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Abstract

The ferromagnetic heavy fermion metal YbNi4P2, with Curie temperature 𝑇C ≈ 160 mK and Kondo temper-

ature 𝑇K ≈ 8 K, is studied through magnetoresistance and Hall effect measurements. The study is motivated

by the observation of a ferromagnetic quantum critical point (FM QCP) in the series YbNi4(P1 – xAsx)2, a

situation which theory predicts should not exist in metals with 𝑑 > 1 dimensionality. The parent compound

YbNi4P2 has been explored here in a large range of temperatures and magnetic fields; measurements made

in Bristol probe from room temperature down to 35 mK with magnetic fields up to 12 T, and high field mea-

surements made in the High Magnetic Field Laboratory (HFML) in Nĳmegen study up to 35 T. A primary

interest of electronic transport measurements in this series is to uncover the role of the 𝑓 electrons in the FM

QCP, crucially the Kondo hybridisation with the conduction electrons that gives rise to the heavy fermion

physics. This problem is intimately linked to the Fermi surface, which is probed in this thesis through Hall

effect and quantum oscillation measurements. Hall effect measurements determine that no change occurs

in the ordinary Hall effect on polarising YbNi4P2 with a transverse magnetic field (B ∥ c), confirming the

presence of heavy fermion quasiparticles in the ferromagnetic phase. High field quantum oscillations probe

a 3D Fermi surface with strongly suppressed Kondo hybridisation, and display an unusual spin-splitting

which is modelled here by a field tuned quasiparticle 𝑔-factor.

Hall effect measurements also act as a sensitive probe of the magnetic order through the anomalous Hall

effect (AHE). This is used to map features of the magnetisation in YbNi4P2. Behaviour inconsistent with

common scaling laws is observed, preventing the magnitude of the magnetisation being studied through

an AHE, and likely indicating field/temperature tuned terms of AHE (e.g. changes in Berry curvature).

The phase diagram is also studied through magnetoresistance measurements, finding new additions to the

many Lifshitz transitions of YbNi4P2, a potential sign of transverse field induced quantum criticality, and

novel scaling laws over a relatively large temperature span above 𝑇C.
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Chapter 1

Introduction

The study of matter near phase transitions is a common theme in condensed matter physics. Ferromagnetism

played a key role in the theoretical understanding of how thermal fluctuations can drive the ordered ground

state of a system to become unstable, via mean field theories, giving way to a disordered state. In a class

of these temperature-driven phase transitions, known as ‘second-order’ transitions, the free energy evolves

continuously. The system is divergently susceptible to the thermal fluctuations at the boundary between

order and disorder (the critical point), with measured properties exhibiting ‘critical phenomena’; mean-

field theories are inadequate. In ferromagnets this critical point is known as the Curie temperature 𝑇C, and

for nearby temperatures it is the magnetisation that is not captured by mean field theories. Historically,

ferromagnets provided a clear conceptual picture of the renormalisation group methods that correctly

account for the diverging fluctuations, and plenty of experimental evidence with the order being rather

easy to probe through the net magnetic moment that forms.

Many phase transitions have also been observed at the lowest experimentally achievable temperatures

as a result of tuning by a non thermal parameter (e.g. pressure or magnetic field) – here thermal fluctuations

are suppressed and the transition is rather driven by quantum fluctuations – these are quantum phase

transitions. The critical points associated with second-order quantum phase transitions (quantum critical

points/QCPs) are of particular interest in condensed matter physics. Signatures of the quantum criticality

are often observed even at high temperatures such as ‘strange metal’ resistivity, or novel phases (e.g.

unconventional superconductivity or spin liquids) are often observed in their vicinity. Quantum critical

phenomena are now usually best understood in terms of Hertz’s extensions to the renormalisation group

method [51], and Millis’ subsequent extension for itinerant fermion systems [89]. While the study of critical

phenomena in insulating ferromagnets such as LiHoF4 can be well understood in this framework [16],

the observation of quantum criticality in metallic ferromagnets is exceptionally rare. It is theoretically

1
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predicted that soft mode excitations, which are general to metals with dimensionality 𝑑 > 1, generically

couple to the ferromagnetism turning the quantum phase transitions first order [12]. Experimental studies

of metallic ferromagnets observe this to be almost exclusively true [21], with ferromagnetic quantum phase

transitions either turning first order or being precluded by other phases (such as spin density waves or

antiferromagnetic order). More recently there have been observations of ferromagnetic quantum criticality

in two heavy fermion compounds: YbNi4(P1 – xAsx)2 with substitution 𝑥 ∼ 0.1 [130] and CeRh6Ge4 with

hydrostatic pressure 𝑃 = 0.8 GPa [119]. These pose a significant challenge to conventional theory.

The desire for a highly tuneable ground state, such that phases can easily be tuned to a QCP, has made

the study of heavy fermion systems very appealing. In these systems the charge carriers are heavy fermion

‘quasiparticles’, a hybridised particle of the conduction electrons and 𝑓 electrons, with very high mass and

strongly reduced energy scales. These small energy scales allow a vast portion of their phase diagrams

to be explored experimentally through pressure or magnetic field, however pose additional experimental

challenges for example in that very low temperatures are typically required. Heavy fermion physics further

poses theoretical challenges. Most significantly for the study of quantum criticality is the role of the 𝑓

electrons: in the heavy fermion state the 𝑓 electrons are hybridised with the conduction electrons and so

have an itinerant character. For several heavy fermion materials with antiferromagnetic quantum critical

points, the 𝑓 electrons are believed to de-hybridise simultaneously to the suppression of AFM order [122,

40, 132]. Similar scenarios must be considered for the heavy fermion ferromagnets YbNi4(P1 – xAsx)2 and

CeRh6Ge4.

In this thesis, electronic transport measurements (magnetoresistance and Hall effect) are used to probe

the heavy fermion ferromagnet YbNi4P2. This includes measurements by myself at Bristol on a dilution

refrigerator in magnetic fields up to 12 T, and quantum oscillation measurements on a
3

He cryostat made

at HFML by Owen Moulding, Takaki Muramatsu, and Jake Ayres in magnetic fields up to 35 T which are

analysed by myself. The Hall effect and quantum oscillations measurements of YbNi4P2 in this thesis are

novel, and provide the first detailed insights into the Fermi surface that will be required to determine the

role of the 𝑓 electrons in the FM QCP. Analysis of the anomalous Hall effect is used to probe features of the

magnetisation. Magnetoresistance are also revisited as the sample quality available is significantly improved

from literature, and given detailed analysis over a wide range of temperatures and magnetic fields.



Chapter 2

Theory

2.1 Electrons in metals

Before discussing complex electronic phases of matter that are of interest in modern research, it is useful

to introduce basics of the electronic structure in metals that determines many of the observable properties.

This provides opportunity to introduce concepts that are required for later sections in this chapter. The

following subsections cover electronic band theory starting from basic models, to Fermi liquid theory, and

lastly covering computational methods (density functional theory) that are used in this thesis.

The electrons in metals exist in a crystalline environment which is first described. The crystal structure

of the atoms form a Bravais lattice, with ‘cells’ of atoms repeated at all points

R = 𝑛1a1 + 𝑛2a2 + 𝑛3a3 , (2.1)

where 𝑛𝑖 are integers, and a𝑖 are the basis lattice vectors. This real space periodicity has an equivalent in

the reciprocal (Fourier) space

G = ℎb1 + 𝑘b2 + 𝑙b3 , (2.2)

where ℎ, 𝑘, and 𝑙 are integers and b𝑖 are the reciprocal lattice vectors. The periodicity of R results in the

condition

G ·R = 2𝜋𝑛, (2.3)

with integer 𝑛. The only Bravais lattice considered in this thesis is tetragonal (𝑎 = |a1| = |a2|, 𝑐 = |a3|, and

a𝑖 ⊥ a𝑗 for 𝑖 ≠ 𝑗) and so the reciprocal lattice vectors are simple to construct

b𝑖 = 2𝜋
a𝑖

|a𝑖|2
. (2.4)

3
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2.1.1 Free and nearly-free electrons

The simplest model of electrons in metals is to consider them as a ‘free electron’ gas, where each electron

is dissociated from a site in the ionic lattice and experiences a constant potential 𝑉 . The energies of these

electrons are entirely determined by their kinetic energy, with the energy eigenvalue 𝜀 of a single electron

determined by the time independent Schrödinger equation

ℋ𝜓(r) = 𝜀𝜓(r), (2.5)

where 𝜓(r) is the electron wave function at position r, and the Hamiltonianℋ only consists of the electron

kinetic energy

ℋ =
ℏ2

2𝑚e

∇2 , (2.6)

where 𝑚e is the electron mass in a vacuum. Physically, these electrons are confined to the ionic lattice by an

attractive force. The conventional choice is a box with volume 𝜈 = 𝐿𝑥𝐿𝑦𝐿𝑧 , much larger than the unit cell of

the crystal allowing us to neglect effects at the surfaces. Effects at the surfaces can be neglected by imposing

the Born–von Karman boundary conditions on the wave function, making the wave function periodic with

𝜓(r) = 𝜓(r + 𝐿𝑛 ê𝑛), (2.7)

where 𝐿𝑖 is the system length in the direction of the ê𝑛 unit vector (along 𝑥, 𝑦 or 𝑧).

Eigenstates to Equation 2.5 are the plane waves with wave vectors k,

𝜓k(r) =
1√
𝜈
𝑒 𝑖k·r , (2.8)

which have been normalised such that the probability of the electron being inside volume 𝜈 is one. Periodicity

at the edge of the system results in quantisation of k = 2𝜋
∑
𝑛 𝑁𝑛 ê𝑛/𝐿𝑛 , where 𝑁𝑛 is an integer, which

becomes quasi-continuous for large 𝐿𝑛 . The corresponding single electron energy eigenvalues are

𝜀(k) = ℏ2𝑘2

2𝑚e

. (2.9)

A modification to the Hamiltonian can be made to include the interaction between each electron and the

ionic lattice via the addition of a potential𝑉(r). This potential has the periodicity of the Bravais lattice such

that

𝑉(r) = 𝑉(r +R), (2.10)

where R is any Bravais lattice vector. We now want to know the eigenstates and eigenvalues of(
ℏ2

2𝑚e

∇2 +𝑉(r)
)
𝜓(r) = 𝜀𝜓(r). (2.11)
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Figure 2.1: Nearly-free electron bands (solid lines) along a path passing through k = 0.

