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CHAPTER 1

INTRODUCTION

Countable Borel equivalence relations occur naturally in different contexts in which

an equivalence relation occurs as a result of an action by some group. Some of these contexts

include ergodic theory and the theory of operator algebras, but there is a natural connection

into descriptive set theory. The theory of definable equivalence relations serves as a base for

studying classification and complexity problems, which can often be represented as equiva-

lence relations which are definable subsets of some Polish space; thus, it is natural to try to

develop a theory on these objects themselves. The study of countable equivalence relations

in a purely descriptive set theoretic context began in the mid 1990’s, with the papers [9] and

[2] being two of the earliest. Kechris gives an extensive overview of the topic of countable

equivalence relations in [12].

A theorem by Feldman and Moore states that any countable Borel equivalence relation

E of some Polish space X can be viewed as being induced by some countable group. Thus,

studying Borel equivalence relations by the groups that induced them became standard

practice. For example, it is now known that the relation induced by any abelian group

is hyperfinite. To prove this, sets known as marker sets with certain properties on each

equivalence class had to be defined. One of the first arugments using marker sets was given

by Slaman and Steel. Marker sets have now been used in various different spaces to construct

explicit sets, functions, and graphs that have certain properties on each equivalence class.

Marker sets are an excellent tool for explicitly constructing various sets, but there is

no clear way to use them to prove the nonexistence of sets with specific properties. To do

this, special points called hyperaperiodic points were constructed for specific spaces. The

closure of the orbits of these points are compact, which means any open structure defined

on them is subject to incredibly strict, often impossible conditions. In [6], Gao, Jackson,

Krohne, and Seward constructed hyper-aperiodic elements via forcing. These new elements

when used cleverly can impose strong conditions even on Borel sets, allowing us to prove the
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nonexistence of Borel structures.

In this paper, we will focus on a specific collection of spaces. We will consider the sets

2Z
n
, where the action of Zn is the shift action, g · x(h) = x(−g+ h). The equivalence classes

of these spaces are the points which are shifts of each other, meaning each equivalence class

looks like a copy of Zn. This means there is some interesting geometry to consider when

trying to define structures such as linings or treeings on each class.

The goal of this thesis is to analyze which structures can be defined on the specific

space F (2Z
n
) and which cannot. We will use marker sets to construct some sets explicitly,

but we will also define a new set of marker sets. It is known that there is no sequence of

clopen marker sets M0 ⊇ M1 ⊇ · · · ⊇ Mn ⊇ · · · which have empty intersection. In this

paper, we define an open sequence of marker sets of F (2Z
n
) that have this property, and

discuss the limitations of these sets.

We have also taken results about clopen structures and generalized them to open

structures. Occasionally, changing clopen to open will allow some objects to exist that

couldn’t previously, such as in the case of our marker sets above. Conversely, there are

nonexistence results about clopen structures which can be generalized to open. We have

developed techniques that allow us to generalize clopen structures with one component to

open structures that can have multiple components. An interesting phenomena occurs where

changing “exactly” to “at most” can change whether or not a certain type of structure can

exist. The following results give such an example.

Theorem 1.1. For any n ∈ ω, There is no open treeing T of F (2Z
2
) which has exactly n

components on each equivalence class.

Theorem 1.2. There is an open treeing T of F (2Z
2
) which has at most 4 components on

each equivalence class.

The discrepancy between these two theorems is perhaps a little surprising. Forcing

a treeing to have exactly the same number of components on each class is too restrictive,

but by giving up a little ground and letting the number of components vary, we can prove

2



the existence of the same structure for a fairly low number of components. If we only care

that the resulting structure is Borel instead of clopen, we can define structures with stronger

properties. We will also provide an alternative proof of the following theorem using a method

that may generalize to other spaces.

Theorem 1.3. There is a Borel lining L of F (2Z
2
) which has exactly n components on each

equivalence class.
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CHAPTER 2

BOREL EQUIVALENCE RELATIONS

In this chapter, we will give some background on the building blocks of descriptive

set theory, the Borel sets, and build up the basic theory and notation we use in the subject

of countable Borel equivalence relations. We will also discuss the notion of hyperfiniteness

and pose a few of the major open questions in the subject.

2.1. Borel Sets and Standard Borel Spaces

A Polish space is a separable completely-metrizable topological space. The collection

of Borel sets of a topological space X is the smallest σ-algebra containing the open sets of X.

We say a function f : X → Y is a Borel function if the inverse image of any open subset of Y

is Borel in X. Since inverse images are closed under unions, intersections and complements,

it’s not hard to see that an equivalent definition would be to say that the inverse image of

any Borel set of Y is Borel in X. Two spaces X, Y are Borel isomorphic if there is a bijection

f between them such that f and f−1 are Borel functions. A fundamental theorem of the

subject of descriptive set theory is the Borel isomorphism theorem (A proof for which can

be found in [11]).

Theorem 2.1. (Borel Isomorphism Theorem) If X, Y are two uncountable Polish spaces,

then X and Y are Borel isopmorphic.

This theorem simplifies studying the Borel structure of Polish spaces since the Borel

sets (as a whole) of any two uncountable Polish spaces are essentially the same. Thus, it

makes sense to prove theorems for spaces which are structured like Polish spaces. A standard

Borel space is a set equipped with a σ-algebra which is Borel isomorphic to the σ-algebra

of the Borel sets of some Polish space. Many theorems involving Borel sets of Polish spaces

are proven for a carefully chosen Polish space, and then extended, or “transferred”, to other

spaces with help from the above theorem.
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2.2. Borel Equivalence Relations

Many classifications problems can be viewed as equivalence relations, and a standard

question of the subject is to ask about the complexity of certain objects. A Borel equivalence

relation E on a Polish space X is an equivalence relation that is a Borel subset of X2. For

each Borel Y ⊆ X, we let E ↾ Y = E ∩ Y 2. E is said to be countable if each equivalence

class of E is countable, and similarly, E is finite if each equivalence class of E is finite. The

definitions below give us a few natural ways to try and categorize the complexity of Borel

equivalence relations.

Let (X,E), and (Y, F ) be two Borel equivalence relations. Then we say that E is

Borel reducible to F , denoted E ≤B F , if there is a Borel map f : X → Y such that

xEy ⇔ f(x)Ff(y). Such a function f induces an injection which maps the equivalence

classes of E into the equivalence classes of F . The intuition of this definition is that deciding

E-equivalence is “simpler” than deciding F -equivalence, i.e., if we can decide F -equivalence,

we can, in a definable way, decide E equivalence.

E is Borel embeddable into F , denoted E ⊑ F , if E is reducible to F by an injective

Borel map. An equivalent formulation is that E is embeddable into F iff there is some Z ⊆ Y

such that E is Borel isomorphic to F ↾ Z. E is Borel invariantly embeddable into F if E is

Borel isomorphic to F ↾ Z, where Z ⊆ Y is a Borel subset of Y which is invariant under F ,

i.e. z ∈ Z, xFz ⇒ y ∈ Z.

The simplest Borel equivalence relations are the ones for which there is Borel function

that can pick out an element from each equivalence class, i.e., a Borel selector. These equiv-

alence relations are the smooth relations, and they are generally too simple to be interesting.

A countable Borel equivalence relation E is hyperfinite if there is an increasing union of finite

equivalence relations F0 ⊆ F1 ⊆ . . . such that E = ∪n∈ωFn. The study of hyperfinite equiva-

lence relations is an incredibly active area of the subject, and there are many open questions

about hyperfiniteness. A fundamental example of a hyperfinite equivalence relation is the

eventually equal relation E0.
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Example 2.2. (E0) Let 2ω denote the set of all functions f : ω → 2. Then E0 is the

eventually equal equivalence relation defined by

xE0y ⇔ ∃N ∀n > N, x(n) = y(n).

We can view E0 as the first nonsmooth equivalence relation via the following di-

chotomy theorem.

Theorem 2.3. (Harrington-Kechris-Louveau, [14]) Let E be a Borel equivalence relation on

a Polish space X. Then exactly one of the following hold.

(1) E is smooth

(2) E0 ⊑ E via a continuous function.

Thus, we can think of hyperfinite equivalence relations as being the simplest nontrivial

relations. A common tactic for proving a given equivalence relation is hyperfinite is to reduce

it to E0, but before we explain how these problems are being approached, we must first

introduce how groups play into the study of Borel equivalence relations.

Let G be a countable group and X a standard Borel space. A Borel action is an

action (g, x) → g · x of G on X satisfying 1 ·X = x, gh · x = g · (h · x), and for each g, the

action g(x) := g · x is Borel. Given a Borel action of G on X, we denote by EG the induced

orbit equivalence relation

xEGy ⇔ ∃g ∈ G(y = g · x).

A theorem proven by Feldman and Moore in [3] shows that any countable Borel

equivalence relation of a Polish space X occurs as the Borel action of some countable group

G on X.

Theorem 2.4 (Feldman-Moore). If E is a countable Borel equivalence relation on a standard

Borel space X, then there is a countable group G and a Borel action of G on X such that

E = EG

By making use of the Feldman-Moore theorem, we are able to assume that an arbitrary

countable Borel equivalence relation is given by the action of some countable group. Thus,

6



we can determine characteristics of an equivalence relation based on which group induces its

equivalence classes. In [15], Slaman and Steel give an example of a group which induces a

non-hyperfinite equivalence relation, so not all groups induce hyperfinite relations. On the

other hand, Gao and Jackson proved in [4] that the orbit equivalence relation generated by

any countable abelian group is hyperfinite. It is currently an open question if the equivalence

relation generated by any amenable group is hyperfinite, and progress has been made on

this question for amenable groups with specific conditions. Another big open problem about

hyperfinite equivalence relations is the following; if E = ∪n∈ωFn, where Fn ⊆ Fn+1, and Fn

is hyperfinite, is E hyperfinite?

The following result from [2] gives a few equivalencies for hyperfinite.

Theorem 2.5. Let E be a countable Borel equivalence relation. Then the following are

equivalent.

(1) E is hyperfinite.

(2) E = ∪n∈ωFn, where Fn are finite Borel equivalence relations, Fn ⊆ Fn+1, and each

Fn-equivalence class has cardinality at most n.

(3) E = ∪n∈ωFn, where Fn are smooth Borel equivalence relations, Fn ⊆ Fn+1.

(4) E = EZ, i.e. there is a Borel automorphism T of X with xEy ⇔ ∃n ∈ Z(T n(x) = y);

(5) There is a Borel assignment C 7→<C giving for each E-equivalence class C a linear

order <C of C of order type finite or Z.

We give the proof for (5) ⇒ (1) as that particular argument produces one of the

earliest instances of a marker set, a concept which has become fundamental to the study

of Borel equivalence relations. The SC
n constructed in the proof are known as Slaman-Steel

markers. In chapter 3, we will construct more elaborate marker structures.

Proof. Assume without loss of generality (by the Borel Isomorphism theorem) that X = 2ω

and each E-equivalence class is inifinite, and hence ordered by <C in order type Z. For each

E-equivalence class C, let xC be the lexicographically-least element of the closure of C. The
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map y 7→ x[y]E is Borel. Let

SC
n = {x ∈ C : x ↾ n = xc ↾ n}

.

