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1. Introduction 

The calibration of robots and machine tools requires the measurement of position of points in 

space. The modern devices for such measurements are laser trackers and laser tracers. The 

precision of measurements of position of points is quite high. However, the calibration of robots 

requires to determine the position of body (robot gripper) based on measurements of several 

points. 

The paper describes the surprising result that the subsequent determination of body position 

only from position of points is possible only with low accuracy. The accuracy of determination 

of body position can be significantly (more than 10 times) increased if there are measured not 

only the position of points but also some angles. The influence of measurements of angles on 

the determination of body position is magic. The paper describes the simulation and then 

resulting patented calibration device for robots. 

2. Problem formulation 

The industrial robots especially with translation on the 7th axis require calibration. For 

stationary robots the suitable device for calibration is the laser tracker. Laser tracker looses its 

precision for longer distances given for example by movement on the 7th axis and besides that 

it is quite expensive.  Therefore a new calibration device was proposed (Fig. 1) [2] that should 

be capable to calibrate long robot workspace around the 7th axis and achieve similar accuracy 

as laser tracker for shorter distances.  
 

 
 

Fig. 1. Calibration concept of robot with new calibration device 
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Its concept is derived from the similar calibration device RedCaM (Redundant Calibration 

and Measuring Machine) [3, 1]. The industrial robot R using its gripper G is firmly connected 

with the platform P. The platform P is suspended through spherical joints on four legs with 

measured extensions E that are by joints with azimuth and elevation angles connected to four 

carriages with measured displacements D. The carriages move on two parallel sliding guides. 

The positions of displacements of carriages on these sliding guides are individually and 

independently driven by drives and measured. Such device uses redundant measurements that 

was successfully applied to RedCaM. The redundancy is given by usage of four legs instead of 

necessary minimum three legs and by usage of multiple (unlimited) positions of carriages. In 

each measured positions (that means the certain position of the robot gripper G and the positions 

of carriages D) the four displacements D and corresponding four extensions E are measured. 

The redundancy is quite big as multiple positions of each carriage is used. Therefore it was 

expected that similar accuracy would be achieved as RedCaM did. RedCaM besides self-

calibration is capable to measure the position of its platform with accuracy equal to uncertainty 

of one single sensor, i.e. no addition of errors from sensors for determination of 6 DOFs of 

platform occurs.  

Thus it was quite surprising that the accuracy of determination of 6 DOFs of robot gripper 

was quite poor. The analysis showed that the accuracy of determination of positions of centres 

of spherical joints between the legs and the platform P can be due to redundant measurement 

quite high but then the accuracy of determination of the position of the platform P (6 DOFs – 3 

translations and 3 rotations) is at least 10 times lower than the accuracy of determination of 

positions of centres of spherical joints. The experience with laser tracers justifies that the 

accuracy of determination of positions of centres of spherical joints is high but the rest is 

mysterious. 

Several modifications of the calibration device from Fig. 1 were proposed: usage of 

intersecting sliding guides, usage of skew sliding guides, usage of displacement of carriages 

not only along the sliding guides but also orthogonal side. Nothing helped.  

Finally it was proposed to use the measurement of angles in azimuth, elevation or in both 

of them. This helped immediately and fully solved the problem. The determination of positions 

of platform from the positions of centres of spherical joints between the platform and four legs 

achieved accuracy 10 times better than previously. It was emotionally called the magic of 

angles. This paper is devoted to computational explanation of this reality. 

3. Planar analyses 

The planar variant of the calibration device is in Fig. 2. Two coordinate systems were chosen 

to calculate the position of the platform. The first, fixed, basic coordinate system x1, y1 and the 

second coordinate system xp, yp rigidly connected to the platform see Fig. 2. The carriage moves 

along the x1 axis. The platform is rectangular with dimensions p by q. The centers of the 

rotational joints on the carriages are marked Si, the centers of the rotational joints on the 

platform are marked Ri. The lengths of the legs are 𝑙1 =  𝑆1𝑅1
̅̅ ̅̅ ̅̅   and  𝑙2 =  𝑆2𝑅2

̅̅ ̅̅ ̅̅ . 