The first Brillouin zone is between −𝜋/𝑎 ≤ 𝑘 ≤ 𝜋/𝑎. Dotted lines indicate the free

electron solution with 𝑉 = 0.

Solutions are provided via Bloch’s theorem with wave functions of the form

𝜓k(r) = 𝑒 𝑖k·r𝑢k(r), (2.12)

where 𝑢k(r) also have the periodicity of the Bravais lattice. Further the wave function also shares this

periodicity, explicitly 𝜓k(r) = 𝜓k(r +R). Importantly, periodicity is also seen in its dependence the wave

vector k, with 𝜓k(r) = 𝜓k+G(r), due to the property of the Bravais lattice exp(𝑖G ·R) = 1 where G is a

reciprocal lattice vector. The resulting nearly-free electron energy dispersions 𝜀(k) share the periodicity

with the reciprocal lattice, and so we can describe all k states within the first Brillouin zone.

To construct an image of the dispersion relations in the first Brillouin zone, we can use the ‘repeated zone

scheme’ as in Figure 2.1, plotting the free electron dispersions along 𝑘𝑥 with 𝑘𝑦 = 𝑘𝑧 = 0. The Hamiltonian

now has off diagonal elements1 which cause the free electron states to hybridise, forming gaps at the

Brillouin zone boundaries. The dispersion relation of these nearly-free electrons form ‘bands’ characterised

by a finite range of 𝜀 as shown by solid lines in Figure 2.1. These dispersion relations are often insightful in

real metals, typically plotted along a path along several high symmetry directions of the first Brillouin zone

and known as band structure or spaghetti plots.

We must consider the distribution of the many electrons we have in the system. So far, we have considered

the state of a single particle with wave vector k. We are much more interested in the behaviour of the system

as a whole, where we must consider the distribution of many particles – specifically fermions, which follow

Fermi–Dirac statistics. At𝑇 = 0 these electrons fill the k states from the lowest energy up to the Fermi energy

1These are the terms

∫
𝜓†
k
𝑉𝜓k′𝑑

3r, where k − k′ = 2𝜋/𝑎 at the lowest energy crossing.
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Figure 2.2: Fermi–Dirac statistics for 𝑇 = 0 and 𝑇 > 0. A value of 𝑘B𝑇 = 0.05𝜇 is used

for 𝑇 > 0. A width of 4𝑘B𝑇 has been included for reference.

𝐸F, with each k state doubly occupied by single up and down spin electrons as required by Pauli exclusion.

This behaviour is captured by the Fermi–Dirac distribution 𝑓 (𝜀), which is 1 for 𝜀 < 𝐸F and 0 otherwise for

zero temperature. At finite temperatures the Fermi–Dirac distribution function is

𝑓 (𝜀) = 1

1 + 𝑒(𝜀−𝜇)/𝑘B𝑇
, (2.13)

where 𝜇 is the chemical potential that ensures charge conservation2. At 𝑇 = 0 the chemical potential is then

equal to the Fermi energy and 𝑓 is a step function, while for 0 < 𝑇 ≪ 𝐸F this step becomes smooth with

a width ∼ 𝑘B𝑇 as shown in Figure 2.2. A consequence of Fermi–Dirac statistics for 𝑇 ≪ 𝐸F is that the low

energy states are fully filled, and so the Pauli exclusion principle prevents these states from scattering to

other states, unless excited by an energy much larger than the typical thermal energy 𝑘B𝑇. In contrast, the

electrons within ∼ 𝑘B𝑇 of the Fermi level 𝐸F are easily excited by very small energies (a finite scale set by

the k quantisation). It is these electrons that contribute most to electronic properties of metals, close to the

surface 𝜀(k) = 𝐸F known as the Fermi surface.

Lastly, we must address the effect of the k quantisation on the density of states per energy. The total

number of electrons 𝑁 can be counted by summing the occupancy of each k state. As the system volume

𝜈 that defines the k-quantisation is typically many orders larger than the unit cell volume, we can consider

the k states to be quasi-continuous and perform the integral

𝑁 = 𝜈

∫
𝑓 (𝜀(k))𝑑3k = 𝜈

∫
𝑓 (𝜀)𝑔(𝜀)𝑑𝜀, (2.14)

where 𝑔(𝜀) is the density of states per unit volume. For a 3D free electron the density of states is

𝑔(𝜀) =
√

2𝑚
3/2
e

𝜋2ℏ3

√
𝜀. (2.15)

The density of states at the Fermi level is usually the density that we are interested in, again as it is these

electrons which contribute to the electronic properties.

2𝜇 ≈ 𝐸F for 𝑘B𝑇 ≪ 𝐸F. A next order correction can be made with a Sommerfeld expansion.
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2.1.2 Fermi liquid theory

Beyond the nearly-free electron model, we must include the interaction of electrons with each other. Intro-

ducing electron-electron repulsion via a term𝑈 in the Hamiltonian, it is clear that we can no longer consider

these electrons as independent of each other. However, the nearly-free electron model gives us qualitatively

and in many cases quantitatively agreement with observed electronic properties of metals. Landau’s theory

of Fermi liquids built upon the Bloch states of the nearly-free electron theory, adiabatically ‘turning-on’ the

electron-electron interactions so that the Bloch states evolve continuously in to ‘quasiparticle’ states. The

quasiparticle states have a one-to-one mapping from the Bloch states, and obey Fermi-Dirac statistics with

a corresponding quasiparticle Fermi surface.

Qualitatively, we can consider an electron just below the Fermi level moving through a crystal, on its

path it interacts with many other electrons. After an interaction an electron can be excited in to an empty

state above the Fermi level, leaving behind a ‘hole’ which we can think of as a particle with opposite charge

below the Fermi level. These holes screen the charge of the mobile electron, like a cloud of charge. This

screening largely prevents interactions between quasiparticles, and so their properties are similar to those of

the nearly-free electrons. The resulting quasiparticles have renormalised properties, with effective masses

𝑚∗ different from those of the bare electrons.

The resulting quasiparticle states are not eigenvalues of the system, and have finite lifetimes due to

scattering processes. For quasiparticles near the Fermi level, the scattering process is strongly restricted

by energy conservation and Pauli exclusion, and so the lifetimes are long. As a consequence the energy

dispersion is sharp and well defined close to the Fermi level, and the picture of a Fermi surface remains

at low temperatures. Strong evidence for the presence of a Fermi liquid at low temperatures is in the 𝑇2

resistivity of very clean metals.

2.1.3 Density functional theory

The many body Hamiltonian of a crystal is

𝐻 =

∑
𝑖

𝑇𝑖 +
∑
𝐼

𝑇𝐼 +
∑
𝑖 , 𝑗≠𝑖

𝑈𝑖 𝑗 +
∑
𝐼 ,𝐽≠𝐼

𝑉𝐼𝐽 +
∑
𝑖 ,𝐼

𝑉𝑖𝐼 , (2.16)

where 𝑇 are kinetic energy terms, 𝑉 and 𝑈 are Coulomb potentials between two charged particles, 𝑖/𝑗 are

indices of conduction electrons, and 𝐼/𝐽 are indices of ions. This can be largely simplified by assuming

that the conduction electron and ion wave functions are separable, known as the Born–Oppenheimer

approximation. This is appropriate due to the large difference in mass between electrons and ions, so the
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relatively slow moving ions can be treated as a motionless lattice. Hence the Hamiltonian only has terms3

𝐻 =

∑
𝑖

𝑇𝑖 +
∑
𝑖 , 𝑗≠𝑖

𝑈𝑖 𝑗 +
∑
𝑖 ,𝐼

𝑉𝑖𝐼 . (2.17)

The problem of electron-electron interactions still remains, and this is not solvable given that there are of

the order of 10
23

conduction electrons in a real system.

Progress can be made using the Hohenberg–Kohn theorems [52], where we shall rename the last term∑
𝑖 ,𝐼

𝑉𝑖𝐼(r𝑖 ,R𝐼) =
∑
𝑖

𝑉ext(r𝑖), (2.18)

where r𝑖 is the position of the 𝑖th electron, and R𝐼 is the position of the 𝐼th ion. Here we have treated

these terms as due to a static external potential 𝑉ext(r) from the ions. The first theorem states that this

potential 𝑉ext(r) is uniquely determined by the ground state electronic density 𝜌0(r) (within an additive

constant). The potential 𝑉ext(r) is a functional4 of 𝜌(r), for which the notation 𝑉ext

[
𝜌(r)

]
will be used. As

𝑉ext

[
𝜌(r)

]
determines 𝐻 (𝑇 and 𝑈 are universal for interacting electron systems), the wave function is also

a functional5 of 𝜌(r). Using the first theorem, it was further shown that the energy 𝐸 for a given potential is

also a functional of the density 𝜌, and is minimised by the ground state density 𝜌0 such that

𝐸[𝜌0] ≤ 𝐸[𝜌]. (2.19)

If the universal functionals of 𝑇 and𝑈 are known, the ground state energy and density can be found easily

by minimisation of the 𝐸[𝜌0]with respect to 𝜌(r). Here the number of variables has been massively reduced

down to the three spatial variables that determine the density.

The difficulty remains in the term 𝑈 that describes electron-electron interactions. This problem was

addressed by Kohn and Sham[69], who started by rearranged the ground state energy in to known and

unknown terms. These unknown terms are the ‘exchange-correlation’ energy 𝐸xc[𝜌]. Using the functional

derivative of 𝐸xc with respect to 𝜌 they defined a corresponding potential 𝑉xc, and constructed a single

electron ‘Kohn–Sham’ equation (
− ℏ2

2𝑚e

∇2 +𝑉(r) +𝑉H +𝑉xc

)
𝜓𝑖 = 𝜀𝑖𝜓𝑖 , (2.20)

where 𝑉 is the potential due the interaction with the ions (the 𝑉ext term from before), 𝑉H is the Hartree

potential of the interaction with the density of all other electrons, and 𝜓𝑖 and 𝜀𝑖 are the eigenstate and

eigenvalue of the 𝑖th electron. A solution to the Kohn–Sham equations can be used to calculate the electron

density 𝜌(r), which in turn can be used to calculate the terms 𝑉H and 𝑉xc. This defines an iterative process,

in which the ground state density 𝜌0(r) is approached from a starting trial density 𝜌(r):
3Here the interaction between ions will only add a constant to the eigenvalues, so is neglected.

