DL) to leverage their respective capabilities to discover an 
optimal policy. They explore different types of RL approaches for integrating 
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with the DL method while solving the policy optimization problem. They also 
discuss the challenges of applying DRL in optimizing finance portfolio manage-
ment. These challenges include the impossibility of obtaining a real state space 
of the finance world, the need to deal with the non-Markovian property with 
dependence on earlier states and actions to learn and estimate future expected 
rewards, and the need to consider transaction overheads such as transaction 
fees and tax when computing the risk-adjusted reward function to obtain total 
effective rewards.

Finally, they propose using deep RNNs for DL and policy gradient for RL 
to search for the optimal policy function’s parameters. They also discuss vari-
ous DL and RL combinations and propose one of the DRL approaches, arguing 
why this one is better for optimizing finance portfolio management. The paper 
concludes with the intention to investigate all types of DL and RL combinations, 
find the best one, and discover its incentives for finance planning in future work.

Millea and Edalat (2022) discuss portfolio optimization, which is the process 
of selecting a combination of assets that will increase in value over time. The 
goal is to partition the available resources in a way that the overall portfolio 
value increases over time. The paper presents a hierarchical decision-making 
architecture for portfolio optimization on multiple markets, using a combination 
of Deep Reinforcement Learning (DRL) and Hierarchical Risk Parity (HRP) and 
Hierarchical Equal Risk Contribution (HERC) models. The experiments were 
performed on the cryptocurrency market, stock market, and foreign exchange 
market, showing excellent robustness and performance of the overall system.

Another framework in finance to using Reinforcement Learning (RL), is 
option pricing and hedging with derivatives. The QLBS Model: The Quantita-
tive Learning from Buffer Stock (QLBS) model, proposed by Halperin (2019) 
and extended in Halperin (2020), learns both the option price and the hedging 
strategy in a similar spirit to the mean-variance portfolio optimization frame-
work based in Q-Learning algorithms.

Buehler et al. (2019) used deep neural networks to approximate an optimal 
hedging strategy under market frictions, including transaction costs, and con-
vex risk measures. They showed that their method can accurately recover the 
optimal hedging strategy in the Heston model without transaction costs and it 
can be used to numerically study the impact of proportional transaction costs 
on option prices.

Cannelli et al. (2020) formulated the optimal hedging problem as a Risk-
averse Contextual Multi-Armed Bandit (R-CMAB) model and proposed a 
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deep CMAB algorithm involving Thompson Sampling. They showed that their 
algorithm outperforms DQN in terms of sample efficiency and hedging error 
when compared to delta hedging. Cao et al. (2021) considered Q-learning and 
Deep Deterministic Policy Gradient (DDPG) for the problem of hedging a short 
position in a call option when there are transaction costs. The objective function 
is set to be a weighted sum of the expected hedging cost and the standard devia-
tion of the hedging cost. They showed that their approach achieves a markedly 
lower expected hedging cost but with a slightly higher standard deviation of 
the hedging cost when compared to delta hedging.

For American options, the key challenge is to find the optimal exercise strat-
egy, which determines when to exercise the option as this determines the price. 
Li et al. (2009) used the Least-Squares Policy Iteration (LSPI) algorithm and the 
Fitted Q-learning algorithm to learn the exercise policy for American options.

Regarding algorithmic trading, Sun and Si (2022) discuss the use of Re-
inforcement Learning (RL) in automated trading for generating buy and sell 
signals in financial markets. RL is a method of training an agent to make opti-
mal decisions based on the current state of the market and owned positions and 
cash. The paper proposes a novel framework called Supervised Actor-Critic 
Reinforcement Learning with Action Feedback (SACRL-AF) to address the 
issue of incomplete fulfillment of buy or sell orders in certain situations. The 
proposed framework uses Deep Deterministic Policy Gradient (DDPG) and 
Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithms to achieve 
state-of-the-art performance in profitability.

Théate and Ernst (2021) present a new approach to solve the algorithmic trad-
ing problem using deep reinforcement learning (DRL). The proposed Trading 
Deep Q-Network algorithm (TDQN) is inspired by the popular DQN algorithm 
and is adapted to the specific algorithmic trading problem. The training of 
the reinforcement learning (RL) agent is based on the generation of artificial 
trajectories from a limited set of stock market historical data. The paper also 
proposes a novel performance assessment methodology to objectively assess 
the performance of trading strategies. Promising results are reported for the 
TDQN algorithm.

3. Conclusions

RL approaches can provide a powerful tool for decision-making in finance and 
can help in developing more efficient and effective trading strategies. These 
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approaches show how RL can be used to learn optimal strategies for option 
pricing and hedging, often outperforming traditional methods, also in the field 
of portfolio optimization and algorithmic trading; RL has shown remarkable 
results compared with traditional methods. However, it’s important to note that 
these methods often require careful tuning and may not always be applicable 
in every market condition. DRL algorithms performs well on multiple markets, 
including the cryptocurrency market, the stock market, and the foreign exchange 
market. The system can learn when to switch between the low-level models, 
and the performance is better than the individual models. Additionally, possible 
future works needs to consider transaction costs, which can have a significant 
impact on the performance of the system in practice.
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