DEFINABLE STRUCTURES ON THE SPACE OF FUNCTIONS

 FROM TUPLES OF INTEGERS INTO 2Cody James Olsen

Dissertation Prepared for the Degree of DOCTOR OF PHILOSOPHY

UNIVERSITY OF NORTH TEXAS

May 2023

APPROVED:

Stephen Jackson, Major Professor
Lior Fishman, Committee Member
Nam Trang, Committee Member
Ralf Schmidt, Chair of the Department of Mathematics
John Quintanilla, Dean of the College of Science
Victor Prybutok, Dean of the Toulouse Graduate School

Olsen, Cody James. Definable Structures on the Space of Functions from Tuples of Integers into 2. Doctor of Philosophy (Mathematics), May 2023, 52 pp., 15 numbered references.

We give some background on the free part of the action of tuples of integers into 2. We will construct specific structures on this space, and then show that certain other structures cannot exist.

Copyright 2023
by
Cody James Olsen

TABLE OF CONTENTS

Page
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 BOREL EQUIVALENCE RELATIONS 4
2.1. Borel Sets and Standard Borel Spaces 4
2.2. Borel Equivalence Relations 5
CHAPTER 3 MARKER REGIONS 11
3.1. General Marker Regions 11
3.2. Rectangular Marker Regions 14
3.3. Orthogonal Marker Regions 17
CHAPTER 4 HYPER-APERIODIC ELEMENTS 19
CHAPTER 5 FORCING NOTIONS 23
5.1. Minimal Two-Coloring and Grid-Periodicity Forcing 23
CHAPTER 6 OPEN STRUCTURES 27
6.1. Marker Sets 27
6.2. Treeings 30
CHAPTER 7 A BOREL N-LINING 35
REFERENCES 51

CHAPTER 1

INTRODUCTION

Countable Borel equivalence relations occur naturally in different contexts in which an equivalence relation occurs as a result of an action by some group. Some of these contexts include ergodic theory and the theory of operator algebras, but there is a natural connection into descriptive set theory. The theory of definable equivalence relations serves as a base for studying classification and complexity problems, which can often be represented as equivalence relations which are definable subsets of some Polish space; thus, it is natural to try to develop a theory on these objects themselves. The study of countable equivalence relations in a purely descriptive set theoretic context began in the mid 1990's, with the papers [9] and [2] being two of the earliest. Kechris gives an extensive overview of the topic of countable equivalence relations in [12].

A theorem by Feldman and Moore states that any countable Borel equivalence relation E of some Polish space X can be viewed as being induced by some countable group. Thus, studying Borel equivalence relations by the groups that induced them became standard practice. For example, it is now known that the relation induced by any abelian group is hyperfinite. To prove this, sets known as marker sets with certain properties on each equivalence class had to be defined. One of the first arugments using marker sets was given by Slaman and Steel. Marker sets have now been used in various different spaces to construct explicit sets, functions, and graphs that have certain properties on each equivalence class.

Marker sets are an excellent tool for explicitly constructing various sets, but there is no clear way to use them to prove the nonexistence of sets with specific properties. To do this, special points called hyperaperiodic points were constructed for specific spaces. The closure of the orbits of these points are compact, which means any open structure defined on them is subject to incredibly strict, often impossible conditions. In [6], Gao, Jackson, Krohne, and Seward constructed hyper-aperiodic elements via forcing. These new elements when used cleverly can impose strong conditions even on Borel sets, allowing us to prove the
nonexistence of Borel structures.
In this paper, we will focus on a specific collection of spaces. We will consider the sets $2^{\mathbb{Z}^{n}}$, where the action of \mathbb{Z}^{n} is the shift action, $g \cdot x(h)=x(-g+h)$. The equivalence classes of these spaces are the points which are shifts of each other, meaning each equivalence class looks like a copy of \mathbb{Z}^{n}. This means there is some interesting geometry to consider when trying to define structures such as linings or treeings on each class.

The goal of this thesis is to analyze which structures can be defined on the specific space $F\left(2^{\mathbb{Z}^{n}}\right)$ and which cannot. We will use marker sets to construct some sets explicitly, but we will also define a new set of marker sets. It is known that there is no sequence of clopen marker sets $M_{0} \supseteq M_{1} \supseteq \cdots \supseteq M_{n} \supseteq \cdots$ which have empty intersection. In this paper, we define an open sequence of marker sets of $F\left(2^{\mathbb{Z}^{n}}\right)$ that have this property, and discuss the limitations of these sets.

We have also taken results about clopen structures and generalized them to open structures. Occasionally, changing clopen to open will allow some objects to exist that couldn't previously, such as in the case of our marker sets above. Conversely, there are nonexistence results about clopen structures which can be generalized to open. We have developed techniques that allow us to generalize clopen structures with one component to open structures that can have multiple components. An interesting phenomena occurs where changing "exactly" to "at most" can change whether or not a certain type of structure can exist. The following results give such an example.

Theorem 1.1. For any $n \in \omega$, There is no open treeing T of $F\left(2^{\mathbb{Z}^{2}}\right)$ which has exactly n components on each equivalence class.

Theorem 1.2. There is an open treeing T of $F\left(2^{\mathbb{Z}^{2}}\right)$ which has at most 4 components on each equivalence class.

The discrepancy between these two theorems is perhaps a little surprising. Forcing a treeing to have exactly the same number of components on each class is too restrictive, but by giving up a little ground and letting the number of components vary, we can prove
the existence of the same structure for a fairly low number of components. If we only care that the resulting structure is Borel instead of clopen, we can define structures with stronger properties. We will also provide an alternative proof of the following theorem using a method that may generalize to other spaces.

Theorem 1.3. There is a Borel lining L of $F\left(2^{\mathbb{Z}^{2}}\right)$ which has exactly n components on each equivalence class.

CHAPTER 2

BOREL EQUIVALENCE RELATIONS

In this chapter, we will give some background on the building blocks of descriptive set theory, the Borel sets, and build up the basic theory and notation we use in the subject of countable Borel equivalence relations. We will also discuss the notion of hyperfiniteness and pose a few of the major open questions in the subject.

2.1. Borel Sets and Standard Borel Spaces

A Polish space is a separable completely-metrizable topological space. The collection of Borel sets of a topological space X is the smallest σ-algebra containing the open sets of X. We say a function $f: X \rightarrow Y$ is a Borel function if the inverse image of any open subset of Y is Borel in X. Since inverse images are closed under unions, intersections and complements, it's not hard to see that an equivalent definition would be to say that the inverse image of any Borel set of Y is Borel in X. Two spaces X, Y are Borel isomorphic if there is a bijection f between them such that f and f^{-1} are Borel functions. A fundamental theorem of the subject of descriptive set theory is the Borel isomorphism theorem (A proof for which can be found in [11]).

Theorem 2.1. (Borel Isomorphism Theorem) If X, Y are two uncountable Polish spaces, then X and Y are Borel isopmorphic.

This theorem simplifies studying the Borel structure of Polish spaces since the Borel sets (as a whole) of any two uncountable Polish spaces are essentially the same. Thus, it makes sense to prove theorems for spaces which are structured like Polish spaces. A standard Borel space is a set equipped with a σ-algebra which is Borel isomorphic to the σ-algebra of the Borel sets of some Polish space. Many theorems involving Borel sets of Polish spaces are proven for a carefully chosen Polish space, and then extended, or "transferred", to other spaces with help from the above theorem.

2.2. Borel Equivalence Relations

Many classifications problems can be viewed as equivalence relations, and a standard question of the subject is to ask about the complexity of certain objects. A Borel equivalence relation E on a Polish space X is an equivalence relation that is a Borel subset of X^{2}. For each Borel $Y \subseteq X$, we let $E \upharpoonright Y=E \cap Y^{2}$. E is said to be countable if each equivalence class of E is countable, and similarly, E is finite if each equivalence class of E is finite. The definitions below give us a few natural ways to try and categorize the complexity of Borel equivalence relations.

Let (X, E), and (Y, F) be two Borel equivalence relations. Then we say that E is Borel reducible to F, denoted $E \leq_{B} F$, if there is a Borel map $f: X \rightarrow Y$ such that $x E y \Leftrightarrow f(x) F f(y)$. Such a function f induces an injection which maps the equivalence classes of E into the equivalence classes of F. The intuition of this definition is that deciding E-equivalence is "simpler" than deciding F-equivalence, i.e., if we can decide F-equivalence, we can, in a definable way, decide E equivalence.
E is Borel embeddable into F, denoted $E \sqsubseteq F$, if E is reducible to F by an injective Borel map. An equivalent formulation is that E is embeddable into F iff there is some $Z \subseteq Y$ such that E is Borel isomorphic to $F \upharpoonright Z . E$ is Borel invariantly embeddable into F if E is Borel isomorphic to $F \upharpoonright Z$, where $Z \subseteq Y$ is a Borel subset of Y which is invariant under F, i.e. $z \in Z, x F z \Rightarrow y \in Z$.

The simplest Borel equivalence relations are the ones for which there is Borel function that can pick out an element from each equivalence class, i.e., a Borel selector. These equivalence relations are the smooth relations, and they are generally too simple to be interesting. A countable Borel equivalence relation E is hyperfinite if there is an increasing union of finite equivalence relations $F_{0} \subseteq F_{1} \subseteq \ldots$ such that $E=\cup_{n \in \omega} F_{n}$. The study of hyperfinite equivalence relations is an incredibly active area of the subject, and there are many open questions about hyperfiniteness. A fundamental example of a hyperfinite equivalence relation is the eventually equal relation E_{0}.

Example 2.2. $\left(E_{0}\right)$ Let 2^{ω} denote the set of all functions $f: \omega \rightarrow 2$. Then E_{0} is the eventually equal equivalence relation defined by

$$
x E_{0} y \Leftrightarrow \exists N \forall n>N, x(n)=y(n)
$$

We can view E_{0} as the first nonsmooth equivalence relation via the following dichotomy theorem.

Theorem 2.3. (Harrington-Kechris-Louveau, [14]) Let E be a Borel equivalence relation on a Polish space X. Then exactly one of the following hold.
(1) E is smooth
(2) $E_{0} \sqsubseteq E$ via a continuous function.

Thus, we can think of hyperfinite equivalence relations as being the simplest nontrivial relations. A common tactic for proving a given equivalence relation is hyperfinite is to reduce it to E_{0}, but before we explain how these problems are being approached, we must first introduce how groups play into the study of Borel equivalence relations.

Let G be a countable group and X a standard Borel space. A Borel action is an action $(g, x) \rightarrow g \cdot x$ of G on X satisfying $1 \cdot X=x, g h \cdot x=g \cdot(h \cdot x)$, and for each g, the action $g(x):=g \cdot x$ is Borel. Given a Borel action of G on X, we denote by E_{G} the induced orbit equivalence relation

$$
x E_{G} y \Leftrightarrow \exists g \in G(y=g \cdot x)
$$

A theorem proven by Feldman and Moore in [3] shows that any countable Borel equivalence relation of a Polish space X occurs as the Borel action of some countable group G on X.

Theorem 2.4 (Feldman-Moore). If E is a countable Borel equivalence relation on a standard Borel space X, then there is a countable group G and a Borel action of G on X such that $E=E_{G}$

By making use of the Feldman-Moore theorem, we are able to assume that an arbitrary countable Borel equivalence relation is given by the action of some countable group. Thus,
we can determine characteristics of an equivalence relation based on which group induces its equivalence classes. In [15], Slaman and Steel give an example of a group which induces a non-hyperfinite equivalence relation, so not all groups induce hyperfinite relations. On the other hand, Gao and Jackson proved in [4] that the orbit equivalence relation generated by any countable abelian group is hyperfinite. It is currently an open question if the equivalence relation generated by any amenable group is hyperfinite, and progress has been made on this question for amenable groups with specific conditions. Another big open problem about hyperfinite equivalence relations is the following; if $E=\cup_{n \in \omega} F_{n}$, where $F_{n} \subseteq F_{n+1}$, and F_{n} is hyperfinite, is E hyperfinite?

The following result from [2] gives a few equivalencies for hyperfinite.

Theorem 2.5. Let E be a countable Borel equivalence relation. Then the following are equivalent.
(1) E is hyperfinite.
(2) $E=\cup_{n \in \omega} F_{n}$, where F_{n} are finite Borel equivalence relations, $F_{n} \subseteq F_{n+1}$, and each F_{n}-equivalence class has cardinality at most n.
(3) $E=\cup_{n \in \omega} F_{n}$, where F_{n} are smooth Borel equivalence relations, $F_{n} \subseteq F_{n+1}$.
(4) $E=E_{\mathbb{Z}}$, i.e. there is a Borel automorphism T of X with $x E y \Leftrightarrow \exists n \in \mathbb{Z}\left(T^{n}(x)=y\right)$;
(5) There is a Borel assignment $C \mapsto<_{C}$ giving for each E-equivalence class C a linear order $<_{C}$ of C of order type finite or \mathbb{Z}.

We give the proof for $(5) \Rightarrow(1)$ as that particular argument produces one of the earliest instances of a marker set, a concept which has become fundamental to the study of Borel equivalence relations. The S_{n}^{C} constructed in the proof are known as Slaman-Steel markers. In chapter 3, we will construct more elaborate marker structures.

Proof. Assume without loss of generality (by the Borel Isomorphism theorem) that $X=2^{\omega}$ and each E-equivalence class is inifinite, and hence ordered by $<_{C}$ in order type \mathbb{Z}. For each E-equivalence class C, let x_{C} be the lexicographically-least element of the closure of C. The
map $y \mapsto x_{[y]_{E}}$ is Borel. Let

$$
S_{n}^{C}=\left\{x \in C: x \upharpoonright n=x_{c} \upharpoonright n\right\}
$$

Define now the equivalence relations $E_{n} \subseteq E$ as follows: if $(x, y) \in E$ with $[x]_{E}=$ $[y]_{E}=C$ are such that $x_{C} \in C$, then let

$$
x E_{n} y: \Leftrightarrow\left[x=y \vee \text { the distance of } x_{C} \text { from } x, y \text { in }<_{c} \text { is at most } n\right] .
$$

If $x_{c} \notin C$ but there is an m such that S_{m}^{C} is bounded below in $<_{C}$, let m_{0} be the least such m and z_{C} the $<_{C}$-least element of $S_{m_{0}}^{C}$ and let

$$
x E_{n} y: \Leftrightarrow\left[x-y \vee \text { the distance of } z_{C} \text { from } x, y \text { in }<_{C} \text { is at most } n\right]
$$

If $x_{C} \notin C$, and S_{m}^{C} is not bounded below in C, but is bounded above, we may define E_{n} similarly to how we did above.

