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Abstract

It is sad but true that, as industrialization increases, a large number of hazardous gases are discharged into the environment,
which can cause major health problems relating to respiratory disorders. Thus, to eliminate this pressing issue constant
monitoring of air quality is mandatory, for this gas sensors play a huge role. There have been various gas sensors developed
till now with respect to high sensitivity and selectivity. However, a sensor which having properties of high surface-to-volume
ratio, good reactivity, long life cycles, and so on is difficult to produce. To remove this issue, a metal organic framework
(MOF) can be utilized to measure various analytes as it has high sensitivity and selectivity. Further to upgrade the properties
of a sensor in terms of optimum pore size, and high surface reactivity, which cannot only create a sensor with high efficiency,
but also reduce energy consumption and maintenance, nanostructures have been incorporated into the MOFs. Furthermore,
numerous reviews on gas sensing using MOF-based materials have been published. Only chemiresistive-based nanostruc-
tures embedded in MOF have yet to be described. In a nutshell, this review elicits thorough insightful details regarding
advancements in MOF-derived nanostructure-based gas sensors for the measurement of various gas analytes, as well as
the chemical mechanism, challenges associated with it, factors impacting the gas sensing process, and morphological data,
which are also explained.
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1 Introduction

As we move into the twenty-first century, the pace of human
life has been drastically altered due to the industrial revolu-
tion. Despite the enormous development, the threat of envi-
ronmental damage is soared, particularly unhealthy air qual-
ity and enchanting effects such as climate change and global
warming [1-5]. The measurement of air quality is becoming
mandatory as it directly affects human health and public
lifestyle. Numerous categories of hazardous gases and tox-
ins are linked to health risks, hence there is a high demand
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for toxic gas monitoring. Varieties of sensor technologies
have been developed to monitor various gases, and most of
them require costly equipment, complicated process time
as well as huge test times [6]. Therefore innovative sensing
protocols are highly required to provide rapid detection, high
sensitivity and selectivity, long-term stability, and real-time
monitoring [7-10]. The sensor generally operates on the
transduction function concept, which is based on changes
in electrical or optical properties when it interacts with the
target analytes and converts them into a detectable signal.
Further, Temperature, selectivity, sensitivity, long-lasting
stability, cost, and response/recovery time are all impor-
tant sensing parameters to consider [11-13]. As a result,
the selection of materials and their shape in gas sensors is
critical to achieving good performance [14, 15]. Since the
first chemiresistive gas sensors were built in the early 1960s
using SnO, and ZnO, metal oxide semiconductor materials
have been the leading contender for gas detection. On both
academic and commercial platforms, the use of tin oxide
(Sn0,), zinc oxide (ZnO), cobalt oxide (Co;0,), tungsten
oxide (WO5), and iron oxide (Fe,05) has advanced the field
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of gas sensors. However, as these sensors frequently function
at higher temperatures (200-500 °C), additional micro heat-
ers must be included with the detecting material. Operating
at high temperatures can result in problems like excessive
power consumption, complicated manufacture, baseline
drift, short lifetime, and deteriorating sensor sensitivity over
time [16—19]. Besides this, metal oxide sensors are incapable
of achieving great selectivity and consistent gas response
in humid environments. As a result of the aforementioned
difficulties, the use of sensors based on metal oxide will be
hampered in the upcoming decades. So, lower usage of elec-
tricity, operations at room temperatures, consistent selectiv-
ity, and device structure downsizing are key requirements
for modern gas sensor devices to be integrated into growing
Internet of Things (IoT) systems [20-23].

To light shed on, Metal-organic frameworks (MOFs), a
growing family of highly crystalline coordination polymers
made up of organic linkers and metal-containing nodes, have
a highly organized, adjustable porosity architecture, and
have a large surface area [24]. In 1995, Yaghi and colleagues
published the MOF idea, which has a great porosity of 60%
and a huge surface area of 2900 m%/g. Due to their varied
architectures, more than 20,000 MOFs have been studied so
far in a variety of research areas, including sensors, energy
storage, catalysis, solar cells, and others [25]. Since MOFs
are porous and have a large surface area, it is simple to inter-
act with target gases quickly by adsorption and desorption to
produce high sensitivity. Additionally, due to their selective
gas penetration and adsorption properties, MOFs’ adjustable
structure could make it possible to easily fabricate a variety
of nanomaterials and help to eliminate the selectivity issue
in chemiresistive gas sensors [26-32]. The physicochemi-
cal and structural characteristics of MOFs would be sig-
nificantly altered upon the adsorption of guest molecules,
as well as their selectivity, which may be caused by contact
between both the organic ligand’s functional groups and the
MOFs’ active sites [26, 33-35]. Their capacity to attach to
many analytes through H-bonds, electrostatic interactions
and van der Waals interactions are further intriguing charac-
teristics that make them exceptionally sensitive and selective
materials for many gases [36—39]. In addition to this, MOFs
could be employed as adaptable precursors to create different
kinds of hybrid nanostructures, which demonstrated superior
capabilities when used as gas sensing materials in compari-
son to their equivalents [39, 40]. Figure 1 elicits the number
of publications based on MOFs usage as the gas sensor has
exponentially surged over the period of 10 years.

Numerous reviews based on MOFs-based gas sensors
have been published to date, such as recently Mahmoud and
his group reported an article on MOFs-based sensors for
gas sensing application, but more focus is devoted to the
transduction function and random examples are depicted
[40]. Then, in the year 2019 Zang et al. reported the

@ Springer

25
0 224 228

BMOFs based gas sensors

No. of Publications

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Publications Year

Fig. 1 Hazardous gas and volatile organic compound (VOC) sensors
based on metal-organic frameworks (MOF), and the total number of
papers on MOFs in the previous ten years (Web of Science, accessed
on 18th December 2022)

functionalized MOFs as a gas sensor, however, deep insights
related to chemiresistive gas sensors are lacking, and also
less examples concerning the integration of nanomaterial
observed [41]. Further, in the year 2022, Zhao et al. had
written a review paper that includes a detailed description
of MOF as a gas sensor, but nowhere mentioned the mor-
phological aspects or synthesis methods of the material is
missing and also diverse focus is devoted in terms of sens-
ing types [42]. Thus, to the best of our knowledge, it can be
said that a comprehensive review on this topic is not been
reported yet, hence, our aim in this paper is to narrate a
detailed description related to MOFs embedded nanostruc-
tures as a gas sensor, particularly chemiresistive type for
the detection of various oxidizing (NO,, CO,, SO,, O,, O,
Cl,), reducing (H,S, NH;, CO, NO, CH,, H,), and VOCs-
volatile organic compounds (ethanol, formaldehyde, butanol,
acetone and to a name of few.,). Along with this, this review
also consists of the advanced synthesis techniques to pro-
duce MOFs-nanostructure with adequate properties, which
are required to generate optimum gas sensors. Further, the
in-depth sensing mechanism is explained with the aid of
graphical representation. Lastly, the review ends with the
challenges associated with the MOFs-based gas sensor and
possibly future perspectives. The overview figure of the
paper is illustrated in Fig. 2.

2 General Synthesis Methods

Metal-organic frameworks are made up of positively
charged metal ions contained by organic molecules (MOF).
Metal ions from nodes bind the organic molecule’s arms
together to form a repeating, cage-like structure. MOFs’ pri-
mary fields of application include storage, sensing, cataly-
sis, separation, drug delivery, and purification [43—47]. The
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Fig.2 The overview of chemiresistive MOF-based gas sensors utilized for the detection of various toxic gases and eventually use to prevent

respiratory-related health issues

synthesis of MOFs using traditional procedures and new
methodologies is increasing interest among investigators
because of its broad applications in a variety of sectors.
MOFs can be produced via solvothermal, hydrothermal,
slow diffusion, electrochemical, crystallization, mecha-
nochemical, microwave-assisted synthesis, Sonochemi-
cal synthesis, and other methods depending on their final
structure desired attributes and uses. As-synthesized MOFs
can be used to create nanostructures using techniques such
as hydrothermal, solvothermal, precipitation, co-precipita-
tion, electrospinning, sol—gel process, and so on [48, 49].
Moreover, Fig. 3 elicits the overview of various fabrication
methods utilized to develop MOFs-based nanostructure for
chemiresistive gas sensing applications.

2.1 Hydrothermal and Solvothermal Method

The hydrothermal process, the most popular method of
nanomaterial synthesis, can be used to create a wide range
of morphologies. The autoclave is filled with reactants and
water as a solvent, and the reaction is carried out under
higher process conditions. Solubility in hot water at higher
pressure is required for hydrothermal synthesis. Post-treat-
ments like as annealing, calcination, drying, and so on
are sometimes provided following an autoclave treatment.
Current approaches have significant chemical activity,
improved solubility at higher temperatures and pressures,

size controllability, and other advantages, whereas the
need for an expensive autoclave and safety concerns are
drawbacks [50-54].