Define now the equivalence relations En ⊆ E as follows: if (x, y) ∈ E with [x]E =

[y]E = C are such that xC ∈ C, then let

xEny :⇔ [x = y ∨ the distance of xC from x, y in <c is at most n].

If xc /∈ C but there is an m such that SC
m is bounded below in <C , let m0 be the least such

m and zC the <C-least element of SC
m0

and let

xEny :⇔ [x− y ∨ the distance of zC from x, y in <C is at most n]

If xC /∈ C, and SC
m is not bounded below in C, but is bounded above, we may define En

similarly to how we did above.

Finally, if xC /∈ C, and SC
m is not bounded above or below in C, then {SC

n } form

a decreasing sequence of subsets of C with SC
n unbounded in both directions in <C and

∩n∈ωS
C
n = ∅, then let

xEny ⇔ ∃a∃b[a, b are consecutive members of SC
n and a ≤c x < b and a ≤c y <c b].

It is clear that the relations En are increasing finite Borel equivalence relations with

∪n∈ωEn = E, so E is hyperfinite. □

If X is a standard Borel space and G is a countable group, we denote by XG the set

of maps from G into X with the standard product Borel structure. Then there is a natural

action of G on XG, namely, g · x(h) = x(g−1h) for x ∈ XG and g, h ∈ G. We then denote

E(G,X) as the corresponding equivalence relation, and for any x, we let [x] denote the orbit

of x

[x] = {y ∈ XG : ∃g ∈ G y = g · x}
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An interesting fact, proven in [2], is that there is a universal countable Borel equiva-

lence relation E(F2, 2). A universal equivalence relation for a class C of equivalence relations

is some relation F ∈ C such that for any E ∈ C, E is Borel-reducible to F . Thus, we may

think of a universal equivalence relation for a class as the most complicated one in that class.

For the following proposition, we recall that F2 is the free group with 2 generators.

Proposition 2.6. Let E be a countable Borel equivalence relation. Then E ⊑ E(F2, 2).

We have discussed three different “levels” of countable Borel equivalence relations:

The smooth ones, which are the simplest, the hyperfinite ones, which are the next step up,

and a universal equivalence relation. These are far from the only ones; in fact, there is a

massive collection of equivalence relations having the property that E0 <B E <B E(F2, 2).

Theorem 2.7. (Adams-Kechris, [1]) There exist uncountably many countable Borel equiva-

lence relations up to Borel bireducibility.

For this paper, we will specifically work with the groups G = Zn, in which case the

equivalence relations we are interested in are E(2Z
n
,Zn). We establish some terminology that

will be used throughout the remainder of the paper. When n is fixed we let e1, e2, · · · , en be

the standard generators of Zn.

e1 = (1, 0, . . . , 0),

e2 = (0, 1, . . . , 0),

. . .

en = (0, 0, . . . , 1)

.

Any g ∈ Zn can be uniquely expressed as (g1, g2, . . . , gn) or g1e1 + g2e2 + · · · + gnen

for g1, g2, . . . , gn ∈ Z. We define the l∞ norm on Zn by

||g|| = ||(g1, g2, . . . , gn)|| = max{|g1|, |g2|, . . . , |gn|}.
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This norm will be useful in its own right, but it also gives rise to a natural distance

function which is well-defined on F (2Z
n
).

ρ(x, y) =


||g||, if g · x = y

∞, if (x, y) /∈ E(G).

It is easy to check that ρ is a pseudometric, and corresponds exactly to the taxicab

metric on each class of F (2Z
n
).

By the definition of the product topology, if D ⊆ G is a finite, then a function

s : D → 2 determines a basic clopen set

Ns = {x ∈ 2G : ∀g ∈ D, x(g) = s(g)}

Via a relatively easy proof, we may assume without loss of generality that the domain

of each s is an n dimensional rectangle, so that dom(s) = [a0, b0]× [a1, b1]×· · ·× [an−1, bn−1],

so that we may work with a base with a nicer geometric structure.

For a subequivalence relation R of F (2Z
n
), we can say R is “relatively” clopen if for

each g ∈ Zn, the set

{x ∈ F (2Z
n

) : (x, g · x) ∈ R}

is relatively clopen in F (2Z
n
)×Zn. We may replace the word “clopen” with “Borel”, to get

an analagous definition. We can now define structures with topological properties, and try

to prove whether or not they exist. To prove a certain structure does exist, we generally use

marker regions. To prove that they cannot exist, we generally use hyper-aperiodic elements.

We introduce and discuss these concepts in later chapters.
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CHAPTER 3

MARKER REGIONS

One of the main difficulties working in F (2Z
2
) is that we cannot pick a point of each

class in a Borel way. The smooth equivalence relations are considered simple for exactly

this reason, as if there is a structure one wants to construct on a smooth relation, they can

usually just select a point and use it as an origin to perform a relatively straightforward

construction.

Without the ability to pick out a single point from each class, we must rely on marker

sets. A marker set is any Borel complete section of F (2Z
n
). The exact definitions of these

sets vary, but the main idea is that they are points which occur somewhat regularly in the

space. These points then induce subequivalence relations which partition the space into

finite regions, allowing us to outline algorithms in these regions to construct the structures

we want. For example, in chapter 2, we encountered the Slaman-Steel markers for F (2Z)

which allowed us to Z-order the classes of a hyperfinite equivalence relation. In this chapter,

we discuss various marker sets, their constructions, and their applications.

3.1. General Marker Regions

Most constructions of intricate marker sets begin by starting with “basic” marker sets

having the property that the marker points of M , to some degree, are regularly spaced.

Lemma 3.1. (Gao-Jackson, [4]) Let d be a positive integer. Then there is a relatively clopen

set S ⊆ F (2Z
n
) such that

(1) if x, y ∈ S are distinct, then ρ(x, y) > d.

(2) for any x ∈ F (2Z
n
), ρ(x, S) ≤ d.

We will refer to a set satisfying (1) and (2) as a basic clopen marker set for the marker

distance d. We will use these sets to build new marker sets that give rise to subequivalence

relations with various geometric properties. Before we do that, we give an example of how

even these basic marker sets can be used to prove theorems. The definitions of Cayley graph
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and Schreier graph are necessary for our results anyway, so we are not going out of our way

to define them here.

If G is a countable group having a generating set S, the Cayley graph Γ = Γ(G,S)

is a labeled directed graph with the vertex set V (Γ) = G and the edge set defined by

(u, v) ∈ E(Γ) iff ∃g ∈ S such that g · u = v. If G acts freely on a Polish space X, then we

define the Schreier graph ΓG(X) on X by V (ΓG(X)) = X, and (x, y) ∈ E(ΓG(X)) iff ∃g ∈ S

with g ·x = y. We note that every orbit of X is a connected component of ΓG(X), and since

G acts freely on X, each component is isomorphic to the Cayley graph of G.

For a graph Γ and a set K of colors, a proper (K−)coloring is a map κ : V (Γ) → K

such that if (x, y) ∈ E(Γ), then κ(x) ̸= κ(y). The chromatic number of Γ, denoted by χ(Γ),

is the least cardinality of a set K such that there exists a proper K-coloring for Γ. When

the graph Γ is a topological graph, we may consider continuous chromatic number and Borel

chromatic number, where the function k must be continuous or Borel respectively. Using our

basic clopen marker regions, we can prove the following exercise

Example 3.2. The continuous chromatic number of F (2Z) is at most 3.

Proof. Let M be a marker set given by Lemma 3.1 for distance d > 2 and note that M

partitions each class of F (2Z) into finite intervals of length at most 2d. We now define κ as

follows. For each y ∈ F (2Z), let xy ∈ M be such that y = n ·xy for n ≥ 0, and if 0 < m < n,

m · xy /∈ M . Since M is clopen and the distance between any two points of M is at most 2d,

the map y → xy is continuous.

Define the coloring κ(y) by

κ(y) =


0 if y = n · xy, where n ≥ 0 is even and 1 · y /∈ M

1 if y = n · xy, where n > 0 is odd

2 otherwise

In other words, let the leftmost point of any interval be 0, and then alternate colors,

with the exception that the vertex which is to the left of the next marker point can be colored
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2. κ is continuous, since all searches are bounded, and is also clearly a proper 3-coloring. □

The above proof is an elementary example of how we can use regions defined by

marker sets to construct various structures on F (2Z
n
). The regions defined by the marker

sets allow us to give algorithms which can be applied uniformly in each region, bypassing

the need to use a function which can select a point in each class.

We commonly make use of sequences of marker sets with growing marker distance.

For example, consider the Slaman-Steel markers we constructed in chapter 2. As n → ∞,

the spaces between the marker sets became larger and larger, which forced more and more

points to be put into the same region, which was a crucial component of the argument we

used them for. These marker sets had a few other nice properties. If we let S0, S1, . . . denote

the sets we constructed at each stage, we note that S0 ⊇ S1 ⊇ . . . , and that ∩n∈ωSn = ∅.

Those sets are Borel, so any construction that makes use of them can at best be Borel (as

opposed to simply clopen). It would be natural then to ask if we can construct a clopen

sequence of marker sets satisfying the “vanishing” property that the Slaman-Steel markers

have. Gao, Jackson and Seward proved the following.

Theorem 3.3. (Gao, Jackson, Seward, [7]) Let F (G) be the free part of the shift action on

2G by G. Then there is no infinite sequence of closed complete sections

S0 ⊇ S1 ⊇ · · · ⊇ Sn ⊇ · · ·

such that ∩nSn = ∅.

For F (2Z), a consequence of this is that if S0 ⊇ S1 · · · ⊇ Sn ⊇ · · · is a sequence of

clopen marker sets, there will necessarily be classes on which the intersection of the Sn is a

single point. In this case, the limit of the regions is two infinite intervals. This theorem has

a corollary which forbids the existence of an increasing sequence of open marker regions for

which any two points of F (2Z
n
) are eventually contained in the same marker region, meaning

that constructions of continuous structures of F (2Z
n
) must either forego containment of the

marker regions or the marker sets having full union.
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Corollary 3.4. There is no increasing sequence of nondegenerate, relatively open sube-

quivalence relations of F (2Z
n
)

R0 ⊆ R1 ⊆ · · · ⊆ Rk ⊆ · · ·

such that ∪n∈ωRk = F (2Z
n
).

3.2. Rectangular Marker Regions

In general, we want regions that have more specific properties that align with the

problems that we want to solve. One useful such construction is that of the rectangular

marker regions, which are points that, in a clopen way, induce subequivalence relations of

F (2Z
n
) which are n-dimensional rectangles. When we say that a marker set Rn

d is clopen, we

mean that {(x, g) ∈ F (Zn)×Zn : g · xRn
dx} is a clopen subset of F (Zn)×Zn. The theorems

below, all proven in §3 of [4], require some notation and definitions that we provide here for

the reader’s convenience.

A rectangular polyhedron is a finite union of rectangles in Zn. We define a face F of

a rectangular polyhedron P to be a set F ⊆ P such that for some 1 ≤ i ≤ n we have that

F is a maximal subset of P satisfying the following:

(1) for any x, y ∈ F and g such that g · x = y, the ith coordinate of g is zero, and

(2) either ei · F ∩ P = ∅ or −ei · F ∩ P = ∅.