Finally, if $x_{C} \notin C$, and S_{m}^{C} is not bounded above or below in C, then $\left\{S_{n}^{C}\right\}$ form a decreasing sequence of subsets of C with S_{n}^{C} unbounded in both directions in $<_{C}$ and $\cap_{n \in \omega} S_{n}^{C}=\emptyset$, then let

$$
x E_{n} y \Leftrightarrow \exists a \exists b\left[a, b \text { are consecutive members of } S_{n}^{C} \text { and } a \leq_{c} x<b \text { and } a \leq_{c} y<_{c} b\right] .
$$

It is clear that the relations E_{n} are increasing finite Borel equivalence relations with $\cup_{n \in \omega} E_{n}=E$, so E is hyperfinite.

If X is a standard Borel space and G is a countable group, we denote by X^{G} the set of maps from G into X with the standard product Borel structure. Then there is a natural action of G on X^{G}, namely, $g \cdot x(h)=x\left(g^{-1} h\right)$ for $x \in X^{G}$ and $g, h \in G$. We then denote $E(G, X)$ as the corresponding equivalence relation, and for any x, we let $[x]$ denote the orbit of x

$$
[x]=\left\{y \in X^{G}: \exists g \in G y=g \cdot x\right\}
$$

An interesting fact, proven in [2], is that there is a universal countable Borel equivalence relation $E\left(F_{2}, 2\right)$. A universal equivalence relation for a class \mathcal{C} of equivalence relations is some relation $F \in \mathcal{C}$ such that for any $E \in \mathcal{C}, E$ is Borel-reducible to F. Thus, we may think of a universal equivalence relation for a class as the most complicated one in that class. For the following proposition, we recall that F_{2} is the free group with 2 generators.

Proposition 2.6. Let E be a countable Borel equivalence relation. Then $E \sqsubseteq E\left(F_{2}, 2\right)$.
We have discussed three different "levels" of countable Borel equivalence relations: The smooth ones, which are the simplest, the hyperfinite ones, which are the next step up, and a universal equivalence relation. These are far from the only ones; in fact, there is a massive collection of equivalence relations having the property that $E_{0}<_{B} E<_{B} E\left(F_{2}, 2\right)$.

Theorem 2.7. (Adams-Kechris, [1]) There exist uncountably many countable Borel equivalence relations up to Borel bireducibility.

For this paper, we will specifically work with the groups $G=\mathbb{Z}^{n}$, in which case the equivalence relations we are interested in are $E\left(2^{\mathbb{Z}^{n}}, \mathbb{Z}^{n}\right)$. We establish some terminology that will be used throughout the remainder of the paper. When n is fixed we let $e_{1}, e_{2}, \cdots, e_{n}$ be the standard generators of \mathbb{Z}^{n}.

$$
\begin{gathered}
e_{1}=(1,0, \ldots, 0), \\
e_{2}=(0,1, \ldots, 0), \\
\ldots \\
e_{n}=(0,0, \ldots, 1)
\end{gathered}
$$

Any $g \in \mathbb{Z}^{n}$ can be uniquely expressed as $\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ or $g_{1} e_{1}+g_{2} e_{2}+\cdots+g_{n} e_{n}$ for $g_{1}, g_{2}, \ldots, g_{n} \in \mathbb{Z}$. We define the l_{∞} norm on \mathbb{Z}^{n} by

$$
\|g\|=\left\|\left(g_{1}, g_{2}, \ldots, g_{n}\right)\right\|=\max \left\{\left|g_{1}\right|,\left|g_{2}\right|, \ldots,\left|g_{n}\right|\right\}
$$

This norm will be useful in its own right, but it also gives rise to a natural distance function which is well-defined on $F\left(2^{\mathbb{Z}^{n}}\right)$.

$$
\rho(x, y)= \begin{cases}\|g\|, & \text { if } g \cdot x=y \\ \infty, & \text { if }(x, y) \notin E(G)\end{cases}
$$

It is easy to check that ρ is a pseudometric, and corresponds exactly to the taxicab metric on each class of $F\left(2^{\mathbb{Z}^{n}}\right)$.

By the definition of the product topology, if $D \subseteq G$ is a finite, then a function $s: D \rightarrow 2$ determines a basic clopen set

$$
N_{s}=\left\{x \in 2^{G}: \forall g \in D, x(g)=s(g)\right\}
$$

Via a relatively easy proof, we may assume without loss of generality that the domain of each s is an n dimensional rectangle, so that $\operatorname{dom}(s)=\left[a_{0}, b_{0}\right] \times\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n-1}, b_{n-1}\right]$, so that we may work with a base with a nicer geometric structure.

For a subequivalence relation R of $F\left(2^{\mathbb{Z}^{n}}\right)$, we can say R is "relatively" clopen if for each $g \in \mathbb{Z}^{n}$, the set

$$
\left\{x \in F\left(2^{\mathbb{Z}^{n}}\right):(x, g \cdot x) \in R\right\}
$$

is relatively clopen in $F\left(2^{\mathbb{Z}^{n}}\right) \times \mathbb{Z}^{n}$. We may replace the word "clopen" with "Borel", to get an analagous definition. We can now define structures with topological properties, and try to prove whether or not they exist. To prove a certain structure does exist, we generally use marker regions. To prove that they cannot exist, we generally use hyper-aperiodic elements. We introduce and discuss these concepts in later chapters.

CHAPTER 3

MARKER REGIONS

One of the main difficulties working in $F\left(2^{\mathbb{Z}^{2}}\right)$ is that we cannot pick a point of each class in a Borel way. The smooth equivalence relations are considered simple for exactly this reason, as if there is a structure one wants to construct on a smooth relation, they can usually just select a point and use it as an origin to perform a relatively straightforward construction.

Without the ability to pick out a single point from each class, we must rely on marker sets. A marker set is any Borel complete section of $F\left(2^{\mathbb{Z}^{n}}\right)$. The exact definitions of these sets vary, but the main idea is that they are points which occur somewhat regularly in the space. These points then induce subequivalence relations which partition the space into finite regions, allowing us to outline algorithms in these regions to construct the structures we want. For example, in chapter 2, we encountered the Slaman-Steel markers for $F\left(2^{\mathbb{Z}}\right)$ which allowed us to \mathbb{Z}-order the classes of a hyperfinite equivalence relation. In this chapter, we discuss various marker sets, their constructions, and their applications.

3.1. General Marker Regions

Most constructions of intricate marker sets begin by starting with "basic" marker sets having the property that the marker points of M, to some degree, are regularly spaced.

Lemma 3.1. (Gao-Jackson, [4]) Let d be a positive integer. Then there is a relatively clopen set $S \subseteq F\left(2^{\mathbb{Z}^{n}}\right)$ such that
(1) if $x, y \in S$ are distinct, then $\rho(x, y)>d$.
(2) for any $x \in F\left(2^{\mathbb{Z}^{n}}\right), \rho(x, S) \leq d$.

We will refer to a set satisfying (1) and (2) as a basic clopen marker set for the marker distance d. We will use these sets to build new marker sets that give rise to subequivalence relations with various geometric properties. Before we do that, we give an example of how even these basic marker sets can be used to prove theorems. The definitions of Cayley graph
and Schreier graph are necessary for our results anyway, so we are not going out of our way to define them here.

If G is a countable group having a generating set S, the Cayley graph $\Gamma=\Gamma(G, S)$ is a labeled directed graph with the vertex set $V(\Gamma)=G$ and the edge set defined by $(u, v) \in E(\Gamma)$ iff $\exists g \in S$ such that $g \cdot u=v$. If G acts freely on a Polish space X, then we define the Schreier graph $\Gamma_{G}(X)$ on X by $V\left(\Gamma_{G}(X)\right)=X$, and $(x, y) \in E\left(\Gamma_{G}(X)\right)$ iff $\exists g \in S$ with $g \cdot x=y$. We note that every orbit of X is a connected component of $\Gamma_{G}(X)$, and since G acts freely on X, each component is isomorphic to the Cayley graph of G.

For a graph Γ and a set K of colors, a proper $(K-)$ coloring is a map $\kappa: V(\Gamma) \rightarrow K$ such that if $(x, y) \in E(\Gamma)$, then $\kappa(x) \neq \kappa(y)$. The chromatic number of Γ, denoted by $\chi(\Gamma)$, is the least cardinality of a set K such that there exists a proper K-coloring for Γ. When the graph Γ is a topological graph, we may consider continuous chromatic number and Borel chromatic number, where the function k must be continuous or Borel respectively. Using our basic clopen marker regions, we can prove the following exercise

Example 3.2. The continuous chromatic number of $F\left(2^{\mathbb{Z}}\right)$ is at most 3.

Proof. Let M be a marker set given by Lemma 3.1 for distance $d>2$ and note that M partitions each class of $F\left(2^{\mathbb{Z}}\right)$ into finite intervals of length at most $2 d$. We now define κ as follows. For each $y \in F\left(2^{\mathbb{Z}}\right)$, let $x_{y} \in M$ be such that $y=n \cdot x_{y}$ for $n \geq 0$, and if $0<m<n$, $m \cdot x_{y} \notin M$. Since M is clopen and the distance between any two points of M is at most $2 d$, the map $y \rightarrow x_{y}$ is continuous.

Define the coloring $\kappa(y)$ by

$$
\kappa(y)= \begin{cases}0 & \text { if } y=n \cdot x_{y}, \text { where } n \geq 0 \text { is even and } 1 \cdot y \notin M \\ 1 & \text { if } y=n \cdot x_{y}, \text { where } n>0 \text { is odd } \\ 2 & \text { otherwise }\end{cases}
$$

In other words, let the leftmost point of any interval be 0 , and then alternate colors, with the exception that the vertex which is to the left of the next marker point can be colored
2. κ is continuous, since all searches are bounded, and is also clearly a proper 3 -coloring.

The above proof is an elementary example of how we can use regions defined by marker sets to construct various structures on $F\left(2^{\mathbb{Z}^{n}}\right)$. The regions defined by the marker sets allow us to give algorithms which can be applied uniformly in each region, bypassing the need to use a function which can select a point in each class.

We commonly make use of sequences of marker sets with growing marker distance. For example, consider the Slaman-Steel markers we constructed in chapter 2. As $n \rightarrow \infty$, the spaces between the marker sets became larger and larger, which forced more and more points to be put into the same region, which was a crucial component of the argument we used them for. These marker sets had a few other nice properties. If we let S_{0}, S_{1}, \ldots denote the sets we constructed at each stage, we note that $S_{0} \supseteq S_{1} \supseteq \ldots$, and that $\cap_{n \in \omega} S_{n}=\emptyset$. Those sets are Borel, so any construction that makes use of them can at best be Borel (as opposed to simply clopen). It would be natural then to ask if we can construct a clopen sequence of marker sets satisfying the "vanishing" property that the Slaman-Steel markers have. Gao, Jackson and Seward proved the following.

Theorem 3.3. (Gao, Jackson, Seward, [7]) Let $F(G)$ be the free part of the shift action on 2^{G} by G. Then there is no infinite sequence of closed complete sections

$$
S_{0} \supseteq S_{1} \supseteq \cdots \supseteq S_{n} \supseteq \cdots
$$

such that $\cap_{n} S_{n}=\emptyset$.
For $F\left(2^{\mathbb{Z}}\right)$, a consequence of this is that if $S_{0} \supseteq S_{1} \cdots \supseteq S_{n} \supseteq \cdots$ is a sequence of clopen marker sets, there will necessarily be classes on which the intersection of the S_{n} is a single point. In this case, the limit of the regions is two infinite intervals. This theorem has a corollary which forbids the existence of an increasing sequence of open marker regions for which any two points of $F\left(2^{\mathbb{Z}^{n}}\right)$ are eventually contained in the same marker region, meaning that constructions of continuous structures of $F\left(2^{\mathbb{Z}^{n}}\right)$ must either forego containment of the marker regions or the marker sets having full union.

Corollary 3.4. There is no increasing sequence of nondegenerate, relatively open subequivalence relations of $F\left(2^{\mathbb{Z}^{n}}\right)$

$$
R_{0} \subseteq R_{1} \subseteq \cdots \subseteq R_{k} \subseteq \cdots
$$

such that $\cup_{n \in \omega} R_{k}=F\left(2^{\mathbb{Z}^{n}}\right)$.

3.2. Rectangular Marker Regions

In general, we want regions that have more specific properties that align with the problems that we want to solve. One useful such construction is that of the rectangular marker regions, which are points that, in a clopen way, induce subequivalence relations of $F\left(2^{\mathbb{Z}^{n}}\right)$ which are n-dimensional rectangles. When we say that a marker set R_{d}^{n} is clopen, we mean that $\left\{(x, g) \in F\left(\mathbb{Z}^{n}\right) \times \mathbb{Z}^{n}: g \cdot x R_{d}^{n} x\right\}$ is a clopen subset of $F\left(\mathbb{Z}^{n}\right) \times \mathbb{Z}^{n}$. The theorems below, all proven in $\S 3$ of [4], require some notation and definitions that we provide here for the reader's convenience.

A rectangular polyhedron is a finite union of rectangles in \mathbb{Z}^{n}. We define a face F of a rectangular polyhedron P to be a set $F \subseteq P$ such that for some $1 \leq i \leq n$ we have that F is a maximal subset of P satisfying the following:
(1) for any $x, y \in F$ and g such that $g \cdot x=y$, the i th coordinate of g is zero, and
(2) either $e_{i} \cdot F \cap P=\emptyset$ or $-e_{i} \cdot F \cap P=\emptyset$.

We refer to such a face F as being perpendicular to e_{i} or an i-face. We note that i-faces need not be "connected", i.e. there does not need to be a sequence

$$
g_{1}, \ldots, g_{m} \in\left\{ \pm e_{1}, \ldots, \pm e_{n}\right\}
$$

such that $y=\left(g_{1}+\cdots+g_{m}\right) \cdot x$ and $\left(g_{1}+\cdots+g_{l}\right) \cdot x \in F$ for all $1 \leq l \leq m$. We say two faces are parallel if they are perpendicular to the same e_{i}, i.e., they are both i-faces for some $1 \leq i \leq n$. If F_{1} and F_{2} are both i-faces, then their perpendicular distance is the absolute value of the unique integer a_{i} whenever there are $a_{j} \in \mathbb{Z}$ for all $1 \leq j \leq n$ with

$$
\left(a_{1} e_{1}+\cdots+a_{i} e_{i}+\cdots+a_{n} e_{n}\right) \cdot F_{1} \cap F_{2} \neq \emptyset
$$

Theorem 3.5. (Gao-Jackson [4]) Let $d>0$ be an integer. Then there is a subequivalence relation R_{d}^{n} of $F\left(\mathbb{Z}^{n}\right)$ such that R_{d}^{n} is relatively clopen and the R_{d}^{n}-marker regions are n dimensional rectangles with edge lengths either d or $d+1$.

This theorem is proven in multiple steps using what is referred to as the big-marker-little-marker method. In essence, the authors build rectangular regions that are very large compared to the rectangular regions they actually want to construct, and then subdivide those regions into rectangular regions with length d or $d+1$.

Lemma 3.6 is used to divide an arbitrary marker region whose perpendicular faces are far apart into marker regions which are n-dimensional rectangles with edge length at least the distance between parallel faces.