One of the potential protocols for the synthesis of metal
organic frameworks is solvothermal. This approach is sim-
ilar to the hydrothermal method, except that an organic
solvent is used instead of water. The solvent is employed
in the Solvothermal process, and the reaction temperature
is often higher than the solvent’s normal boiling point.
A bomb or autoclave-like confined vessel speeds up the
process at high temperatures by boosting solubility. The
precursor may be intractable or less soluble under nor-
mal temperature and pressure conditions, but at its criti-
cal point, solubility increases, and compounds are eas-
ily solubilized. Following the reaction time, nonmaterial
frameworks are cleaned with water or alcohol to eliminate
impurities before being vacuum dried [55, 56]. Variations
in reaction time, temperature, pressure, pH, concentration,
autoclave volume, and other factors alter the size, shape,
structure, and characteristics of nanomaterials, allowing
materials to be simply and effectively designed. Because
it is performed at higher temperatures, the solvothermal
approach addresses the major issue of heavy organic mate-
rial solubility. Another benefit is the quick nucleation of
uncommon compounds. The viscosity of water is lowered
as the temperature rises, favoring the mobilization of a
precursor [57-59]. Both methods have been widely uti-
lized to develop a variety of nanostructures.
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Fig. 3 Pictrorial illustration of various fabrication methods and its morphology to develop MOFs-nanostructure

2.2 Precipitation Method

To prepare the solution, the precipitation method uses
the right solvent to dissolve the precursor. Slow or drop-
wise addition of precipitating chemicals causes nuclea-
tion, followed by growth, and formation of the desired
product precipitates. Impurities are removed by washing
with water or alcohol. The resulting precipitates are dried.
The precipitation method has several advantages, includ-
ing environmental friendliness, low cost, higher purity,
higher yield, normal process conditions, and so on. The
key obstacles encountered during the manufacturing of
nanostructures using this technology are control of particle
size and form, as well as crystallinity [60, 61].

@ Springer

2.3 Electrospinning Method

The most dependable technique for producing MOF nanofib-
ers. This process produces one-dimensional nanomaterials
such as nanofiber, nanorods, nanotubes, and nanowires.
Electrospinning can be used to create a nonwoven web of
nanofibers by providing stronger electrical fields between
the syringe and the collector. The solution or liquid extrudes
from the needle or nozzle, forming a jet that is collected on
a collector (e.g., aluminum or stainless steel foil) to produce
fibers [62]. At a greater temperature, the fibers are calcined
again. The electrospinning process is heavily influenced by
parameters such as viscosity, voltage, pressure, flow veloc-
ity, temperature, and so on. This technology has advantages
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such as cost-effectiveness, manufacturing fibers with a large
surface area, a greater aspect ratio, easy processing, and
good mechanical strength of nanofibers, but it cannot read-
ily construct big volume scaffolds [63, 64].

2.4 Sol-Gel Method

The sol—gel process involves the formation of a colloidal
solution- Sol- through hydrolysis and condensation reac-
tions, to which a catalyst is added to produce the gel. This
method produces material with a regular solid backbone
surrounded by liquid. The removal of the solvent phase in
supercritical drying or evaporative drying makes the struc-
ture more porous in nature. This process is more compat-
ible with other traditional procedures, and the as-synthesized
material can be shaped into a variety of nanostructures [65,
66].

Based on a detailed literature survey, a compiled report
for the above-discussed methods is tabulated in Table 1.

Table 2 elicits the information regarding various
metal-organic framework materials-synthesis routes fol-
lowed by its merits as well as demerits for the material
properties. MOF synthesized by methods like hydrothermal,
precipitation, crystallization, sol-gel, etc. can be utilized as
precursors to synthesize various nanostructures. Usage of
MOF as a precursor furnishes benefits like desired topo-
logical textures, implementation of desired properties in the
structure, reduction in undesired structure collapse during
calcination, etc. Enhanced sensing potential is also observed
for MOF-derived sensors. Figure 4 indicates the fabrication
method appropriate for detecting toxic analytes in a specific
temperature range.

3 General Gas Sensing Mechanism
of MOFs-Based Gas Sensor

In general, the sensing mechanisms and sensing operations
of MOFs are determined by major components such as metal
oxide, 2D materials, carbon nanomaterials, and so on due
to their high compatibility and diversity [90]. Chemiresis-
tive gas sensors using metal oxides are very well known
and they operate based on surface reactions or adsorptions
of gases by the transfer process of electrons and holes [91].
Therefore, when sensing materials interact with the target
gases or adsorbed oxygen, the conductance (or resistance)
change occurs. In the case of MOF-chemiresistors, func-
tional groups and metal nodes act as an adsorption site and
cause conductivity change by a redox reaction. Moreover,
chemiresistive-based sensors provide a simple sensing
mechanism, compatibility with electronic devices, and low-
cost fabrication. The common in-depth mechanism can be
explained as, when the MOF-based sensor is situated in the

air, the electrons inside the materials are being absorbed by
the oxygen molecules. As a result, resistance in the material
increases [92]. Likewise, when any reducing gas approaches
the surface, it makes the bond with oxygen molecules and
trapped electrons are pushed back into the material. Through
this process, the difference created in terms of resistance and
that difference can be calculated as the sensor sensitivity.
The process may be seen in a reverse manner in the case of
the oxidizing gas. Apart from this, the pictorial representa-
tion of the MOF-based gas sensor sensing mechanism can
be observed in Fig. 5 [93, 94]. The generation of oxygen ions
generally depends upon the temperature. The following reac-
tion Egs. 1, 2, 3 includes the number of oxygen ions based
on various temperature ranges:

OZ(gas) t+e O(ads)

(At lower temperature) 1)

1 - - o
7Oy + € © 0 (150 = 300°C) @)

1 _
700 + €7 < O

)(> 300°C) (At higher temperature)
(3

3.1 Significant Parameters in the Gas Sensing
Process

The gas sensing parameters are very significant in order to
understand the proper mechanism of gas sensing devices.
Apart from that, through these parameters observation can
be made, and also comparison can be done in terms of new
sensor results and conventional sensors [95-97].

3.1.1 Sensor Response or Sensitivity (S)

The often-used definitions of S are the following: A ratio of
resistance in the air to that exposure of gas i.e.

S = Ry /Ry, for reducing gas (like NH;, H,S, (CH;),CO)

gas>

wn
I

= Ry, /Ry for oxidizing gas (like NO,, O3, Cly)

A high S value for a specific gas indicates that the mate-
rial is highly sensitive, but that the high S value is dependent
on the high surface area, surface reaction, or adsorption—des-
orption to achieve a higher response.

3.1.2 Response/Recovery Time
The reaction time is the period of time during which, when

exposed to the target gas, the resistance reaches 90% of its
final value from the baseline, and the recovery time is the
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Table 1 Fabrication of sensing elements by different methods

Method MOF Sensing element Major process Shape Target References
condition
Solvothermal fol- [Cd(L1) (DMF)3 CdO 100°C,72h Nanoparticles - [50]
lowed by ultrasoni-
cation
Solvothermal fol- MOF 5 ZnO 140°C,3h Nanocages VOCs- Benzene, [55]
lowed by thermal acetone
decomposition
Co-precipitation fol- ZIF 67 Co30, RT Nanoparticles Acetone [57]
lowed by thermal
decomposition
Hydrothermal fol- Sn/Ni-based MOF  SnO,/NiO 180°C,12h Nano flakes TEA [64]
lowed by calcina-
tion
Solvothermal fol- HKUST CuO/Cu,O0 30 min stirring Cages (Octahedra, Ethanol [67]
lowed by calcina- truncated octahe-
tion dra, cube)
Simple precipitation ZIF 67 Co30, RT,6h Nanocubes Ethanol [68]
Hydrothermal fol- ~ MIL-53 Fe,04 140°C 20 h Nano octahedron Ethyl acetate [69]
lowed by anneal- (PrFeO5/0-Fe, 05,
ing
Hydrothermal a-Fe,05 120°C, 20 h Nano-Ellipsoids H,S [70]
Precipitation fol- ZIF 8 and ZIF 67 ZnO/Co50, RT Nano-polyhedrons  Acetone [71]
lowed by calcina-
tion
Hydrothermal fol- Sn/Ni-based MOF NiO-SnO, 150 °C, 24 h for Sn  Nanoplates NO, [72]
lowed by anneal- and 160 C, 6 h for
ing nickel
Hydrothermal fol- NiO based MOF  Fe/NiO 160°C, 12h Nest like Nanosheet TEA [73]
lowed by anneal-
ing
Precipitation fol- ZIF 67 CoSe,@NC/ MWC- RT Nanotubes NH, [74]
lowed by anneal- NTs
ing
Solvothermal ZIF 8 ZIF-8/ Pd/ZnO 100°C, 24 h Nanowire H, [75]
Hydrothermal and MIL-125 TiO, 150°C,240h Nanosphere, nano-  Humidity [76]
solvothermal flowers
followed by calci-
nation
Co-precipitation Fe based MOF Fe,0; 80°C,12h Nanoparticles n-Butanol [77]
Hydrothermal MIL 88A a-Fe,0; 100°C, 12h Nanorods Acetone [78]
followed by ther-
molysis
Precipitation Cu-MOF Au-SH-SiO,@Cu-  RT Nano-particles Hydrazine [79]
MOF
Precipitation ZIF 8 Zn doped SnO, RT for precipita- Nanofiber Formaldehyde [80]
followed by elec- tion and 15 kV for
trospinning and spinning
calcination
Precipitation ZIF 8 PdO@Zn0O-Sn0O, 16 kV for electro- Nanotubes and Acetone [81]
followed by Elec- spinning nanofibers
trospinning and
calcination
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Fig.4 Based on literature the pictorial illustration depicts the MOF-based material used to detect toxic gases synthesized by which specific

method at a specific temperature [50, 55, 57, 64, 67-81]
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Fig.5 a Resistance change phenomenon while exposed to analytes;
b Alteration in potential barrier in the atmosphere of air; ¢ Reaction
mechanism and change in potential barrier while exposed to oxidiz-

period of time during which, when exposed to clean air, the
sensor resistance has reached up to 10% of the saturation
value. So that it may be used again, a good sensor should
have a quick recovery and response time.
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ing gas, d Reaction mechanism and change in potential barrier while
exposed to reducing gas [94]

3.1.3 Selectivity

The most critical factor is selectivity because numerous
interfering gases can harm the sensor device and shorten its
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life. A sensor’s selectivity or specificity toward an analyzing
gas is represented in terms of dimension, which compares
the concentration of the matching target gas that produces
the same sensor signal. Surface modification with noble
metals or doping can improve the sensor’s selectivity even
further.