4That is to say, 𝑉ext(r)maps the vector space of functions 𝜌0(r) on to a field of real values.

5Instead mapping the vector space of functions 𝜌0(r) on to a field of complex values.
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1. Pick a starting trial electron density 𝜌(r).

2. Solve the Kohn–Sham equations for density 𝜌(r), and find the single particle wave functions 𝜓𝑖(r).

3. Calculate the new electron density 𝜌new(r) using the new wave functions 𝜓𝑖(r).

4. if 𝜌new(r) has converged to 𝜌(r) then this is the ground state density 𝜌0(r), otherwise repeat from step

2 using 𝜌(r) = 𝜌new(r).

By following this process until convergence, a solution to the Kohn–Sham equations is found self consistently.

We must make a definition of the exchange-correlation potential to carry out this procedure. An exact

form is not known in general, but can be solved exactly for an electron gas with uniform density 𝜌(r).

The most common approach approximates that this density is locally uniform, known as the local density

approximation (LDA). With this the system is divided up in to many infinitesimal volumes, with the exact

form of 𝑉xc for a uniform electron gas used inside of each volume. An extension to the LDA using both

the local electron density and the local gradient of the electron density is often made through use of the

generalised gradient approximation (GGA).

Lastly, a choice of basis wave functions must be made in which we can express the wave functions 𝜓𝑖(r).

A common choice are the ‘augmented plane waves’ (APW), in which the unit cell is divided in to two regions

within and outside of “muffin-tins” spheres around the ions. These have radii chosen such that the non

conducting ‘core’ electrons are localised within the muffin-tin, but do not overlap with other ions, while the

‘valence’ electrons can partially leak out of the tins (and so can be delocalised). Inside the tins, functions

built from spherical harmonics are used, whereas outside combinations of plane waves are used.

2.2 Ferromagnetism

Interacting systems of spins can energetically favour ground states with ordered spins. Spins are coupled

by both magnetic dipole interactions and exchange interactions. The former are typically very small in

comparison to the exchange interaction6. The exchange interaction is a result of the Pauli exclusion principle,

where the exchange properties between identical fermions results in an energy difference between a spin

aligned, and an anti-aligned ground state. This is captured by the Heisenberg Hamiltonian

ℋ = −
∑
𝑖 𝑗

𝐽𝑖 𝑗S𝑖 · S𝑗 , (2.21)

where 𝐽𝑖 𝑗 are ‘exchange constants’ between the 𝑖th and 𝑗th electrons, andS𝑖 are their spin quantum numbers.

A positive exchange constant will favour ferromagnetic ground states, as opposed to antiferromagnetic

6These can be an appreciable energy scale for systems ordering below 1 K [19].
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ground states which results from a negative exchange constant. In a magnetic field 𝐵, Zeeman terms are

included in the Hamiltonian,

ℋ = −
∑
𝑖 𝑗

𝐽𝑖 𝑗S𝑖 · S𝑗 + 𝑔𝜇B

∑
𝑖

S𝑖 ·B , (2.22)

where the 𝑔-factor is the coupling constant that determines the Zeeman splitting. A closely related model

that will be included in discussions is the Ising ferromagnet, where the spins are restricted along a single

axis so that they only take values ±1.

Solutions to these Hamiltonians generally require approximations, except for special cases. The Weiss

model of ferromagnetism assumes that the interaction between the 𝑖th electron and all other electrons can

be described by a fictitious ‘molecular-field’ due to all other spins

Bmf = −
2

𝑔𝜇B

∑
𝑗

𝐽𝑖 𝑗 , (2.23)

such that

ℋ = 𝑔𝜇B

∑
𝑖

S𝑖 · (B +Bmf). (2.24)

This molecular-field is related to the magnetisation M (moment per unit volume) by Bmf = 𝜆M , where

𝜆 > 0 is a constant. The temperature dependence of the magnetisation can be calculated through use

of the partition function, and simultaneous solutions can be found with Equation 2.24. Above the Curie

temperature 𝑇Cand with no applied field, a single stable (minimal energy) solution is found at M = 0. On

cooling through 𝑇C, the solution bifurcates in to an unstable point at zero magnetisation and two stable

solutions at ±M (𝑇). These stable solutions have spontaneous (non-zero) magnetisation in zero field, and

are energetically favourable due to a mean field that arises from the magnetisation itself.

The moments in ferromagnets can either be due to localised moments or due to conduction (itinerant)

electrons. In itinerant paramagnets, the magnetisation in field is a result of Zeeman splitting the majority

and minority Fermi surfaces. The magnetisation is then proportional to the difference between the number

of up and down electrons, in a small field 𝐵 ≪ 𝐸F/𝑔𝜇B this is related to 𝐷(𝐸F), the density of states at the

Fermi level7. The Pauli susceptibility derived from this is

𝜒P =
𝑀P

𝐵
≈ 𝜇0𝜇

2

B
𝐷(𝐸F). (2.25)

In itinerant ferromagnets, it is the Pauli paramagnetic susceptibility that determines how much magneti-

sation a molecular field will cause. Shifting an electron from below the Fermi level to above will cause a

gain in kinetic energy, however, the resulting magnetisation will also increase the molecular field (via the

7the notation 𝐷(𝐸F) is used only in this section, to differentiate from the Zeeman splitting 𝑔-factor.
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Figure 2.3: Formation of ferromagnetic domains to reduce the stray field. Reproduced

from [66]. (a) A single domain with large stray field. (a,b) Multiple collinear domains

with reduced stray field. (d,e) Closed domain structures that eliminate the stray field.

Pauli susceptibility). The competition between these two energies results in the Stoner criterion for itinerant

ferromagnetism

𝑈𝐷(𝐸F) ≥ 1, (2.26)

where𝑈 is a measure of the Coulomb energy.

The build up of a net magnetisation in a sample results in a ‘demagnetising’ field Hd inside the sample

(and a ‘stray’ field outside), due to boundary conditions from Maxwell’s equations. The magnetic field

strength is defined H = B/𝜇0 −M . To demonstrate the boundary effects of the Maxwell’s equations,

consider a boundary between a magnetic material and vacuum with M perpendicular to the surface – the

equation∇·B = 0 means there must be a stray magnetic fieldHd = −M in the vacuum. This demagnetising

field is largely dependent on the geometry of the sample. The energy associated with the demagnetising

field is

−𝜇0

2

∫
M ·Hd𝑑

3r, (2.27)

integrated over the volume of the sample [19]. This energy gain can be reduced by the formation of domains,

each of which has different magnetisation directions. In this way the stray field can be reduced, as shown

in Figure 2.3 in turn reducing the demagnetisation field. Domains are prevented from becoming arbitrarily

small by the energy cost associated with the internal domain walls [66].

The magnetisation processes of permalloy and ARMCO iron are shown in Figure 2.4 as an example, as
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Figure 2.4: Magnetic hysteresis of permalloy and ARMCO iron. Reproduced from [6],

and adapted with SI units.

measured by Arnold and Elmen [6]. The magnetic flux density B = 𝜇0(H +M ) is shown as a function of

the applied magnetic field H . Application of a positive magnetic field H to a ferromagnet favours domains

aligned with the field. The growth of a domain involves the movement of its domain walls. Higher fields

can rotate or flip entire domains, eventually polarising the entire sample to the saturation magnetisation

Msat. On reducing the applied magnetic field to zero, a remanent magnetisation is left. The applied field

needed to reduce the net magnetisation to zero (the coercive field8 Hcoerc.) is negative. After poling the

magnet to Msat, the remnant field is negative and the coercive field is now positive; this is a hysteretic

and so irreversible process. The work done on the system in a complete cycle is proportional to the area

enclosed by 𝑀(𝐵), and is related to how easily the domain walls can be moved. When domain walls are

easily moved the coercive field tends to be small (as for permalloy and ARMCO iron in Figure 2.4), resulting

in a magnetisation loop that is close to lossless. Conversely, when domain walls are strongly pinned, the

coercive field will be large and there will be large dissipation of energy around the hysteresis loop.

Typically, there is a favoured direction for magnetic moments to form relative to the crystal axes, known

as the magnetic ‘easy’ direction (and conversely a ‘hard’ direction). It is clear the Heisenberg Hamiltonian

Equation 2.21 is insufficient in general to account for an alignment of the spins with the crystal, as it

is only dependent on the direction of the magnetic moments relative to each other. Alignment with the

crystallographic directions is a combined result of spin-orbit interactions and partial quenching of the orbital

8Sometimes in literature this rather refers to the field required to reduce 𝐵 = 𝜇0(𝐻 +𝑀) to zero, however the difference is typically

negligible.
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angular momentum, through the crystal electric field and orbital exchange interactions [66, 143].

2.2.1 Classical phase transitions

Experimental studies of ferromagnets were instrumental in the theoretical understanding of classical phase

transitions. Early attempts to model ferromagnetic transitions relied on mean-field theory approximations

and had limited success, modelling the leading order behaviour only far above the Curie temperature. A

mean field form of the spontaneous magnetisation as a function of temperature can be derived through

the arguments of Landau’s theory of second order phase transitions. Second order or ‘continuous’ phase

transitions are those in which the free energy 𝐹 varies continuously over the transition. For ferromagnets,

the free energy can be expanded as a power series of the magnetisation 𝑀, noting there is no energetic

difference between positive and negative magnetisation, so there must be only even powers of 𝑀. In terms

up to 𝑀4

𝐹(𝑀) = 𝐹0 + 𝑎(𝑇)𝑀2 + 𝑏𝑀4 , (2.28)

where 𝐹0 and 𝑏 > 0 are constants, and 𝑎(𝑇) is a function of temperature 𝑇. The (stable) ground state is a

solution at the minima of 𝐹(𝑀). For a change in behaviour at 𝑇C, the term 𝑎(𝑇) can be expanded so that it

changes sign at 𝑇C, to first order 𝑎(𝑇) = 𝑎0(𝑇 − 𝑇C) where 𝑎0 is a constant. The form of 𝐹(𝑀) is shown in

Figure 2.5 panel (a) for several values of 𝑇. Using
𝜕𝐹
𝜕𝑀 = 0, the solutions are

𝑀 = 0, and 𝑀 = ±
√
𝑎0(𝑇C − 𝑇)

2𝑏
. (2.29)

The zero solution is only minimal for 𝑇 > 𝑇C, while the latter two are only existing and minimal below the

Curie temperature. These solutions are shown in Figure 2.5 panel (b).