Lemma 3.6. Let $D>0$ be an integer. Let R_{0} be a subequivalence relation of $F\left(\mathbb{Z}^{n}\right)$ so that the R_{0}-marker regions are n-dimensional polyhedra with faces perpendicular to the coordinate axes. Suppose that for each R_{0}-marker region every pair of parallel faces has a perpendicular distance greater than D. Then there is a subequivalence relation $R_{1} \subseteq R_{0}$ so that every R_{0}-marker region is partitioned into R_{1}-marker regions, which are n-dimensional rectangles with edge lengths greater than D. Moreover, if R_{0} is clopen and there is $\Delta>D$ so that each R_{0}-marker region is contained in an n-dimensional cube of edge lengths Δ, then R_{1} can also be clopen.

The proof can be summarized as follows. If P is a finite-polyhedral region P in \mathbb{Z}^{n} satisfying the hypotheses of the theorem, then any face F_{j} of P partitions P into at most two parts. The first part is the collection of points which are on one "side" of P with respect to the e_{i} that F_{j} is perpendicular to, denoted F_{j}^{+}, but still in P. The other part is simply the rest of P. The classes of the defined subequivalence relation are simply the sets of points which lie in exactly the same F_{j}^{+}.

Lemma 3.7 establishes the subdivision algorithm given that a marker set that induces sufficiently large n-dimensional rectangular regions has already been constructed. Furthermore, it asserts that if these large regions are clopen and there is a universal bound on the size of them, then the resulting subdivided regions are also clopen.

Lemma 3.7. Let $d>0$ and $D>d^{2}$ be integers. Let R_{D} be a subequivalence relation of $F\left(\mathbb{Z}^{n}\right)$ so that the R_{D}-marker regions are n-dimensional rectangles with edge lengths greater than D. Then there is a subequivalence relation $R_{d} \subseteq R_{D}$ so that every R_{D}-marker region is partioned into R_{d}-marker regions which are n-dimensional rectangles with edge lengths either d or $d+1$. Moreover, if R_{D} is clopen and there is $\Delta>D$ so that each R_{D}-maerker region has edge lengths $\leq \Delta$, then R_{d} can also be clopen.

The important fact that makes the proof possible is that any integer $D>d^{2}$ can be written as a linear combination of d and $d+1$ with nonnegative coefficients, allowing a rectangle with side length at least to be partitioned into smaller rectangles with side lengths d or $d+1$.

Thus, by Lemma 3.6, if one can construct polyhedral marker regions where the faces have large perpendicular distance, they can subdivide it into large n-dimensional rectangular regions. By Lemma 3.7, these large regions can be subdivided further into rectangles with edge lengths which are almost regular, so the only step that remains is to construct the polyhedral marker regions which is, unsurprisingly, a difficult and technical proof.

The rectangular regions defined by Theorem 3.5 allow for constructions in regions with uniform shape and with edge lengths that are fairly regular. The fact that the regions are clopen and have a bounded size make it possible to give constructions that are continuous. For example, these regions were used in [4] to prove the upcoming theorem. These regions are nice to work with since the regions have a very nice geometry. We note Theorem 3.5 provides a tiling of $F\left(2^{\mathbb{Z}^{2}}\right)$ by tiles with dimensions $d \times d,(d+1) \times d, d \times(d+1)$, and $(d+1) \times(d+1)$, however the following proposition, stated in [4], implies that there is no tiling of $F\left(2^{\mathbb{Z}^{2}}\right)$ in which exactly one of these tiles is used. It is currently unclear if all four different types of tiles are needed, or if it is possible to tile $F\left(2^{\mathbb{Z}^{2}}\right)$ in a clopen way with two or three types of tiles. A few specific combinations have been ruled out, and Gao and Jackson conjecture in [4] that 4 is the optimal number.

Theorem 3.8. There is no Borel marker set $M \subseteq F\left(\mathbb{Z}^{n}\right)$ such that for any $x \in M$ there is a proper subgroup G of \mathbb{Z}^{n} such that $[x] \cap M \subseteq G \cdot x$

An application of the rectangular marker regions is the following.

Theorem 3.9. For each $n>1$, there is a continuous 4-coloring of $F\left(2^{\mathbb{Z}^{n}}\right)$.
In [5], Gao, Jackson, Krohne and Seward proved that there is no continuous 3-coloring of $F\left(2^{\mathbb{Z}^{n}}\right)$ for $n>1$. This illustrates an interesting phenomena, as we showed that there is a continuous 3-coloring of $F\left(2^{\mathbb{Z}}\right)$, implying that the answers to questions about $F\left(2^{\mathbb{Z}^{n}}\right)$ can change depending on the value of n, with $n=1$ being an outlier case. One reason for why this can happen is the different possible hyper-aperiodic points (which we discuss in detail in chapter 4) that can be constructed for these spaces.

3.3. Orthogonal Marker Regions

In this section we will discuss a special sequence of marker regions which don't cohere in a very strong sense. We will focus our attention to \mathbb{Z}^{2}, where the sets are easier to visualize, but the analogs for \mathbb{Z}^{n} are natural, and the theorems and constructions still hold given changes to a few constants. In fact, in [4], Gao and Jackson constructed regions of $F\left(2^{\mathbb{Z}} \omega\right)$ and used them to define an embedding from F_{ω} to $E_{0}\left(\omega^{\omega}\right)$. We will provide a special case of the main theorem they used.

For the rest of this paper, $d_{j} \gg d_{j-1}$ is defined to mean that

$$
\frac{1}{9000^{j} 16^{j^{2}}(j+1)^{2}} d_{j}>24\left(d_{1}+d_{2}+\cdots+d_{j-1}\right)
$$

Lemma 3.10. (S. Gao, S. Jackson [4]) For any pair of positive integers i, j with $j<i$. Let d_{j+1}, d_{j} be positive integers with $d_{j+1} \gg d_{j}$, then there is a clopen subequivalence relation $R_{j}^{i} \subseteq F\left(\mathbb{Z}^{2}\right)$ satisfying the following:
(1) R_{i}^{i} induces rectangular regions with side lengths d_{i} or $d_{i}+1$.
(2) On each class of $F\left(2^{\mathbb{Z}^{2}}\right)$, for each region of \mathcal{R}_{j}^{i}, there is a region R^{\prime} induced by \mathcal{R}_{j+1}^{i} such that each face of R is within $12 d_{j}$ of a face of R^{\prime}.
(3) \mathcal{R}_{j+1}^{i} induces a partition into polyhedral regions R each of which is a union of rectangles with edge lengths between $9 d_{j}$ and $12 d_{j}$.
(4) In any ball B of radius $100,000 \cdot 16^{2} d_{j}$ contained in a class of $F\left(2^{\mathbb{Z}^{2}}\right)$, there are at most 2 values of k with $j<k \leq i$ such that some region induced by the restriction of R_{j}^{k} has a face intersecting B.
(5) For any $j<k_{1}<k_{2} \leq i$ and regions R_{1}, R_{2} contained in a class of $F\left(2^{\mathbb{Z}^{2}}\right)$ induced by the restrictions of $R_{j}^{k_{1}}, R_{j}^{k_{2}}$ respectively, if $\mathcal{F}_{1}, \mathcal{F}_{2}$ are parallel faces of R_{1}, R_{2}, then $\rho\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)>\frac{1}{9000^{j 16 j^{2}(j+1)}} d_{j}$

If for each n we let $\mathcal{R}_{n}=\mathcal{R}_{1}^{n}$, The marker sets $\mathcal{R}_{0}, \mathcal{R}_{1}, \ldots, \mathcal{R}_{n}, \ldots$ satisfy an incredibly important property. For any two $x, y \in F\left(2^{\mathbb{Z}^{2}}\right)$ there is an $N \in \omega$ such that for all $n>N$, x and y will fall into the same region of \mathcal{R}_{n}. This is proven in [4], but the intuition is fairly simple. If x and y fell into different regions infinitely often, then one could consider a shortest path $x=x_{0}, x_{1}, \ldots, x_{N}=y$ from x to y. Since this path is finite, some fixed x_{l} will fall on the boundary of infinitely many \mathcal{R}_{n}, but this would imply at least 3 higher-level region have faces close to each other, contradicting the fact that parallel faces of higher-level regions must be far apart. This is the benefit of the orthogonal marker regions, and is the main reason to use them over the rectangular regions defined in the previous section. When using these marker sets, there is the concern that two points x and y might lie in the same region in one stage, and then be placed into different regions at a subsequent step. Property (3) of Theorem 3.10 affirms that this can only happen a twice. Thus, if we can work around a finite number of interruptions, we are free to devise constructions which rely on any two points of $F\left(2^{\mathbb{Z}^{2}}\right)$ eventually lying in the same region.

CHAPTER 4

HYPER-APERIODIC ELEMENTS

In this chapter, we will discuss hyper-aperiodic elements of 2^{G} for countable groups G. These points often require structures on 2^{G} to have certain properties, making them a very useful tool for showing certain structures cannot exist on these spaces.

Definition 4.1. Let G be a countable group. A point $x \in 2^{G}$ is hyper-aperiodic if the closure of its orbit is contained in the free part, i.e., if $\overline{[x]} \subset F\left(2^{G}\right)$.

These elements are significant because the closures of their orbits are compact, giving us a greater depth of topological arguments for analyzing continuous structures of $F\left(2^{G}\right)$. Proving that a point is hyper-aperiodic by the definition given above is often cumbersome and tedious; instead, we usually test hyper-aperiodicity by a combinatorial condition using the following lemma. $(1) \Longleftrightarrow(2)$ was proven in [8], and $(2) \Longleftrightarrow(3)$ was proven in [5].

Lemma 4.2. Let G act on 2^{G} by right-shifts. Then the following are equivalent.
(1) $x \in 2^{G}$ is hyper-aperiodic
(2) For any $s \neq 1_{g}$ in G there is a finite set $T \subseteq G$ such that

$$
\forall g \in G \exists t \in T x(t g) \neq x(t s g)
$$

(3) For any $s \neq 1_{g}$ in G there is a finite $T \subseteq G$ such that

$$
\forall g \in G\left[\left(\exists t_{1} \in T x\left(t_{1} g\right) \neq x\left(t_{1} s g\right)\right) \wedge\left(\exists t_{2} \in T x\left(t_{2} g\right)=x\left(t_{2} s g\right)\right)\right]
$$

We will refer to (2) as the combinatorial condition for hyper-aperiodicity and we will use it almost exclusively to prove theorems about hyper-aperiodic elements. Hyper-aperiodic elements were originally refereed to as 2-colorings, but the current name became more widely used as the concept extended beyond Bernoulli subflows.

In [8], it was proven that for any G, there is a hyper-aperiodic element of 2^{G}. Since we will be working extensively with $F\left(2^{\mathbb{Z}^{n}}\right)$, we will explicitly construct an element of $F\left(2^{\mathbb{Z}}\right)$. When we say a periodic point witnesses hyper-aperiodicity for a specific shift s_{0}, we mean that it satisfies the combinatorial condition above for that particular shift. We note that for any shift s, there is some periodic point which will witness hyper-aperiodicity for s. In particular, a point having a period with s zeros followed by a one will work.

Example 4.3. Let s_{0}, s_{1}, \ldots enumerate \mathbb{Z}. Let B_{0} be a periodic element of $2^{\mathbb{Z}}$ which witnesses hyper-aperiodicity for s_{0}, i.e., there is a finite set T such that for all $z \in \mathbb{Z}, \exists t \in T$ such that $x(z+t) \neq x(z+s+t)$. We define $\overline{B_{0}}(x)=1-B_{0}(x)$.

Suppose inductively that for all $k<n, B_{k}$ is a periodic point of $2^{\mathbb{Z}}$ which has been defined so that B_{k} is a tiling of blocks of the form B_{k-1} or $\overline{B_{k-1}}$ and B_{k} witnesses the combinatorial condition of hyper-aperiodicity for s_{k}. If we let N_{n} denote the length of each period of B_{n}, then we additionally assume that $N_{k}>N_{k-1}$ for all $k<n$, and that for all $x \in\left[-N_{k-1}, N_{k-1}\right), B_{k}(x)=B_{k-1}(x)$. Let A_{n} be a periodic point of $2^{\mathbb{Z}}$ which witnesses hyper-aperiodicity for s_{n}. We may without loss of generality assume $A_{n}(0)=0$, or else we can use $\overline{A_{n}}$. For all $m \in \mathbb{Z}$. We define B_{n} to be a tiling where if $B_{n}(z)=0$, we insert a copy of the period of B_{n-1}. Otherwise, we insert a copy of $\overline{B_{n-1}}$. More precisely,

$$
B_{n} \upharpoonright\left[m \cdot N_{n-1},(m+1) \cdot N_{n-1}\right)= \begin{cases}B_{n-1} \upharpoonright\left[0, N_{n-1}\right) & \text { if } A_{n}(m)=0 \\ \overline{B_{n-1}} \upharpoonright\left[0, N_{n-1}\right) & \text { if } A_{n}(m)=1\end{cases}
$$

B_{n} is a tiling of blocks of B_{n-1} and $\overline{B_{n-1}}$ by construction, which implies $N_{n}>N_{n-1}$. Since $A_{n}(0)=0, B_{n} \upharpoonright\left[0, N_{n-1}\right)=B_{n-1} \upharpoonright\left[0, N_{n-1}\right)$. We next show that B_{n} witnesses the hyper-aperiodicity for s_{n}. Let T^{\prime} be the set witnessing that hyper-aperiodicity for A_{n} and let $T=N_{n} \cdot T^{\prime}$. Then if $z \in \mathbb{Z}$, there is $t \in T^{\prime}$ such that if $y=\left\lfloor\frac{z}{N_{n}}\right\rfloor, A_{n}(y+t) \neq A_{n}\left(y+s_{n}+t\right)$. Thus, $B_{n}\left(z+N_{n} \cdot t\right) \neq\left(z+s_{n}+N_{n} \cdot t\right)$.

To define the hyper-aperiodic element, let $x(z)=\lim _{n \rightarrow \infty} B_{n}(|z|) . x$ is well-defined since for all $n, B_{n} \upharpoonright\left[0, N_{n-1}\right)=B_{n-1} \upharpoonright\left[0, N_{n-1}\right)$ and $N_{n}>N_{n-1} . x$ is hyper-aperiodic as
for any shift s and $z \in \mathbb{Z}, x(z)$ lies in some block of either B_{n} or $\overline{B_{n}}$ which will witness hyper-aperiodicity for x.

We now cite a general lemma that will let us use this hyper-aperiodic element of $2^{\mathbb{Z}}$ to construct hyper-aperiodic elements of $2^{\mathbb{Z}^{n}}$. If G, H are countable groups and $x \in 2^{G}, y \in 2^{H}$, let $x \oplus y \in 2^{G \times H}$ be given by $(x \oplus y)(g, h)=x(g)+y(h) \bmod 2$. By iteratively applying the following lemma, we may construct a hyper-aperiodic point of $F\left(2^{\mathbb{Z}^{n}}\right)$ for any n.