3.1.4 Long-Term Stability

The sensor’s long-term stability displays its capacity to pre-
serve its qualities when operated continuously for lengthy
periods of time in a hostile environment. Good sensors
should last for several years with no drift in any of the
above-mentioned metrics. All of these factors are affected by
the sensor material, gas interaction, operating circumstances,
and so forth. To regulate these characteristics, various new
technical concepts and unique materials have been devel-
oped. Chemiresistive sensors have the following character-
istics: a good sensor response, a short reaction time, quick
recovery, excellent selectivity, accuracy, and a low cost.

3.2 Factors Affecting Sensing Performance

Improved chemical sensing performance with regards to
selectivity and sensitivity is in great demand, and innova-
tive materials with high sensitivity and low limit of detection
always pique the interest of researchers. This section lists
the primary factors for improving the gas sensitivity and
selectivity of these materials [98—100].

3.2.1 Morphology, Size, and Shape of the Materials

Chemiresistive sensors can be classified into three types
based on their receptor, transducer, and usefulness. The
receptor function is concerned with the ability of the sur-
face to interact with the target gas. The transducer function
refers to the transducer’s ability to convert the signal created
by the chemical interaction of the surface (work function
change) into an electrical signal. The utility factor affects
how effectively surface and bulk oxide granules are used
for the detected response. The transducer function is highly
dependent on the microstructure of the element, notably the
grain size (D) and the depth of the surface space-charge layer
(L). The sensor’s responsiveness is substantially increased
when the grain size D is 2 L. It has been established that
increasing the surface area to volume ratio by declining par-
ticle size results in an exponential rise in sensor response
[101].

3.2.2 Chemical Composition

The chemical composition is critical for understanding
sensory properties as well as material qualities such as

adsorption ability, catalytic activity, sensitivity, stability,
and so on. Composite materials, for example, give higher
catalytic activity on the surface and a richer redox reaction
to attain high sensitivity as compared to pristine materials
[5, 102-106].

3.2.3 Surface Modification

Using a noble metal or oxide materials to modify the sur-
face is a well-known method for improving selectivity. Gold,
platinum, palladium, and other noble metals have all been
utilized thus far to increase the selectivity of gas sensors. It
is assumed that when catalytic additives, such as Pt or Pd
doped Tin Oxide (SnO,) material, are exposed to hydrogen,
hydrocarbons, or carbon monoxide, the metal surface first
activates the reduction of the gas molecules, creating the
active surface species. The active pores on the surface react
to a spillover process with the charged oxygen molecules
adsorbed on SnO,, resulting in improved gas sensing proper-
ties. [30, 46, 107, 108].

3.2.4 Operating Temperature

The operating temperature is critical since the sensor’s
response is temperature-dependent due to the adsorp-
tion—desorption process. The various oxygen species are first
adsorbed on the surface, and then the adsorption, desorp-
tion, and diffusion process occur, depending on the operating
temperature. As a result, temperature modulation produces
response patterns that are unique to the species in the gas
mixture. This enables multivariate data from any sensor to
be measured [109].

4 Gas Sensing Characteristics

We all know that air pollution is a major concern these days.
The main causes of pollution and the deterioration of the
atmosphere are toxic gases and volatile organic compounds
(VOCs). Nitrogen dioxide (NO,), sulphur dioxide (SO,),
hydrogen sulphide (H,S), ammonia (NH;), and other well-
known hazardous gases are examples of poisonous gases,
while volatile organic compounds (VOCs) include etha-
nol, acetone, formaldehyde, n-butanol, acetaldehyde, and
methanol [110, 111]. Several methods, including mass spec-
trometers, gas chromatographs, flame ionization detectors,
and Fourier transform infrared spectrometers, have been
employed to identify various hazardous gases and VOCs.
But the problems associated with these devices are they are
bulky and expensive and a skilled operator is required for
handling this equipment which leads to the Evaluation and
utility of smart sensors for gas detection [112, 113]. Over
the past years, there has been an inclination toward nano gas

@ Springer
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sensors that can detect and discriminate various analytes.
These nanosensors were designed and fabricated through
the measurements of physical quantities such as resistance,
capacitance, fluorescence, absorbance, luminescence, refrac-
tive index, etc. There are many sectors where these sen-
sors are becoming inevitable such as the chemical industry,
environmental monitoring, textile industry, etc. Except for
sensing gases, applications of gas sensors include detection
of vapors of volatile chemicals such as methanol, benzene,
etc., food smell, health care, fragrances, etc. [114-116].

Toxic gases and VOCs may cause harm to the life of
living organisms even at very low concentrations. There is
a limit to the quantity for inhalation of various gases and
beyond that limit, they are dangerous for human health,
which is called a threshold limit value (TLV). For example,
TLV of Nitrogen dioxide (NO,) an oxidizing gas is reported
to be 3 ppm, which is regarded as the maximum amount of
NO,allowed for repeated exposure over the course of an 8-h
workday. 1,2 Exceeding this limit may culminate in adverse
health effects such as irritation to the eye, fatigue, nausea
and lung damage to lungs, etc. [117].In addition, Table 3
shows the limitations of hazardous gases in the environment
as well as their harmful effect on human health. Figure 6
displays the different analytes as well as their origins that
need to be found.

4.1 Oxidizing Gas

To begin with examples, exemplary SWCNTs functionalized
PdO-Co;0, HNCs nanosensors have been reported by Choi
et. al which have NO,measurement capacity at 100 °C with
optimum sensitivity (S) of 44.11% at 20 ppm and a lower
measurement limit of 1 ppm [118].

Similarly, Yang et al. [119]have reported In,Ozhollow
microtubes/MoS, nanoparticles produced by a layer-by-
layer self-assembly process for NO, sensing. SEM and TEM
images of nanostructures presented in Fig. 6a and b, prove
the systemized preparation of sensing material. The authors
have compared the performance of the In,0; sensor with the
In,0;/MoS, film sensor. This can be explained well with a
optimum response, optimum linearity, promising reproduc-
ibility, and astonishing selectivity as seen in Fig. 7c—f. A
response value of 371.9 toward 100 ppm NO, was observed
for the In,05/MoS, composite sensor, which is much higher
in comparison to individual In,O; and MoS, sensors Fig. 7f.
The increased specific surface area and development of n—n
heterojunction at the interface between In,O; hollow micro-
tubes and MoS, nanoparticles can be used to explain why
the constructed sensor has improved NO2-sensing capabili-
ties [119]. Some other such results have been summarized
in Table 4.

The burning of coal, fuel oil, and other sulfur-contain-
ing materials produces sulphur dioxide (SO,), one of the

@ Springer

primary pollutants gases in the environment [120, 121]. It
is quite concerning that SO2 gas contributes to environ-
mental contamination like acid rain, which poses a major
threat to both human life and economic productivity [122,
123]. Hence, it is domineering to fabricate SO, sensors with
rapid and precise detection. Zhang et al. [124] synthesized
a MOFs-based gas sensor of TiO,/rGO nanocomposites for
the detection of SO, gas as shown in Fig. 8a experimental
platform. TiO,/rGO nanocomposites sensors are fabricated
by the method of layer-by-layer self-assembly on an epoxy
substrate [124]. Figure 8b illustrates the schematic of MOFs
TiO,/rGO sensor. The morphological structure of TiO,/rGO
is identified by SEM analysis as elicited in Fig. 8c and d.
The spherical-like shape and 500 nm to 1 pm size of TiO,
are tightly contacted with rGO. Figure 8e and Fig. 8f have
represented the TEM image of the TiO,/rGO and TiO,,
respectively. The pure TiO, and TiO,/rGO are exposed
to the different concentrations range 0.25-20 ppm of SO,
gas sensor at room temperatures as shown in Fig. 8g, and
obtained response values between 1.31 to 2.06. The MOFs
TiO,/rGO was also studied for the best selectivity toward
different gases, in which the TiO,/rGO have the highest
response for the SO, gas as shown in Fig. 8h. Moreover,
good repeatability was observed for the SO, sensing at 1,
3, and 5 ppm by TiO,/rGO sensors (Fig. 8i). The SO, gas
detection sensing mechanism is shown in Fig. 8j and k, in air
and SO, atmosphere. when the sensor is exposed to an SO,
atmosphere O~ ion adsorbed on the surface of MOFs TiO,
interacts with SO, (reducing gas), and generated unstable
S0O;, as shown in Eqgs. 4, 5, 6 sensing mechanism [124].
Zhang and his group has reported UiO-66-NH, MOFs/ pol-
yvinylidenefluoride (PVDF) nanomaterials as a sensor for
SO, detections at room temperature for 50 ppm concentra-
tions with a very good response 88.7% [125].