Several general concepts of classical phase transitions are illustrated by Equation 2.29. The first is of

an order parameter 𝑀, that is zero in the disordered phase (𝑇 > 𝑇C) and non-zero in the ordered phase

(𝑇 < 𝑇C). On entering the ordered state there is a breaking of a symmetry, in the case of ferromagnets

this is time reversal symmetry which maps 𝑀 → −𝑀. Lastly, is the existence of a critical exponent that

describes the behaviour near the critical points. The critical exponent of the ferromagnetic magnetisation

here is 𝛽 = 1/2, where 𝑀 ∝ (𝑇C − 𝑇)𝛽 for 𝑇 < 𝑇C. Other notable critical exponents that can be measured

include the exponent of the magnetic susceptibility above 𝑇C, and the exponent of the magnetisation as a

function of magnetic field at 𝑇C.

The transition considered previously is second order, with a continuous order parameter 𝑀, discontin-

uous derivative 𝑑𝑀/𝑑𝑇, and a continuous free energy 𝐹 over the phase transition. Free energy landscapes

are also possible such that the minimal free energy (and the order parameter) are not continuous at the
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Figure 2.5: Landau theory of ferromagnetic transition. (a) Expansion of the free energy

as a function of the magnetisation up to 𝑀4
for temperatures above, below, and at the

Curie temperature. (b) Extremal positions of 𝐹(𝑀), solid lines mark the stable solutions

and a dotted line marks the unstable solution.

ordering temperature. These are first order phase transitions, and involve a latent heat (a jump in the free

energy) over the transition. For second order transitions mean field theories are generally not in good

agreement with experiments except well above the critical temperature, for reasons that will be discussed.

For ferromagnets the transition is second order, the critical temperature is 𝑇C, and mean field theory de-

scribes the Curie–Weiss susceptibility at high temperatures. Mean field theories fail to correctly predict the

dependence of ferromagnets at lowest temperatures and near the critical Curie temperature.

To account for the low temperature dependence well below 𝑇C considerations of magnetic excitations

(magnons) are needed [19]. By far the most challenging region for theoretical physicists however was near

the critical point, where the order parameter magnetisation is continuously reduced to zero, and magnetic

fluctuations instead dominate. The order parameter here is divergently susceptible to temperature fluctua-

tions (qualitatively, the curvature of 𝐹(𝑀) at 𝑇C is zero in Figure 2.5 so a very small thermal excitation can

shift 𝑀 a large amount). This is inherently problematic for a mean-field theory approach, as thermody-

namic properties now depend on diverging fluctuations which were previously vanishing compared to the

mean-field terms. Studies of ferromagnets provided credibility to the study of critical exponents through

the renormalisation group, an insight which has also found many uses even outside of condensed matter

physics.

The requirement for the renormalisation group in second order transitions is due enhanced correlations

near 𝑇C, which can be characterised by the correlation function between the 𝑛th spin and a spin at the origin

[146]

Γ𝑛 =
⟨𝑆𝑛𝑆0𝑒

−ℋ/𝑘B𝑇⟩
⟨𝑒−ℋ/𝑘B𝑇⟩

, (2.30)
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where ⟨ ⟩ indicates a sum over all configurations of states, andℋ is the Hamiltonian. For large 𝑛 (far away

from the origin) and 𝑇 > 𝑇C the correlation function drops exponentially,

Γ𝑛 ∼ exp

(
− |𝑛|
𝜉(𝑇)

)
, (2.31)

where 𝜉(𝑇) is the correlation length. This correlation length diverges near the critical temperature, and so

for accurate calculations a large chunk of material (length scales much bigger than 𝜉) must be considered.

These calculations quickly become unfeasible, however the method of renormalisation groups has been

very successful at correctly modelling critical behaviour where a diverging 𝜉 near the critical temperature

is the only relevant length scale. Kadanoff applied this method to an Ising ferromagnet [59], successively

dividing the material in to blocks of spins in to a volume 𝐿𝑑 where 𝑑 is the dimensionality. The lengths

𝐿 are much smaller than the correlation length 𝜉 such that the spins inside the block are well correlated

and can be treated collectively with a reduced number of degrees of freedom. The new Hamiltonian of

the block spins ℋ ′ is related to the Hamiltonian by a scaling transformation ℋ ′ = 𝜏(ℋ). For 𝑇 → 𝑇C the

correlation length 𝜉→ ∞ and so the scaling transformation is at a fixed pointℋ ∗ = 𝜏(ℋ ∗), it is these fixed

points that the renormalisation group method aims to find. Solutions have renormalised order parameters

and physical properties.

Critical phenomena can be grouped in to ‘universality classes’ for systems with the same critical expo-

nents [146]. These critical exponents are only dependent on

1. The dimensionality, 𝑑, of the system.

2. The symmetry of the order parameter (or its dimensionality).

3. The length scale of the interactions (short or long).

Further there exist critical dimensionalities 𝑑crit. at which the character of phase transitions distinctly change.

For Ising ferromagnets, there is an upper critical dimension 𝑑crit. = 4 above which mean field theories become

exact. There also exists a lower critical dimension below which phase transitions do not occur.

2.2.2 Quantum phase transitions and quantum criticality

Phase transitions at zero temperature are also possible as a function of a non-thermal tuning parameter,

for example an external magnetic field or hydrostatic pressure. These are quantum phase transitions, and

can be first or second order just as in classical (thermal) phase transitions. A second order quantum phase

transition also has a critical point where fluctuations dominate, however the fluctuations here must be

quantum in nature as there are no thermal fluctuations. A generalisation of theory extended the idea of a
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(a) (b)

Figure 2.6: Criticality in 3D Ising ferromagnet LiHoF4. Reproduced from [16]. (a) Critical

behaviour of susceptibility near the critical temperature𝑇c and the transverse critical field

𝐻c

t
. (b) Measured phase diagram with mean field theory calculations (lines). A mean

field theory with only electron degrees of freedom is shown by a dashed line, and one

including the nuclear hyperfine interaction with much better agreement is shown by a

solid line.

coherence length 𝜉 to also include a coherence time 𝜏𝜉. In this way the order parameter fluctuates in space

(statically) and time (dynamically). Hertz [51] showed that if the two coherence scales scale as 𝜏𝜉 ∝ 𝜉𝑧 ,

where 𝑧 is the dynamical scaling exponent, the problem is equivalent to a corresponding classical system

with and an effective 𝑑eff. = 𝑑 + 𝑧 dimensionality.

A well understood example of ferromagnetic quantum criticality is in the 3D Ising ferromagnet LiHoF4

using a transverse magnetic field [16]. The application of a magnetic field perpendicular to the ordered

moments induces fluctuations, through tunnelling of up states in to down states and vice versa, which

reduce the Curie temperature towards a quantum critical point. Critical exponents of the susceptibility

and the transverse field dependence of 𝑇C are shown in Figure 2.6. There is good agreement of the critical

exponents and the field dependence of𝑇C with mean-field local Ising ferromagnet theory, due to the effective

dimensionality 𝑑eff. = 𝑑 + 1 [135] being equal to 𝑑crit. = 4 , the upper critical dimension9.

Beyond being a theoretical curiosity, the formation of novel phases in the vicinity of quantum critical

points (often antiferromagnetic) are frequently observed. There are hopes that the vicinity of a quantum

critical point could be used to stabilise interesting or useful phases of matter, such as high temperature

superconductors. This is in part driven by the observation of 𝑇 linear resistivity (a common feature of

metals near a QCP) in proximity to the optimal doping of high 𝑇c cuprate superconductors. There has

been significant efforts to understand the nature of the phase that develops near a field induced QCP of

Sr3Ru2O7 [81] and the ‘hidden order’ phase in the heavy fermion URu2Si2 [64]. A recent development in the

antiferromagnetic quantum criticality of the heavy fermion YbRh2Si2 demonstrated that a very small pocket

9At least to leading order [16], it is noted that there should be some logarithmic corrections as this is at the critical dimensionality

[42].
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of superconductivity appears almost concomitantly with nuclear magnetic ordering [116]. The observation

of ferromagnetic quantum critical points in clean metals has so far been very rare however, for reasons that

will be discussed in the following section.

In metallic ferromagnets

The search for quantum criticality in metallic ferromagnets has led to the extensive study of many materials

with reduced Curie temperatures, then using non-thermal parameters such as pressure or magnetic field

to further suppress 𝑇C. A wide overview of metallic ferromagnets has been reviewed by Brando et al. [21].

Both experiment and theory have almost exclusively pointed to ferromagnetic quantum critical points in

clean metals being avoided by either becoming first order (schematically in Figure 2.7 panel (a)), or being

interrupted by other phases (Figure 2.7 panel (c)). The reason for this behaviour is predicted by the theory

of Belitz, Kirkpatrick and Vojta [12] who showed that soft (Goldstone) mode excitations, that are general

to metals with dimensionality 𝑑 > 1, will always couple to the magnetisation if the metal is sufficiently

clean. This coupling generally introduces a non-analytic term in the free energy, which drives the transition

first order. The theory was later extended to include an external magnetic field [11], with ‘tricritical wings’

appearing at the first order transition (this point is called the ‘tricritical point’) as illustrated in Figure 2.7

panel (a). Quantum critical points form at the suppressed ends of the wings. This structure has been

observed in several itinerant ferromagnets, including MnSi [100] and UGe2 [72].

The effect of disorder has previously caused several other metals to be considered to have ferromagnetic

quantum critical points. A well studied example of this is in ZrZn2, in which the ferromagnetism is

suppressed by hydrostatic pressure. The Curie temperature appeared to be continuously suppressed to

a critical pressure [125], however experiments on higher quality samples revealed a first order transition

in pressure followed by tricritical wings on applying a magnetic field [142]. The effect of disorder often

introduces a tail like feature to the phase diagram, as shown schematically in Figure 2.7 panel (d).

Both currently undisputed ferromagnetic quantum critical clean metals are in heavy fermion compounds,

YbNi4P2 (𝑇C = 170 mK) [130] and CeRh6Ge4 (𝑇C = 2.5 K) [119]. Both have been speculated to be due to

a quasi-1D electronic structure, which would prevent the soft modes that turn the transition first order.

Recent calculations, motivated by CeRh6Ge4, have predicted instead that a strong anisotropy could be the

underlying cause [23, 145].