Lemma 4.4. (Gao, Jackson, Krohne, Seward, [5]) Let $x \in 2^{G}$ and $y \in 2^{H}$ be hyper-aperiodic elements. Then $x \oplus y \in 2^{G \times H}$ is a hyper-aperiodic element.

In the case $n=1$, forcing a point to be hyper-aperiodic is a significant commitment, and it is often impossible to construct an element of $F\left(2^{\mathbb{Z}}\right)$ with additional useful properties. For $n>1$, hyper-aperiodicity is a much less restrictive condition. In fact, there are hyperaperiodic elements x for which any vertical "slice" of x is periodic. The definition of this element uses points which are orthogonal. If G is a countable group, two points $x, y \in 2^{G}$ are orthogonal, denoted $x \perp y$, if there exists a finite $T \subseteq G$ such that for any $g, h \in G$ there is $t \in T$ with $x(t g) \neq y(t h)$.

Lemma 4.5. (Gao, Jackson, Krohne, Seward, [5]) Let x, y_{0}, y_{1} be hyper-aperiodic elements of $2^{\mathbb{Z}}$ with $y_{0} \perp y_{1}$. Let Λ be an infinite set of prime numbers and $f: \mathbb{Z} \rightarrow \mathbb{Z}^{+}$be a function satisfying the following conditions:
(1) for all $u \in \mathbb{Z}$ there are $p \in \Lambda$ and $n \in \mathbb{Z}^{+}$such that $f(u)=p^{n}$;
(2) for all $p \in \Lambda$ and $m \in \omega$, there are $a \in \mathbb{Z}$ and $k \in \mathbb{Z}^{+}$such that $f(i)=p^{k}$ for all $i \in[a, a+m] ;$
(3) $f(u)$ is monotone increasing for $u>0$, monotone decreasing for $u<0$, and $f(u) \rightarrow$ ∞ as $|u| \rightarrow \infty$

Then the element $z \in F\left(2^{\mathbb{Z}^{2}}\right)$ defined by

$$
z(u, v)=y_{x(u)}(v \quad \bmod f(u))
$$

is hyper-aperiodic

By using the hyper-aperiodic point constructed in Lemma 4.5, the authors of [5] were able to prove that there is no continuous proper 3-coloring of $F\left(2^{\mathbb{Z}^{2}}\right)$. The next theorem doesn't require any special condition on the hyper-aperiodic point used. In chapter 6, we will generalize this result using a hyper-aperiodic element constructed using forcing.

Theorem 4.6. (Gao, Jackson, Krohne, Seward, [5]) There does not exist a complete clopen lining L of $F\left(2^{\mathbb{Z}^{2}}\right)$.

Where by clopen lining, we mean a symmetric Borel relation S which is a subset of the Schreier graph for which the degree of every vertex is exactly 2 . The proof heavily leverages the compactness of $K:=\overline{[x]}$ to require that any point of K is a bounded distance from the line L. It then uses compactness again to bound the length of the line segment connecting any two points which are a bounded distance apart. Applying both of these properties, the line is forced to stay inside a "tube" with bounded height on K, contradicting the fact that every point of K is a bounded distance from L. We noticed that, by slightly altering the argument, we could prove an even stronger result. Instead of bounding L in a tube of fixed height, we could instead force L to have a nontrivial cycle by combining four sufficiently long tubes in the shape of a torus, implying that it is impossible to construct a clopen treeing of $F\left(2^{\mathbb{Z}^{2}}\right)$.

CHAPTER 5

FORCING NOTIONS

In this chapter, we define forcing posets that correspond to elements x_{G} of $F\left(2 Y \mathbb{Z}^{n}\right)$. These elements will force certain formulas on $[x]_{G}$. The books written by Jech [10], and Kunen [13] both provide a good basics for readers unfamiliar with the basics of forcing.

We will need a version of Shoenfield's Absoluteness. We note that a formula φ being absolute between two models M and N means that M models φ if and only if N models φ.

Lemma 5.1. If $M \subseteq N$ are transitive models of enough of $Z F$ and $\omega_{1} \subseteq M$, then Σ_{1}^{2} statements are absolute between M and N.
Σ_{1}^{2} is a pointclass which contains the Borel sets, so in particular, any Borel statement between any two "reasonable" models is absolute.

5.1. Minimal Two-Coloring and Grid-Periodicity Forcing

We now discuss generics for specific posets that naturally correspond to elements x_{G} of $F\left(2^{\mathbb{Z}^{2}}\right)$. The elements of the generic will force various formulas, and, in particular, will force them via a clopen set. Due to the absoluteness of Borel formulas, these formulas will hold in $\left[x_{G}\right]$ as well, as the Forcing Theorem asserts some condition will force the formula.

Theorem 5.2. (The Forcing Theorem) Let $(P,<)$ be a notion of forcing in the ground model M. If σ is a sentence of the forcing language, then for every $G \subset P$ generic over M,

$$
M[G] \models \sigma \text { if and only if }(\exists p \in G) p \Vdash \sigma .
$$

If we have structures which are not clopen, or would like to do define formulas that aren't clopen, there will be a clopen neighborhood in the generic extension that will force the statement.

We start by defining the minimal 2-coloring forcing.

Definition 5.3. The minimal 2-coloring forcing $\mathbb{P}_{m t}$ on \mathbb{Z}^{2} is defined by the conditions

$$
\mathfrak{p}=\left(p, n, t_{1}, \ldots, t_{n}, T_{1}, \ldots, T_{n}, m, f_{1}, \ldots, f_{m}, F_{1}, \ldots, F_{m}\right)
$$

where $m, n \in \mathbb{N}, p \in 2^{<\mathbb{Z}^{2}}$ with $\operatorname{dom}(p)=[a, b] \times[c, d]$ for some $a, b, c, d \in \mathbb{Z}$, $t_{1}, \ldots, t_{n} \in \mathbb{Z}^{2}-\{(0,0)\}, f_{1}, \ldots, f_{m} \in 2^{<\mathbb{Z}^{2}}$, and $T_{1}, \ldots, T_{n}, F_{1}, \ldots, F_{m}$ are finite subsets of \mathbb{Z}^{2} such that the following conditions are satisfied:
(1) For any $1 \leq i \leq n$ and $g \in \operatorname{dom}(p)$ there is $\tau \in T_{i}$ such that $g+\tau, g+t_{i}+\tau \in \operatorname{dom}(p)$ and $p(g+\tau) \neq p\left(g+t_{i}+\tau\right) ;$
(2) For any $1 \leq j \leq m$ and $g \in \operatorname{dom}(p)$ there is $\sigma \in F_{j}$ such that $g+\sigma+\operatorname{dom}\left(f_{j}\right) \subseteq$ $\operatorname{dom}(p)$ and for all $u \in \operatorname{dom}\left(f_{j}\right), p(g+\sigma+u)=f_{j}(u)$.
(3) For any $1 \leq j \leq m$ and $g \in \operatorname{dom}(p)$ there is $\sigma \in F_{j}$ such that $g+\sigma+\operatorname{dom}\left(f_{j}\right) \subseteq$ $\operatorname{dom}(p)$ and for all $u \in \operatorname{dom}\left(f_{j}\right), p(g+\sigma+u)=1-f_{j}(u)$.

If $\mathfrak{p}, \mathfrak{q} \in \mathbb{P}_{m t}$, then $\mathfrak{q} \leq \mathfrak{p}$ iff $q \supseteq p, n(\mathfrak{q}) \geq n(\mathfrak{p}), m(\mathfrak{q}) \geq m(\mathfrak{p}), t_{i}(\mathfrak{q})=t_{i}(\mathfrak{p})$, and $T_{i}(\mathfrak{q})=T_{i}(\mathfrak{p})$ for all $1 \leq i \leq n(\mathfrak{p})$, and $f_{j}(\mathfrak{q})=f_{j}(\mathfrak{p}), F_{j}(\mathfrak{q})=F_{j}(\mathfrak{p})$ for all $1 \leq j \leq m(\mathfrak{p})$

Properties (1) and (2) will ensure that the generic x_{G} (the component corresponding to the finite functions of \mathfrak{p}) is hyper-aperiodic and minimal respectively, while (3) will be helpful for certain arguments.

We now provide a few lemmas which will show that $\mathbb{P}_{m t}$ does add a minimal 2-coloring in $2^{\mathbb{Z}^{2}}$. The following lemmas, proven in [6] will imply that x_{G} is as desired.

Lemma 5.4. For any $g \in \mathbb{Z}^{2}$, the set $D_{g}=\left\{\mathfrak{q} \in \mathbb{P}_{m t}: g \in \operatorname{dom}(q)\right\}$ is dense in $\mathbb{P}_{m t}$.
This lemma will show x_{G} is an element of $2^{\mathbb{Z}^{2}}$. The next will show that if $s \in \mathbb{Z}^{2}$ is a nontrivial shift, then there is some condition \mathfrak{p} which contains s. Thus, x_{G} will be a hyper-aperiodic element.

Lemma 5.5. For any $t \in \mathbb{Z}^{2}-\{(0,0)\}$ the set

$$
E_{t}=\left\{\mathfrak{q} \in \mathbb{P}_{m t}: \exists 1 \leq i \leq n(\mathfrak{q}) t_{i}(\mathfrak{q})=t\right\}
$$

is dense in $\mathbb{P}_{m t}$
The next lemma will require that we consider neighborhoods of arbitrarily large sizes.

Lemma 5.6. For any finite set $A \subseteq \mathbb{Z}^{2}$, the set

$$
D_{A}=\left\{\mathfrak{q} \in \mathbb{P}_{m t}: \exists 1 \leq j \leq m(\mathfrak{q}) A \subseteq \operatorname{dom}\left(f_{j}(\mathfrak{q})\right)\right\}
$$

is dense in $\mathbb{P}_{m t}$
Using the above lemma, and the trick of putting a copy of p and \bar{p} adjacent to each other, we get the last lemma that we need, which says that if $p \in \mathfrak{p}$, then p will be contained in one of the f_{j} of some $\mathfrak{q} \leq \mathfrak{p}$. This is vital, as if we say \mathfrak{p} forces some formula φ, then p will occur regularly. But then in the generic extension, we will see p, and know there is some $\mathfrak{q}<\mathfrak{p}$ which has $f_{j} \supseteq p$ as a component. Thus, every time we see an occurrence of p, φ will be forced.

Lemma 5.7. For any $\mathfrak{p} \in \mathbb{P}_{m t}$, the set

$$
D_{p}=\left\{q \in \mathbb{P}_{m t}: \exists 1 \leq j \leq m(\mathfrak{q}) p \subseteq f_{j}(\mathfrak{q})\right.
$$

is dense below \mathfrak{p} in $\mathbb{P}_{m t}$.
So we get the following lemma.

Lemma 5.8. If x_{G} is generic for $\mathbb{P}_{m t}$, then x_{G} is minimal and hyper-aperiodic.
We now introduce the grid-periodicity forcing. This generic x_{G} for this forcing will exhibit a very regular grid-like structure.

Definition 5.9. Let n be a positive integer. The grid-periodicity forcing $\mathbb{P}_{g p}(n)$ is defined as follows. A condition $p \in \mathbb{P}_{g p}(n)$ is a function $p: R \backslash\{u\} \rightarrow\{0,1\}$ where $R=[a, b] \times[c, d]$ is a rectangle in \mathbb{Z}^{2} with $w=b-a+1, l=d-c+1$ both powers of n and $u \in R$. We write $R(p), w(p), h(p), u(p)$ for the corresponding objects and parameters.

We define $q \leq p$ iff $R(q)$ is obtained by a rectangular tiling by copies of $R(p)$ and if $c \in R(q)$ is in th ecopy $R(p)+t$ and $c-t \neq u(p)$, then $q(c)=p(c-t)$. Also, $u(q)$ must be equal to one of the copied translates of $u(p)$.

Lemma 5.10. Let x_{G} be generic for $\mathbb{P}_{g p}$. Then x_{G} is a minimal and hyper-aperiodic.

Not only is x_{G} a minimal hyper-aperiodic element. It also satisfies a weak form of periodicity, as proven in [6]

Lemma 5.11. Let x_{G} be generic for $\mathbb{P}_{g p}(n)$.
(1) For any vertical or horizontal line l in $\mathbb{Z}^{2}, x_{G} \upharpoonright l$ is periodic with period a power of n.
(2) For any finite $A \subseteq \mathbb{Z}^{2}$, ther eis a lattice $L=(w \mathbb{Z}) \times(h \mathbb{Z})$, with both w and h powers of n, and there is a $u \in \mathbb{Z}^{2} \backslash(A+L)$ such that x_{G} is constant on $k+L$ whenever $k+L \neq u+L$.

Having a hyper-aperiodic element which also corresponds to a generic for a forcing poset is incredibly powerful. For example, the following theorem asserts that any Borel complete structure must contain a lattice on at least one class.

Theorem 5.12. [6] Let $B \subseteq F\left(2^{\mathbb{Z}^{2}}\right)$ be a Borel complete section. Then there is an $x \in F\left(2^{\mathbb{Z}^{2}}\right)$ and a lattice $L=k+\left\{(i w, j h):(i, j) \in \mathbb{Z}^{2}\right\}$ such that $L \cdot x \subseteq B$.

CHAPTER 6

OPEN STRUCTURES

In this chapter we will define a decreasing sequence of open sets that vanishes, and show that there is no open treeing of $F\left(2^{\mathbb{Z}^{2}}\right)$ having exactly n-components on any class, while there is an open treeing that has at most 4 components on any class.

6.1. Marker Sets

Despite the fact that we cannot construct a sequence of descending clopen sets with empty intersection, [4] does provide an algorithm for constructing a sequence for which the intersection of the M_{n} contains at most one point. Currently, we have nice regularity results for $F\left(2^{\mathbb{Z}^{2}}\right)$, but not for $F\left(2^{\mathbb{Z}^{n}}\right)$ in general.

Theorem 6.1. (Gao, Jackson [4]) For any value of $0<\epsilon<1$, there is a clopen sequence of d_{n}-marker sets $M_{0} \supseteq M_{1} \supseteq \cdots \supseteq M_{n} \supseteq \cdots$ of $F\left(2^{\mathbb{Z}^{n}}\right)$ satisfying
(1) For all $x \in F\left(2^{\mathbb{Z}^{2}}\right), \rho\left(x, M_{n}\right)<(1+\epsilon) d_{n}$.
(2) If $x, y \in M_{n}$ and $x \in[y]$, then $\rho(x, y)>(1-\epsilon) d_{n}$
(3) For all $z \in F\left(2^{\mathbb{Z}^{n}}\right),\left|\cap_{n} M_{n} \cap[z]\right| \leq 1$.

Starting with these sets as a base, we can construct a sequence of decreasing open marker sets which have somewhat regular spacing and empty intersection.