Osas) = Olads) + Oaas) )
Opayy = Ofgyy + h* S
SO, + Oy, +h" — SO, ©6)

Recently, SnO, (tin oxide) are most widely explored
for the gas as a sensor due to its semiconducting nature
as well as having a surface for redox-active in the attend-
ance of reducing and oxidizing gasses [126, 127]. For CO
detection, SnO, based sensors are commercialized [128,
129]. However, CO, detection is still challenged because it
required a high operating temperature (> 300 °C) and suf-
fers from low sensitivity and larger response time by SnO,
based sensors. Dmello et al. [130] fabricated ZIF-67 MOFs
incorporated with SnO, for the better enhancement of
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Fig.6 Differentiate between the different types of harmful gases and their sources of generation [6, 93]

sensor response towards the CO, gas, as shown in Fig. 9a
by precipitation method for SnO, nanoparticle and ZIF-67
grow over SnO, under the solutions of Co(NOj3),-6H,0
and PVP. The SEM image of the SnO, and SnO,@ZIF-
67 are presented in Fig. 9b and Fig. 9c, respectively. The
50% CO, detection by SnO, and SnO, @ZIF-67 is shown
in Fig. 9f and Fig. 9g respectively, in which the perfor-
mance of the SnO,@ZIF-67 in response 80.6 +2.2% was
observed at 205 °C temperature. Whereas for pure SnO, it
is 8.8 +2.8%. The CO, detection with different concentra-
tions range 500 to 5000 ppm is elicited in Fig. Oh by sensor
materials SnO, and SnO, @ZIF-67. The MOFs-based sen-
sor of SnO, also has less response and recovery times than
pure SnO, as depicted in Fig. 9i. Response time surged
by ~ 10 s while recovery time decreased 96 s to 25 s for
5000 ppm of CO, [130].

@ Springer

Ozone (03), is a strong oxidizing gas employed in a vari-
ety of essential industries, including water treatment, food
processing, odour control, and medical disinfection [131,
132]. Aside from that, ozone is an essential indicator of air
pollution, and ozone levels exceeding 120 ppb are harmful to
human health [133]. Currently, for the detection of ozone gas
MOFs based on 1 wt% Ag/In,0; [134], a-Ag, WO, nanorods
[135], and TiO,-WO5; composite [136] are reported, but
these sensors are not efficient in terms of low detection of
concentrations, required high operating temperature, insuf-
ficient response, and high response-recovery time. Zhang
et al. reported [137], that a gas sensor for the ozone detection
based on MOFs In,0; hollow microtubes decorated with
ZnO nanoparticles, which is In,O; prepared by the two steps
facile solvothermal method than followed by calcination of
the ZnO particle as shown in Fig. 10a. A series of In,O5/



Journal of Inorganic and Organometallic Polymers and Materials (2023) 33:1453-1494 1467
©) 7
——5ppm —— 10 ppm —— 100 ppm —~ . Il 10 ppm NO2
& 104 936 [l 10 ppm CH20
E ] I 10 ppm NH3
5 8- I 10 ppm C2HeO
< J I 10 ppm C3HeO
& .. I 10 ppm CeHe
% | I 10 ppm H2S
g 4
g g i 2.57
& 2-
Q 4
T ¥ T v T ¥ T L T ¥ T ¥ T M 0 -1
0O S5 10 15 20 25 30
Time (day)
—o—In203/MoS2 100 (D 40 —o—In203/MoS2
—o—In203 ppm —o— M0
——MoS:2 — 1
. 830+
2 50 S
%tv ppm 820
E. =]
= o) 2 2 1
950"l k0" 00 20 10 ppm g 104
01 02505 1 5 ppm x
m ppm ppm ppm ppm 0 -
S B T LA . S R S L R BN R |
1000 2000 3000 4000 0 100'200 300 400 500 600
Time (s) Time (s)

Fig.7 a Images of In203/MoS2 taken with a scanning electron
microscope (SEM); b Images taken with a transmission electron
microscope (TEM); ¢ Long-term stability of the In,03/MoS, compos-
ite sensor after exposure to 5, 10, and 100 ppm NO,; d Responses

ZnO composites prepared with various ratios of In:Zn in
1:1, 3:1, and 5:1 marked names as 1In:1Zn, 3In:1Zn, and
5In:1Zn, correspondingly. In which 3In:1Zn are the most
accurate sensor found for ozone gas detections. The morpho-
logical structure of The SEM and TEM images are presented
in Fig. 10. That indicates the clear decoration of ZnO NPs
onto the In,O; hollow microtubes. The 14.4 response was
observed toward the O; at concentrations of 500 ppb and
26.12 response at 1 ppm concentrations of O; (Fig. 10e).
Moreover, the response-recovery time is 21/42 s found for
500 ppb ozone gas as demonstrated in Fig. 10f [137].
Chlorine gas (Cl,) is essential to human survival as a
pungent and harmful gas. Like drinking water and swim-
ming pools are sanitized with or include chlorine. When Cl,
inhalation toxicity exceeds 30 ppm, it might cause cough
and chest pain immediately [138]. However, Cl, sensor
research is rare in comparison with other gas sensors and is
mostly focused on semiconductor metal oxides [139-142].
For instance, nanoparticles of ZnO had been produced
using a solid-state method and the gas reaction at 200 °C
was only 4 to 10 ppm Cl, [143]. At ambient temperature,
a CdSnO; sensor with a high sensitivity to Cl, (1338.9 to
5 ppm) was created using a hydrothermal technique. How-
ever, the recovery time is too long to be useful in practice
[144]. The sensitivity of In,O; microstructures produced

of the In,03/MoS, composite and individual In,O; sensor toward
various concentrations of NO, at 25 °C; e Selectivity of the [119].
Reprinted with permission from Ref. (Yang et al.,2019), Copyright
2019, Elsevier

through the hydrothermal approach at a higher working
temperature (300 °C) was 48.5 toward 10 ppm Cl, [145].
As aresult, the growth of a Cl, gas sensor with outstanding
gas performance is essential. Therefore, recently Ma et al.
[146] developed MOFs-based nanostructure of In,O; PHRs
gas sensor for the detection of Cl, gas with excellent sens-
ing response and highly selective sensor. The highly porous
and hexagonal hollow structure of the In,O; PHRs (porous
hollow rods) is prepared from the MOFs precursor MIL-68
(In) as shown in Fig. 11a. Firstly, In-MOF (MIL-68 (In))
was manufactured by the facile hydrothermal process with
a hexagonal shape. Then, In,0; PHRs obtained after the
calcination of MIL-68 (In) in air. The prepared In,O; PHRs
of the SEM image illustrated the smooth surface and hex-
agonal shape of the precursor MIL-68 (In) as depicted in
Fig. 11b. The 10 to 60 pm length and 2 pm diameter of
MIL-68 (In) with In,0; PHRs microstructure is clear vis-
ibility founded. In addition to that, The TEM and HRTEM
analysis of In,O; PHRs exhibits the lattice fringers as shown
in Fig. 11c at lattice spacing of 0.270 and 0.292 nm on the
plane of In,05 (321) and (222) corresponding [146]. The
gas sensing mechanism for the oxidizing gas by prepared
In,0; PHRs schematic image is illustrated in Fig. 11d. The
Sensor response curve of In,O; PHRs towards the different
gases of 10 ppm Cl,, NO,, and 100 ppm methanol, acetone,

@ Springer
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Fig.8 a SO, sensing experiment platform, b schematic of the MOFs-
derived TiO,/rGO Sensor, SEM pictures of ¢ MOFs TiO,, d MOFs
TiO,/rGO, ef MOFs TiO,/fGO TEM micrograph, g TiO,, rGO,
and MOFs TiO,/rGO sensor responses at varied SO, concentrations
h MOFs TiO,/rGO selectivity for 1 ppm of different gas species, i

ammonia, ethanol, and formaldehyde are experiments car-
ried out at 160 °C as demonstrated in Fig. 11f. This sensor
is highly selective for oxidizing gas as compared to reducing

.\():

SO»

Repeatability for SO, concentrations of 1, 3, and 5 ppm Schematic
of the MOFs TiO,/rGO sensor’s sensing mechanism j in air and k in

SO, gas [124]. Reprinted with permission from Ref. (Zhang group),
Copyright 2019, Springers

gas. Moreover, Fig. 11g and h elicit the response of the In,0;
PHRs for 10 ppm Cl, with different operating temperatures,
with 160 °C to be found a most optimum temperature with
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Fig.9 a Schematic depiction of SnO,@ZIF-67 formation for CO,
detections; b, ¢ SEM pictures of SnO, and MOFs SnO,@ZIF-67
materials, respectively; d, e SEM images of SnO, and SnO,@ZIF-
67 materials, respectively; f, g SnO2 and SnO2@ZIF-67 materials,
respectively; h Sensor SnO2 and SnO,@ZIF-67 response for differ-

the response of 2256. In addition, fast response/recovery
for 10 ppm Cl, at 160 °C Temperature obtained 38/13 s,
respectively [146].