Coordinates of the centers of rotational joints in the basic coordinate system x1, y1 are        

𝑆1 = [ 𝑥1 ; 0 ], 𝑅1 = [ 𝑥R1 ;  𝑦R1] ,    𝑆2 = [ 𝑥2 ; 0 ] , 𝑅2 = [ 𝑥R2 ;  𝑦R2 ] . The essential 

constraints are 

 ( 𝑥R1 −  𝑥1 )2 +  𝑦R1
2  =  𝑙1

2, (1) 

 ( 𝑥R2 −  𝑥2 )2 + 𝑦R2
2 =  𝑙2

2, (2) 

 ( 𝑥R2 −  𝑥R1 )2 + ( 𝑦R2 −  𝑦R1 )2 =  𝑝2. (3) 
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The carriages S1, S2 are in multiple (at least two) different positions. The position of the platform 

is described by coordinates x1Op, y1Op, 𝜑 bounded by transformation equations  

 𝐓1p =   𝐓x(𝑥1Op) 𝐓y(𝑦1Op) 𝐓φ(𝜑)  

 𝐫1Ri = 𝐓1p𝐫𝑝Ri,   𝑖 = 1,2 (4) 

 
Fig. 2. Planar variant of calibration device 

 

Ten different sets of equations and particular unknowns (e.g. sin(𝜑), 𝑐𝑜𝑠(𝜑) instead of 𝜑) 

were used for determination of platform coordinates x1Op, y1Op, 𝜑. 

Then the concurrent measurement of angles 𝜓1 and 𝜓2 was considered. It leads to the 

constraints 

 𝑥R1 = 𝑥1 + 𝑙1 cos 𝜓1,  (5) 

 𝑦R1 = 𝑙1 sin 𝜓1,  (6) 

 𝑥R2 = 𝑥2 + 𝑙2 cos 𝜓2,  (7) 

 𝑦R2 = 𝑙2 sin 𝜓2. (8) 

And again ten different sets of equations and particular unknowns were used for determination 

of platform coordinates x1Op, y1Op, 𝜑. 

The solution of the constraint equations was done not only with precise measured values 

but also with varied values due to the influence of errors within the measurement. The ideal leg 

lengths were gradually shortened by 1∙ 10−5 m and corresponding errors in angles. The best 

results were obtained for unknowns x1Op, y1Op , sin φ and cos φ. 

The resulting deviations were for the case without measurements of angles Δx1Op = 18,38 

∙ 10−6 m, Δy1Op = 55,0 ∙ 10−6 m, Δφ = 366 ∙ 10−6 rad and for the case with measurements of 

angles Δx1Op = 4,66 ∙ 10−6 m, Δy1Op  = 2,22 ∙ 10−6 m, Δφ = 30,4 ∙ 10−6 rad. This means 10 

times improved accuracy. 

4. Spatial analyses 

The spatial variant of the calibration device is in Fig. 3. Similar description as in the case of 

planar variant is used. And again ten different sets of equations and particular unknowns were 

used for determination of platform coordinates x1Op, y1Op, z1Op, Cardan angles φx, φy and φz. 

The solution of the constraint equations was done not only with precise measured values 

but also with varied values due to the influence of errors within the measurement. The ideal leg 

lengths were gradually shortened by 1∙ 10−5 m and corresponding errors in angles. It was 

considered the variant of measurement of both azimuth and elevation for all legs, the variant of 

angular measurement of only azimuth or only elevation. The results of accuracy for variant of 

measurement of both angles and just measurement of elevation angles are similar. The case of 

only measurement of azimuths is worse. Therefore the variant with measurement of elevation 

204



angles is favourite one. The dimensions were d = 0,8 m, p = 0,24 m, q = 0,18 m and leg lengths 

〈0,8 ;  1,3 〉 m. 
 

 
Fig. 3. Spatial variant of calibration device 

 

The resulting deviations were for the case without measurements of angles Δx1Op = 123,8 

∙ 10−6 m, Δy1Op = 4740,0∙ 10−6 m, Δz1Op = 333,0 ∙ 10−6 m, Δφx = 9380 ∙ 10−6 rad, Δφy = 31600 

∙ 10−6 rad, Δφz = 1858 ∙ 10−6 rad, for the case with measurements of both azimuth and elevation 

angles Δx1Op = 8,54 ∙ 10−6 m, Δy1Op = 7,86 ∙ 10−6 m, Δz1Op = 5,73 ∙ 10−6 m, Δφx = 68,2∙ 10−6 

rad, Δφy = 82,0 ∙ 10−6 rad, Δφz = 61,0 ∙ 10−6 rad and for the case with measurements of only 

elevation angles Δx1Op = 11,1 ∙ 10−6 m, Δy1Op = 19,42 ∙ 10−6 m, Δz1Op = 5,93 ∙ 10−6 m, Δφx = 

75,4 ∙ 10−6 rad, Δφy = 43,2 ∙ 10−6 rad, Δφz = 68,2 ∙ 10−6 rad. This means 10 to 100 times 

improved accuracy. 

5. Conclusion 

The measurement by the described calibration device requires the measurement of some angles 

besides the displacements. The particular suitable variants are described above.  

This can be generalized. The determination of positions of points is possible with good 

precision just from measurement of lengths, i.e. in our case the lengths of legs from different 

displacements. But the determination of positions of bodies requires the measurement of some 

angles. The measurement of only displacements is not sufficient for reasonable accuracy. 
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