THEOREM 6.2. For any sequence of integers $d_{0}<d_{1}<\cdots<d_{n}<\ldots$, there is sequence of open d_{n}-marker sets $M_{0} \supseteq M_{1} \supseteq \cdots \supseteq M_{n} \supseteq \cdots$ of $F\left(2^{\mathbb{Z}^{n}}\right)$ satisfying
(1) For all $x \in F\left(2^{\mathbb{Z}^{2}}\right), \rho\left(x, M_{n}\right)<2(1+\epsilon) d_{n}$.
(2) If $x, y \in M_{n}$ and $x \in[y]$, then $\rho(x, y)>(1-\epsilon) d_{n}$.
(3) $\cap_{n \in \omega} M_{n}=\emptyset$

Proof. Let $M_{0}^{\prime}, M_{1}^{\prime}, \ldots$ be given by Theorem 6.1. Define M_{n} by

$$
x \in M_{n} \Leftrightarrow x \in M_{n}^{\prime} \wedge \exists m x \notin M_{m}
$$

M_{n} is open since each M_{m}^{\prime} is clopen; $\cap_{n} M_{n}=\emptyset$ since for each $x \in M_{n}$, there is an m with $x \notin M_{m}^{\prime} . M_{n} \subseteq M_{n}^{\prime}$, so for all x, y in the same class of $F\left(2^{\mathbb{Z}^{n}}\right), \rho(x, y)>(1-\epsilon) d_{n}$. However, each class might be missing exactly one point. Suppose z is such a point, and suppose x and y were points which were within $(1+\epsilon) d_{n}$ of z. Then

$$
\rho(x, y)<\rho(x, z)+\rho(y, z)<2(1+\epsilon) d_{n}
$$

The marker sets constructed in the above proof have almost exactly the same structure as the ones constructed in 6.1. The only difference is that each class might have exactly one point missing. Thus, two points of M_{n} could be as close as roughly d_{n}, or as far apart as roughly $2 d_{n}$. We know that the $2(1+\epsilon) d_{n}$ in the statement of 6.2 is not optimal in certain cases. For example, we can get an analogous theorem for $F\left(2^{\mathbb{Z}^{2}}\right)$ with the bounds unchanged.

TheOrem 6.3. For any sequence of integers $d_{0}<d_{1}<\cdots<d_{n}<\ldots$, there is sequence of open d_{n}-marker sets $M_{0} \supseteq M_{1} \supseteq \cdots \supseteq M_{n} \supseteq \cdots$ of $F\left(2^{\mathbb{Z}^{2}}\right)$ satisfying
(1) For all $x \in F\left(2^{\mathbb{Z}^{2}}\right), \rho\left(x, M_{n}\right)<(1+\epsilon) d_{n}$.
(2) If $x, y \in M_{n}$ and $x \in[y]$, then $\rho(x, y)>(1-\epsilon) d_{n}$.
(3) $\cap_{n \in \omega} M_{n}=\emptyset$

To prove this, we will tile each class somewhat regularly by diamonds.

Definition 6.4. A diamond D around a point x is an l_{1} ball centered at x.

Once the space is tiled this way, showing the hypotheses holds will be relatively simple. This tiling is given by the following theorem, where the term diagonal axes refers to the lines of the form $f_{0}=\{(x, x): x \in \mathbb{Z}\}$ and $\left.f_{1}=\{x,-x\}: x \in \mathbb{Z}\right\}$. The construction of the diamond marker sets of free follows exactly like the construction of clopen rectangular marker sets in the specific case of $F\left(2^{\mathbb{Z}^{2}}\right)$. This construction does not naturally extend to $F\left(2^{\mathbb{Z}^{n}}\right)$, since in general, l_{1} balls can't tile \mathbb{Z}^{n}. If $D_{0}, D_{1}, \ldots, D_{n}, \ldots$ are the set of center points of the diamond regions, by possibly adjusting the marker points (not the regions),
we can get a sequence of marker sets $D_{0}^{\prime} \supseteq D_{1}^{\prime} \supseteq \cdots \supseteq D_{n}^{\prime} \supseteq \ldots$ which induce the same diamonds.

Theorem 6.5. Let $d>0$ be an integer. Then there is a subequivalence relation D_{d}^{n} of $F\left(\mathbb{Z}^{n}\right)$ such that D_{d}^{n} is relatively clopen and the D_{d}^{n}-marker regions are diamonds with diagonal edge lengths either d or $d+1$.

We now present the proof of Theorem 6.3

Proof. Let $D_{0}^{\prime} \supseteq D_{1}^{\prime}, \ldots$ be a sequence of clopen diamond marker regions with edge lengths on the scale of $\frac{d_{n}}{2}$. Define D_{n} by

$$
x \in D_{n} \Leftrightarrow x \in D_{n}^{\prime} \wedge \exists m>n x \notin D_{m}^{\prime}
$$

Then each D_{n} is easily open. To see that each x is at most $(1+\epsilon)$ away from a point of D_{n}, we note that each x is in a l_{1} neighborhood around some point y of D_{n}^{\prime}. If y is in D_{n}, then we are done. Otherwise, since at most one point of each class was thrown out when constructing D_{n}, x is less than $\frac{\left(1+\epsilon d_{n}\right.}{2}$ away from the boundary of the diamond around y. Thus, x is $\frac{1+\epsilon d_{n}}{2}$ away from a different l_{1} neighborhood around some point z of D_{n}, and this proves the claim.

We might question how regular we can make the points of these marker sets. If we would like a descending sequence which has empty intersection, then it is necessary that the sets not be closed. The next theorem says that if we try to place the points of a marker set of $F\left(2^{\mathbb{Z}}\right)$ too close together in an open way, the set will end up being clopen.

THEOREM 6.6. IfM is an open marker set of $F\left(2^{\mathbb{Z}^{n}}\right)$ satisfying the following conditions, then M is clopen
(1) For each $x \in F\left(2^{\mathbb{Z}^{n}}\right), \rho(x, M)<d_{n}$
(2) For each $x, y \in M, \rho(x, y)>d_{n}$

Proof. The claim holds since $F\left(2^{\mathbb{Z}^{n}}\right) \backslash M$ is open, which follows from the formula

$$
x \notin M_{n} \Leftrightarrow \exists m\left(0<\|m\|<\frac{d}{2} \wedge m \cdot x \in M_{n}\right) .
$$

It follows from this theorem and Theorem 3.3, that an sequence of open decreasing marker sets with empty intersection must have some amount of irregularity in the placement of the points.

6.2. Treeings

Before proceeding, we will make a distinction in terminology. We will say a formula is forced by a neighborhood if there is some element of a forcing poset having that neighborhood which forces it. We will say a formula is determined by a neighborhood if the neighborhood witnesses the formula in the usual way (i.e. if M is a clopen lining, then for each x, there is some clopen neighborhood U which determines that $x \in V(M)$.)

Theorem 6.7. There is no open exact n-treeing of $F\left(2^{\mathbb{Z}^{2}}\right)$.

Proof. Suppose that T is an open exact n-treeing of $F\left(2^{\mathbb{Z}^{2}}\right)$. Let x_{G} be generic for $P_{g p}$ and set $K=\overline{\left[x_{G}\right]}$, so $K \subseteq F\left(2^{\mathbb{Z}^{2}}\right)$ is compact. $\left[x_{G}\right]$ has k components, so we fix $\mathfrak{q} \in G$ that forces the tree structure of T in a square with some side length d_{0} satisfying the following.

- There are n points $x_{0}, x_{1}, \ldots, x_{n-1} \in V(T)$
- There is an $N \in \omega$ such that for all $0 \leq a \leq n, x_{a} \upharpoonright[-N, N]^{2}$ determines that $x_{a} \in V(T)$.
- x_{a} and x_{b} are not connected if $a \neq b$.

Let U_{q} be the open set corresponding to \mathfrak{q},and $U_{a}=x_{a} \upharpoonright[-N, N]^{2}$. If $\pi_{(i, j)}(g)$ is defined to be the translation map $g+(i w(q), j h(q))$, then $\pi_{(i, j)}$ induces an automorphism of $\mathbb{P}_{g p}$, so $\pi_{(i, j)}\left(U_{q}\right)$ forces the formulas above when $\dot{x_{a}}$ is replaced with $\pi_{(i, j)}\left(\dot{x_{a}}\right)$. Furthermore, $\pi_{(i, j)}\left(x_{a}\right) \upharpoonright[-N, N]^{2}$ will force that $\pi_{(i, j)}\left(x_{a}\right) \in V(T)$. Let $d_{1}=\max \{w(q), h(q)\}$.

For each $x \in K$, and for each $z_{0}, z_{1}, \ldots, z_{n-1}, z_{n} \in K$ within $3 d_{1}$ of x satisfying $z_{a} \upharpoonright[-N, N]^{2}=U_{a}$, there is some path connecting two of the points $z_{0}, z_{1}, \ldots, z_{n}, z$. Since these sets are clopen, K is compact, and T is complete, there is a maximal such path length d_{2}.

Figure 6.1. The subtree L_{0}. Some element of G forces all of the points of T within d_{0} of each z_{0}^{k}.

Let $z_{0}, z_{1}, \ldots z_{N}$ be defined by $z_{k}=\left(3 k d_{1}, 0\right) \cdot x_{0}$, where $N>3 d_{2}$. For each $k, \pi_{3 k, 0}\left(U_{q}\right)$ will force the tree structure within d_{0} of z_{k}; furthermore, for each $a \in\{0,1, \ldots, n-1\}$, $\pi_{(i, 0)}\left(U_{a}\right)$, will appear within d_{0} of z_{k} and determine points $x_{a}^{k} \in V(T)$. Since there are exactly n components of T on each class, for each k, two of $x_{0}^{k}, \ldots x_{n}^{k}$ and x_{0}^{k+1} are connected by a line segment with length at most d_{2}. Thus, some x_{a}^{k} must connect to x_{0}^{k+1}, and by possibly renaming vertices, we may assume that $x_{a}^{k}=x_{0}^{k}$. We can repeat this argument, and assume without loss of generality that for each a, x_{a}^{k} is connected to x_{a}^{k+1}, meaning there is a line segment s_{k} of T with length at most d_{2} which connects x_{0}^{k} and x_{0}^{k+1}. Some open neighborhood will force that there is some path p_{k} connecting x_{0}^{k} to x_{0}^{k}. We let

$$
L_{0}=\bigcup_{k \in\{0, \ldots, n-1\}} s_{k} \cup p_{k}
$$

L_{0} is a subtree of T since each s_{k} and p_{k} are paths. L_{0} contains only one component since s_{k} intersects p_{k} at the vertex x_{0}^{k}, while s_{k} and p_{k+1} will intersect at the vertex x_{0}^{k+1}. We note L_{0} is contained in a rectangle with length at most $5 d_{2}$ and height at most $2 d_{2}$ (As pictured in Figure 6.1).

Repeat the construction above by taking a sequence of vertically aligned points $z_{N}=$ $z_{0}^{\prime}, \ldots, z_{N}^{\prime}$ defined similarly to the z_{i} sequence to construct a line segment L_{1} which stays within a rectangle of width at most $2 d_{2}$ and height $5 d_{2}$. L_{0} and L_{1} both have the point z_{n} in common, so the two subtrees are connected. We note that $L_{0} \cap L_{1}$ is contained in a square with side length at most d_{2}, i.e. L_{1} can only "backtrack" a small distance into L_{0}.

Figure 6.2. The L_{i} are all connected in tubes, and the forcing neighborhoods connect the L_{i}, forming a cycle of T.

Now repeat the construction again by moving left from z_{n}^{\prime} to construct L_{2}, and then down to construct L_{3}. L_{2} connects to L_{1} via a segment contained in a square with side length at most d_{1}, and similarly for the pairs L_{2}, L_{3}, and L_{3}, L_{0}. Let $L=L_{0} \cup L_{1} \cup L_{2} \cup L_{3}$.

We claim that L contains a nontrivial cycle in T. There is a path P from x_{0}^{0} to $\left(0,3 d_{2}\right) \cdot x_{0}^{0}$ which is contained in $L_{0} \cup L_{1} \cup L_{2}$. There is also a path P^{\prime} from x_{0}^{0} to $\left(0,3 d_{2}\right) \cdot x_{0}^{0}$ contained in L_{3}. We claim that $P^{\prime \wedge} P$ forms a cycle in $T . P^{\prime \wedge} P$ is easily seen to be a path in T, but $P^{\prime} \cap P$ is contained in the union of the two squares of size d_{2} around x_{0}^{0} and $\left(0,3 d_{2}\right) \cdot x_{0}^{0}$.

So for any specified n, there is no open treeing with exactly n components on each
class; however, if we allow each class to have n or fewer components on each class, then the next lemma states that an n-treeing does exist. For $F\left(2^{\mathbb{Z}^{2}}\right)$, the minimal known n is 4 . It is currently not known if this bound can be lowered.

Theorem 6.8. There is an open 4-treeing of $F\left(2^{\mathbb{Z}^{2}}\right)$.
Proof. For each i, Let \mathcal{R}_{i} be an equivalence relation of $F\left(2^{\mathbb{Z}^{2}}\right)$ which gives rise to rectangular regions with side lengths d_{i} or $d_{i}+1$. We put an order $<$ on the regions of each class using the lexicographic order on the bottom left corner of each region. We now define the open treeing T inductively.

Let T_{0} be the set of bottom left corner points of \mathcal{R}_{0}. Inductively, suppose that T_{i} has been defined for all $i<k$ such that each component of T_{i} is a tree contained in a square with side length at most $2 d_{i}$, and for all i, each component of T_{i-1} is a proper subtree of some component of T_{i}. For each region R of \mathcal{R}_{k}, we define

$$
C_{R}=\left\{t: t \text { is a component of } T_{k-1} \text { and } R \text { is }<- \text { least such that } t \cap R \neq \emptyset\right\} .
$$

C_{R} is well-defined since each component of T_{k-1} is finite; furthermore, if t is a component of C_{R}, then t can intersect at most four regions of \mathcal{R}_{k}, as $d_{k-1} \ll d_{k}$. We define an algorithm to connect all of the trees in C_{R} using the notion that when we say there is a path connecting two trees, that path must be contained in R. Let t_{0} be an arbitrary component of C_{R} and let $T_{0}^{\prime}=t_{0}$. For each $t \in C_{R} \backslash\left\{t_{0}\right\}$, there is some shortest path connecting t_{0} to t, as any trees on the boundary of \mathcal{R}_{k} extend at most $2 d_{k-1}$ into \mathcal{R}_{k}. Thus, we may connect t_{0} to the tree $t_{1} \in C_{R}$ which has the least such path p_{0}. It is easy to see that $T_{1}^{\prime}=t_{0} \cup p_{0} \cup t_{1}$ is still a tree, as if p_{0} introduced a cycle, it would not be a shortest path. We now iterate this construction to define T_{n}^{\prime} until it is connected to each component of C, and define T_{k} to be union of all of the T_{n}^{\prime}. T_{k} is clopen, and $T_{k-1} \subseteq T_{k}$. We let

$$
T=\bigcup_{k \in \omega} T_{k}
$$

T is open, and all of the components of T are infinite since each component of T_{k-1} is contained in a strictly larger component of T_{k}. Each component of T is a tree, as otherwise,
T would have a cycle on some class, but that would imply that some T_{k} has a cycle on that class, which is false by the induction assumption.