4.2 Reducing Gas

Chemiresistive gas sensors currently face challenges in the
form of parts per billion level sensitivity, long-term stability,
and accurate cross selectivity. MOF-based chemiresistive
sensors have proved promising to overcome these obstacles
owing to their very high surface areas [33]. One of the first
MOF-based chemiresistive sensors was studied by Chen’s
group, where ZIF-67 (Co(mim),; mim =2-methylimida-
zolate) was used to sense formaldehyde (a reducing gas) of
about 5 ppm concentration under an optimal temperature of
operation is 150 °C. The MOF-based sensor unveiled high
response and good selectivity [147]. They created a formal-
dehyde sensor called the Co-based zeolite imidazole frame-
work (ZIF-67), which is made of Co ions and methylimida-
zole linkers (Fig. 12a). Be aware that sick building syndrome
can result from low formaldehyde ppm levels [148]. The
sensors had been worked at 150 °C to transduce the sensing
signals since ZIF-67’s electronic band gap (1.98 eV) and
low electron orbital overlap prevent it from being conductive

@ Springer
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ent CO, concentrations ranging from 500 to 5000 ppm; i Comparison
of SnO, and SnO,@ZIF-67 sensors for (percent response, response
time, and recovery time of the 5000 ppm CO, concentration) [130].
Reprinted with permission from Ref. (Dmello et al.), Copyright 2018,
Wiley Online Library

at ambient temperature [149]. Importantly, the sensors dis-
played a detectable response of 1.8 and a detection limit of
5 ppm (Fig. 12b), which was explained by the enormous sur-
face area (1800 m%/g) of ZIF-67. Additionally, up to 70% rel-
ative humidity (RH), the sensor performance was independ-
ent. The sensing abilities of cobaltimidazole frameworks
(Co[(IM),]n) produced by combining imidazole and cobalt
(IT) acetate were also studied by the same group (Fig. 12c)
[150]. At an operating temperature of 75 °C, the Co[(IM),],,
demonstrated selective sensing characteristics toward tri-
methylamine (R,,/R,;,=2 to 2 ppm) (Fig. 12d). Similar to
formaldehyde sensors built on the ZIF-67 standard, the sen-
sors showed a steady response across a variety of humid-
ity levels. Zr4(0),(OH),(1,4-benzenedicarboxylate-NH,),,
NH,-UiO-66, an amine-functionalized Zr-based MOF, also
shown chemiresistive sensing capabilities to sulphur dioxide
(SO,) at 150 °C in an Ar environment (Fig. 12e) [151].The
resistance of NH,-UiO-66 (band gap=2.75 eV) [152] fol-
lowing SO, adsorption decreases (jJDR/R0j=21.6 percent to
10 ppm of SO,) due to a charge transfer coupling caused by
the high acidity of SO, (Fig. 12f) [33].

MOF-based metal-oxide-based chemiresistive analyte
sensors have gathered great attention in recent years for
reducing gases like Acetone, Ethanol, sulfur dioxide, carbon
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Fig. 10 a A schematic showing how In,O; hollow microtubes and
In,0;,Zn0O composite is made; b SEM images of the 3:1 In:Zn pro-
duced In,0,/ZnO composite; ¢ TEM images of the composite; d
HRTEM and SAED (inset) images of the composite; e Response-
recovery curves of In,O; and 3In:1Zn sensor toward 500 ppb ozone

monoxide, hydrogen, hydrogen sulfide, ammonia, etc. Since
MOFs have been reported to be unstable at high tempera-
tures, metal oxide nanostructures derived from MOFs, which
retain the unique properties of MOFs (like high porosity),
have proved to be exceptional in improving the gas sensing
recital of the conventional metal oxide-based sensors [153,
154].

Yuan and group have synthesized oxygen vacancies rich
ZnO nanosheet sensors which were prepared by chip-level
pyrolysis of zeolitic imidazolate framework. The sensors
displayed ppb level carbon monoxide sensing along with
other VOC:s like 1,3 butadiene, toluene, and tetrachloroethyl-
ene. The presence of oxygen vacancies facilitated increased
chemisorption of oxygen species which in turn led to surged

T T 0 T T
0 100 200 300 O 100 200 300
Time (s) CO (10 ppm)

gas; f Response-recovery curves of In,O; and 3In:1Zn sensor toward
different interfering gases at 150 °C; g Selectivity of the 3In:1Zn sen-
sor against different interfering gases at 60-210 °C; [137]. Reprinted
with permission from Ref. (Zhang et al.), Copyright 2019, Elsevier

gas sensing properties for the detection of 447 ppb of CO
and 100 ppb of VOCs at 300 °C. The curve of the dynamic
response for both variable CO and VOC concentrations can
be seen in Fig. 13b and c [155].

Recently, MOF-derived metal oxide-based sensors have
also been accompanied by Metal oxide semiconductors
(MOS) coated MOFs, also represented as MOS @MOFs.
These involve putting a MOF on the MOS surface with pores
smaller than the interfering gas. This control of the pore size
provides special size-selective gas sensing properties [154].
For liquefied petroleum gas (LPG) sensing, many studies
show the effectiveness of metal oxides-based sensors [156,
157]. However, MOF-derived metal oxides might offer those
extra benefits of high porosity and surface area which may

@ Springer
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Fig. 11 a Schematic illustration for the preparation of In,O; PHRs; b
SEM images of In,0; PHRs; ¢ TEM & HRTEM image of the In,O;
PHRs; d, e The illustration of the sensing mechanism of the In,O;
PHRs sensor; f Response curve of the In,O; PHRs for various gases
at 160 °C temperature; g, h Response of the In,O; PHRs for the

aid in ppb level detection thereby proving to be promising
from a safety point of view.

Recently Khudiar et. al. have claimed regulated sensing
activity of ZnO by the use of the zeolithicimodazole-based
metal-organic framework family (ZIF-8). The author com-
pared the sensing performance of ZnO for hydrogen and
benzene gases with or without ZIF-8. It was claimed that
the ZIF-8 coating functions as a molecular sieve, preventing
the bigger benzene molecules from diffusing through the
pores to the ZnO surface in comparison to the smaller H2
molecules [158]. Lv et al. [159], reported the most highly

@ Springer

Time (s)

10 ppm Cl, operating temperature ranging 100-260 °C; i illustrated
the response and recovery time curve of In,O; PHRs for 10 ppm Cl,
gas [146]. Reprinted with permission from Ref. (Ma et al.), Copyright
2020, Elsevier

selective gas ZnO @ZIF-8 MOFs-based gas sensor toward
the H,. In which, nanosize ZnO particles are prepared by
the precipitation method. Then over the ZnO NPs, ZnO
NPs’ surface was where the ZIF-8 film was produced by the
method of hydrothermal up to 20 h. The thickness of the film
core—shell structure cannot form sufficient within 4 h but
after 20 h, the NIF-8 form 130 nm thick film over the ZnO
nanoparticles as shown in Fig. 14a, and the morphological
SEM and TEM images are shown In Fig. 14b and c. The 20-
ZnO@ZIF-8 sensor for the H, gas best response is obtained
as demonstrated in Fig. 14e and f.
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A kind of colourless, toxic gas called hydrogen sulphide
(H,S) is created when organic matter containing sulphur
breaks down when sulphate is reduced by microorgan-
isms, when crude oil is refined, and during other processes
[160-162]. Olfactory hyposensitization prevents humans
from recognizing harmful H,S concentrations in time,
despite the fact that H,S emits the unpleasant smell of “rot-
ten eggs”. While this is happening, it has a deleterious effect
on the neurological system and can cause unconsciousness
[163, 164]. As aresult of the high risk, the detection of H,S
becomes important for both industrial production and daily
life because of the high risk. Zhang et al. [165], synthesized
MOFs based y-Fe,0;/rGO sensor for the detection of H,S
gas at room temperature with great response highly selective
toward H,S gas. The y-Fe,O;/sensor was fabricated from
MIL-88/rGO, in which the MIL-88 was synthesized by sol-
vothermal method [166] followed by calculations under the
Ar atmosphere to yield y-Fe,0,/rGO.The different weights
of rGO 10, 20, and 30 mg were utilized to form different
composites and designated as y-Fe,05/rGO-10, y-Fe,05/
rGO-20, and y-Fe,0,/rGO-30 as shown in Fig. 15a. The
most excellent sensor y-Fe,0,/rGO-20 noted against H,S
gas at room temperature. The morphological SEM image of
v-Fe,05/rGO-20 in Fig. 15b shows the size of the y-Fe,0;
octahedron. Moreover, the TEM analysis observed for
y-Fe,05/rGO-20 internal details as shown in Fig. 15¢ uni-
form y-Fe,O; octahedrons distributed on the almost transpar-
ent rGO. The great sensitivity toward H,S gas by y-Fe,05/
rGO composites was observed (R,;/R,,,=520.73, 97 ppm)

gas

L L L
300 400 500
Concentration / ppm

10 ppm NO,
10 ppm CO,

Response Time
Response %

2-50 ppm) at 75 °C; e The schematic illustration of NH,-UiO-66; and
f NH,-UiO-66’s gas-sensing properties for 10 ppm SO,, NO,, and
CO, at 150 °C [33, 147]. Reprinted with permission from Ref. (Koo et
al.), Copyright 2019, Elsevier

as demonstrated in Fig. 15d as well as the minimum detec-
tion limit is 2.91 ppm (R,;/R,,;=1.47). In addition to that,
the y-Fe,05/rGO-20 indicatesa high response (S =520.73)
to 97 ppm H,S and a small response to other gases HCHO,
SO,, NO, CHCl;, and NH; as elicited in Fig. 15f. The sens-
ing mechanism for the H,S gas by the y-Fe,05/rGO is illus-
trated in Fig. 15g [165]. Another sensor was also reported
for the H,S detection, but cannot sufficiently give a high
response, required high operating temperature, and less
response [166—171].