We refer to such a face F as being perpendicular to ei or an i-face. We note that

i-faces need not be “connected”, i.e. there does not need to be a sequence

g1, . . . , gm ∈ {±e1, . . . ,±en}

such that y = (g1 + · · · + gm) · x and (g1 + · · · + gl) · x ∈ F for all 1 ≤ l ≤ m. We

say two faces are parallel if they are perpendicular to the same ei, i.e., they are both i-faces

for some 1 ≤ i ≤ n. If F1 and F2 are both i-faces, then their perpendicular distance is the

absolute value of the unique integer ai whenever there are aj ∈ Z for all 1 ≤ j ≤ n with

(a1e1 + · · ·+ aiei + · · ·+ anen) · F1 ∩ F2 ̸= ∅
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Theorem 3.5. (Gao-Jackson [4]) Let d > 0 be an integer. Then there is a subequivalence

relation Rn
d of F (Zn) such that Rn

d is relatively clopen and the Rn
d -marker regions are n-

dimensional rectangles with edge lengths either d or d+ 1.

This theorem is proven in multiple steps using what is referred to as the big-marker-

little-marker method. In essence, the authors build rectangular regions that are very large

compared to the rectangular regions they actually want to construct, and then subdivide

those regions into rectangular regions with length d or d+ 1.

Lemma 3.6 is used to divide an arbitrary marker region whose perpendicular faces are

far apart into marker regions which are n-dimensional rectangles with edge length at least

the distance between parallel faces.

Lemma 3.6. Let D > 0 be an integer. Let R0 be a subequivalence relation of F (Zn) so that

the R0-marker regions are n-dimensional polyhedra with faces perpendicular to the coordinate

axes. Suppose that for each R0-marker region every pair of parallel faces has a perpendicular

distance greater than D. Then there is a subequivalence relation R1 ⊆ R0 so that every

R0-marker region is partitioned into R1-marker regions, which are n-dimensional rectangles

with edge lengths greater than D. Moreover, if R0 is clopen and there is ∆ > D so that each

R0-marker region is contained in an n-dimensional cube of edge lengths ∆, then R1 can also

be clopen.

The proof can be summarized as follows. If P is a finite-polyhedral region P in Zn

satisfying the hypotheses of the theorem, then any face Fj of P partitions P into at most

two parts. The first part is the collection of points which are on one “side” of P with respect

to the ei that Fj is perpendicular to, denoted F+
j , but still in P . The other part is simply

the rest of P . The classes of the defined subequivalence relation are simply the sets of points

which lie in exactly the same F+
j .

Lemma 3.7 establishes the subdivision algorithm given that a marker set that induces

sufficiently large n-dimensional rectangular regions has already been constructed. Further-

more, it asserts that if these large regions are clopen and there is a universal bound on the

size of them, then the resulting subdivided regions are also clopen.
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Lemma 3.7. Let d > 0 and D > d2 be integers. Let RD be a subequivalence relation of

F (Zn) so that the RD-marker regions are n-dimensional rectangles with edge lengths greater

than D. Then there is a subequivalence relation Rd ⊆ RD so that every RD-marker region is

partioned into Rd-marker regions which are n-dimensional rectangles with edge lengths either

d or d + 1. Moreover, if RD is clopen and there is ∆ > D so that each RD-maerker region

has edge lengths ≤ ∆, then Rd can also be clopen.

The important fact that makes the proof possible is that any integer D > d2 can

be written as a linear combination of d and d + 1 with nonnegative coefficients, allowing a

rectangle with side length at least to be partitioned into smaller rectangles with side lengths

d or d+ 1.

Thus, by Lemma 3.6, if one can construct polyhedral marker regions where the faces

have large perpendicular distance, they can subdivide it into large n-dimensional rectangular

regions. By Lemma 3.7, these large regions can be subdivided further into rectangles with

edge lengths which are almost regular, so the only step that remains is to construct the

polyhedral marker regions which is, unsurprisingly, a difficult and technical proof.

The rectangular regions defined by Theorem 3.5 allow for constructions in regions

with uniform shape and with edge lengths that are fairly regular. The fact that the regions

are clopen and have a bounded size make it possible to give constructions that are continuous.

For example, these regions were used in [4] to prove the upcoming theorem. These regions are

nice to work with since the regions have a very nice geometry. We note Theorem 3.5 provides

a tiling of F (2Z
2
) by tiles with dimensions d×d, (d+1)×d, d× (d+1), and (d+1)× (d+1),

however the following proposition, stated in [4], implies that there is no tiling of F (2Z
2
) in

which exactly one of these tiles is used. It is currently unclear if all four different types of

tiles are needed, or if it is possible to tile F (2Z
2
) in a clopen way with two or three types of

tiles. A few specific combinations have been ruled out, and Gao and Jackson conjecture in

[4] that 4 is the optimal number.

Theorem 3.8. There is no Borel marker set M ⊆ F (Zn) such that for any x ∈ M there is

a proper subgroup G of Zn such that [x] ∩M ⊆ G · x
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An application of the rectangular marker regions is the following.

Theorem 3.9. For each n > 1, there is a continuous 4-coloring of F (2Z
n
).

In [5], Gao, Jackson, Krohne and Seward proved that there is no continuous 3-coloring

of F (2Z
n
) for n > 1. This illustrates an interesting phenomena, as we showed that there is

a continuous 3-coloring of F (2Z), implying that the answers to questions about F (2Z
n
) can

change depending on the value of n, with n = 1 being an outlier case. One reason for why

this can happen is the different possible hyper-aperiodic points (which we discuss in detail

in chapter 4) that can be constructed for these spaces.

3.3. Orthogonal Marker Regions

In this section we will discuss a special sequence of marker regions which don’t cohere

in a very strong sense. We will focus our attention to Z2, where the sets are easier to

visualize, but the analogs for Zn are natural, and the theorems and constructions still hold

given changes to a few constants. In fact, in [4], Gao and Jackson constructed regions of

F (2Z
<ω) and used them to define an embedding from Fω to E0(ω

ω). We will provide a special

case of the main theorem they used.

For the rest of this paper, dj ≫ dj−1 is defined to mean that

1

9000j16j2(j + 1)2
dj > 24(d1 + d2 + · · ·+ dj−1)

Lemma 3.10. (S. Gao, S. Jackson [4]) For any pair of positive integers i, j with j < i. Let

dj+1, dj be positive integers with dj+1 ≫ dj, then there is a clopen subequivalence relation

Ri
j ⊆ F (Z2) satisfying the following:

(1) Ri
i induces rectangular regions with side lengths di or di + 1.

(2) On each class of F (2Z
2
), for each region of Ri

j, there is a region R′ induced by Ri
j+1

such that each face of R is within 12dj of a face of R′.

(3) Ri
j+1 induces a partition into polyhedral regions R each of which is a union of rect-

angles with edge lengths between 9dj and 12dj.
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(4) In any ball B of radius 100, 000 · 162dj contained in a class of F (2Z
2
), there are at

most 2 values of k with j < k ≤ i such that some region induced by the restriction

of Rk
j has a face intersecting B.

(5) For any j < k1 < k2 ≤ i and regions R1, R2 contained in a class of F (2Z
2
) induced

by the restrictions of Rk1
j , Rk2

j respectively, if F1, F2 are parallel faces of R1, R2,

then ρ(F1,F2) >
1

9000j16j2 (j+1)
dj

If for each n we letRn = Rn
1 , The marker setsR0,R1, . . . ,Rn, . . . satisfy an incredibly

important property. For any two x, y ∈ F (2Z
2
) there is an N ∈ ω such that for all n > N ,

x and y will fall into the same region of Rn. This is proven in [4], but the intuition is

fairly simple. If x and y fell into different regions infinitely often, then one could consider

a shortest path x = x0, x1, . . . , xN = y from x to y. Since this path is finite, some fixed xl

will fall on the boundary of infinitely many Rn, but this would imply at least 3 higher-level

region have faces close to each other, contradicting the fact that parallel faces of higher-level

regions must be far apart. This is the benefit of the orthogonal marker regions, and is the

main reason to use them over the rectangular regions defined in the previous section. When

using these marker sets, there is the concern that two points x and y might lie in the same

region in one stage, and then be placed into different regions at a subsequent step. Property

(3) of Theorem 3.10 affirms that this can only happen a twice. Thus, if we can work around

a finite number of interruptions, we are free to devise constructions which rely on any two

points of F (2Z
2
) eventually lying in the same region.
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CHAPTER 4

HYPER-APERIODIC ELEMENTS

In this chapter, we will discuss hyper-aperiodic elements of 2G for countable groups

G. These points often require structures on 2G to have certain properties, making them a

very useful tool for showing certain structures cannot exist on these spaces.

Definition 4.1. Let G be a countable group. A point x ∈ 2G is hyper-aperiodic if the

closure of its orbit is contained in the free part, i.e., if [x] ⊂ F (2G).

These elements are significant because the closures of their orbits are compact, giving

us a greater depth of topological arguments for analyzing continuous structures of F (2G).

Proving that a point is hyper-aperiodic by the definition given above is often cumbersome

and tedious; instead, we usually test hyper-aperiodicity by a combinatorial condition using

the following lemma. (1) ⇐⇒ (2) was proven in [8], and (2) ⇐⇒ (3) was proven in [5].

Lemma 4.2. Let G act on 2G by right-shifts. Then the following are equivalent.

(1) x ∈ 2G is hyper-aperiodic

(2) For any s ̸= 1g in G there is a finite set T ⊆ G such that

∀g ∈ G ∃t ∈ T x(tg) ̸= x(tsg)

.

(3) For any s ̸= 1g in G there is a finite T ⊆ G such that

∀g ∈ G [(∃t1 ∈ Tx(t1g) ̸= x(t1sg)) ∧ (∃t2 ∈ Tx(t2g) = x(t2sg))].

We will refer to (2) as the combinatorial condition for hyper-aperiodicity and we will

use it almost exclusively to prove theorems about hyper-aperiodic elements. Hyper-aperiodic

elements were originally refereed to as 2-colorings, but the current name became more widely

used as the concept extended beyond Bernoulli subflows.
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In [8], it was proven that for any G, there is a hyper-aperiodic element of 2G. Since

we will be working extensively with F (2Z
n
), we will explicitly construct an element of F (2Z).

When we say a periodic point witnesses hyper-aperiodicity for a specific shift s0, we mean

that it satisfies the combinatorial condition above for that particular shift. We note that

for any shift s, there is some periodic point which will witness hyper-aperiodicity for s. In

particular, a point having a period with s zeros followed by a one will work.

Example 4.3. Let s0, s1, . . . enumerate Z. Let B0 be a periodic element of 2Z which wit-

nesses hyper-aperiodicity for s0, i.e., there is a finite set T such that for all z ∈ Z, ∃t ∈ T

such that x(z + t) ̸= x(z + s+ t). We define B0(x) = 1−B0(x).

Suppose inductively that for all k < n, Bk is a periodic point of 2Z which has been

defined so that Bk is a tiling of blocks of the form Bk−1 or Bk−1 and Bk witnesses the

combinatorial condition of hyper-aperiodicity for sk. If we let Nn denote the length of each

period of Bn, then we additionally assume that Nk > Nk−1 for all k < n, and that for all

x ∈ [−Nk−1, Nk−1), Bk(x) = Bk−1(x). Let An be a periodic point of 2Z which witnesses

hyper-aperiodicity for sn. We may without loss of generality assume An(0) = 0, or else we

can use An. For all m ∈ Z. We define Bn to be a tiling where if Bn(z) = 0, we insert a copy

of the period of Bn−1. Otherwise, we insert a copy of Bn−1. More precisely,

Bn ↾ [m ·Nn−1, (m+ 1) ·Nn−1) =


Bn−1 ↾ [0, Nn−1) if An(m) = 0

Bn−1 ↾ [0, Nn−1) if An(m) = 1

Bn is a tiling of blocks of Bn−1 and Bn−1 by construction, which implies Nn > Nn−1.