We now show T has at most four components on each class. Towards a contradiction, suppose there are five different components of T on the same class $[x]$, and that $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}$ are elements of the different components. Then there is a $k \in \omega$ such that the five points are contained in a square with side length d_{k}. But this square can intersect at most four regions of \mathcal{R}_{k}, so two of the x_{i} must be in the same region. This is a contradiction, as the trees containing the two points would have been connected by stage k.

CHAPTER 7

A BOREL N-LINING

In this chapter, we use the orthogonal marker sets $\mathcal{R}_{0}, \mathcal{R}_{1}, \ldots \mathcal{R}_{n}, \ldots$ from Theorem 3.10 to construct a Borel lining of $F\left(2^{\mathbb{Z}^{2}}\right)$ which has exactly n components on each class. The intuition of the construction is that we will first define finite linings in each region R of \mathcal{R}_{0}, then by induction, we will connect the linings defined in the regions of \mathcal{R}_{k-1} that are contained inside the same region of \mathcal{R}_{k}. The first problem we encounter is that the linings we defined in the previous step might overlap the boundary of the new region. To fix this, we would like to delete any points of L_{k} which get "too close" to the boundary of a region, but this will damage the lining. We will first prove Lemma 7.6 , which we will refer to as the rewiring lemma. This will be what allows us to repair the linings of regions that are intersected by higher level regions. By the orthogonal marker construction, we can guarantee that the limit of the linings will be eventually constant on any fixed square region of $F\left(2^{\mathbb{Z}^{2}}\right)$.

We now introduce the terminology we will be using through the rest of the chapter. The definitions and lemmas below will use a horizontal line, but we note they can be made analogously using a vertical line (or in fact, any line that partitions a region into two smaller regions). For this chapter, when we say $L=\left(L_{0}, L_{1}, \ldots, L_{n-1}\right)$ is an n-lining, we mean L is the union of n disjoint linings of $F\left(2^{\mathbb{Z}^{2}}\right)$.

Given a lining L of $F\left(2^{\mathbb{Z}^{2}}\right)$ and a horizontal line H, a loop l of L is any connected component of L for which either all points of l are above H, or all points of l are below H. A loop l is embedded in a different loop l^{\prime} if every point of l is inside the region created by l^{\prime} and H. A loop structure is a finite collection of loops l_{0}, \ldots, l_{n} such that for all $k \neq 0, l_{k}$ is embedded inside of l_{0}. We refer to l_{0} as the outer loop of the loop structure. The rank of a single loop is 0 ; inductively, the rank of a loop structure L is defined to be $k+1$, where k is the highest rank of any loop structure inside the region created by L and H.

Definition 7.1. Two lines L_{0} and L_{1} are adjacent if for all $x \in L_{i}$, there is a $y \in L_{1-i}$ such
that $\rho(x, y)=1$. An n-lining is tight if it consists of lines $L_{0}, L_{1}, \ldots, L_{n-1}$ such that for all i, L_{i} is adjacent to L_{i-1} and L_{i+1}.

In other words, n lines are tight if they functionally act as one line. We can define loops, loop structures, and ranks for tight n-linings similarly to how we defined them for 1 -linings. An n-loop is a collection of n loops l_{0}, \ldots, l_{n-1} satisfying the tightness property above. An n-loop structure is a loop structure consisting only of n-loops.

Given a horizontal line H, a cut of an n-lining $L=\left(L_{0}, L_{1}, \ldots, L_{n-1}\right)$ is a sequence of n-adjacent vertices $x_{0}, \ldots x_{n-1}$ of L such that each point intersects H and $x_{0} \in$ $V\left(L_{0}\right), \ldots, x_{n-1} \in V\left(L_{n-1}\right)$. We will write a cut as $x=\left(x_{a}, x_{b}, \ldots\right)$, where $x_{a} \in V\left(L_{a}\right)$ is the leftmost vertex, followed by x_{b} and so on. For vertical cuts, x_{a} will be the lowest point, x_{b} the next, and then so on. We think of cuts as the equivalent of endpoints for structures that have n loops.

Definition 7.2. An n-loop structure is good if whenever l is an n-loop with left cut $x=$ $\left(x_{0}, x_{1}, \ldots, x_{n-1}\right), k$ is an n-loop embedded in l, and there are no loops in the region created by k and l, then the left cut y of k is ordered $\left(y_{n-1}, \ldots, y_{0}\right)$.

In other words, if L is a good loop structure, then however its outer loops are ordered, any n-loops below will be in the reverse order. Furthermore, if L is a good loop structure, then it's cut points are either in the order $c_{0}, c_{1}, \ldots, c_{n-1}$ or c_{n-1}, \ldots, c_{0}, and these orders alternate as we move from left to right along H.

Suppose that L is a tight n-lining and H is a horizontal line. We can convert the resulting loop structure into a good one by letting $H^{\prime}=(0,-n) \cdot H$, and deleting any n-loops that do not intersect the original region.

Lemma 7.3. Suppose S is a loop structure created by a tight n-lining L and a horizontal line H, then there is an n-loop structure $S \subseteq S^{\prime} \subseteq V(L)$ in the region created by $H^{\prime}=(0,-n) \cdot H$.

Proof. Let S be given by the hypotheses, and let $S^{\prime \prime}$ be the loop structure induced by H^{\prime} and L. Let $s(l)$ be the set of loops k of $S^{\prime \prime}$ such that there are loops $l_{0}, \ldots l_{N}$ of $S^{\prime \prime}$ such that
$l=l_{i}$ for some i and for all j, l_{j} and l_{j+1} are adjacent. Define S^{\prime} by $l \subset S^{\prime} \Longleftrightarrow s(l) \cap S \neq \emptyset$.
$S \subset S^{\prime}$ since we only deleted lines that didn't start in S; furthermore, S^{\prime} only consists of n-loops via the tightness of L. The order flips as a corollary to the following claim, which is proven easily via induction.

Claim: If L is a single line intersecting a horizontal line H, and $x_{0}, x_{1}, \ldots, x_{n}$ are the vertices of $H \cap V(L)$ ordered left-to-right. Then if x_{n} and x_{m} are the endpoints of some loop, $n-m$ is odd.

For any loop structure L, we will let x_{L} and y_{L} denote the left and right cuts of the outer loop of L. Whenever we say there are loop structures $l_{1}, l_{2}, \ldots, l_{n}$ under some loop structure L, we will assume the cuts of l_{i} are to the left of l_{j} if $i<j$. We are now ready to prove lemma 7.5. Intuitively the lemma traces out the outer loop of a loop structure L, then crosses over the outer loops of all the structures beneath L. It then commits to connecting all points under the first structure and moves to the next loop structure. For the following definition and proof, we will just say loop instead of n-loop.

Definition 7.4. Let $x=\left(x_{0}, \ldots, x_{n-1}\right)$ and $y=\left(y_{n-1}, \ldots, y_{0}\right)$ be two cuts of some n-lining L. The cable h connecting x and y is defined as follows.

- If x and y are horizontal cuts with x to the left of y, then let a_{i} be the line segment that starts at x_{i}, extends down $i+1$ units, to the right until it is under y_{i}, and then up to connect to y_{i}. We let h be the union of the a_{i}.
- If $x=\left(x_{0}, \ldots, x_{n-1}\right)$ is a horizontal cut and $y=\left(y_{0}, \ldots, y_{n-1}\right)$ is a vertical cut such that $y_{n-1}=(-m,-n) \cdot x_{n-1}$, where $m, n>0$, let a_{i} be the line segment that starts at x_{i}, extends down until it is to the right of y_{i}, and then left until it connects to y_{i}. We let h be the union of the a_{i}.

Lemma 7.5. Given a good n-loop structure L contained inside the intersection of a finite region $R \subseteq F\left(2^{\mathbb{Z}^{2}}\right)$ and a horizontal line H, there is a good n-loop structure \mathcal{L} satisfying:
(1) $L \subseteq \mathcal{L}$.
(2) If s is a loop and x, y are points of $V(\mathcal{L})$ in the region S created by s and H, then the part of the path connecting x and y above H is contained in S.
(3) Any point of \mathcal{L} is at most $2 n$ below H.
(4) \mathcal{L} shares the cut $x_{L}=\left(x_{0}, \ldots, x_{n-1}\right)$ with L and its other "endpoint" is the vertical cut $y_{\mathcal{L}}=\left(y_{0}^{\prime}=(0,-2 n) \cdot y_{n-1}, \ldots y_{n-1}^{\prime}=(0,-n-1) \cdot y_{n-1}\right)$, where y_{n-1} is the leftmost point of y_{L}.

Moreover, if R is induced by a Borel equivalence relation and L is Borel, then \mathcal{L} is Borel.
Proof. We prove the claim by induction based on the rank of the loop structure L. If L has rank 0 , then L is exactly one loop, so we just let $\mathcal{L}=L$. If L has rank 1 , then L has an outer loop l with left cut $x=\left(x_{0}, \cdots, x_{n-1}\right)$, and right cut $y_{L}=\left(y_{n-1}, \ldots, y_{0}\right) . l$ also has some number of embedded loops $l_{0}, l_{1}, \ldots, l_{m}$ whose left cuts are in the opposite order of the left cuts of l and similarly for the right cuts. For all $i<m$, let h_{i} be the cable connecting $y_{l_{i}}$ and $x_{l_{i+1}}$, and let h_{m} be the cable connecting $y_{l_{m}}$ and y_{l}. We define

$$
L^{\prime}=l \cup \bigcup_{0 \leq i \leq m}\left(h_{i} \cup l_{i}\right),
$$

Let $\mathcal{L}=L^{\prime} \cup v \cup h_{n+1}$, where v is the set of vertical lines v_{i} with endpoints $x_{l_{1}}$, and $(0,-n) \cdot x_{l_{i}}$, and h_{n+1} is the cable connecting $(0,-n) \cdot x_{L_{1}}$, and $(0,-n) \cdot y_{n-1}$. Intuitively, \mathcal{L} traces out the outer loops moving left to right, and then all of the inner loops moving right to left. It is easily checked that (1)-(4) are satisfied.

Now suppose that the claim holds for any good loop structure of rank k or less; we show that the claim holds for a loop structure of rank $k+2$. Suppose L is a loop structure of rank $k+2$. Then L has an outer loop l, with some number of loop structures of rank at most $k+1$ below it, say $l_{0}, l_{1}, \ldots, l_{m}$. Under the outer loop of each l_{i} are loop structures $l_{0}^{i}, l_{1}^{i}, \ldots l_{m_{i}}^{i}$ with rank at most k. For each $0 \leq i \leq m$ and $0 \leq j \leq m_{i}$, Let K_{j}^{i} be the n-lining which satisfies the induction hypotheses for l_{j}^{i}. By induction hypothesis K_{j}^{i} has a horizontal cut x_{j}^{i} and vertical cut y_{j}^{i}. Define

$$
\mathcal{L}=L_{0}^{\prime} \cup h \cup \bigcup_{\substack{0 \leq i \leq n \\ 0 \leq j \leq m_{n}}}\left(K_{j}^{i} \cup h_{j}^{i} \cup v_{j}^{i}\right)
$$

\mathcal{L} has left cut x_{l} as that was the left cut of L_{0}, and has a vertical right cut $(0,-2 n) \cdot y_{l}$, so \mathcal{L} satisfies (4). Similarly, all of the horizontal cables connected adjacent endpoints, so those went at most n below H. The cables connecting the K_{j}^{i} extend at most n below the other cables, so \mathcal{L} satisfies (3).

We next check (1). Let $x, y \in V(L) . x$ is a point of one of l, l_{i} or some K_{j}^{i}, so it suffices to show l, l_{i}, and K_{j}^{i} are all connected. l and all of the l_{i} were connected in L_{0}. L connected L_{0} to K_{0}^{0}, and then connected all of the K_{i}^{j} to each other. Thus, any two points of L are connected in \mathcal{L}. (2) holds by construction.

Lemma 7.5 allows us to make a tight n-lining out of an arbitrary good loop-structure which extends a bounded distance below the loop structure. for the purposes of proving theorem 7.10, we will need a slight strengthening. We will leave room under the lining L so that we can "encase" the lining at a later stage.

Corollary 7.6. (The Rewiring Lemma) Suppose L is a good n-loop structure inside the intersection of a finite region $R \subseteq F\left(2^{\mathbb{Z}^{2}}\right)$, and a horizontal line H. Then there is a lining \mathcal{L} satisfying the hypotheses of Lemma 7.5 and for any substructure A of \mathcal{L} having an outer loop l which has distance $k>50 n$ from any other point of A, and any vertical line V intersecting $A \backslash l$, there are cuts $a_{1}, a_{2}, b_{1}, b_{2}$ of $V(L) \cap V(H)$ satisfying:
(1) The cuts are ordered left to right by $a_{1}, a_{2}, b_{1}, b_{2}$, and every point of one of these cuts is either a point of l, or is in the region created by A and H.
(2) a_{1} and a_{2} are to the left of V, and b_{1} and b_{2} are to the right of V.
(3) a_{1} and a_{2} are the cuts of loops $l_{a_{1}}$ and $l_{a_{2}}$ which are at least $4 n$ units away from each other and there are no points of L in the region created by the two loops and H. Similarly b_{1} and b_{2} are the cuts of loops $l_{b_{1}}$ and $l_{b_{2}}$ which are at least $4 n$ away from each other, and there is no point of L in the region created by the two loops and H.
(4) $l_{b_{1}}$ is embedded in all of the other loops above, and the distance from $l_{b_{1}}$ to any point

Figure 7.1. The rewiring arcs over the inner loops in order to leave space for a different set to come in later. The blue loop represents the original outer loop of the lining.

$$
\text { of } A \backslash l_{b_{1}} \text { is at least } k-25 n .
$$

Proof. In the proof of 7.5 , whenever we encounter an outer loop l satisfying the hypotheses, we can alter the algorithm as follows. If we would construct a cable h_{i} connecting x_{l} and $x_{l_{1}}$, then we replace it with $S=h_{0} \cup l_{a_{1}} \cup h_{1} \cup l_{a_{2}} \cup h_{2}$, where each piece is defined below.