18

Figure 2.7: Schematic phase diagrams of metallic ferromagnets in pressure (hydrostatic

𝑝 or via chemical substitution 𝑥) and field. Reproduced from [21]. (a) A first order

transition with tricritical wings. (b) A second order transition with a quantum critical

point. (c) Interruption by another phase (antiferromagnetic or spin density wave). (d) A

second order transition caused by disorder effects.

2.3 Heavy fermions

The identifying feature of a heavy fermion system is a strongly renormalised quasiparticle mass 𝑚∗ ≫ 𝑚e,

most evident in their large heat capacities (as first observed in CeAl3 [5]). The large quasiparticle effective

mass is a result of hybridisation between conduction electrons and a lattice of partially filled 𝑓 states near

the Fermi level, which are coupled through coherent Kondo scattering10. Typically, 𝑓 states are those of the

𝑓 -electrons in Ce or U, or the 𝑓 -holes in Yb. Hybridisation leads to the formation of a gap near the Fermi

level, here we will only consider heavy fermion metals, in which quasiparticle bands intersect the Fermi

level. The 𝑓 states in the lattice are also coupled to each other through the Ruderman–Kittel–Kasuya–Yosida

(RKKY) interaction (via the conduction electrons), which favours magnetic ordering. The following sections

will first discuss the RKKY interaction, then the Kondo effect for single 𝑓 impurities. Next, the development

of a coherent Kondo effect in the “Kondo lattice” is addressed. Phase transitions due to competition between

the RKKY interaction and the Kondo effect are then outlined. Lastly, topological changes of the Fermi surface

(Lifshitz transitions) are discussed, which are common in heavy fermion systems.

10While the 𝑓 states and conduction electrons can hybridise without this interaction (for example in Figure 6.11 panel (b), from only

DFT with spin orbit), the term heavy fermion is specifically used for the hybridisation due to the Kondo coupling.
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Figure 2.8: The RKKY interaction real space susceptibility. The function 𝐹 of Equa-

tion 2.32 that determines whether the interaction is ferromagnetic (𝐹 < 0) or antiferro-

magnetic (𝐹 > 0) is plotted.

2.3.1 RKKY

The RKKY interaction is an indirect exchange coupling between magnetic moments, via the spin-polarisation

of intermediate conduction electrons. The real space susceptibility of a 3D electron gas at position r in

response to a delta function magnetic field perturbation at the origin is

𝜒(r) =
2𝑘3

F
𝜒P

𝜋
𝐹(2𝑘F𝑟), with 𝐹(𝑥) = −𝑥 cos(𝑥) + sin(𝑥)

𝑥4

, (2.32)

where 𝑘F is the Fermi wave vector and 𝜒P is the Pauli susceptibility (which is proportional to the density of

states at the Fermi level) [19]. The susceptibility is oscillatory as shown in Figure 2.8. A localised moment

such as that of a bound 𝑓 electron provides a delta-like perturbation, and so polarises the conduction

electrons similarly. A second moment can interact with this polarisation. The RKKY interaction can therefore

act to align moments parallel (ferromagnetically) or antiparallel (antiferromagnetically), depending on

the distance between spins 𝑟 and the Fermi wave vector 𝑘F. Knowledge of the Fermiology11 and the

crystal structure are therefore needed to determine whether this interaction favours ferromagnetism or

antiferromagnetism for moments in a lattice.

2.3.2 Kondo Effect

In metals with dilute magnetic impurities there is a well documented upturn in the resistivity at low

temperatures, in contrast with the understanding of electron-phonon and electron-electron scattering which

do not contribute to resistivity at zero temperature in 3D. Kondo modelled this upturn in a system with

itinerant 𝑠 electrons and a local 𝑑 state impurities, finding a log(𝑇) upturn in the resistivity if the interaction

between the 𝑠 and 𝑑 moments favours antiparallel 𝑠 and 𝑑 spins [71]. This interaction cannot be treated

11Fermi surface shape will also change the form of 𝜒(r), for example in a 1D electron gas [82].
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Figure 2.9: Schematic effect of Kondo hybridisation on band structure. A black dashed

line represents the non-hybridised conduction electron band and a red dotted line repre-

sents a localised 𝑓 state near the Fermi level. The hybridisation between the two of these

leads to two bands. With a Fermi level crossing the lower band the system is metallic

and the hybridisation causes an expansion of the Fermi surface from ‘small’ to ‘large’.

perturbatively at low temperatures. An equivalence of the Kondo problem was drawn to a classical 1D

gas by Anderson and Yuval prompting the use of renormalisation group methods (as briefly described in

subsection 2.2.1) [2], with Anderson later using a ‘cutoff’ renormalisation method to derive approximate

scaling laws [1]. An energy scale 𝐸K called the Kondo energy (and a corresponding Kondo temperature

𝑇K = 𝐸K/𝑘B𝑇) arises in the latter, with scaling

𝐸K ∝ 𝐷𝑒−1/𝐽 𝑔(𝐸F) , (2.33)

where 𝑔(𝐸F) is the density of states at the Fermi energy and 𝐷 is the width of the band. Below the

characteristic Kondo temperature 𝑇K, the conduction electrons and local moments form a singlet [147]. In

this sense, the conduction electrons form a ‘cloud’ screening the local moment.

2.3.3 Kondo lattice

In heavy fermion metals, the 𝑓 electrons of lanthanides/actinides at lattice sites are the local moments

that cause the Kondo effect, rather than those of dilute 𝑑 impurities. As the local moments now have the

symmetry of the lattice, the electrons are coherently scattered by the Kondo singlets, conserving their crystal

momentum. In contrast to the ‘single-ion’ impurity considered in a dilute metal, where incoherent Kondo

scattering increases the resistance at low temperatures, the dense ‘Kondo lattice’ has a drop in resistivity at

low temperatures due to coherent scattering.

The quasiparticles charge carriers that form are heavy fermions, hybridised states between the conduction
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electrons and the localised 𝑓 moments. These quasiparticle behave as a Fermi liquid at low temperatures,

characterised by a 𝑇2
resistivity, and have highly renormalised effective masses, often on the order of 100

electron masses (for example masses up to 90𝑚e derived from quantum oscillations of UPt3 [57], and a

mass of 220𝑚e in CeCu2Si2 estimated from the superconducting critical field [107]). A schematic of the

band structure of a heavy fermion system is shown in Figure 2.9, between a conduction electron with a

significant bandwidth and a local 𝑓 -state with little dispersion in momentum. On hybridising, an upper

and lower band is formed with a hybridisation energy gap between the two. In a metal with Fermi energy

intersecting the lower band, 𝑘F is increased from ‘small’ to ‘large’ as the 𝑓 electrons become included in the

Fermi volume. As the 𝑓 electrons have very weak energy dispersion, it is typically the 𝑠 or 𝑑 electrons of

a heavy fermion metal the determine the shape and topology of the Fermi surface12. For this reason DFT

calculations can be useful for determining the Fermiology of heavy fermion materials. Significant changes

to the nature of the conducting quasiparticles (such as mass renormalisation) are however not captured by

DFT, and rather require alternatives such as the renormalised bands method [154].

2.3.4 Phase transitions

In heavy fermion systems, the RKKY interaction is in competition with the Kondo effect, with the former

favouring magnetic order between localised 𝑓 -moments, and the latter rather acting to screen the moments.

This competition has most famously been studied by Doniach, through a one-dimensional model of con-

duction electrons13 coupled to localised spins [31]. He found that by tuning the Kondo coupling 𝐽, the

antiferromagnetic ground state underwent a second order phase transition to a “Kondo spin-compensated

ground state”, with a quantum critical point at 𝐽c. The Doniach phase diagram describes this transition due

to the competing energy scales 𝑇K and 𝑇RKKY, and is relevant to heavy fermion systems. The RKKY scale can

also be expressed in terms of the Kondo coupling, 𝐽, between 𝑓 moment and conduction electrons, and the

density of states at the Fermi level 𝑔(𝐸F); approximately14 𝑇RKKY ∼ 𝐽2𝑔(𝐸F). At small coupling, 𝐽, this term

dominates, favouring a magnetically ordered state as shown in Figure 2.10. On increasing the coupling, the

energy scale of the Kondo interaction 𝑇K ∼ exp(−1/𝐽 𝑔(𝐸F)) increases, becoming dominant above a coupling

𝐽c and forming a Kondo-screened ground state.

The Kondo coupling 𝐽 can be tuned in heavy fermion compounds by magnetic fields or pressure [40].

Positive pressures can be achieved by applying a hydrostatic pressure (in a pressure cell), or by internal

pressure through isoelectronic chemical substitutions with smaller atomic radii (using many samples).

12Although a growth in Fermi volume can push parts of the Fermi surface towards Lifshitz transitions, e.g. a spherical Fermi surface

expanding to the edge of the first Brillouin zone.

13Rather, a lattice of pseudo-spins. Doniach used a transformation in which this was equivalent to a spinless fermion gas.

14Qualitatively, two 𝐽 terms are present as this is an indirect exchange interaction ( 𝑓 –conduction– 𝑓 ) and the density of states is from

the Pauli susceptibility.
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Figure 2.10: Doniach phase diagram for heavy fermion metals. Below 𝐽c a magnetic state

is favoured by the RKKY interaction, above 𝐽c a heavy Fermi liquid is favoured by the

Kondo effect.

Negative pressure can only be achieved through isoelectronic substitutions of larger atomic radii. Positive

pressures favour a heavy Fermi liquid ground state in Ce compounds, but instead favour magnetic states in

Yb compounds [43]. While hydrostatic pressure is often more experimentally challenging to achieve (and

often limits the probes that can be used), it is sometimes preferable as it will not introduce chemical disorder

and can offer finer tuning.