One of the main air pollutants is ammonia (NH;) [172].
Ammonia gas at a particular concentration can harm the res-
piratory system and lead to tightness in the chest and breath-
ing problems. It is crucial to set up a high-performance sensor
in order to detect NH; concentrations accurately and quickly
[173-175]. Recent research demonstrates that nano-ZnO is a
highly effective material for making gas sensors since it has
excellent gas sensitivity for NH; [176]. The drawbacks of the
pure ZnO gas sensor are excessive energy use and weak reac-
tion sensitivity [177]. In order to detect ethanol gas, Ren devel-
oped ZnO @ZIF-8 core—shell microspheres, and the sensor’s
response was significantly greater than that of pure hollow ZnO
microspheres [178]. ZIF-8/MWCNT/AgNPs nanocomposite
was developed by Jafari et al. for the detection of VOCs gas,
and the sensor has shown a high sensing response and a quick
reaction/recovery time [179]. Wang et al. [180] reported MOFs-
based high-performance gas sensors at room temperature for
the NH;(ammonia) detection. The sensor was fabricated by
Metal organic framework-based Zinc oxide(ZnO)/reduced

@ Springer
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Fig. 13 a After being exposed
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Sons (Color figure online)

()

graphene oxide (rGO). By using the layered self-assembly
method, a ZIF8-ZnO/rGO multilayer nanocomposite film was
created. The cubic-shaped SEM image of the ZIF8-ZnO/rGO
composites is shown in Fig. 16a. Additionally, the visible lat-
tice spacing at 0.248 nm in the crystal plane of ZIF8-ZnO/rGO
and the TEM study of the microstructure, as shown in Fig. 16b,
are used to further analyze the microstructure. The ZIF8-ZnO/
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rGO sensor’s technique for detecting NH; gas is depicted in
Fig. 16d. Airborne oxygen that is already present is adsorbently
converted to O, on the sensor’s surface (ads). Then, as shown
in the reaction Egs. 7 and 8, O,(ads) capture the electrons from
the surface of ZIF8-ZnO and become O™,(ads) and increase the
resistance in the composites film. The ZIF8-ZnO/rGO film is
exposed to NH;, and the adsorbed O™ ,(ads) starts to react with
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Fig. 14 a Schematic diagram of hydrothermal synthesis; b Graphical
representation of the ZnO@ZIF-8 composite with incomplete coat-
ing; ¢ SEM of ZnO@ZIF-8 gas sensors after 20 h; d TEM image of

NH; as shown in Formula 9. Moreover, the highly ultra-thin
drop present in the rGO nanosheets is essential to the improve-
ment of the specific surface area of the ZIF8-ZnO/rGO sensor,
due to its high surface area it greatly allows to adsorb NH,
molecule and rGO also improve the conductivity of the sensor,
which significantly allows the sensor’s electrical conduction
following the adsorption of ammonia molecules [181]. The

100 nm

—=—4h
*—8h
4—12h

Response coefficient

150 170 190 210 230

Temperature(°C)

250 270 290

20-ZnO@ZIF-8; e, f The responses and response coefficients of the
gas 1000 ppm H, sensor [159]

rGO, ZIF8-ZnO, and ZIF8-ZnO/rGO were measured over a
range of 0.5-30 ppm of NH; as demonstrated in Fig. 16e. The
highest response was observed by the ZIF8-ZnO/rGO (R,;/
R,,,=6.46, 30 ppm) for the NH; gas. However, the recovery
and response time of the sensor are illustrated in Fig. 16f for
the 10 ppm NH; detection by three different sensors, among
ZIF8-ZnO/rGO to be found response/recovery time 50 s/ 25 s,
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Fig.16 a SEM images of ZIF8-ZnO/rGO composites; b A TEM
image of ZIF8-ZnO/rGO; ¢ HRTEM images of ZIF8-ZnO/rGO; d
A schematic showing the ZIF8-ZnO/rGO sensor’s sensing process
in both air and NH3; e The responses of ZIF§-ZnO, rGO, and ZIF8§-
ZnO/rGO sensors to various concentrations of NH3; f The responses

respectively. In addition, the outcome shows the ZIF8-ZnO/
rGO sensor to NH; has the optimum response from the differ-
ent kinds of gases (NO,, CO, CH;COOH, CH,, and SO,) as
depicted in Fig. 16g [180].

OZ(gas) - O(ads) (7)
OZ(gas) —e + O;(ads) (8)

4NHj(q0) + 5054 = 4NO(g) + 6H Oy + 5¢7  (9)
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and recovery times of ZIF8-ZnO, rGO, and ZIF8-ZnO/rGO sensors to
10 ppm NH3; and g The selectivity of the ZIF8-ZnO/rGO film sensor
for 10 ppm of various gas species [180]. Reprinted with permission
from Ref. (Wang et al.), Copyright 2020, Springer Nature

4.3 Volatile Organic Compounds (VOCs)

Volatile Organic Compounds (VOCs) easily volatilize in the
atmosphere under normal conditions. A variety of chemi-
cals like benzene, methanol, ethylene glycol, n-butanol,
formaldehyde, methylene chloride, ethane, tetrachloroeth-
ylene, ethylene, toluene, xylene, etc. are listed as VOCs.
Few VOCs are quite hazardous while few are less toxic.
VOC:s are emitted through various sources like refineries,
motor vehicles, chemical manufacturing facilities, small or
large-scale factories, and natural sources. All these materials
cause some adverse effects on human life by causing acute
or chronic health effects and they also affect the environment
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and contribute to various issues like ozone layer depletion,
and climate change. It is preferable to have a minimum con-
centration of VOCs below which are less harmful. One of
the well-known gases that are particularly desirable to detect
is VOCs.It is also preferable to detect these compounds due
to stringent environmental laws and regulations. The concen-
tration of VOCs can be measured and monitored by sensing
them. For sensing VOCs, various sensors can be used but the
recent interest is MOF-based nano-sensor which are flexible,
selective, porous, accurate, and have a faster response time.
Zinc, iron, cobalt, Nickel, and Sn-based MOF nanomaterials
can be used as effective sensors. MOFs-derived nanostruc-
tured sensors for the VOCs gases detection are summarized
in Table 5.

Ternary o-Fe,03-ZnO-Au nanocomposites for n Butanol
and acetone detection were developed by Kaneti et al. [191].
2-5 nm-sized Au particles were decorated on the surface of
Fe,05 and ZnO which contributed to improving the response
by 2-6.5 times that of the single or binary composite of
ZnO, Au, or Fe,0;. Due to the presence of Au particles
on the surface, a quantity of active oxygen was increased
via catalytic dissociation of molecular oxygen which in turn
caused a high degree of oxygen depletion [191].

Acetone is a colourless and commonly used organic sol-
vent in labs and industrial applications [192]. Humans are
minimally irritated by short-term contact with acetone at
300-500 ppm for about 5 min, while long-term contact with
high concentrations of acetone causes dizziness, fatigue,
weakness of muscular, as well kidney and nerve damage
[193, 194].To monitor the industrial environment and human
health, high-performance acetone gas sensors are needed.
Hence, for the detection of acetone gas, Zhang [71] syn-
thesized MOFs derived ZnO/Co;0, hallow with excellent
response, less response/recovery time, high selectivity for
acetone, and great repeatability. The ZnO/Co;0, nanopoly-
hedrons were fabricated via utilizing the ZIF-8/ZIF-67 mix-
ture as a MOFs precursor to form a precipitated ZnO/Co;0,
film sensor as shown in the SEM image in Fig. 17a. As well
as the material is also characterized by the TEM analysis
as demonstrated in Fig. 17b and c. The gas sensing mecha-
nism followed for the acetone as illustrated in Fig. 17d, and
molecules of acetone start to react with adsorbed O, ions to
form CO, as demonstrated in Egs. 10, 11, 12, 13. The most
important parameter for the ZnO/Co;0, toward highly gas
sensing sensitivity is because ZnO and Co;0, are n-type
and p-type, respectively with 3.37 and 2.2 eV band gap to
generated p-n heterojunctions at ZnO/Co;0,, and it is impor-
tant part responsible for the improvement of gas sensing.
The ZnO/Co;0, sensor exhibited a 30.01 response for the
acetone gas concentration of 100 ppm at 300 °C operat-
ing temperature as elicited in Fig. 17e. The response and
recovery time obtained are 8 s and 2 s for acetone as shown
in Fig. 17f. The ZnO/Co;0, is highly selective for acetone

@ Springer

among the various gases H,S, CH,, C4H¢, CH,O, LPG, and
NH; as shown in Fig. 17g [71].

OZ(gas) - OZ(ads) (10)
Oy = € + Oyg) an
O;(ads) +te — 20(_;1ds) (12)

CH3COCHy ) + 60,

ads) 3CO, + 3H,0 + 6e~ (13)

Zinc oxide-based nanocage having high sensing capac-
ity (ppb or sub-ppm level) towards VOCs like benzene and
acetone was developed by Li et al. [55]. According to their
study, nanocage structure was proven to be better than sin-
gular ZnO and hollow nanocage showed a sensitivity of
2.3 ppm-1 for 0.1 ppm benzene and 15.3 ppm-1 toward
50 ppb acetone. A distinct hierarchical structure with a large
specific surface area led to higher sensitivity. Alcohol and
acetone were detected by MOF Copper-Benzene Tricarboxy-
late (Cu-BTC) nanoparticle synthesized as a layer of dielec-
tric nanosensors of capacitive (Homayoonnia and Zeinali,
2016) [195]. According to the experiment, the sensor has a
rapid response time, linearity, and reversible response time
for various concentrations. Minimum detectable concentra-
tions for acetone, isopropanol, ethanol, and methanol were
100.18 ppm, 77.80 ppm, 71.05 ppm, and 61.99 ppm, respec-
tively using newly formed sensors.