Since An(0) = 0, Bn ↾ [0, Nn−1) = Bn−1 ↾ [0, Nn−1). We next show that Bn witnesses the

hyper-aperiodicity for sn. Let T
′ be the set witnessing that hyper-aperiodicity for An and let

T = Nn ·T ′. Then if z ∈ Z, there is t ∈ T ′ such that if y = ⌊ z
Nn

⌋, An(y+ t) ̸= An(y+ sn+ t).

Thus, Bn(z +Nn · t) ̸= (z + sn +Nn · t).

To define the hyper-aperiodic element, let x(z) = limn→∞ Bn(|z|). x is well-defined

since for all n, Bn ↾ [0, Nn−1) = Bn−1 ↾ [0, Nn−1) and Nn > Nn−1. x is hyper-aperiodic as
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for any shift s and z ∈ Z, x(z) lies in some block of either Bn or Bn which will witness

hyper-aperiodicity for x.

We now cite a general lemma that will let us use this hyper-aperiodic element of 2Z to

construct hyper-aperiodic elements of 2Z
n
. If G,H are countable groups and x ∈ 2G, y ∈ 2H ,

let x ⊕ y ∈ 2G×H be given by (x ⊕ y)(g, h) = x(g) + y(h) mod 2. By iteratively applying

the following lemma, we may construct a hyper-aperiodic point of F (2Z
n
) for any n.

Lemma 4.4. (Gao, Jackson, Krohne, Seward, [5]) Let x ∈ 2G and y ∈ 2H be hyper-aperiodic

elements. Then x⊕ y ∈ 2G×H is a hyper-aperiodic element.

In the case n = 1, forcing a point to be hyper-aperiodic is a significant commitment,

and it is often impossible to construct an element of F (2Z) with additional useful properties.

For n > 1, hyper-aperiodicity is a much less restrictive condition. In fact, there are hyper-

aperiodic elements x for which any vertical “slice” of x is periodic. The definition of this

element uses points which are orthogonal. If G is a countable group, two points x, y ∈ 2G

are orthogonal, denoted x ⊥ y, if there exists a finite T ⊆ G such that for any g, h ∈ G there

is t ∈ T with x(tg) ̸= y(th).

Lemma 4.5. (Gao, Jackson, Krohne, Seward, [5]) Let x, y0, y1 be hyper-aperiodic elements

of 2Z with y0 ⊥ y1. Let Λ be an infinite set of prime numbers and f : Z → Z+ be a function

satisfying the following conditions:

(1) for all u ∈ Z there are p ∈ Λ and n ∈ Z+ such that f(u) = pn;

(2) for all p ∈ Λ and m ∈ ω, there are a ∈ Z and k ∈ Z+ such that f(i) = pk for all

i ∈ [a, a+m];

(3) f(u) is monotone increasing for u > 0, monotone decreasing for u < 0, and f(u) →

∞ as |u| → ∞

Then the element z ∈ F (2Z
2
) defined by

z(u, v) = yx(u)(v mod f(u))

is hyper-aperiodic
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By using the hyper-aperiodic point constructed in Lemma 4.5, the authors of [5] were

able to prove that there is no continuous proper 3-coloring of F (2Z
2
). The next theorem

doesn’t require any special condition on the hyper-aperiodic point used. In chapter 6, we

will generalize this result using a hyper-aperiodic element constructed using forcing.

Theorem 4.6. (Gao, Jackson, Krohne, Seward, [5]) There does not exist a complete clopen

lining L of F (2Z
2
).

Where by clopen lining, we mean a symmetric Borel relation S which is a subset of the

Schreier graph for which the degree of every vertex is exactly 2. The proof heavily leverages

the compactness of K := [x] to require that any point of K is a bounded distance from the

line L. It then uses compactness again to bound the length of the line segment connecting

any two points which are a bounded distance apart. Applying both of these properties, the

line is forced to stay inside a “tube” with bounded height on K, contradicting the fact that

every point of K is a bounded distance from L. We noticed that, by slightly altering the

argument, we could prove an even stronger result. Instead of bounding L in a tube of fixed

height, we could instead force L to have a nontrivial cycle by combining four sufficiently long

tubes in the shape of a torus, implying that it is impossible to construct a clopen treeing of

F (2Z
2
).
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CHAPTER 5

FORCING NOTIONS

In this chapter, we define forcing posets that correspond to elements xG of F (2Y Zn).

These elements will force certain formulas on [x]G. The books written by Jech [10], and

Kunen [13] both provide a good basics for readers unfamiliar with the basics of forcing.

We will need a version of Shoenfield’s Absoluteness. We note that a formula φ being

absolute between two models M and N means that M models φ if and only if N models φ.

Lemma 5.1. If M ⊆ N are transitive models of enough of ZF and ω1 ⊆ M , then Σ2
1

statements are absolute between M and N .

Σ2
1 is a pointclass which contains the Borel sets, so in particular, any Borel statement

between any two “reasonable” models is absolute.

5.1. Minimal Two-Coloring and Grid-Periodicity Forcing

We now discuss generics for specific posets that naturally correspond to elements xG

of F (2Z
2
). The elements of the generic will force various formulas, and, in particular, will

force them via a clopen set. Due to the absoluteness of Borel formulas, these formulas will

hold in [xG] as well, as the Forcing Theorem asserts some condition will force the formula.

Theorem 5.2. (The Forcing Theorem) Let (P,<) be a notion of forcing in the ground model

M . If σ is a sentence of the forcing language, then for every G ⊂ P generic over M ,

M [G] |= σ if and only if (∃p ∈ G) p ⊩ σ.

If we have structures which are not clopen, or would like to do define formulas that

aren’t clopen, there will be a clopen neighborhood in the generic extension that will force

the statement.

We start by defining the minimal 2-coloring forcing.

Definition 5.3. The minimal 2-coloring forcing Pmt on Z2 is defined by the conditions
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p = (p, n, t1, . . . , tn, T1, . . . , Tn,m, f1, . . . , fm, F1, . . . , Fm)

where m,n ∈ N, p ∈ 2<Z2
with dom(p) = [a, b] × [c, d] for some a, b, c, d ∈ Z,

t1, . . . , tn ∈ Z2 − {(0, 0)}, f1, . . . , fm ∈ 2<Z2
, and T1, . . . , Tn, F1, . . . , Fm are finite subsets

of Z2 such that the following conditions are satisfied:

(1) For any 1 ≤ i ≤ n and g ∈ dom(p) there is τ ∈ Ti such that g+τ, g+ti+τ ∈ dom(p)

and p(g + τ) ̸= p(g + ti + τ);

(2) For any 1 ≤ j ≤ m and g ∈ dom(p) there is σ ∈ Fj such that g + σ + dom(fj) ⊆

dom(p) and for all u ∈ dom(fj), p(g + σ + u) = fj(u).

(3) For any 1 ≤ j ≤ m and g ∈ dom(p) there is σ ∈ Fj such that g + σ + dom(fj) ⊆

dom(p) and for all u ∈ dom(fj), p(g + σ + u) = 1− fj(u).

If p, q ∈ Pmt, then q ≤ p iff q ⊇ p, n(q) ≥ n(p), m(q) ≥ m(p), ti(q) = ti(p), and

Ti(q) = Ti(p) for all 1 ≤ i ≤ n(p), and fj(q) = fj(p), Fj(q) = Fj(p) for all 1 ≤ j ≤ m(p)

Properties (1) and (2) will ensure that the generic xG (the component corresponding

to the finite functions of p) is hyper-aperiodic and minimal respectively, while (3) will be

helpful for certain arguments.

We now provide a few lemmas which will show that Pmt does add a minimal 2-coloring

in 2Z
2
. The following lemmas, proven in [6] will imply that xG is as desired.

Lemma 5.4. For any g ∈ Z2, the set Dg = {q ∈ Pmt : g ∈ dom(q)} is dense in Pmt.

This lemma will show xG is an element of 2Z
2
. The next will show that if s ∈ Z2

is a nontrivial shift, then there is some condition p which contains s. Thus, xG will be a

hyper-aperiodic element.

Lemma 5.5. For any t ∈ Z2 − {(0, 0)} the set

Et = {q ∈ Pmt : ∃1 ≤ i ≤ n(q)ti(q) = t}

is dense in Pmt

The next lemma will require that we consider neighborhoods of arbitrarily large sizes.
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Lemma 5.6. For any finite set A ⊆ Z2, the set

DA = {q ∈ Pmt : ∃1 ≤ j ≤ m(q)A ⊆ dom(fj(q))}

is dense in Pmt

Using the above lemma, and the trick of putting a copy of p and p̄ adjacent to each

other, we get the last lemma that we need, which says that if p ∈ p, then p will be contained

in one of the fj of some q ≤ p. This is vital, as if we say p forces some formula φ, then p

will occur regularly. But then in the generic extension, we will see p, and know there is some

q < p which has fj ⊇ p as a component. Thus, every time we see an occurrence of p, φ will

be forced.

Lemma 5.7. For any p ∈ Pmt, the set

Dp = {q ∈ Pmt : ∃1 ≤ j ≤ m(q)p ⊆ fj(q)

is dense below p in Pmt.

So we get the following lemma.

Lemma 5.8. If xG is generic for Pmt, then xG is minimal and hyper-aperiodic.

We now introduce the grid-periodicity forcing. This generic xG for this forcing will

exhibit a very regular grid-like structure.

Definition 5.9. Let n be a positive integer. The grid-periodicity forcing Pgp(n) is defined

as follows. A condition p ∈ Pgp(n) is a function p : R \ {u} → {0, 1} where R = [a, b]× [c, d]

is a rectangle in Z2 with w = b− a+ 1, l = d− c+ 1 both powers of n and u ∈ R. We write

R(p), w(p), h(p), u(p) for the corresponding objects and parameters.

We define q ≤ p iff R(q) is obtained by a rectangular tiling by copies of R(p) and if

c ∈ R(q) is in th ecopy R(p) + t and c− t ̸= u(p), then q(c) = p(c− t). Also, u(q) must be

equal to one of the copied translates of u(p).

Lemma 5.10. Let xG be generic for Pgp. Then xG is a minimal and hyper-aperiodic.
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Not only is xG a minimal hyper-aperiodic element. It also satisfies a weak form of

periodicity, as proven in [6]

Lemma 5.11. Let xG be generic for Pgp(n).

(1) For any vertical or horizontal line l in Z2, xG ↾ l is periodic with period a power of

n.

(2) For any finite A ⊆ Z2, ther eis a lattice L = (wZ)× (hZ), with both w and h powers

of n, and there is a u ∈ Z2 \ (A + L) such that xG is constant on k + L whenever

k + L ̸= u+ L.

Having a hyper-aperiodic element which also corresponds to a generic for a forcing

poset is incredibly powerful. For example, the following theorem asserts that any Borel

complete structure must contain a lattice on at least one class.