The role of the 𝑓 electrons is an important discussion in heavy fermion quantum criticality. Systems

where criticality only involves a change in the magnetic state are referred to as spin-density-wave (SDW)

type (for example CeCu2Si2, in which SDW fluctuations drive the superconductivity [128]), while systems

in which the Kondo hybridisation simultaneously disappears (as illustrated in Figure 2.10) are known as

“locally-critical” [122]. The most thoroughly studied example of the latter is in YbRh2Si2, in which Hall

effect measurements [95] find an abrupt change in Fermi volume, coincident with the suppression of AFM

order, when tuned by an external magnetic field. The change in Fermi volume is seen to indicate the

inclusion of the 𝑓 electrons in the heavy Fermi liquid ground state. Additional tuning by isoelectronic

substitution (both positive and negative internal pressure) in YbRh2Si2 has been found to separate the

antiferromagnetic QCP from the formation of the heavy Fermi liquid [37], leading to ideas of general phase

diagrams of heavy fermion materials with AFM phases [122]. A similar phase diagram may be possible

from a ferromagnetic state to heavy Fermi liquid [150, 83], although metallic ferromagnets almost always

have first order transitions [12, 21].
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2.3.5 Lifshitz transitions

The strongly renormalised effective masses of heavy fermion quasiparticle bands makes their Fermi surfaces

particularly susceptible to the influence of tuning parameters such as magnetic field. Consider the effect of

a magnetic field on the dispersion relations of a free quasiparticle gas, with electrons either spin up (+) or

spin down (−)

𝜀±(k) = ℏ2𝑘2

2𝑚∗
∓ 1

2

𝑔𝜇B𝐵, (2.34)

where 𝑚∗ is the effective band mass and the 𝑔-factor is the coupling constant that determines the Zeeman

splitting of the quasiparticles. With a Fermi energy 𝐸F, there are majority (spin parallel to field) and minority

(antiparallel) Fermi surfaces with radii

𝑘±
F
=

√
2𝑚∗

ℏ

√
𝐸F ±

1

2

𝑔𝜇B𝐵, (2.35)

With large enough magnetic field it is possible to fully polarise the minority (−) band by application of a

field15

𝐵void ≈
2𝐸F

𝑔𝜇B

=
1

𝑔𝑚∗
ℏ2(6𝜋2𝑛)2/3

𝜇B

, (2.36)

where 𝑛 is the total electron density. This is known as a void type Lifshitz transition as it is where the

minority pocket has entirely disappeared (likewise, void type when a pocket appears).

The susceptibility of a metal to Lifshitz transitions in magnetic field is determined by two factors. Firstly

is the proximity of the energy extrema to the Fermi energy, which is determined by the band structure and

the effective masses (in Equation 2.36 this is due to 𝑛 and 𝑚∗). Large effective masses 𝑚∗ will decrease

the energy scales, meaning extrema will typically be close to the Fermi level. This is the case in many

heavy fermion compounds, due to their very large effective masses. A second parameter is the strength of

the Zeeman splitting via the 𝑔 factor. Both 𝑚∗ and 𝑔 can be anisotropic, resulting in anisotropic Lifshitz

transitions.

More generally, Lifshitz transitions are topological changes of the Fermi surface. Neck type Lifshitz

transitions are also possible that involve the separation (or joining) of two parts of a Fermi surface. Void

type transitions are the result of a minima or maximum in 𝜀(k) passing through the Fermi level, while

neck type transitions occur instead due to saddle points crossing the Fermi level. Both are illustrated in

Figure 2.11 for a model 2D energy dispersion.

15Here charge neutrality is not held, for simplicity 𝐸F is assumed constant. For charge neutrality in a 3D gas, a field dependent

chemical potential 𝜇(𝐵) is needed as in Appendix B. This is because Zeeman splitting (at fixed 𝜇) linearly changes the cross section

area of the Fermi spheres, not their volume (and so Δ𝑛+ ≠ −Δ𝑛−).
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Figure 2.11: Void and Neck transitions in a 2D model. Magnetic field increases from left

to right. Central left is the zero field FS, which splits in to a minority (upper row) and

majority (lower row) Fermi surfaces. The right most panels display Fermi surfaces after

void (upper) and neck (lower) transitions.

2.4 Electronic transport

Electronic transport measurements provide several routes to investigating the properties of the conductive

quasiparticles in metals. In general, the resistivity tensor 𝜌 is probed, that relates the electric field E at any

point to the current density j:

E = 𝜌j . (2.37)

Experimentally the components of 𝜌 are accessed by measuring voltages between contacts. For the lon-

gitudinal resistivity component 𝜌𝑥𝑥 , a voltage drop 𝑉L along the current direction is measured. For the

transverse component 𝜌𝑥𝑦 , the transverse (Hall) voltage𝑉H is measured (in magnetic field). For all purposes

in this thesis, an applied AC current is low enough in frequency that it can be considered DC. Well defined

sample geometries (as described in subsection 4.2.3) are used such that components 𝑉L and 𝑉H can be

determined relative to the applied current direction. Under an applied magnetic field, the former yields the

magnetoresistivity component 𝜌𝑥𝑥 and the latter the Hall resistivity component 𝜌𝑥𝑦 .

In the following sections, resistivity and Hall effect will be discussed, with a particular focus on sig-

natures of interest in heavy fermions, metallic ferromagnets, and metals close to quantum critical points.

Firstly resistivity shall be discussed, before turning to electronic transport in a magnetic field, specifically

magnetoresistance and the normal Hall effect. Lastly, the many components of anomalous Hall effect will

be outlined, which are significant in metallic ferromagnets.
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2.4.1 Resistance

The current density due to the average flow a electron gas of density 𝑛 is

j = −𝑛𝑒⟨v⟩, (2.38)

where ⟨v⟩ is the average velocity, and −𝑒 is the electron charge. A free electron gas will experience

an acceleration −𝑒E/𝑚 under the influence of an electric field. Inside a metal however the conduction

electrons may scatter with the metal ions, impurities, or even each other. The simplest model of scattering

inside of a metal is via Drude theory. Drude’s model assumed that each electron scatters off of an ion, in a

random direction, transferring thermal energy to or from the ion such that its speed is now 𝑣0. The velocity

of an electron a time 𝑡 after a collision is therefore

v(𝑡) = v0 −
𝑒E𝑡

𝑚e

. (2.39)

The average time between collisions is known as the relaxation time or scattering time 𝜏. As the scattered

direction of v0 is random, its average does not contribute to ⟨v⟩, and so

j =
𝑛𝑒2𝜏
𝑚e

E , (2.40)

indicating a diagonal resistivity tensor with

𝜌𝑥𝑥 =
𝑚e

𝑛𝑞2𝜏
. (2.41)

Measurements of the longitudinal resistivity therefore act as a probe of the scattering times experienced by

the charge carriers in a metal. This is more general than scattering of electrons by ions, instead only requiring

that whatever charge carrier is present has a scattering process that can be modelled by the relaxation time

approximation.

More specifically, in a metal the charge carriers are the electrons in partially filled bands – those that cross

the Fermi level. To calculate the conductivity, we must consider the action of an electric field on the non-

equilibrium distribution function 𝑔(r, k, 𝑡), where 𝑔(r, k, 𝑡)𝑑r𝑑k/4𝜋3
is the number of electrons in volume

𝑑r𝑑k at position r and in state k [7]. In equilibrium this reduces to the Fermi–Dirac distribution function

𝑓 (𝜀(k)), where 𝜀(k) is the dispersion relation16. The time evolution of the non-equilibrium distribution

function is governed by the Boltzmann equation17

𝑑𝑔

𝑑𝑡
=

(
𝜕𝑔

𝜕𝑡

)
diff.

+
(
𝜕𝑔

𝜕𝑡

)
ext.

+
(
𝜕𝑔

𝜕𝑡

)
coll.

, (2.42)

16While 𝐸(k) is used for the dispersion relations in later sections of the thesis, here 𝜀(k) is used to avoid confusion with the electric

field E
17Here we have assumed a single band at the Fermi level. In the general case where each 𝑖th band has distribution 𝑔𝑖 , the total

number of electrons is conserved 𝑔 =
∑
𝑖 𝑔𝑖 , and Equation 2.42 is still held.
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where the first term is due to diffusion, the second term due to external forces, and the last due to collisions.

The diffusive term describes the flow of particles with velocity vk, conserving total number, and is(
𝜕𝑔

𝜕𝑡

)
diff.

= −vk ·
(
∇r𝑔

)
, (2.43)

where vk = ∇k𝜀. The effect of an electric field is to add momentum −(𝑒𝐸/ℏ)𝑑𝑡 per time 𝑑𝑡. The external

term associated with this is (
𝜕𝑔

𝜕𝑡

)
ext.

=
𝑒E

ℏ
·∇k𝑔. (2.44)

Lastly, the collision term describes the effect of scattering, a problem which is typically very difficult to

solve accurately. Proper treatment requires we calculate the scattering probability matrix elements 𝑊kk′

that determine the probability of an electron in state k scattering in to states18 within 𝑑k′ of k′ in time

𝑑𝑡, however for discussions here it is sufficient to consider these scattering rates qualitatively. As before,

it is often sufficient to make a relaxation time approximation, where this term acts to relax 𝑔 back to the

equilibrium exponentially when external forces are removed. In this approximation(
𝜕𝑔

𝜕𝑡

)
coll.

=
𝑔 − 𝑓
𝜏

, (2.45)

where 𝜏 is again the characteristic scattering time. In the steady state, and with homogeneity ∇r𝑔 = 0, the

Boltzmann equation therefore gives us

𝑔(k) = 𝑓 (k) − 𝑒𝜏
ℏ
E ·∇k𝑔(k). (2.46)

Assuming that E is sufficiently small, then ∇k𝑔 ≈∇k 𝑓 (to zeroth order in E), and so to first order in E:

𝑔 (k) ≈
(
1 − 𝑒𝜏

ℏ
E ·∇k

)
𝑓 (k) ≈ 𝑓

(
k − 𝑒𝜏

ℏ
E

)
. (2.47)

The effect of a small electronic field is simply to shift the volume of electrons contained in the Fermi surface

in the opposite direction of E, resulting in a net flow of electrons. Explicitly in 3D, this is

j = − 𝑒

4𝜋3

∫
𝑔 (k)vk (𝜀 (k)) 𝑑3k, (2.48)

integrated over a primitive unit cell.

A picture of effective dimensionality and anisotropy naturally develops from this. In two dimensions,

consider the Fermi surfaces at 𝑇 = 0 due to an isotropic ‘2D’ band where 𝜀(k) = ℏ2𝑘2/2𝑚e, versus a ‘1D’

band where 𝜀(k) = ℏ2𝑘2

𝑦/2𝑚e, as illustrated in Figure 2.12. The action of an electric field E = 𝐸ŷ on either

will result in a non-equilibrium distribution 𝑔, with a net current in a parallel and opposite direction of E.

In the case of an electric field E = 𝐸x̂ the 2D electrons have a likewise net current, however there is a stark

difference for the 1D Fermi surface. In the 1D Fermi surface, the non-equilibrium states are mapped on

to already occupied states19; there is no net current. This anisotropy results in different diagonal elements

18For multiple bands this can include scattering between different bands, and again we have to consider 𝑔 =
∑
𝑖 𝑔𝑖 .