Xiong and his group (2019) fabricated a Co;0,/gra-
phene nanoscrolls derived from Co-MOF-74 for the detec-
tion of acetone. In comparison to other sensors, higher
response (58.1 for 1 ppm), response time, and recovery time
(12 s/66 s) were observed. Multidimensional gas transfer
channels of nanoscrolls and large heterojunction interfaces
were the key factors responsible for the fabulous response.
Fabricated nanosphere has detection capability in the range
of ppb as well with response 1.24 for 50 ppb acetone [196].
NiO/ZnO composites with varying Ni** content were fabri-
cated by Zhang et al. (2020). A comparison of response for
acetone was done with pure and composite metal oxides and
5% NiO/ZnO was proven to be better with 97.134 response
for 500 ppm acetone which was 7.3 times higher than that of
pure ZnO. A detailed sensing mechanism was also discussed
by the authors [197].

One type of colorless material with a distinctive fra-
grant smell that is frequently employed in consumer goods
and industrial applications is toluene. Toluene, which has
a powerful effect on the neurological system and can cause
brain function problems as well as kidney or liver damage,
is regrettably extremely dangerous to human health [198,
199]. Zhang and coworkers (2019) used NiFe-bimetallic
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ture of 139 °C

26.9 towards

S=

sian blue analog Zn;[Co(CN);], solid

analog (PBA)

100 ppm formalde-

hyde

microsphere through

co-precipitation
followed thermal

(PBA) MOF derived
PDO-Zn0/ZnCo,0,
microspheres

annealing process
and subsequent

decoration of PAO

nanoparticles

metal—organic framework (MOFs) octahedrons to fabri-
cate NiFe,0, nano-octahedrons with hollow interiors for
toluene detection. Outstanding sensing phenomena were
observed for 100 ppm toluene with fast response and
recovery time- 25 s/40 s with a 1 ppm minimum detec-
tion limit concentration. Hollow interiors were not only
responsible for better sensing properties but the catalytic
activity of 30 nm-sized nanoparticles was another major
reason for the same [200-202]. The morphological SEM
and TEM images of the NiFe,O, nano-octahedrons are
presented in Fig. 18 and the sensing response increase
with an increasing concentration of the toluene gas. In
addition, The obtained great results for the detection of the
toluene gases by the sensor response and other studies are
presented in Fig. 18. The sensing mechanism of the sensor
for the toluene can be clarified by the following Eqs. 14,
15,16, 17, 18, 19:

Oagas) = Oaaas) (14)
02(ad8) te - O;(ads) (15)
O;(a g T e - 20(‘ads) (16)
O +e — O a7
C,Hgy + 90 — 7CO, + 4H,0 + 9¢~ (18)
C,Hg + 90~ — 7CO, + 4H,0 + 18e~ (19)

Koo et al. [203] the publication reported on the use as
a template of metal @ MOFs for the production of compli-
cated catalysts decorated on WO;-based chemiresistors is
another significant study. The gas sensing abilities of WO,
nanofibers were significantly enhanced by the metal @
metal oxides generated from metal @ MOFs. Using an
electrospinning technique, Pd-loaded ZIF-8 (Pd @ZIF-8)
was decorated on electrospun nanofibers made of polymers
and precursors of tungsten (W) (Fig. 19a). The as-spun
nanofibers were successfully functionalized by the ultras-
mall Pd nanoparticles loaded in ZIF-8, as seen in Fig. 19b
andc. PdA@ZIF-8 loaded nanofibers were further calcined
to yield WO; nanofibers functionalized with Pd-loaded
ZnO nanocubes (Pd@ZnO) (Fig. 19d and e). Interest-
ingly, the Pd@ZnO-loaded WO; nanofibers showed bet-
ter toluene detection capacity (R;/Ry,;=22.22 to 1 ppm
at 350 °C) with good selectivity and quick response
time (~20 s). The multi-heterojunctions structures of
WO;-Pd,ZnO-Pd, and WO;-ZnO were responsible for
inducing the huge electron depletion zone in n-type WO,
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Fig. 17 a SEM Image of the hallow ZnO/Co;0,nanocomposites; b,
¢ TEM and HRTEM analysis for nanocomposites of ZnO/Co;0,; d
Schematic illustration of sensing mechanism of the ZnO/Co;0, sen-
sor in air and in acetone; e Response curve of ZnO and ZnO/Co;0,

nanofibers, which allowed for a significant resistance fluc-
tuation during toluene sensing [204]. Additionally, when
exposed to toluene, Pd nanoparticles were immediately
converted to Pd, and when exposed to air, they partly oxi-
dized to PdO. Which effectively modulated the surface
depletion layers (Fig. 19g).

For detection of VOC—n-Butanol, porous iron oxide
was synthesized through heating of Fe-MOF (FeFe(CN)y).
Materials having diverse phase compositions like a-Fe,O;,
Y-Fe,0; and combine phases of a-Fe,O; and y-Fe,0;
showed different results in the performance of gas sensing
due to differences in the mechanism of sense. Authors con-
cluded that, though «- Fe,O; nanomaterial had a smaller
specific surface area around 13.1 m? g~! than that of y-Fe,O,
(108.3 m?g™!), it showed a higher response towards the
n-butanol [77]. In another study of n-Butanol detection by
Wang and other coworkers (2019) [205], porous metal oxide
of cobalt was synthesized and the effect of size and shape of
metal oxide on sensing properties was studied. By varying
the ratio of Co®* ions and methyl imidazole, different mor-
phologies—octadecahedron created from a rhombic dodeca-
hedron that had been truncated, a multilayered flower-like

for 100 ppm acetone at different temperature; f Response-Recovery
curve of ZnO and ZnO/Co;0, to 100 ppm acetone; g Selectivity of
the ZnO/Co;0, sensor for various gases [71]. Reprinted with permis-
sion from Ref. (Zhang et al.), Copyright 2018, Elsevier

structure, and rhombic dodecahedron were studied for sens-
ing n-Butanol. For small-sized nanoparticles, larger quanti-
ties of them at the surface showed better sensitivity towards
VOC. Figure 20 shows the response curves, response recov-
ery, and selectivity of as-prepared porous Co;0, sensors.

Andres and his group (2020) [206] prepared capacitive
type thin films of MIL-96(Al) nanoparticles on substrates
of Si/SiO, sensor for the detection of VOCs like metha-
nol, toluene, chloroform, major being water, and methanol
(Fig. 20). Quick response time of around 10-15 min was
observed for a single MOF monolayer than that of drop
cast film (50 min) [206]. Cheng et al., [207] Co;0, nano-
spheres were synthesized from CO-based MOF. The effect
of calcination temperature was studied and concluded that
the nanosphere calcined at 400 °C temperature showed a
higher response of 53.78 for n butanol. Stability, selectivity,
and reproducibility were also examined and response values
were around 86.74% and 74.93% even after 45 and 75 days
respectively [207].

Various classes of VOCs like aromatics, ketones, ali-
phatics, aldehyde, alcohol, chlorinated compounds, etc.
were studied and compiled by Li and colleagues (2020). A

@ Springer
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Fig.18 a The FESEM image of NiFe,O, nano-octahedrons; b
The TEM image of NiFe,O, nano-octahedrons; ¢ selectivity test of
the sensor NiFe,O, to various gases of 100 ppm concentrations at
260 °C; d Polar graphs of the NiFe,O, sensor response to toluene 30,
50 and 100 ppm at temperature range 220-300 °C; e Dynamic curve

detailed study of the mechanism and application of MOF
was done in this review paper [41] (Fig. 21).

It is widely known that ethanol vapor is one of the most
thoroughly investigated gases in the domain of gas sensors,
in large part because of the high demand in the biomedical,
chemical, and culinary sectors, notably in wine-quality moni-
toring and breath analysis [208-211]. Hence, it is essential to
create a superior ethanol gas sensor with excellent response.
Zhang et al. [212]built a gas sensor for ethanol detection using
hierarchical hollow ZnO nanocages generated from ZIF-8 with
a superior 139.41 response and Fig. 22 displays the response/
recovery time of 2.8/56.4 s for the 100 ppm ethanol at an oper-
ating temperature of 325 °C. Later on, for the detection of
ethanol Zhang et al. [213] reported MOFs-derived nanocage

@ Springer

g il /’ In toluene
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80

of the NiFe,0, nano-octahedrons sensor for the different concentra-
tions of toluene; f The response/recovery to 100 ppm toluene; g sche-
matic illustration of gas sensing mechanism of the sensor in air and
in toluene; h The change in resistance to exposure of the toluene of
1 ppm at 260 °C [200]

of ZnO hollow functionalized with nanoscale Ag catalyst by
the process as shown in Fig. 23a. ZIF-8 should be created, Ag-
ZIF-8 precursor must be generated by reducing Ag ions into
Ag nanoparticles, and Ag-ZnO hollow NCs must be developed
by calcination of the Ag-ZIF-8 precursor in the air at 500 °C
with a rate of heating 10 °C min~'. The SEM morphologi-
cal image of ZnO-hollow and Ag-ZnO hollow are shown in
Fig. 23b and c, respectively. The ZIF-8 template exhibit a
smooth surface in cubic nanostructure in three-dimensional.
To add with, the TEM image of the prepared Ag-ZnO hol-
low nanocage is displayed in Fig. 23d with porosity and hol-
low structure. Figure 23f demonstrate the response curve by
the five kinds of sensor toward the detection of concentration
of 100 ppm ethanol gases at various operating temperature.
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PA@ZIF-8/PVP/ Pd@Zl'lb-WO:;
AMH composite NF NF

Electrospinning

Fig. 19 a Synthesis of Pd@ZnO loaded WO; nanofibers schematic
diagram; b TEM image of Pd@ZIF-8 loaded as-spun nanofiber;
¢ HRTEM image of Pd@ZIF-8 loaded as-spun nanofiber; d TEM
image of Pd@ZnO loaded WO; nanofiber; e HRTEM image of Pd@

In which, 1.0 ml Ag-ZnO exhibited most effective response
(R/R,=84.6). The study also investigated the selectivity of
sensors toward various gases, such as acetic acid, methanol,
ammonia, formic acid, carbon dioxide, nitrogen dioxide, and
ethanol (Fig. 23g). The sensor exhibits a very fast response/
recovery time of 5 s/10 s for the 100 ppm ethanol as elicited
in Fig. 23h. Moreover, the sensing mechanism involved in
the interaction between O™~ species and ethanol, as shown in
Egs. 20 and 21 [213].