Theorem 5.12. [6] Let B ⊆ F (2Z
2
) be a Borel complete section. Then there is an x ∈ F (2Z

2
)

and a lattice L = k + {(iw, jh) : (i, j) ∈ Z2} such that L · x ⊆ B.
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CHAPTER 6

OPEN STRUCTURES

In this chapter we will define a decreasing sequence of open sets that vanishes, and

show that there is no open treeing of F (2Z
2
) having exactly n-components on any class, while

there is an open treeing that has at most 4 components on any class.

6.1. Marker Sets

Despite the fact that we cannot construct a sequence of descending clopen sets with

empty intersection, [4] does provide an algorithm for constructing a sequence for which the

intersection of the Mn contains at most one point. Currently, we have nice regularity results

for F (2Z
2
), but not for F (2Z

n
) in general.

Theorem 6.1. (Gao, Jackson [4]) For any value of 0 < ϵ < 1, there is a clopen sequence

of dn-marker sets M0 ⊇ M1 ⊇ · · · ⊇ Mn ⊇ · · · of F (2Z
n
) satisfying

(1) For all x ∈ F (2Z
2
), ρ(x,Mn) < (1 + ϵ)dn.

(2) If x, y ∈ Mn and x ∈ [y], then ρ(x, y) > (1− ϵ)dn

(3) For all z ∈ F (2Z
n
), | ∩n Mn ∩ [z]| ≤ 1.

Starting with these sets as a base, we can construct a sequence of decreasing open

marker sets which have somewhat regular spacing and empty intersection.

Theorem 6.2. For any sequence of integers d0 < d1 < · · · < dn < . . . , there is sequence of

open dn-marker sets M0 ⊇ M1 ⊇ · · · ⊇ Mn ⊇ · · · of F (2Z
n
) satisfying

(1) For all x ∈ F (2Z
2
), ρ(x,Mn) < 2(1 + ϵ)dn.

(2) If x, y ∈ Mn and x ∈ [y], then ρ(x, y) > (1− ϵ)dn.

(3) ∩n∈ωMn = ∅

Proof. Let M ′
0,M

′
1, . . . be given by Theorem 6.1. Define Mn by

x ∈ Mn ⇔ x ∈ M ′
n ∧ ∃m x /∈ Mm
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Mn is open since each M ′
m is clopen; ∩nMn = ∅ since for each x ∈ Mn, there is an

m with x /∈ M ′
m. Mn ⊆ M ′

n, so for all x, y in the same class of F (2Z
n
), ρ(x, y) > (1 − ϵ)dn.

However, each class might be missing exactly one point. Suppose z is such a point, and

suppose x and y were points which were within (1 + ϵ)dn of z. Then

ρ(x, y) < ρ(x, z) + ρ(y, z) < 2(1 + ϵ)dn

□

The marker sets constructed in the above proof have almost exactly the same structure

as the ones constructed in 6.1. The only difference is that each class might have exactly one

point missing. Thus, two points of Mn could be as close as roughly dn, or as far apart as

roughly 2dn. We know that the 2(1 + ϵ)dn in the statement of 6.2 is not optimal in certain

cases. For example, we can get an analogous theorem for F (2Z
2
) with the bounds unchanged.

Theorem 6.3. For any sequence of integers d0 < d1 < · · · < dn < . . . , there is sequence of

open dn-marker sets M0 ⊇ M1 ⊇ · · · ⊇ Mn ⊇ · · · of F (2Z
2
) satisfying

(1) For all x ∈ F (2Z
2
), ρ(x,Mn) < (1 + ϵ)dn.

(2) If x, y ∈ Mn and x ∈ [y], then ρ(x, y) > (1− ϵ)dn.

(3) ∩n∈ωMn = ∅

To prove this, we will tile each class somewhat regularly by diamonds.

Definition 6.4. A diamond D around a point x is an l1 ball centered at x.

Once the space is tiled this way, showing the hypotheses holds will be relatively

simple. This tiling is given by the following theorem, where the term diagonal axes refers to

the lines of the form f0 = {(x, x) : x ∈ Z} and f1 = {x,−x} : x ∈ Z}. The construction of

the diamond marker sets of free follows exactly like the construction of clopen rectangular

marker sets in the specific case of F (2Z
2
). This construction does not naturally extend to

F (2Z
n
), since in general, l1 balls can’t tile Zn. If D0, D1, . . . , Dn, . . . are the set of center

points of the diamond regions, by possibly adjusting the marker points (not the regions),
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we can get a sequence of marker sets D′
0 ⊇ D′

1 ⊇ · · · ⊇ D′
n ⊇ . . . which induce the same

diamonds.

Theorem 6.5. Let d > 0 be an integer. Then there is a subequivalence relation Dn
d of F (Zn)

such that Dn
d is relatively clopen and the Dn

d -marker regions are diamonds with diagonal edge

lengths either d or d+ 1.

We now present the proof of Theorem 6.3

Proof. Let D′
0 ⊇ D′

1, . . . be a sequence of clopen diamond marker regions with edge lengths

on the scale of dn
2
. Define Dn by

x ∈ Dn ⇔ x ∈ D′
n ∧ ∃m > n x /∈ D′

m

Then each Dn is easily open. To see that each x is at most (1 + ϵ) away from a point of

Dn, we note that each x is in a l1 neighborhood around some point y of D′
n. If y is in Dn,

then we are done. Otherwise, since at most one point of each class was thrown out when

constructing Dn, x is less than (1+ϵ)dn
2

away from the boundary of the diamond around y.

Thus, x is 1+ϵdn
2

away from a different l1 neighborhood around some point z of Dn, and this

proves the claim. □

We might question how regular we can make the points of these marker sets. If we

would like a descending sequence which has empty intersection, then it is necessary that the

sets not be closed. The next theorem says that if we try to place the points of a marker set

of F (2Z) too close together in an open way, the set will end up being clopen.

Theorem 6.6. IfM is an open marker set of F (2Z
n
) satisfying the following conditions, then

M is clopen

(1) For each x ∈ F (2Z
n
), ρ(x,M) < dn

(2) For each x, y ∈ M , ρ(x, y) > dn

Proof. The claim holds since F (2Z
n
) \M is open, which follows from the formula

x /∈ Mn ⇔ ∃m
(
0 < ||m|| < d

2
∧m · x ∈ Mn

)
.
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□

It follows from this theorem and Theorem 3.3, that an sequence of open decreasing

marker sets with empty intersection must have some amount of irregularity in the placement

of the points.

6.2. Treeings

Before proceeding, we will make a distinction in terminology. We will say a formula is

forced by a neighborhood if there is some element of a forcing poset having that neighborhood

which forces it. We will say a formula is determined by a neighborhood if the neighborhood

witnesses the formula in the usual way (i.e. if M is a clopen lining, then for each x, there is

some clopen neighborhood U which determines that x ∈ V (M).)

Theorem 6.7. There is no open exact n-treeing of F (2Z
2
).

Proof. Suppose that T is an open exact n-treeing of F (2Z
2
). Let xG be generic for Pgp and

set K = [xG], so K ⊆ F (2Z
2
) is compact. [xG] has k components, so we fix q ∈ G that forces

the tree structure of T in a square with some side length d0 satisfying the following.

• There are n points x0, x1, . . . , xn−1 ∈ V (T )

• There is an N ∈ ω such that for all 0 ≤ a ≤ n, xa ↾ [−N,N ]2 determines that

xa ∈ V (T ).

• xa and xb are not connected if a ̸= b.

Let Uq be the open set corresponding to q,and Ua = xa ↾ [−N,N ]2. If π(i,j)(g) is

defined to be the translation map g + (iw(q), jh(q)), then π(i,j) induces an automorphism of

Pgp, so π(i,j)(Uq) forces the formulas above when ẋa is replaced with π(i,j)(ẋa). Furthermore,

π(i,j)(xa) ↾ [−N,N ]2 will force that π(i,j)(xa) ∈ V (T ). Let d1 = max{w(q), h(q)}.

For each x ∈ K, and for each z0, z1, . . . , zn−1, zn ∈ K within 3d1 of x satisfying

za ↾ [−N,N ]2 = Ua, there is some path connecting two of the points z0, z1, . . . , zn, z. Since

these sets are clopen, K is compact, and T is complete, there is a maximal such path length

d2.
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x0 x1 x2 xN. . .

d2

Figure 6.1. The subtree L0. Some element of G forces all of the points of T

within d0 of each zk0 .

Let z0, z1, . . . zN be defined by zk = (3kd1, 0)·x0, where N > 3d2. For each k, π3k,0(Uq)

will force the tree structure within d0 of zk; furthermore, for each a ∈ {0, 1, . . . , n − 1},

π(i,0)(Ua), will appear within d0 of zk and determine points xk
a ∈ V (T ). Since there are

exactly n components of T on each class, for each k, two of xk
0, . . . x

k
n and xk+1

0 are connected

by a line segment with length at most d2. Thus, some xk
a must connect to xk+1

0 , and by

possibly renaming vertices, we may assume that xk
a = xk

0. We can repeat this argument, and

assume without loss of generality that for each a, xk
a is connected to xk+1

a , meaning there

is a line segment sk of T with length at most d2 which connects xk
0 and xk+1

0 . Some open

neighborhood will force that there is some path pk connecting xk
0 to xk

0. We let

L0 =
⋃

k∈{0,...,n−1}

sk ∪ pk

L0 is a subtree of T since each sk and pk are paths. L0 contains only one component

since sk intersects pk at the vertex xk
0, while sk and pk+1 will intersect at the vertex xk+1

0 .

We note L0 is contained in a rectangle with length at most 5d2 and height at most 2d2 (As

pictured in Figure 6.1).

Repeat the construction above by taking a sequence of vertically aligned points zN =

z′0, . . . , z
′
N defined similarly to the zi sequence to construct a line segment L1 which stays

within a rectangle of width at most 2d2 and height 5d2. L0 and L1 both have the point zn in

common, so the two subtrees are connected. We note that L0 ∩ L1 is contained in a square

with side length at most d2, i.e. L1 can only “backtrack” a small distance into L0.
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x0
0 x0

1 x0
2 xN. . .

x1
0 x1

1 x1
2 xN. . .

...

...
...
...

Figure 6.2. The Li are all connected in tubes, and the forcing neighborhoods

connect the Li, forming a cycle of T .

Now repeat the construction again by moving left from z′n to construct L2, and then

down to construct L3. L2 connects to L1 via a segment contained in a square with side

length at most d1, and similarly for the pairs L2, L3, and L3, L0. Let L = L0 ∪L1 ∪L2 ∪L3.

We claim that L contains a nontrivial cycle in T . There is a path P from x0
0 to

(0, 3d2) ·x0
0 which is contained in L0∪L1∪L2. There is also a path P ′ from x0

0 to (0, 3d2) ·x0
0

contained in L3. We claim that P ′⌢P forms a cycle in T . P ′⌢P is easily seen to be a path in

T , but P ′∩P is contained in the union of the two squares of size d2 around x0
0 and (0, 3d2)·x0

0.

□

So for any specified n, there is no open treeing with exactly n components on each
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class; however, if we allow each class to have n or fewer components on each class, then the

next lemma states that an n-treeing does exist. For F (2Z
2
), the minimal known n is 4. It is

currently not known if this bound can be lowered.