19using the periodicity of the crystal momentum k for states outside the first Brillouin zone



27

E jj y ̂ "

2D

E jj x ̂ !

1D

Figure 2.12: Equilibrium (filled volumes) and non-equilibrium Fermi surfaces (dotted

lines) in 1D and 2D at 𝑇 = 0. A square marks the first Brillouin zone boundary. The 2D

Fermi surface is moved to non-equilibrium states by electric fields along �̂� or �̂�. The 1D

Fermi surface is only moved to non-equilibrium states by an electric field along �̂�.

𝜌𝑥𝑥 ≠ 𝜌𝑦𝑦 .

The charge carriers we consider in heavy fermion metals are far from the non-interacting electron gas that

we have so far considered. Rather at low temperatures a Fermi liquid of heavy fermion quasiparticles (QP)

forms, a hybridisation between conduction electrons and localised 4 𝑓 electrons (as described in section 2.3).

A key signature of Fermi liquids is realised at low temperatures in the resistivity of very clean metals,

where electron-electron scattering dominates due to freeze out of phonons. Heavy fermion QPs very often

experience the same scattering dominant mechanism at lowest temperatures. These QPs obey the same

Fermi statistics, only the lowest energy states at 𝑇 = 0 are occupied up to the Fermi energy 𝐸F. For 𝑇 > 0,

some QPs within ∼ 𝑘B𝑇 below the Fermi energy are thermally excited above the Fermi level. For QP-QP

scattering to occur, both need to scatter in to unoccupied levels – a shell of ∼ 𝑘B𝑇 about the Fermi surface,

resulting in a scattering probability proportional to 1/𝜏 ∼ 𝑇2
. The resulting resistivity has a 𝑇2

dependence

at low temperatures, following

𝜌(𝑇) = 𝜌0 + 𝐴𝑇2 , (2.49)

where 𝜌0 is residual resistivity due to scattering off defects, and 𝐴 is a constant. Further for heavy fermion

materials, this is observed to be linked to the heat capacity 𝛾 via a constant Kadowaki–Woods ratio 𝐴/𝛾2

[60]. The heat capacities observed are enhanced by the heavy electrons which are often of the order of 100𝑚e

[131]. Through measurements of the low temperature resistivity, the 𝐴 coefficient provides insight in to the

QP effective masses, particularly when tuning the ground state (e.g. as a function of pressure). It is Fermi

liquid theory that allows us to consider the charge carrying quasiparticles in a metal similar to Drude’s

theory but with charge 𝑞 = ±𝑒 (electron/hole) and an effective mass 𝑚∗.
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This effective mass enters Equation 2.48 through vk = ∇k𝜀. For a parabolic isotropic band 𝜀(k) =

ℏ2𝑘2/2𝑚∗, the effective mass is 𝑚∗ = ℏ2/(𝑑2𝜀/𝑑𝑘2). In general we can define an effective mass tensor 𝑀, with

elements

[𝑀−1(k)]𝑖 𝑗 = ±
1

ℏ2

𝜕2𝜀(k)
𝜕𝑘𝑖𝜕𝑘 𝑗

= ±1

ℏ

𝜕𝑣𝑖
𝜕𝑘 𝑗

. (2.50)

For example, the 1D band in Figure 2.12 has used a diagonal form of 𝑀𝑥𝑥 → ∞ and 𝑀𝑦𝑦 = 𝑚e. There is

some subtlety in discussions of effective masses, importantly here, this is not the same effective mass that is

probed in quantum oscillations.

Metals not behaving as Fermi liquids at lowest temperatures have garnered significant interest, partic-

ularly in relation to the 𝑇-linear resistivity observed over orders of magnitude in high-𝑇c superconductors

near optimal doping where 𝑇c is maximised [104]. Many cases of non Fermi liquid behaviour have been

studied in heavy fermion metals near antiferromagnetic quantum critical points, such as YbRh2Si2[27] and

CeRhIn5 [118]. More recently, similar behaviour has been observed in heavy fermions close to ferromagnetic

quantum critical points, particularly YbNi4P2[130] and CeRh6Ge4[119], suggesting that this phenomena is

more general than AFM quantum criticality.

To summarise, measurements of the resistivity probe the scattering rates 𝜏 experienced by the charge

carrying quasiparticles, the anisotropy of their effective mass, and to some extent the topology of the Fermi

surface. The following section shall consider the effect of applying a static magnetic field B.

2.4.2 Magnetoresistance and normal Hall effect

Under the application of a magnetic field, charged particles experience a Lorentz force perpendicular to

their motion. For the itinerant quasiparticles in a metal, this results in a build up of voltage transverse to the

current direction, known as the Hall voltage. Including a magnetic field B in the Drude model, the average

velocity now needs an extra term to account for this deflection,

𝑑v

𝑑𝑡
=

𝑞

𝑚∗
(E + v ×B) − v

𝜏
. (2.51)

Choosing a magnetic field in to be in the ẑ direction, steady state solutions to the components 𝑣𝑥 and 𝑣𝑦 can

be found. Note that the component 𝑣𝑥 will be unaffected by the magnetic field, and have a solution akin to

Equation 2.40, so will be ignored. The resulting conductivity tensor is then

𝜎 =
𝑛𝑞2𝜏

𝑚∗
1

1 + (𝜔c𝜏)2
©«

1 𝜔c𝜏

−𝜔c𝜏 1

ª®¬ , (2.52)
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where 𝜔c = 𝑞𝐵/𝑚∗ is the cyclotron frequency. This is invertible20 to find the resistivity tensor that is

measured in experiments (with a fixed j)

𝜌 =
𝑚∗

𝑛𝑞2𝜏
©«

1 −𝜔c𝜏

𝜔c𝜏 1

ª®¬ . (2.53)

The longitudinal resistance (diagonal components) is independent of magnetic fields here, there is no

magnetoresistance. To understand how magnetoresistance can arise in a normal metal, we need more than

a single ‘type’ of electron. This does not necessarily need to be a two-band model, but can rather occur due

to variation in 𝜏 or 𝑚∗ around the Fermi surface.

When more than one carrier type is present, the total current density is the sum of each’s contribution

j =

(∑
𝑖

𝜎𝑖

)
E. (2.54)

With no magnetic field applied, all the components will align along the field direction, such that |j| = ∑
𝑖 |j𝑖|.

As we have seen in Equation 2.52, a magnetic field perpendicular to the current direction will change the

direction of each component of j. The resultant current directions are not necessarily the same for different

carrier types, and so we instead find |j| < ∑
𝑖 |j𝑖|. The current resulting from an electric field should only

decrease when applying a magnetic field (assuming 𝜏 is independent of magnetic field), or rather normal

metals will only exhibit positive magnetoresistance.

Negative magnetoresistance can occur in metals where the dominant scattering mechanism is suppressed

as a function of field. A common example is in itinerant ferromagnets such as Ni. Below the Curie

temperature 𝑇C, the minority (anti-aligned) 𝑑 band is partially filled while the majority is fully filled, giving

rise to a spontaneous magnetic moment. The dominant conductivity contribution is from the 𝑠 electrons

which are very mobile due to their small mass, these dominantly scatter in to minority 𝑑 band [19] which

is partially filled and has a high density of states (high mass). Application of a magnetic field shifts the

minority 𝑑 band away from the Fermi level, reducing the density of states and so the transition probability.

This in turn leads to a negative magnetoresistance.

A suppression of scattering by magnetic fields is also commonly seen in heavy fermion compounds, such

as CeCu6 [25] and UBe13 [50]. Kondo scattering is a spin-flip process [71, 112] – when incoherent Kondo

scattering is the dominant resistivity contribution, application of a magnetic field reduces the transition

probability and so results in a negative magnetoresistance. For more quantitative insights into this behaviour,

solutions to the Coqblin–Schrieffer model of scattering by Ce impurities [26] were solved by P. Schlottman

[115]. Universal forms21 of the magnetoresistance were found, only depending on a single characteristic

20Note that 𝑅 = 1√
1+(𝜔c𝜏)2

(
1 𝜔c𝜏
−𝜔c𝜏 1

)
is a rotation matrix, i.e. 𝑅−1 = 𝑅T

.

21Universality for each 𝑗, the angular momentum of the 𝑓 state.
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energy scale (without explicit dependence on a coupling constant). For small 𝐽 𝑔(𝐸F) (or when the 𝑓

level is localised, energetically well below the Fermi energy), where 𝐽 is the Kondo coupling and 𝑔 the

density of states as in subsection 2.3.2, the energy scale is equivalent to the Kondo energy [115]. Scaling of

magnetoresistance isotherms has been used in several heavy fermion materials as a probe of these energy

scales, for example in YbRhSn [3] where a Kondo temperature ∼ 2 K was found, and similarly in YbNiAl

with a Kondo temperature ∼ 3 K [30].

The off diagonal elements of Equation 2.53 describe the ‘normal’ (or sometimes ‘ordinary’) Hall effect.

For a single carrier, the induced Hall electric field along the ŷ direction, with B = 𝐵ẑ and j = 𝑗𝑥x̂, is

𝐸𝑦 =
𝑚∗

𝑛𝑞2𝜏
𝜔c𝜏𝑗𝑥 =

𝐵

𝑛𝑞
𝑗𝑥 . (2.55)

In the case of a single carrier with charge 𝑞 = ∓𝑒 (electron/hole), the Hall coefficient 𝑅H = 𝐸𝑦/𝑗𝑥𝐵 = 1/𝑛𝑞

is entirely dependent on the carrier density 𝑛. Again we can consider the effect of multiple carrier types

through the addition of conductivity tensors, however the inversion of the conductivity tensor quickly

expands in terms. Usually the normal Hall effect is of interest in the low field limit 𝐵 → 0, so 𝜔c ≪ 1. In

this limit the off diagonal terms of each conductivity tensor become

𝜎𝑦𝑥 = −𝜎𝑥𝑦 ≈ 𝑛𝑞𝜇2𝐵, (2.56)

where 𝜇 = 𝑞𝜏/𝑚∗ is the quasiparticle mobility. The Hall effect will have larger contributions from carriers

with high mobility. In the high field limit 𝜔c ≫ 1 we instead have

𝜎𝑦𝑥 = −𝜎𝑥𝑦 ≈
𝑛𝑞

𝐵
, (2.57)

where the Hall current is dominated by the highest carrier density.