- h_{0} is the cable below H connecting $x_{l}=\left(x_{0}, \ldots x_{n-1}\right)$ and the horizontal cut $a_{1}:=$ $\left((2,0) \cdot x_{n-1}, \ldots,(2+n-1) \cdot x_{n-1}\right)$.
- $l_{a_{1}}$ is an n-loop with cuts a_{1} and $(-2,-2 n) \cdot y_{1}$ for which every point of the outer loop has distance either 1 or 2 from l.
- h_{1} is the set of horizontal lines starting at $(-2,-2 n) \cdot y_{l}$ and ending at $(-7 n,-2 n) \cdot y_{l}$.
- $l_{a_{2}}$ is an n-loop starting at $(-7 n,-2 n)$ that stays roughly $6 n$ away from $l_{a_{1}}$ and ends at the cut $a_{2}=(7 n, 0) \cdot x_{l}$.
- h_{2} is the cable starting at a_{2} and ending at $x_{l_{1}}$.

If the algorithm does not connect x_{l} and $x_{l_{1}}$ with a cable, then we can let $a_{1}=x_{l}$ and $a_{2}=x_{l_{1}}$, and the hypotheses are easily satisfied.

If we would draw a cable connecting $(0,-2 n) \cdot y_{l_{n}}$ and $(0,-2 n) \cdot y_{l}$, we instead replace it with the line segment $S=h_{0} \cup l_{b_{1}} \cup h_{1} \cup l_{b_{2}} \cup h_{2}$, where each set is defined below.

- h_{0} is the cable of length 2 starting at $(0,-2 n) \cdot y_{l}$ and ending at $b_{1}=(-21 n,-2 n) \cdot y_{l_{n}}$.
- $l_{b_{1}}$ is a loop starting at $(-21 n,-2 n) \cdot y_{l_{n}}$ and ending at $(21 n,-2 n) \cdot x_{l}$ where every point of the outer loop of $l_{b_{1}}$ has a distance roughly $14 n$ from $l_{a_{2}}$.
- h_{1} is is the cable connecting $(21 n,-2 n) \cdot x_{l}$ and $(14 n,-2 n) \cdot x_{l}$
- $l_{b_{2}}$ is a loop starting at $(14 n,-2 n) \cdot x_{l}$ and ending at $b_{2}=(-14 n,-2 n) \cdot y_{l}$
- h_{2} is the cable connecting b_{2} to $(0,-4 n) \cdot y_{l}$.

Both of these linings are well-defined since there were no points of \mathcal{L} within $50 n$ units of l. Any point of $l_{b_{1}}$ is at most $22 n$ away from the outer loop by construction, so $\rho\left(l_{b_{1}}, A \backslash l\right)>25 n$.

We now work towards an algorithm which will connect the disjoint linings in each of the regions. For the rest of the section, we will assume we have a sequence of integers $d_{0} \ll d_{1}, \ldots$, and a sequence of orthogonal marker sets $\mathcal{R}_{0}, \mathcal{R}_{1}, \ldots$ as defined in Theorem 3.10. Furthermore, we will assume that there is a fixed $N>0$ such that each region R of \mathcal{R}_{k} intersects at most N regions of \mathcal{R}_{k-1}. We also assume b is a number much greater than $3^{(2 N)^{2}}$. We will now define a few notions that will be used in the constructions of the connection algorithm and the Borel n-lining.

Definition 7.7. For a region R of \mathcal{R}_{k}, the set of boundary points, denoted $\operatorname{bd}(R)$ is defined by

$$
x \in \operatorname{bd}(R) \Leftrightarrow x \in F\left(2^{\mathbb{Z}^{2}}\right) \text { and } \exists g \in \mathbb{Z}^{2}(\|g\|=1 \text { and }(g \cdot x, x) \notin R) .
$$

Let $I_{R}=\{x \in R: \rho(x, \operatorname{bd}(R)) \geq b\}$ be the interior of R. Let $B_{R}=\{x \in R: \rho(x, b d(R))<b\}$ be the buffer of R .

The rewiring lemma connects any components that a higher level region disconnects, and we showed that this reconnection can happen in a fixed amount of space. Since the linings are originally contained in the interiors of the regions, this reconnecting will extend a fixed distance into the buffer. We will use the remaining space in the buffer to connect the
interior linings at each step. To do this, we require a topological lemma for \mathbb{R}^{2}. Whenever we use the term distance with respect to \mathbb{R}^{2}, we mean distance using the l_{∞} metric. We view n as a fixed number for the lemma below, but will allow it to vary in Lemma 7.9.

Lemma 7.8. Let $R \subseteq \mathbb{R}^{2}$ be a square with side lengths at least $d_{0} \gg 3^{2 N n}$, where $n \in \mathbb{Z}^{+}$is arbitrary. Let L be a line segment satisfying the following properties for some $k>2$.
(1) For each $x \in V(L), B_{l_{\infty}}\left(x, 3^{n k}\right)$ contains exactly one component of L.
(2) If $x, y \in V(L)$ are such that $x=(r, 0)+y$ or $x=(0, r)+y$, and x and y are not connected by a vertical/horizontal line, then $r>3^{n k}$,
(3) For each $x \in V(L), l_{\infty}(x, b d(R))>3^{n k}$.

Then if z is a point which is at least $3^{\text {nk }}$ away from L, there is a line segment \mathcal{L} such that $L \subset \mathcal{L}, z$ is an endpoint of \mathcal{L}, and \mathcal{L} satisfies (1)-(3) if every instance of k is replaced with $k-2$.

Proof. We will say that any line segment satisfying (1) and (2) together is essentially diagonal, and note that for all $x \in L, V(L) \cap B\left(x, 3^{n k}\right)$ is essentially diagonal by hypothesis. Define

$$
T=\left\{x \in R: l_{\infty}(x, L) \leq 3^{n(k-1)}\right\},
$$

and let $S=R \backslash T$. We note that T is closed. We will show that S is connected, which will imply it is path connected as $S \subseteq \mathbb{R}^{2}$ is open. Let x_{0} be an endpoint of L, and define

$$
\begin{gathered}
s_{0}=\left\{z \in V(L): l_{\infty}\left(x_{0}, z\right) \leq 3^{n k}\right\}, \text { and } \\
t_{0}=\left\{z \in R: l_{\infty}\left(z, s_{0}\right) \leq 3^{n(k-1)}\right\} .
\end{gathered}
$$

It is clear that s_{0} is essentially diagonal and $R \backslash t_{0}$ is connected.
Inductively suppose essentially diagonal line segments $s_{0}, \ldots, s_{m-1} \subseteq L$, and vertices $x_{0}, \ldots, x_{m} \in V(L)$ have been defined such that $s_{i} \subseteq L$ has endpoints x_{i} and x_{i+1} and for all $i<m-1$:
a) $x_{i} \in V(L), l_{\infty}\left(x_{i}, x_{i+1}\right)=3^{n k}$, and $l_{\infty}\left(x_{i}, x_{j}\right)>3^{n k}$ if $|i-j| \neq 1$
b) $\bar{B}\left(x_{i}, 3^{n k}\right) \cap L=s_{i-1} \cup s_{i}$.
c) $s_{i} \cap s_{i+1}=x_{i+1}$.
d) $s_{i} \cap s_{j}=\emptyset$ if $|j-i| \neq 1$.
$e)$ if $t_{i}=\left\{z \in R: l_{\infty}\left(z, s_{i}\right) \leq 3^{n(k-1)}\right\}$, then $R \backslash\left(t_{0} \cup \cdots \cup t_{m-1}\right)$ is connected.
Let s_{m}^{\prime} be the line segment $\bar{B}\left(x_{m}, 3^{n k}\right) \cap L$, and $s_{m}=x_{m} \cup\left(s_{m}^{\prime} \backslash s_{m-1}\right)$. One of the endpoints of s_{m} is x_{m} and we denote the other one as x_{m+1}. By construction s_{0}, \ldots, s_{m} satisfy (b) and (c). (a) and (d) follow from the triangle inequality and the fact that each s_{i} is essentially diagonal. We define $t_{m}=\left\{z \in R: l_{\infty}\left(z, s_{m}\right) \leq 3^{n(k-1)}\right\}$ and show $R \backslash\left(t_{0} \cup \cdots \cup t_{m}\right)$ is connected.

Towards a contradiction, suppose not. It is easy to check that $R \backslash\left(t_{m-1} \cup t_{m}\right)$ is connected, as $s_{m-1} \cup s_{m}$ is the component of L in $\bar{B}\left(x_{m}, 3^{n k}\right)$. Therefore, $t_{m} \cap t_{i} \neq \emptyset$ for some $i<m-1$, so there is a $z_{i} \in s_{i}$ such that $l_{\infty}\left(z_{i}, s_{m}\right)<2 \cdot 3^{n(k-1)}$. But then $\bar{B}\left(z_{i}, 3^{n k}\right) \cap s_{m} \neq \emptyset$, so in fact the line segment connecting s_{i} and s_{m} is contained in $\bar{B}\left(z_{i}, 3^{n k}\right)$, which is a contradiction, as $\bar{B}\left(z_{i}, 3^{n(k-1)}\right) \cap L \subseteq s_{i-1} \cup s_{i} \cup s_{i+1}$, which s_{m} does not intersect. Thus, $R \backslash\left(t_{0} \cup \cdots \cup t_{m}\right)$ is connected.

Our recursive definition eventually halts since L is finite, meaning that $L=s_{0} \cup \cdots \cup s_{M}$ for some integer M; therefore, $T=\cup_{n} t_{n}$, so $R \backslash T$ is path connected. We now define the components that will union to be \mathcal{L}.
$\bar{B}\left(x_{0}, 3^{n(k-1)}\right)$ consists of an essentially diagonal line, so there is a vertical line segment $l_{0} \subseteq T$ which has one endpoint x_{0}, and another endpoint y on the boundary of T which satisfies that for all $x \in l_{0}$, and $a \in s_{0}, x \neq(0, r)+a$, and similarly for $(r, 0)$. If there is a horizontal or vertical line that connects z (The point we would like to connect to L) to some point y^{\prime} on the boundary of T, then let l_{1} be that line. Otherwise, let v be the shortest vertical line, such that there is a horizontal line h with $h \cup v$ connecting x to a point y^{\prime} of T, and let $l_{1}=h \cup v$.

Let l_{2}^{\prime} be a line segment that travels along the boundary of T with endpoints y and y^{\prime}. l_{2}^{\prime} could move clockwise or counterclockwise, and one of these orientations will guarantee no point of l_{2}^{\prime} is $r \cdot e_{i}+x$ for some $x \in l_{0}$, where $r<3^{n(k-1)} . l_{2}^{\prime}$ might not implicitly satisfy (2) if k is replaced with $k-2$, so we can edit it in the following way. If $a, b \in l_{2}^{\prime}$ would fail to satisfy
(2) using $k-1$, then replace the segment connecting a and b with a vertical/horizontal line segment. We argue this segment is at least $3^{n(k-2)}$ away from L since a and b were $3^{n(k-1)}$ away from L. Towards a contradiction, suppose there is a point c of the segment and a point z of S such that $l_{\infty}(c, z)<3^{n(k-2)}$. Without loss of generality, $l_{\infty}(a, c)<\frac{3^{k(n-1)}}{2}$ (Otherwise, it is at least this close to b). But then

$$
l_{\infty}(a, z)<l_{\infty}(a, c)+l_{\infty}(z, c)<\frac{3^{k(n-1)}}{2}+3^{k(n-2)}<3^{k(n-1)}
$$

contradicting that a was a point of $l_{2}^{\prime} \subseteq T$. Finally, we let

$$
\mathcal{L}=L \cap l_{0} \cup l_{1} \cup l_{2} .
$$

\mathcal{L} connects z to L by definition. We now show it satisfies (1) and (2) if k is replaced by $k-2$ (so now when we say (1) or (2) holds, we mean with respect to $k-2$).

Suppose $x \in \mathcal{L}$ we show $B:=\bar{B}\left(x, 3^{n(k-2)}\right) \cap \mathcal{L}$ is essentially diagonal, which will imply (1) and (2). If B intersects exactly one of the sets L, l_{0}, l_{1} or l_{2}, then B is essentially diagonal, so it suffices to check that if B intersects a union, then B is essentially diagonal. The pairs $\left(l_{0}, l_{1}\right),\left(L, l_{0}\right),\left(L, l_{2}\right)$ are too far apart for a ball to intersect them both. Also, the pairs $\left(l_{0}, l_{2}\right),\left(l_{1}, l_{2}\right),\left(L, l_{1}\right)$ were specifically defined so that any such ball would be essentially diagonal. Thus, the claim holds.

LEmma 7.9. Suppose R is a region of \mathcal{R}_{k} such that $R=R_{0} \cup R_{1} \cup \cdots \cup R_{N}$, where each R_{i} is a region of \mathcal{R}_{k-1}. Suppose that for all $0 \leq i \leq N, L_{i}$ is a tight n-lining of each R_{i} such that the following hold:
(1) L_{i} is contained in $I_{R_{i}}$
(2) L_{i} has cuts x_{i} and y_{i} on the boundary of $I_{R_{i}}$.

Then there is a single tight n-lining \mathcal{L} of R such that for all $i, j<N, \mathcal{L} \upharpoonright I_{i}=L_{i}$, and if l_{1} is a component of L_{1}, then for each any k, there is a path connecting l_{1} to some component of L_{k}.

Proof. Before we construct the lining, we build a function to convert R into a region $R^{\prime} \subseteq \mathbb{R}$. Let $z \in \operatorname{bd}(R)$ be arbitrary and let $f(z)=(0,0)$. For all $y \in R$, if $y=(n, m) \cdot z$, let
$f(y)=(n, m)$. If $y \in \operatorname{bd}(R)$, let $f(y) \in R^{\prime \prime}$. If $x, y \in b d(R)$, and $y= \pm e_{i} \cdot x$, then connect $f(x)$ and $f(y)$ via a straight line in \mathbb{R}. Then $R^{\prime \prime}$ forms the boundary of a region R^{\prime} which is nearly a square with side length d_{n}. This space is connected, and changing the initial choice of z would yield a translation of R, which would be homeomorphic to R.

If M is a tight line segment in R, then we can convert M into a line segment M^{\prime} of R^{\prime} using the following algorithm. Let $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ order the vertices of the zeroth segment of M. Let M_{i} be the straight-line with endpoints $f\left(x_{i}\right)$ and $f\left(x_{i+1}\right)$ and let M^{\prime} be the union of the M_{i}. Given any line segment that is a union of straight lines that consist of at least one integer coordinate, we can convert that into a lining in R in a Borel way.

We next define tight segments p_{k} with the properties below and let \mathcal{L} be the union of the p_{k} and L_{k}. Property (1) holding for all k will imply \mathcal{L} satisfies the conclusion of the theorem.
(1) p_{k} connects L_{k} to L_{k+1}
(2) For all $m<k, \rho\left(p_{m}, p_{k}\right) \geq 3^{(2 N-2 k)(2 N-2 k)}$
(3) p_{k} has distance at least $3^{(2 N-2 k)(2 N-2 k)}$ from $\operatorname{bd}(R)$
(4) p_{k} has distance at least $3^{(2 N-2 k)(2 N-2 k)}$ from the interior of any region other than $I_{R_{k}}$ and $I_{R_{k+1}}$
(5) For any $x \in V\left(p_{k}\right), B\left(x, 3^{(2 N-2 k)(2 N-2 k)}\right)$ is essentially diagonal.