Theorem 6.8. There is an open 4-treeing of F (2Z
2
).

Proof. For each i, LetRi be an equivalence relation of F (2Z
2
) which gives rise to rectangular

regions with side lengths di or di + 1. We put an order < on the regions of each class using

the lexicographic order on the bottom left corner of each region. We now define the open

treeing T inductively.

Let T0 be the set of bottom left corner points of R0. Inductively, suppose that Ti has

been defined for all i < k such that each component of Ti is a tree contained in a square with

side length at most 2di, and for all i, each component of Ti−1 is a proper subtree of some

component of Ti. For each region R of Rk, we define

CR = {t : t is a component of Tk−1 and R is < -least such that t ∩R ̸= ∅}.

CR is well-defined since each component of Tk−1 is finite; furthermore, if t is a com-

ponent of CR, then t can intersect at most four regions of Rk, as dk−1 ≪ dk. We define an

algorithm to connect all of the trees in CR using the notion that when we say there is a path

connecting two trees, that path must be contained in R. Let t0 be an arbitrary component

of CR and let T ′
0 = t0. For each t ∈ CR \ {t0}, there is some shortest path connecting t0 to t,

as any trees on the boundary of Rk extend at most 2dk−1 into Rk. Thus, we may connect t0

to the tree t1 ∈ CR which has the least such path p0. It is easy to see that T ′
1 = t0 ∪ p0 ∪ t1

is still a tree, as if p0 introduced a cycle, it would not be a shortest path. We now iterate

this construction to define T ′
n until it is connected to each component of C, and define Tk to

be union of all of the T ′
n. Tk is clopen, and Tk−1 ⊆ Tk. We let

T =
⋃
k∈ω

Tk

T is open, and all of the components of T are infinite since each component of Tk−1 is

contained in a strictly larger component of Tk. Each component of T is a tree, as otherwise,

33



T would have a cycle on some class, but that would imply that some Tk has a cycle on that

class, which is false by the induction assumption.

We now show T has at most four components on each class. Towards a contra-

diction, suppose there are five different components of T on the same class [x], and that

x0, x1, x2, x3, x4 are elements of the different components. Then there is a k ∈ ω such that

the five points are contained in a square with side length dk. But this square can intersect at

most four regions of Rk, so two of the xi must be in the same region. This is a contradiction,

as the trees containing the two points would have been connected by stage k.

□
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CHAPTER 7

A BOREL N-LINING

In this chapter, we use the orthogonal marker sets R0,R1, . . .Rn, . . . from Theorem

3.10 to construct a Borel lining of F (2Z
2
) which has exactly n components on each class.

The intuition of the construction is that we will first define finite linings in each region R of

R0, then by induction, we will connect the linings defined in the regions of Rk−1 that are

contained inside the same region of Rk. The first problem we encounter is that the linings

we defined in the previous step might overlap the boundary of the new region. To fix this,

we would like to delete any points of Lk which get “too close” to the boundary of a region,

but this will damage the lining. We will first prove Lemma 7.6, which we will refer to as

the rewiring lemma. This will be what allows us to repair the linings of regions that are

intersected by higher level regions. By the orthogonal marker construction, we can guarantee

that the limit of the linings will be eventually constant on any fixed square region of F (2Z
2
).

We now introduce the terminology we will be using through the rest of the chapter.

The definitions and lemmas below will use a horizontal line, but we note they can be made

analogously using a vertical line (or in fact, any line that partitions a region into two smaller

regions). For this chapter, when we say L = (L0, L1, . . . , Ln−1) is an n-lining, we mean L is

the union of n disjoint linings of F (2Z
2
).

Given a lining L of F (2Z
2
) and a horizontal line H, a loop l of L is any connected

component of L for which either all points of l are above H, or all points of l are below H.

A loop l is embedded in a different loop l′ if every point of l is inside the region created by

l′ and H. A loop structure is a finite collection of loops l0, . . . , ln such that for all k ̸= 0, lk

is embedded inside of l0. We refer to l0 as the outer loop of the loop structure. The rank of

a single loop is 0; inductively, the rank of a loop structure L is defined to be k + 1, where k

is the highest rank of any loop structure inside the region created by L and H.

Definition 7.1. Two lines L0 and L1 are adjacent if for all x ∈ Li, there is a y ∈ L1−i such
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that ρ(x, y) = 1. An n-lining is tight if it consists of lines L0, L1, . . . , Ln−1 such that for all

i, Li is adjacent to Li−1 and Li+1.

In other words, n lines are tight if they functionally act as one line. We can define

loops, loop structures, and ranks for tight n-linings similarly to how we defined them for

1-linings. An n-loop is a collection of n loops l0, . . . , ln−1 satisfying the tightness property

above. An n-loop structure is a loop structure consisting only of n-loops.

Given a horizontal line H, a cut of an n-lining L = (L0, L1, . . . , Ln−1) is a se-

quence of n-adjacent vertices x0, . . . xn−1 of L such that each point intersects H and x0 ∈

V (L0), . . . , xn−1 ∈ V (Ln−1). We will write a cut as x = (xa, xb, . . . ), where xa ∈ V (La) is

the leftmost vertex, followed by xb and so on. For vertical cuts, xa will be the lowest point,

xb the next, and then so on. We think of cuts as the equivalent of endpoints for structures

that have n loops.

Definition 7.2. An n-loop structure is good if whenever l is an n-loop with left cut x =

(x0, x1, . . . , xn−1), k is an n-loop embedded in l, and there are no loops in the region created

by k and l, then the left cut y of k is ordered (yn−1, . . . , y0).

In other words, if L is a good loop structure, then however its outer loops are ordered,

any n-loops below will be in the reverse order. Furthermore, if L is a good loop structure,

then it’s cut points are either in the order c0, c1, . . . , cn−1 or cn−1, . . . , c0, and these orders

alternate as we move from left to right along H.

Suppose that L is a tight n-lining and H is a horizontal line. We can convert the

resulting loop structure into a good one by letting H ′ = (0,−n) ·H, and deleting any n-loops

that do not intersect the original region.

Lemma 7.3. Suppose S is a loop structure created by a tight n-lining L and a horizontal line

H, then there is an n-loop structure S ⊆ S ′ ⊆ V (L) in the region created by H ′ = (0,−n) ·H.

Proof. Let S be given by the hypotheses, and let S ′′ be the loop structure induced by H ′

and L. Let s(l) be the set of loops k of S ′′ such that there are loops l0, . . . lN of S ′′ such that
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l = li for some i and for all j, lj and lj+1 are adjacent. Define S
′ by l ⊂ S ′ ⇐⇒ s(l)∩S ̸= ∅.

S ⊂ S ′ since we only deleted lines that didn’t start in S; furthermore, S ′ only consists

of n-loops via the tightness of L. The order flips as a corollary to the following claim, which

is proven easily via induction.

Claim: If L is a single line intersecting a horizontal line H, and x0, x1, . . . , xn are the

vertices of H∩V (L) ordered left-to-right. Then if xn and xm are the endpoints of some loop,

n−m is odd. □

For any loop structure L, we will let xL and yL denote the left and right cuts of the

outer loop of L. Whenever we say there are loop structures l1, l2, . . . , ln under some loop

structure L, we will assume the cuts of li are to the left of lj if i < j. We are now ready to

prove lemma 7.5. Intuitively the lemma traces out the outer loop of a loop structure L, then

crosses over the outer loops of all the structures beneath L . It then commits to connecting

all points under the first structure and moves to the next loop structure. For the following

definition and proof, we will just say loop instead of n-loop.

Definition 7.4. Let x = (x0, . . . , xn−1) and y = (yn−1, . . . , y0) be two cuts of some n-lining

L. The cable h connecting x and y is defined as follows.

• If x and y are horizontal cuts with x to the left of y, then let ai be the line segment

that starts at xi, extends down i+1 units, to the right until it is under yi, and then

up to connect to yi. We let h be the union of the ai.

• If x = (x0, . . . , xn−1) is a horizontal cut and y = (y0, . . . , yn−1) is a vertical cut such

that yn−1 = (−m,−n) · xn−1, where m,n > 0, let ai be the line segment that starts

at xi, extends down until it is to the right of yi, and then left until it connects to

yi. We let h be the union of the ai.

Lemma 7.5. Given a good n-loop structure L contained inside the intersection of a finite

region R ⊆ F (2Z
2
) and a horizontal line H, there is a good n-loop structure L satisfying:

(1) L ⊆ L.
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(2) If s is a loop and x, y are points of V (L) in the region S created by s and H, then

the part of the path connecting x and y above H is contained in S.

(3) Any point of L is at most 2n below H.

(4) L shares the cut xL = (x0, . . . , xn−1) with L and its other “endpoint” is the vertical

cut yL = (y′0 = (0,−2n) · yn−1, . . . y
′
n−1 = (0,−n − 1) · yn−1), where yn−1 is the

leftmost point of yL.

Moreover, if R is induced by a Borel equivalence relation and L is Borel, then L is Borel.

Proof. We prove the claim by induction based on the rank of the loop structure L. If L

has rank 0, then L is exactly one loop, so we just let L = L. If L has rank 1, then L has an

outer loop l with left cut x = (x0, · · · , xn−1), and right cut yL = (yn−1, . . . , y0). l also has

some number of embedded loops l0, l1, . . . , lm whose left cuts are in the opposite order of the

left cuts of l and similarly for the right cuts. For all i < m, let hi be the cable connecting

yli and xli+1
, and let hm be the cable connecting ylm and yl. We define

L′ = l ∪
⋃

0≤i≤m

(hi ∪ li),

Let L = L′∪v∪hn+1, where v is the set of vertical lines vi with endpoints xl1 , and (0,−n)·xli ,

and hn+1 is the cable connecting (0,−n) · xL1 , and (0,−n) · yn−1. Intuitively, L traces out

the outer loops moving left to right, and then all of the inner loops moving right to left. It

is easily checked that (1)-(4) are satisfied.

Now suppose that the claim holds for any good loop structure of rank k or less; we

show that the claim holds for a loop structure of rank k + 2. Suppose L is a loop structure

of rank k + 2. Then L has an outer loop l, with some number of loop structures of rank at

most k + 1 below it, say l0, l1, . . . , lm. Under the outer loop of each li are loop structures

li0, l
i
1, . . . l

i
mi

with rank at most k. For each 0 ≤ i ≤ m and 0 ≤ j ≤ mi, Let K
i
j be the n-lining

which satisfies the induction hypotheses for lij. By induction hypothesis Ki
j has a horizontal

cut xi
j and vertical cut yij. Define

L = L′
0 ∪ h ∪

⋃
0≤i≤n

0≤j≤mn

(
Ki

j ∪ hi
j ∪ vij

)

38



L has left cut xl as that was the left cut of L0, and has a vertical right cut (0,−2n) · yl, so

L satisfies (4). Similarly, all of the horizontal cables connected adjacent endpoints, so those

went at most n below H. The cables connecting the Ki
j extend at most n below the other

cables, so L satisfies (3).

We next check (1). Let x, y ∈ V (L). x is a point of one of l, li or some Ki
j, so it

suffices to show l, li, and Ki
j are all connected. l and all of the li were connected in L0. L

connected L0 to K0
0 , and then connected all of the Kj

i to each other. Thus, any two points

of L are connected in L. (2) holds by construction.