Oaas) = € + 20,44 (20)

CH;CH,0H ) + 607 = 2C0yq + 3H,04) + 6€”
21

One of the most significant organic solvents, n-propanol is
manufactured in large quantities and consumed in numerous
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Zn0 loaded WO; nanofiber; f Sensing properties for Pd@ZnO loaded
WOj; nanofibers [203]. Reprinted with permission from Ref. (Koo et
al.), Copyright 2016, ACS

industrial sectors, including printing, cosmetics, and pharma-
ceuticals [214]. N-propanol, on the other hand, is a colorless,
explosive, and deadly volatile organic compound (VOC) that
is harmful to human health and generally causes explosions
when exposed to heat or flame [215]. As a result, it is now cru-
cial for the protection of human health and the environment to
build n-propanol sensors that are affordable, extremely sensi-
tive, and selective. Recently, Bi-MOFs (Bimetallic organic
framework), a new kind of hybrid material involved inor-
ganic—organic structure composed of organic ligand and 2
ions of metal have been considered as new generation material
for gas sensing [68, 183, 216, 217]. For example, Sun et al.
By calcining a Co and Zn-based bimetallic organic framework
created Co;0,/Zn0O composites that display high selectivity
and good stability for formaldehyde [218]. Li et al. effectively
created a bamboo-like CuO/In,O; heterostructure based on
a Cu/In bimetallic organic framework with enhanced H,S
sensing properties[183]. Zhao et al. [219] developed Zn/Ni

@ Springer
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Fig.20 Main gas-sensing properties of as-prepared porous Co;0,
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Co2+:2-mIM ratios of 1:4, 1:20, 1:40 and 1:80 respectively dur-
ing synthesis a Operating temperature-dependent response curves
for ethanol concentrations of 100 ppm; b Comparison of response to
several 100 ppm VOC types at their respective acceptable operating
temperatures; ¢ At the ideal operating temperatures, sensing transient

Bi-MOFs derived ZnO/NiO heterostructured for n-propanol
detection. Here, with the use of an ion-exchange post-syn-
thetic method and subsequent calcination technique, effec-
tively manufacture a Zn/Ni Bi-MOF derived ZnO/NiO hetero-
structure for n-propanol sensing. The ion exchange approach
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curves to various n-butanol concentrations and their concentration-
dependent response curves were measured; d 9 periods of response-
recovery curves at the corresponding optimal operating temperatures
to 100 ppm n-butanol; e Schematics diagrams illustrated the gas sens-
ing mechanism for the n-butanol by the Co;0,4 [205]. Reprinted with
permission from Ref. (Wang et al., 2019), Copyright 2019, Elsevier

eliminates the inhomogeneous issue brought on by the various
reaction kinetics of metals and allows for the synthesis of Bi-
MOFs, which is not possible using traditional solvothermal
techniques. Figure 24a shows the concept for creating a ZnO/
NiO heterostructure for n-propanol gas detection. Figure 24b
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Reprinted with permission from Ref. (Andres et al., 2020), Copyright
2020, ACS
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Fig.22 HHQD-ZnO nanocages are shown in a TEM pictures; b
sensor HHQD-ZnO, hollow ZnO, and solid ZnO nanocages for
the detection of 100 ppm ethanol at various temperatures; and c

shows the SEM morphology of ZnO/NiO-48 h after calcina-
tion, Fig. 24c and Fig. 24d display the elemental mapping of
the Zn and Ni, respectively. The response for the detection
of n-propanol gas at various temperatures, by the calcination
process at different times, is demonstrated in Fig. 24f. The
sensor response was 282.2 toward 500 ppm n-propanol at an

320
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response-based HHQD-ZnO nanocages for the detection of various
gases at 100 ppm concentrations [212]. Reprinted with permission
from Ref. (Zhang et al., 2019), Copyright 2019, Elsevier

operating temperature of 275 °C. The n-propanol gas is highly
selective by the ZnO/NiO-48 h (Fig. 24g). Figure 24i shows
an example of an air and n-propanol gas detection apparatus.
When exposed to air, the oxygen molecules will absorb onto
the ZnO/NiO surface of the sensor, capturing free electrons
from the ZnO to produce oxygen species (0*~, 207). When
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Fig. 23 a Steps involved in the synthesis of hollow Ag-ZnO NCs are
shown schematically. Steps involved in the synthesis of hollow Ag-
ZnO NCs are shown schematically; b SEM image of pristine ZnO
hollow NCs; ¢ SEM image of Ag—ZnO hollow NCs; d TEM image
of the Ag-ZnO hollow nanocage; e HRTEM image of the Ag-ZnO
hollow nanocage; f Response curve for the 100 ppm ethanol by the

n-propanol is exposed, it begins to react with oxygen species,
releasing the electrons it had been holding onto [219].

5 Conclusion and Future Perspective

All in all, it can be concluded that Metal-organic frame-
works can be put in the category of advanced materials for
gas sensing devices. To begin with, MOFs-based gas sen-
sors have been extensively used in the last one decade as
it eliminates the issues produced by conventional gas sen-
sors. This material can be utilized to receive the properties
of gas sensors like high selectivity, sensitivity, long-lasting
features, affordable synthesis routes, and so on. However, the
problem related to the number of analytes that absorbs on the
surface of MOF-based sensors still remains. Thus, to remove
this hindrance nanostructures have been introduced to the
MOF-based materials, with this the gas sensor produced
with enhanced gas sensing capacity. Nanostructures-based

@ Springer
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ent types Ag-ZnO sensor [213]. Reprinted with permission from Ref.
(Zhang et al., 2019), Copyright 2019, Elsevier

embedded MOFs provide numerous advantages such as a
greater number of active sites, large pore sizes, less time
consumption in terms of redox reaction between analytes
and the surface of the material, high efficiency, high selectiv-
ity and stability, more accurate results, and to the name of
few. Hence, these days scientists have put more emphasis on
the more advanced routes to develop such types of sensors so
that the detection of toxic gases in various fields will become
more transparent and feasible.

After literature, we have identified a few drawbacks with
respect to nano-derived MOFs gas sensors. The foremost one
is, stability-the short-term stability is achieved but, long-term
stability is still problematic, this particular occurs when the
atmosphere consists of the humid environment, the variations
in the PH, and so on. To remove this, the selection of metal
in the MOF material is the key. Second, the charge transport
mechanism is still not understood properly, various computa-
tional modeling can be used to identify proper structure—prop-
erty correlations. Third, it is still very difficult to integrate
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Fig.24 a Schematic Diagram for the fabrication of ZnO/NiO Het-
erostructure to n-propanol gas detection; b-d SEM images and
elemental mapping of ZnO/NiO-48 h; e TEM image of NiO/ZnO-
48 h; f Response curve of ZnO/NiO heterostructure and ZnO toward
500 ppm n-propanol at various temperature; g Selectivity test of NiO/
ZnO heterostructure towards different gases of 500 ppm concen-

targeted MOFs onto various tiny electronic devices with good
homogeneity, adjustable thickness, orientation, noticeable
adhesion/contacting, and accurate location, especially with
complex designs (such as patterns and optical waveguides).
A generic approach that is applicable to most MOFs and
resolves the aforementioned problem would allow MOFs to

In n-propanol

Depletion layer

tration; h Dynamic response curve of ZnO/NiO-48 h towards 0.2—
500 ppm n-propanol concentration at operating temperature 275 °C;
i Schematic diagram of gas sensing mechanism of ZnO/NiO hetero-
structure exposure in air and n-propanol [219]. Reprinted with per-
mission from Ref. (Zhao et al., 2021), Copyright 2021, ACS

be used in micro-and/or optoelectronic devices with a vari-
ety of applications in mind, such as gas sensing. Fourth, the
majority of studies show that single manufacturing of MOFs-
based sensors, instead of array integrated sensors with multiple
MOFs could be used to measure complex gases. For better
data processing and pre-training, the MOF-based sensors, and
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pertinent algorithms must be created or adopted. As a result,
Machine learning-based lifetime prediction, self-calibration,
and anomaly detection in MOF-based sensors are practical and
economical. Overall, this review certainly provides fundamen-
tal insights into MOFs-derived nanostructure as a gas sensor.
Besides the issues, some of the potential applications of MOF
derived nanostructure of gas sensor can be explored such as
in aerospace, medical health, industrial production, in IoT 4.0
industrial revolution, smart wear, smart home, food safety, and,
security check. In addition to that, these type of sensors activ-
ity may further exploited to identify the working of sensor in
humid, acidic, or alkaline conditions. This review will help the
upcoming sophomores who will do the research in this field;
also it will help all the researchers who are working with gas
sensing devices. Finally, we hope this paper will spread aware-
ness in the commercial market to develop and start installing
MOF-based gas sensors, instead of a conventional ones.
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