It is easy to see that a path p_{0} satisfying (1)-(5) exists, so let p_{0} be a shortest such path. Now suppose that p_{m} has been defined for all $m<k$ satisfying (1)-(5), and let p_{m}^{\prime} in R^{\prime} be analogous to p_{m} in R using the algorithm given above. Then the paths p_{m} satisfy (1)-(5) with value m if ρ is replaced with l_{∞}. Properties (3) and (5) imply that $p^{\prime}=\cup_{m<k} p_{m}^{\prime}$ satisfy the hypotheses of Lemma 7.8. Let S be the line segment given by the lemma for the point y_{k} and $n=(2 N-2 k)$ and define $s^{\prime}=S \backslash P^{\prime}$.

Next, let s be the line segment of R analogous to s^{\prime}. Then s will easily satisfy $(1)_{k}$ and $(5)_{k}$. s will also satisfy $(2)_{k}$, and $(3)_{k}$ for the larger value $3^{(2 N-2 k+2)(2 N-2 k)}$, but will not necessarily satisfy $(4)_{k}$. Thus, we must adjust the segment so that if $i \notin\{k-1, k\}, s$ avoids the boundary of $I_{R_{i}}$. For each i where $(4)_{k}$ does not hold, fix an orientation of s and let
x be the least point of s with $\rho\left(x, I_{R_{i}}\right)=3^{(2 N-2 k+1)(2 N-2 k)}$, and let y be the greatest such point. Since p_{m} satisfies $(4)_{m}$ for each $m<k,\left\{z \in R_{i}: \rho\left(z, \operatorname{bd}\left(I_{R_{i}}\right)\right) \leq 3^{(2 N-2 k+1)(2 N-2 k)}\right\} \cap$ $V\left(\cup_{m<k} p_{m}\right)=\emptyset$. Define l_{i} to be a shortest line segment in $\left\{z \in R_{i}: \rho\left(z, \operatorname{bd}\left(A_{i}\right)\right) \leq\right.$ $\left.3^{(2 N-2 k+1)(2 N-2 k)}\right\}$ that connects x to y, and replace the original path connecting x and y with l_{i}.

We therefore have a line segment s that connects the zeroth point of x_{k-1} to y_{k} and satisfies $(1)_{k}-(5)_{k}$, and satisfies $(2)_{k}-(4)_{k}$ if $3^{(2 N-2 k)^{2}}$ is replaced by $3^{(2 N-2 k+1)(2 N-2 k)}$. With this extra space, we can add in $n-1$ lines adjacent to s to form the full tight lining p_{k} satisfying $(1)_{k}-(5)_{k}$.

We now give a proof of the existence of a Borel n-lining of $F\left(2^{\mathbb{Z}^{2}}\right)$. At each step, we will use the buffer to draw "spirals" around the interior, and leave some room to connect two different regions at the next level.

Theorem 7.10. There is a tight Borel n-lining of $F\left(2^{\mathbb{Z}^{2}}\right)$

Proof. We define the L_{k} inductively so that for each k, L_{k} will satisfy the three clauses below. For each region R, of \mathcal{R}_{i}, t_{R} is the number of times that R has been intersected by a region R^{\prime} of \mathcal{R}_{j} for $j>i$. We note that by the orthogonal marker construction, t_{R} can be at most 2 .
(1) If x, y are in the interior of some m-region R^{\prime} and there is no j with $m<j \leq k$ such that there are different j-regions R_{1} and R_{2} with $x \in R_{1}, y \in R_{2}$, then there is a path connecting x and y that is contained in $I_{R^{\prime}}$.
(2) The endpoints of $L_{k} \upharpoonright R$ lie on the boundary of $\left\{x \in R: \rho\left(x, I_{R}\right) \leq 300 n\right\}$.
(3) Any horizontal line H intersecting R induces loops l_{1} and l_{2} such that l_{1} is contained in I_{R}^{t} above H, every $x \in V\left(L_{k}\right) \cap I_{R}$ is in the region created by l_{1} and H, and l_{1} has distance at least $100 n-25 n t_{R}$ from any other loop. l_{2} is defined similarly to l_{1}, but replacing "above" with "below". Furthermore, a similar claim holds for any vertical line intersecting R.

Let R be a region of \mathcal{R}_{0}. Then R is a rectangle with side lengths d_{0} or $d_{0}+1$. Let
L_{0}^{\prime} in R be n adjacent vertical lines with endpoints on I_{R}. The zeroth line can be picked to go through a well-defined center point so that L_{0}^{\prime} is Borel. We define the "spiral" part of L_{0} below, giving an algorithm that yields the structure given in Figure 7.2. Let S_{0} be a tight line segment which shares an endpoint with the top part of L_{0}^{\prime} which spirals around I_{R} in the following sense. S_{0} moves up $10 n$, right until it extends 100 n past the left edge of I_{R}, down until it extends $100 n$ below I_{R}, right until it is $200 n$ to the left of I_{R}, up until it is $200 n$ above I_{R}, left until it is $300 n$ to the right of I_{R}, and finally down to the boundary of I_{R}^{0}. Define S_{1} similarly, and let $L_{0}=S_{0} \cup L_{0}^{\prime} \cup S_{1}$. (1) $)_{0}$ is trivially satisfied, while (2) and $(3)_{0}$ are true by construction.

Figure 7.2. We define a lining in the interior of R, and then let S spiral around so that L_{0} satisfies $(3)_{0}$

Now suppose that L_{k-1} has been defined, let R be an arbitrary region of \mathcal{R}_{k}, and let $L_{k-1}^{\prime}=\left\{(x, y) \in L_{k-1} \upharpoonright R: x, y \in I_{R}\right\} . V\left(L_{k-1}^{\prime}\right)$ is the collection of points of L_{k-1} that are not in the buffer of R. If S is a region of \mathcal{R}_{m} intersecting R, where $0 \leq m<k$ then we let $S^{\prime}=\left\{(x, y) \in S: x, y \in I_{R}\right\}$. and define $I_{S^{\prime}}$, and $B_{S^{\prime}}$, similarly. We will call S^{\prime} a perimeter region of R. When we perform a construction involving a perimeter region, we will use S^{\prime} in place of S, so that $S^{\prime} \subseteq R$.

Let $P_{0}, P_{1}, \ldots P_{m}$ enumerate without repetition all of the perimeter $(k-1)$-regions of R such that for each $i<m, P_{i}$ and P_{i+1} are adjacent. Inductively, suppose that for all $s \in \omega^{<\omega}$ with $\operatorname{lh}(s)=j, P_{\bar{s}}$ is a perimeter $k-\operatorname{lh}(s)$ region, and let $P_{\bar{s}\urcorner 0}, P_{\bar{s} \neg 1} \ldots P_{\bar{s}\urcorner n_{\bar{s}}}$ be an enumeration of perimeter regions contained in $P_{\bar{s}}$ such that $P_{\bar{s}\urcorner 0}$ is the closest region to the boundary of $P_{\bar{s}}$ and for all $i, P_{\bar{s} \frown i}$ and $P_{\bar{s} \frown(i+1)}$ are adjacent regions. By $(3)_{j-1}, P_{\bar{s}}$ has
a loop $l_{\bar{s}}$ in $A_{\bar{s}}$ which is at least $100-25 t_{\bar{s}}$ away from $I_{P_{\bar{s}}}$
For each $i \leq m$, we may assume P_{i} (a $k-1$-region) has a good loop structure by possibly extending the boundary of $I_{P_{i}}$ by n using Lemma 7.3. Thus, there is a lining L_{i} of P_{i} satisfying the hypothesis of lemma 7.1. In particular, for each perimeter region $P_{\bar{s}}, L_{i}$ induces four loops $l_{a_{1}}^{\bar{s}}, l_{a_{2}}^{\bar{s}}, l_{b_{1}}^{\bar{s}}$ and $l_{b_{2}}^{\bar{s}}$ in $A_{\bar{s}}$ which are at least $4 n$ units apart, and there are no points in the area created by any two loops and H. We now use the $P_{\bar{s}}$ to define the spiral set for R. Let $H_{1}^{\bar{s}}=l_{1} \cup h \cup l_{2}$, where each set is defined as follows:

- l_{1} is a cable whose outer loop is distance 1 from $l_{a_{1}}$, whose left cut is $150 n$ units below $I_{P_{s}}$, and whose right cut extends $4 n$ below $I_{P_{s}}$.
- l_{2} is a loop below l_{1} whose outer loop is distance 1 from l_{1} with cuts that are both 1 unit away from the cuts of l_{2}.
- h is a cable connecting the right cuts of l_{1} and l_{2}.
$H_{1}^{\bar{s}}$ does not intersect $L_{n-1}^{\prime}, l_{a_{1}}$, or $l_{a_{2}}$. Define $H_{2}^{\bar{s}}$ similarly using b_{1} and b_{2} for $P_{\bar{s}}$. Let $S_{\bar{s}}=H_{1}^{\bar{s}} \cup h \cup H_{2}^{\bar{s}}$, where h is the horizontal cable connecting the right cut of $H_{1}^{\bar{s}}$ to the left cut of $H_{2}^{\bar{s}}$. For each \bar{s}, let \bar{t} be least such that $\bar{t} \geq_{\text {lex }} \bar{s}$, and define $C_{\bar{s}}$ to be a cable that connects the right cut of $S_{\bar{s}}$ to $S_{\bar{t}}$ which stays 300 n away from the interiors of the two regions. For the maximal \bar{t}, have $C_{\bar{t}}$, connect a cut of the lining in $P_{\bar{t}}$ to $S_{\bar{t}}$. We now define S by

$$
S=\bigcup_{\bar{s} \in \omega^{<\omega}} S_{\bar{s}} \cup C_{\bar{s}}
$$

Let $P_{0}=R_{0}, R_{1}, \ldots R_{N}$ be an enumeration of the $k-1$-regions of R. Apply lemma 7.9 to these regions. This will produce a lining L_{n}^{\prime}. We extend L_{n}^{\prime} by adding two line segments S_{0}^{k} and S_{1}^{k} that are defined similarly to S_{0} and S_{1} from the base case using the free cuts of S and P_{0}.

We now claim the lining L_{n} satisfies $(1)_{k}-(3)_{k}$. $(3)_{k}$ holds for R itself since S spirals around A_{R}. Let T be an m-region for $m<k$. If T is not a perimeter region of R, then we only added points to B_{T}, so $(3)_{k}$ holds because it held for T at the previous step. If T is a perimeter region of R, then without loss of generality, suppose R intersects T horizontally

Figure 7.3. S (The orange line) enters in the free spaces between the loops set up by lemma 7.5
and T lies above the boundary of R. Let H be a horizontal line intersecting I_{T}. Then S induces loops above and below H in I_{T}. The argument is similar for any vertical line.

We next show that $(1)_{k}$ holds. Let $m \leq k$, and suppose x and y are points of L_{k} in a region R_{m} of \mathcal{R}_{m} satisfying the hypothesis of $(1)_{k}$. If $m=k$, we are done, as we connected the linings in all of the lower level regions. If $m<k$, and R_{m} is not a perimeter region of R, then the lining inside of $I_{R_{m}}$ was unchanged, so $(1)_{k}$ holds because it was true at the previous step. Finally, if R_{m} is a perimeter region, then the lining connecting x and y stayed within $3 n$ of $I_{R_{m}}$ by lemma 7.6. (2) k holds from the definition of S.

We define \mathcal{L} as follows:

$$
\mathcal{L}=\bigcup_{m \in \omega} \bigcap_{n>m} L_{n}
$$

so \mathcal{L} is Borel. For any $x \in F\left(2^{\mathbb{Z}^{2}}\right)$ and $m \in \omega$, the lining within a rectangle of side length m containing x will be eventually constant, as this rectangle can only be intersected by a finite number of \mathcal{R}_{i} regions. We now show that in each class, \mathcal{L} has exactly n-lines. It is enough to show that there is exactly one tight n-line. Suppose $x, y \in V(\mathcal{L})$ are in the same equivalence class of $F\left(2^{\mathbb{Z}^{2}}\right)$. By Theorem 7.1, there is some least N such that for all $m \geq N, x$ and y are in the same region of \mathcal{R}_{m}, and suppose R is the region containing x and y. Then the n-lining
containing x and y remained in I_{R}. If at some stage m, R was intersected by a higher level region S, then by lemma 7.6 , and $(3)_{m}$, the rewiring stayed inside of $\left\{x: \rho\left(x, I_{R}\right)<b\right\}$. If the lining was intersected again, then the rewiring must still stay inside of the previous set. Thus, if x and y were connected, the path connecting them is eventually constant, so x and y are connected in \mathcal{L} by that path. If x and y were not connected then they would necessarily stay disconnected at later stages.

REFERENCES

[1] S. Adams and A. Kechris, Linear algebraic groups and countable borel equivalence relations, Journal of the American Mathematical Society 13 (2000), no. 4, 909-943.
[2] R. Dougherty, S. Jackson, and A. S. Kechris, The structure of hyperfinite Borel equivalence relations, Trans. Amer. Math. Soc. 341 (1994), no. 1, 193-225. MR 1149121
[3] J. Feldman and C. Moore, Ergodic equivalence relations, cohomology, and von neumann algebras. i, Transactions of the American Mathematical Society 234 (1977), no. 2, 289-324.
[4] S. Gao and S. Jackson, Countable abelian group actions and hyperfinite equivalence relations, Inventiones mathematicae 201 (2015), no. 1, 309-383.
[5] S. Gao, S. Jackson, E. Krohne, and B. Seward, Continuous combinatorics of abelian group actions, 2018.
[6] S. Gao, S. Jackson, E. Krohne, and B. Seward, Forcing constructions and countable borel equivalence relations, The Journal of Symbolic Logic 87 (2022), no. 3, 873-893.
[7] S. Gao, S. Jackson, and B. Seward, A coloring property for countable groups, Mathematical Proceedings of the Cambridge Philosophical Society 147 (2009), no. 3, 579-592.
[8] Su Gao, Steve Jackson, and Brandon Seward, Group colorings and bernoulli subflows, 2012.
[9] S Jackson, Kechris A, and Louveau A, Countable borel equivalence relations, J. Math. Logic (2002), no. 1, 1-80.
[10] Thomas J. Jech, Set theory, Springer, 1997.
[11] A. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, Springer New York, 2012.
[12] A Kechris, The theory of countable borel equivalence relations, 2021.
[13] K. Kunen, Set theory, College Publications, 2013.
[14] Harrington L., Kechris A., and Louveau A, A glimm-effros dichotomy for borel equivalence relations, Real Analysis Exchange 16 (1990), no. 1, 23.
[15] T Slaman and J Steel, Definable functions on degrees, Cabal Seminar 81-85, Lecture Notes in Mathematics, 1333 (1988), 37-55.