□

Lemma 7.5 allows us to make a tight n-lining out of an arbitrary good loop-structure

which extends a bounded distance below the loop structure. for the purposes of proving

theorem 7.10, we will need a slight strengthening. We will leave room under the lining L so

that we can “encase” the lining at a later stage.

Corollary 7.6. (The Rewiring Lemma) Suppose L is a good n-loop structure inside the

intersection of a finite region R ⊆ F (2Z
2
), and a horizontal line H. Then there is a lining L

satisfying the hypotheses of Lemma 7.5 and for any substructure A of L having an outer loop

l which has distance k > 50n from any other point of A, and any vertical line V intersecting

A \ l, there are cuts a1,a2,b1,b2 of V (L) ∩ V (H) satisfying:

(1) The cuts are ordered left to right by a1,a2,b1,b2, and every point of one of these cuts

is either a point of l, or is in the region created by A and H.

(2) a1 and a2 are to the left of V , and b1 and b2 are to the right of V .

(3) a1 and a2 are the cuts of loops la1 and la2 which are at least 4n units away from

each other and there are no points of L in the region created by the two loops and

H. Similarly b1 and b2 are the cuts of loops lb1 and lb2 which are at least 4n away

from each other, and there is no point of L in the region created by the two loops

and H.

(4) lb1 is embedded in all of the other loops above, and the distance from lb1 to any point
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Figure 7.1. The rewiring arcs over the inner loops in order to leave space

for a different set to come in later. The blue loop represents the original outer

loop of the lining.

of A \ lb1 is at least k − 25n.

Proof. In the proof of 7.5, whenever we encounter an outer loop l satisfying the hypotheses,

we can alter the algorithm as follows. If we would construct a cable hi connecting xl and

xl1 , then we replace it with S = h0 ∪ la1 ∪ h1 ∪ la2 ∪ h2, where each piece is defined below.

• h0 is the cable below H connecting xl = (x0, . . . xn−1) and the horizontal cut a1 :=

((2, 0) · xn−1, . . . , (2 + n− 1) · xn−1).

• la1 is an n-loop with cuts a1 and (−2,−2n) · y1 for which every point of the outer

loop has distance either 1 or 2 from l.

• h1 is the set of horizontal lines starting at (−2,−2n)·yl and ending at (−7n,−2n)·yl.

• la2 is an n-loop starting at (−7n,−2n) that stays roughly 6n away from la1 and ends

at the cut a2 = (7n, 0) · xl.

• h2 is the cable starting at a2 and ending at xl1 .

,

If the algorithm does not connect xl and xl1 with a cable, then we can let a1 = xl

and a2 = xl1 , and the hypotheses are easily satisfied.
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If we would draw a cable connecting (0,−2n) ·yln and (0,−2n) ·yl, we instead replace

it with the line segment S = h0 ∪ lb1 ∪ h1 ∪ lb2 ∪ h2, where each set is defined below.

• h0 is the cable of length 2 starting at (0,−2n)·yl and ending at b1 = (−21n,−2n)·yln .

• lb1 is a loop starting at (−21n,−2n) · yln and ending at (21n,−2n) · xl where every

point of the outer loop of lb1 has a distance roughly 14n from la2 .

• h1 is is the cable connecting (21n,−2n) · xl and (14n,−2n) · xl

• lb2 is a loop starting at (14n,−2n) · xl and ending at b2 = (−14n,−2n) · yl

• h2 is the cable connecting b2 to (0,−4n) · yl.

Both of these linings are well-defined since there were no points of L within 50n

units of l. Any point of lb1 is at most 22n away from the outer loop by construction, so

ρ(lb1 , A \ l) > 25n. □

We now work towards an algorithm which will connect the disjoint linings in each

of the regions. For the rest of the section, we will assume we have a sequence of integers

d0 << d1, . . . , and a sequence of orthogonal marker sets R0,R1, . . . as defined in Theorem

3.10. Furthermore, we will assume that there is a fixed N > 0 such that each region R

of Rk intersects at most N regions of Rk−1. We also assume b is a number much greater

than 3(2N)2 . We will now define a few notions that will be used in the constructions of the

connection algorithm and the Borel n-lining.

Definition 7.7. For a region R of Rk, the set of boundary points, denoted bd(R) is defined

by

x ∈ bd(R) ⇔ x ∈ F (2Z
2

) and ∃g ∈ Z2 (||g|| = 1 and (g · x, x) /∈ R).

Let IR = {x ∈ R : ρ(x, bd(R)) ≥ b} be the interior of R. Let BR = {x ∈ R : ρ(x, bd(R)) < b}

be the buffer of R.

The rewiring lemma connects any components that a higher level region disconnects,

and we showed that this reconnection can happen in a fixed amount of space. Since the

linings are originally contained in the interiors of the regions, this reconnecting will extend

a fixed distance into the buffer. We will use the remaining space in the buffer to connect the
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interior linings at each step. To do this, we require a topological lemma for R2. Whenever

we use the term distance with respect to R2, we mean distance using the l∞ metric. We

view n as a fixed number for the lemma below, but will allow it to vary in Lemma 7.9.

Lemma 7.8. Let R ⊆ R2 be a square with side lengths at least d0 >> 32Nn, where n ∈ Z+ is

arbitrary. Let L be a line segment satisfying the following properties for some k > 2.

(1) For each x ∈ V (L), Bl∞(x, 3nk) contains exactly one component of L.

(2) If x, y ∈ V (L) are such that x = (r, 0) + y or x = (0, r) + y, and x and y are not

connected by a vertical/horizontal line, then r > 3nk,

(3) For each x ∈ V (L), l∞(x, bd(R)) > 3nk.

Then if z is a point which is at least 3nk away from L, there is a line segment L such

that L ⊂ L, z is an endpoint of L, and L satisfies (1)-(3) if every instance of k is replaced

with k − 2.

Proof. We will say that any line segment satisfying (1) and (2) together is essentially

diagonal, and note that for all x ∈ L, V (L)∩B(x, 3nk) is essentially diagonal by hypothesis.

Define

T = {x ∈ R : l∞(x, L) ≤ 3n(k−1)},

and let S = R \ T . We note that T is closed. We will show that S is connected, which will

imply it is path connected as S ⊆ R2 is open. Let x0 be an endpoint of L, and define

s0 = {z ∈ V (L) : l∞(x0, z) ≤ 3nk}, and

t0 = {z ∈ R : l∞(z, s0) ≤ 3n(k−1)}.

It is clear that s0 is essentially diagonal and R \ t0 is connected.

Inductively suppose essentially diagonal line segments s0, . . . , sm−1 ⊆ L, and vertices

x0, . . . , xm ∈ V (L) have been defined such that si ⊆ L has endpoints xi and xi+1 and for all

i < m− 1:

a) xi ∈ V (L), l∞(xi, xi+1) = 3nk, and l∞(xi, xj) > 3nk if |i− j| ≠ 1

b) B̄(xi, 3
nk) ∩ L = si−1 ∪ si.
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c) si ∩ si+1 = xi+1.

d) si ∩ sj = ∅ if |j − i| ≠ 1.

e) if ti = {z ∈ R : l∞(z, si) ≤ 3n(k−1)}, then R \ (t0 ∪ · · · ∪ tm−1) is connected.

Let s′m be the line segment B̄(xm, 3
nk) ∩ L, and sm = xm ∪ (s′m \ sm−1). One of

the endpoints of sm is xm and we denote the other one as xm+1. By construction s0, . . . , sm

satisfy (b) and (c). (a) and (d) follow from the triangle inequality and the fact that each si is

essentially diagonal. We define tm = {z ∈ R : l∞(z, sm) ≤ 3n(k−1)} and show R\(t0∪· · ·∪tm)

is connected.

Towards a contradiction, suppose not. It is easy to check that R \ (tm−1 ∪ tm) is

connected, as sm−1 ∪ sm is the component of L in B̄(xm, 3
nk). Therefore, tm ∩ ti ̸= ∅

for some i < m − 1, so there is a zi ∈ si such that l∞(zi, sm) < 2 · 3n(k−1). But then

B̄(zi, 3
nk)∩sm ̸= ∅, so in fact the line segment connecting si and sm is contained in B̄(zi, 3

nk),

which is a contradiction, as B̄(zi, 3
n(k−1))∩L ⊆ si−1 ∪ si ∪ si+1, which sm does not intersect.

Thus, R \ (t0 ∪ · · · ∪ tm) is connected.

Our recursive definition eventually halts since L is finite, meaning that L = s0∪· · ·∪sM

for some integer M ; therefore, T = ∪ntn, so R \ T is path connected. We now define the

components that will union to be L.

B̄(x0, 3
n(k−1)) consists of an essentially diagonal line, so there is a vertical line segment

l0 ⊆ T which has one endpoint x0, and another endpoint y on the boundary of T which

satisfies that for all x ∈ l0, and a ∈ s0, x ̸= (0, r) + a, and similarly for (r, 0). If there is

a horizontal or vertical line that connects z (The point we would like to connect to L) to

some point y′ on the boundary of T , then let l1 be that line. Otherwise, let v be the shortest

vertical line, such that there is a horizontal line h with h ∪ v connecting x to a point y′ of

T , and let l1 = h ∪ v.

Let l′2 be a line segment that travels along the boundary of T with endpoints y and y′.

l′2 could move clockwise or counterclockwise, and one of these orientations will guarantee no

point of l′2 is r · ei+x for some x ∈ l0, where r < 3n(k−1). l′2 might not implicitly satisfy (2) if

k is replaced with k−2, so we can edit it in the following way. If a, b ∈ l′2 would fail to satisfy
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(2) using k − 1, then replace the segment connecting a and b with a vertical/horizontal line

segment. We argue this segment is at least 3n(k−2) away from L since a and b were 3n(k−1)

away from L. Towards a contradiction, suppose there is a point c of the segment and a point

z of S such that l∞(c, z) < 3n(k−2). Without loss of generality, l∞(a, c) < 3k(n−1)

2
(Otherwise,

it is at least this close to b). But then

l∞(a, z) < l∞(a, c) + l∞(z, c) <
3k(n−1)

2
+ 3k(n−2) < 3k(n−1)

contradicting that a was a point of l′2 ⊆ T . Finally, we let

L = L ∩ l0 ∪ l1 ∪ l2.

L connects z to L by definition. We now show it satisfies (1) and (2) if k is replaced by k−2

(so now when we say (1) or (2) holds, we mean with respect to k − 2).

Suppose x ∈ L we show B := B̄(x, 3n(k−2)) ∩ L is essentially diagonal, which will

imply (1) and (2). If B intersects exactly one of the sets L, l0, l1 or l2, then B is essentially

diagonal, so it suffices to check that if B intersects a union, then B is essentially diagonal.

The pairs (l0, l1), (L, l0), (L, l2) are too far apart for a ball to intersect them both. Also, the

pairs (l0, l2), (l1, l2), (L, l1) were specifically defined so that any such ball would be essentially

diagonal. Thus, the claim holds. □

Lemma 7.9. Suppose R is a region of Rk such that R = R0 ∪R1 ∪ · · · ∪RN , where each Ri

is a region of Rk−1. Suppose that for all 0 ≤ i ≤ N , Li is a tight n-lining of each Ri such

that the following hold:

(1) Li is contained in IRi

(2) Li has cuts xi and yi on the boundary of IRi
.

Then there is a single tight n-lining L of R such that for all i, j < N , L ↾ Ii = Li,

and if l1 is a component of L1, then for each any k, there is a path connecting l1 to some

component of Lk.

Proof. Before we construct the lining, we build a function to convert R into a region

R′ ⊆ R. Let z ∈ bd(R) be arbitrary and let f(z) = (0, 0). For all y ∈ R, if y = (n,m) · z, let
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f(y) = (n,m). If y ∈ bd(R), let f(y) ∈ R′′. If x, y ∈ bd(R), and y = ±ei · x, then connect

f(x) and f(y) via a straight line in R. Then R′′ forms the boundary of a region R′ which is

nearly a square with side length dn. This space is connected, and changing the initial choice

of z would yield a translation of R, which would be homeomorphic to R.

If M is a tight line segment in R, then we can convert M into a line segment M ′ of R′

using the following algorithm. Let (x0, x1, . . . , xn) order the vertices of the zeroth segment

of M . Let Mi be the straight-line with endpoints f(xi) and f(xi+1) and let M ′ be the union

of the Mi. Given any line segment that is a union of straight lines that consist of at least

one integer coordinate, we can convert that into a lining in R in a Borel way.

We next define tight segments pk with the properties below and let L be the union

of the pk and Lk. Property (1) holding for all k will imply L satisfies the conclusion of the

theorem.

(1) pk connects Lk to Lk+1

(2) For all m < k, ρ(pm, pk) ≥ 3(2N−2k)(2N−2k)

(3) pk has distance at least 3(2N−2k)(2N−2k) from bd(R)

(4) pk has distance at least 3(2N−2k)(2N−2k) from the interior of any region other than

IRk
and IRk+1

(5) For any x ∈ V (pk), B(x, 3(2N−2k)(2N−2k)) is essentially diagonal.

It is easy to see that a path p0 satisfying (1)-(5) exists, so let p0 be a shortest such

path. Now suppose that pm has been defined for all m < k satisfying (1)-(5), and let p′m

in R′ be analogous to pm in R using the algorithm given above. Then the paths pm satisfy

(1)-(5) with value m if ρ is replaced with l∞. Properties (3) and (5) imply that p′ = ∪m<k p′m

satisfy the hypotheses of Lemma 7.8. Let S be the line segment given by the lemma for the

point yk and n = (2N − 2k) and define s′ = S \ P ′.

Next, let s be the line segment of R analogous to s′. Then s will easily satisfy (1)k

and (5)k. s will also satisfy (2)k, and (3)k for the larger value 3(2N−2k+2)(2N−2k), but will not

necessarily satisfy (4)k. Thus, we must adjust the segment so that if i /∈ {k− 1, k}, s avoids

the boundary of IRi
. For each i where (4)k does not hold, fix an orientation of s and let
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x be the least point of s with ρ(x, IRi
) = 3(2N−2k+1)(2N−2k), and let y be the greatest such

point. Since pm satisfies (4)m for each m < k, {z ∈ Ri : ρ(z, bd(IRi
)) ≤ 3(2N−2k+1)(2N−2k)} ∩

V (∪m<kpm) = ∅. Define li to be a shortest line segment in {z ∈ Ri : ρ(z, bd(Ai)) ≤

3(2N−2k+1)(2N−2k)} that connects x to y, and replace the original path connecting x and y

with li.

We therefore have a line segment s that connects the zeroth point of xk−1 to yk and

satisfies (1)k − (5)k, and satisfies (2)k − (4)k if 3(2N−2k)2 is replaced by 3(2N−2k+1)(2N−2k).

With this extra space, we can add in n − 1 lines adjacent to s to form the full tight lining

pk satisfying (1)k − (5)k. □

We now give a proof of the existence of a Borel n-lining of F (2Z
2
). At each step, we

will use the buffer to draw “spirals” around the interior, and leave some room to connect

two different regions at the next level.

Theorem 7.10. There is a tight Borel n-lining of F (2Z
2
)

Proof. We define the Lk inductively so that for each k, Lk will satisfy the three clauses

below. For each region R, of Ri, tR is the number of times that R has been intersected by

a region R′ of Rj for j > i. We note that by the orthogonal marker construction, tR can be

at most 2.

(1) If x, y are in the interior of some m−region R′ and there is no j with m < j ≤ k

such that there are different j-regions R1 and R2 with x ∈ R1, y ∈ R2, then there is

a path connecting x and y that is contained in IR′ .

(2) The endpoints of Lk ↾ R lie on the boundary of {x ∈ R : ρ(x, IR) ≤ 300n}.

(3) Any horizontal line H intersecting R induces loops l1 and l2 such that l1 is contained

in I tR above H, every x ∈ V (Lk) ∩ IR is in the region created by l1 and H, and l1

has distance at least 100n − 25ntR from any other loop. l2 is defined similarly to

l1, but replacing “above” with “below”. Furthermore, a similar claim holds for any

vertical line intersecting R.

Let R be a region of R0. Then R is a rectangle with side lengths d0 or d0 + 1. Let
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L′
0 in R be n adjacent vertical lines with endpoints on IR. The zeroth line can be picked to

go through a well-defined center point so that L′
0 is Borel. We define the “spiral” part of L0

below, giving an algorithm that yields the structure given in Figure 7.2. Let S0 be a tight

line segment which shares an endpoint with the top part of L′
0 which spirals around IR in

the following sense. S0 moves up 10n, right until it extends 100n past the left edge of IR,

down until it extends 100n below IR, right until it is 200n to the left of IR, up until it is

200n above IR, left until it is 300n to the right of IR, and finally down to the boundary of

I0R. Define S1 similarly, and let L0 = S0 ∪ L′
0 ∪ S1. (1)0 is trivially satisfied, while (2)0 and

(3)0 are true by construction.

Figure 7.2. We define a lining in the interior of R, and then let S spiral

around so that L0 satisfies (3)0

.

Now suppose that Lk−1 has been defined, let R be an arbitrary region of Rk, and let

L′
k−1 = {(x, y) ∈ Lk−1 ↾ R : x, y ∈ IR}. V (L′

k−1) is the collection of points of Lk−1 that are

not in the buffer of R. If S is a region of Rm intersecting R, where 0 ≤ m < k then we let

S ′ = {(x, y) ∈ S : x, y ∈ IR}. and define IS′ , and BS′ , similarly. We will call S ′ a perimeter

region of R. When we perform a construction involving a perimeter region, we will use S ′

in place of S, so that S ′ ⊆ R.

Let P0, P1, . . . Pm enumerate without repetition all of the perimeter (k − 1)-regions

of R such that for each i < m, Pi and Pi+1 are adjacent. Inductively, suppose that for all

s ∈ ω<ω with lh(s) = j, Ps̄ is a perimeter k − lh(s) region, and let Ps̄⌢0, Ps̄⌢1 . . . Ps̄⌢ns̄ be

an enumeration of perimeter regions contained in Ps̄ such that Ps̄⌢0 is the closest region to

the boundary of Ps̄ and for all i, Ps̄⌢i and Ps̄⌢(i+1) are adjacent regions. By (3)j−1, Ps̄ has
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a loop ls̄ in As̄ which is at least 100− 25ts̄ away from IPs̄

For each i ≤ m, we may assume Pi (a k − 1-region) has a good loop structure by

possibly extending the boundary of IPi
by n using Lemma 7.3. Thus, there is a lining Li

of Pi satisfying the hypothesis of lemma 7.1. In particular, for each perimeter region Ps̄, Li

induces four loops ls̄a1 , l
s̄
a2
, ls̄b1 and ls̄b2 in As̄ which are at least 4n units apart, and there are

no points in the area created by any two loops and H. We now use the Ps̄ to define the

spiral set for R. Let H s̄
1 = l1 ∪ h ∪ l2, where each set is defined as follows:

• l1 is a cable whose outer loop is distance 1 from la1 , whose left cut is 150n units

below IPs̄ , and whose right cut extends 4n below IPs̄ .

• l2 is a loop below l1 whose outer loop is distance 1 from l1 with cuts that are both

1 unit away from the cuts of l2.

• h is a cable connecting the right cuts of l1 and l2.

H s̄
1 does not intersect L′

n−1, la1 , or la2 . Define H s̄
2 similarly using b1 and b2 for Ps̄.

Let Ss̄ = H s̄
1 ∪ h ∪ H s̄

2 , where h is the horizontal cable connecting the right cut of H s̄
1 to

the left cut of H s̄
2 . For each s̄, let t̄ be least such that t̄ ≥lex s̄, and define Cs̄ to be a cable

that connects the right cut of Ss̄ to St̄ which stays 300n away from the interiors of the two

regions. For the maximal t̄, have Ct̄, connect a cut of the lining in Pt̄ to St̄. We now define

S by

S =
⋃

s̄∈ω<ω

Ss̄ ∪ Cs̄

Let P0 = R0, R1, . . . RN be an enumeration of the k−1-regions of R. Apply lemma 7.9

to these regions. This will produce a lining L′
n. We extend L′

n by adding two line segments

Sk
0 and Sk

1 that are defined similarly to S0 and S1 from the base case using the free cuts of

S and P0.

We now claim the lining Ln satisfies (1)k − (3)k. (3)k holds for R itself since S spirals

around AR. Let T be an m-region for m < k. If T is not a perimeter region of R, then we

only added points to BT , so (3)k holds because it held for T at the previous step. If T is a

perimeter region of R, then without loss of generality, suppose R intersects T horizontally
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Figure 7.3. S (The orange line) enters in the free spaces between the loops

set up by lemma 7.5

and T lies above the boundary of R. Let H be a horizontal line intersecting IT . Then S

induces loops above and below H in IT . The argument is similar for any vertical line.

We next show that (1)k holds. Let m ≤ k, and suppose x and y are points of Lk in a

region Rm of Rm satisfying the hypothesis of (1)k. If m = k, we are done, as we connected

the linings in all of the lower level regions. If m < k, and Rm is not a perimeter region of

R, then the lining inside of IRm was unchanged, so (1)k holds because it was true at the

previous step. Finally, if Rm is a perimeter region, then the lining connecting x and y stayed

within 3n of IRm by lemma 7.6. (2)k holds from the definition of S.

We define L as follows:

L =
⋃
m∈ω

⋂
n>m

Ln,

so L is Borel. For any x ∈ F (2Z
2
) and m ∈ ω, the lining within a rectangle of side length m

containing x will be eventually constant, as this rectangle can only be intersected by a finite

number of Ri regions. We now show that in each class, L has exactly n-lines. It is enough to

show that there is exactly one tight n-line. Suppose x, y ∈ V (L) are in the same equivalence

class of F (2Z
2
). By Theorem 7.1, there is some least N such that for all m ≥ N , x and y are

in the same region of Rm, and suppose R is the region containing x and y. Then the n-lining
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containing x and y remained in IR. If at some stage m, R was intersected by a higher level

region S, then by lemma 7.6, and (3)m, the rewiring stayed inside of {x : ρ(x, IR) < b}. If

the lining was intersected again, then the rewiring must still stay inside of the previous set.

Thus, if x and y were connected, the path connecting them is eventually constant, so x and y

are connected in L by that path. If x and y were not connected then they would necessarily

stay disconnected at later stages. □
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