2.4.3 Anomalous Hall effect

In magnetic metals, a component of the Hall effect is proportional to the magnetisation. The Hall effect was

empirically determined to be composed of two parts by Pugh [105],

𝜌𝑥𝑦 = 𝑅0𝐻 + 𝑅s𝑀, (2.58)

where𝑅0 is the normal hall effect coefficient, and𝑅s is a term describing the anomalous Hall effect (AHE). The

most comprehensive and current review of the AHE is that by Nagaosa [90], and so notation similar to this is

used here. AHE measurements are particularly of interest in ferromagnets, where a large magnetisation 𝑀

can give a good AHE signal. Further, in ferromagnets often there is sizeable magnetic hysteresis, allowing

the AHE to be separated unambiguously from 𝑅0.
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In general, we need to consider the contributions of mechanisms to the conductivity tensor 𝜎, which will

add linearly

𝜎𝑥𝑦 = 𝜎NH

𝑥𝑦 + 𝜎AH

𝑥𝑦 , (2.59)

where NH indicates normal Hall and AH anomalous Hall. Typical materials are in the small Hall angle

limit 𝜎𝑥𝑦 ≪ 𝜎𝑥𝑥 (true for all measurements in this thesis), and so the Hall resistivity is

𝜌𝑥𝑦 ≈
𝜎𝑥𝑦

𝜎2

𝑥𝑥

= 𝜌NH

𝑥𝑦 + 𝜌AH

𝑥𝑦 , (2.60)

and so Equation 2.58 holds without mixed terms of 𝐻 and 𝑀. We can therefore focus attention here on only

terms that contribute to 𝜌AH

𝑥𝑦 , which are 𝜎AH

𝑥𝑦 and 𝜌𝑥𝑥 explicitly.

While the normal Hall effect is largely determined by carrier density/mobility, there are many mech-

anisms that lead to an anomalous Hall effect. Typically the three dominant mechanisms are: intrinsic,

skew scattering, and side jump scattering. The contributions of each can be separated respectively in the

conductivity

𝜎AH

𝑥𝑦 = 𝜎AH−int.
𝑥𝑦 + 𝜎AH−skew

𝑥𝑦 + 𝜎
AH−sj

𝑥𝑦 . (2.61)

These will be outlined along with their signatures in the following sections.

Intrinsic

The intrinsic term is due to band structure effects only, and will be present even when there are no impurities

or disorder. The effect was found to be a result of spin-orbit interaction of polarised conduction electrons

by Karplus and Luttinger [62], and is now understood in terms of the Berry curvature [15] acquired by

quasiparticle wave functions over closed orbits of the Fermi surface [58]. This term can be computed by

first principle calculations [45], as demonstrated with reasonable accuracy in bcc Fe by Yao et al. [152].

These calculations, and calculations of SrRuO3 [34] highlight the sensitivity of the intrinsic anomalous Hall

effect to avoided crossings in the band structure. The Berry curvature contributions when such crossing

are near the Fermi level is large. In SrRuO3 this causes the intrinsic anomalous Hall effect to be highly

non-monotonic in temperature, changing signs multiple times below the Curie temperature; temperature

affects the magnitude of 𝑀 and so the amount of splitting between spin polarised bands, as the bands shift

the avoided crossings pass through the Fermi level changing the Berry curvature.

As this contribution is intrinsic, there is no dependence of the Hall conductivity on the scattering time 𝜏

𝜎AH−int

𝑥𝑦 ∝ 𝜏0. (2.62)
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The Hall resistivity however picks up a dependence on 𝜏 through the matrix inverse of the conductivity

tensor. For small Hall angles (𝜎𝑥𝑦 ≪ 𝜎𝑥𝑥), the Hall resistivity is

𝜌𝑥𝑦 ≈ 𝜎𝑥𝑦/𝜎2

𝑥𝑥 ∼ 𝑀𝜌2

𝑥𝑥 (2.63)

where 𝜌𝑥𝑥 ≈ 𝜎𝑥𝑥 ∝ 𝜏−1
. With knowledge of the magnetisation, typically 𝜌𝑥𝑦 is plotted as a function of 𝑀𝜌2

𝑥𝑥 ,

using temperature sweeps at a fixed magnetic field, to determine the size of this contribution. Alternatively,

if the magnetisation is linear the magnetic susceptibility can be used in place of magnetisation.

A similar mechanism is believed to give rise to unusual Hall effect signatures in materials with non

trivial spin textures such as the helimagnet MnSi [79]. This is attributed to Berry curvature effects from the

spin texture in real space rather than the reciprocal space effects of the band structure. This effect is quite a

new field and sometimes rather known as the ‘chiral’ or ‘topological’ Hall effect.

Skew scattering

Skew scattering is an extrinsic mechanism in which electrons are asymmetrically scattered off of impurities

in the presence of spin-orbit coupling (either of the lattice or the impurity) [90], first identified by Smit

[124]. The scattered electrons wave vector k is deflected to k′, which are in general not parallel. The Hall

conductivity 𝜎AH−skew

𝑥𝑦 is proportional to the scattering time

𝜎AH−skew

𝑥𝑦 ∝ 𝜏1. (2.64)

The anomalous Hall effect in very clean metals (𝜏 → ∞) is therefore typically dominated by this extrinsic

mechanism. When this is dominant, for small Hall angles (𝜎𝑥𝑦 ≪ 𝜎𝑥𝑥) the Hall resistivity goes as

𝜌𝑥𝑦 ≈ 𝜎𝑥𝑦/𝜎2

𝑥𝑥 ∼ 𝑀𝜌𝑥𝑥 . (2.65)

Typically, plots of 𝜌𝑥𝑦 as a function of 𝑀𝜌𝑥𝑥 are made to determine the magnitude of this effect.

Side jump scattering

A second scattering mechanism was argued by Berger [14] in which the electron is displaced transverse to

its wave vector k by an impurity with spin-orbit interactions. The scattered wave vector k′ is parallel to the

incoming k. The Hall conductivity 𝜎
AH−sj

𝑥𝑦 is independent of the scattering time

𝜎
AH−sj

𝑥𝑦 ∝ 𝜏0 , (2.66)

and hence has the same resistivity signature as the intrinsic mechanism

𝜌𝑥𝑦 ≈ 𝜎𝑥𝑦/𝜎2

𝑥𝑥 ∼ 𝑀𝜌2

𝑥𝑥 . (2.67)
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Figure 2.13: Hall effect in heavy fermion metals. Reproduced from [47]. (a) Hall

coefficient in UPt3. A skew scattering term is fit using the susceptibility, shown in a

dashed line. Resistivity is displayed in the inset. (b) Schematic interpretation of skew

scattering in heavy fermion metals.

This has proved experimentally very difficult to distinguish from the intrinsic mechanism [90] as it has the

same form. If there is good knowledge of the intrinsic mechanism via first-principle calculations, sometimes

this term can be defined as the difference from experimental components proportional to 𝑀𝜌2

𝑥𝑥 and the

theoretical intrinsic term.

In heavy fermion metals

Heavy fermion metals are typically highly metallic, resulting in a dominant skew scattering mechanism.

The measured anomalous Hall effects are often non-monotonic in temperature, as the scattering is off of

𝑓 -electrons that change in nature due to the Kondo hybridisation. Comparisons of anomalous Hall effect

in an array of Fermion materials was made by Hadžić–Leroux et al. [47], attributing this non-monotonic

effect entirely to skew scattering in different regimes, as reproduced in Figure 2.13. At high temperatures

fluctuations of the partially screened and disordered 𝑓 electrons (the single-ion Kondo effect) cause a

significant amount of incoherent skew scattering. On cooling the magnetic susceptibility increases causing

the magnitude of 𝜌𝑥𝑦 to increase. At lower temperatures, Kondo coherence begins to set in and scattering

reduces dramatically. As a result, a maximum of |𝜌𝑥𝑦| at a coherence temperature 𝑇coh is observed. At zero

temperature these thermally induced scattering centres are no longer present, and the Hall resistivity is

then only from normal Hall effect and any anomalous Hall from impurities.

A fairly broad range of heavy fermion systems, with a focus on those with antiferromagnetic order,

have been reviewed by Nair et al. [91]. A prominent example is in YbRh2Si2, where skew scattering is

the dominant anomalous Hall effect mechanism [96], and the ordinary Hall effect can be reliably extracted

at lowest temperatures [95]. Often however, the scattering time dependence is less straightforward, as in
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CeRu2Si2 [29], and so comparisons of the magnitude of the anomalous Hall effect to other better known

systems are sometimes relied upon.

Studies of anomalous Hall effect in heavy fermion ferromagnets are very sparse. A recent publication on

the anomalous Hall effect in USbTe has rather found intrinsic AHE to be dominant at lowest temperatures

[123]. Further, it was observed that this component must be strongly temperature dependent, requiring

further theoretical insight in to the effect of Kondo coherence on the intrinsic Berry curvature terms.

2.5 Quantum oscillations

Quantum oscillations are a very useful tool for probing the quasiparticles of a metal, providing information

on the Fermi surface shape, the quasiparticle masses, mean free paths, and even the spin. A rigorous

semi-classical derivation for the quantisation of electrons in field is given in Shoenberg’s textbook [121].

Here an outline of the reasoning will be given with a focus on experimental observables and subtleties that

can be present in heavy fermion systems.

Electrons in uniform magnetic fields are deflected in a direction perpendicular to both their velocity and

the magnetic field. This corresponds to a deflection in momentum space. The force is always perpendicular

to the velocity so no work is done on the electron–the electron must follow a contour of fixed energy in a plane

perpendicular to the magnetic field. Any component of momentum along the field direction will simply

cause this orbital motion to drift along this direction, for a cylindrical Fermi surface the path will be a helix.

In the case of metals at 𝑇 = 0, where a large number of electrons fill the energy states from lowest upwards

obeying Pauli exclusion, the electrons follow contours of constant energy in the band structure. When these

paths close on themselves, the electrons must interfere constructively with themselves, constrained by the

Bohr–Sommerfeld quantisation rule. For electrons in magnetic field this results in the orbit area becoming

quantised, as characterised by the Onsager relation

𝑎𝑟(𝐸, 𝑘∥) =
2𝜋𝑒
ℏ
(𝑟 + 𝛾)𝐵, (2.68)

where 𝑎𝑟 is the k-space orbital area with energy 𝐸 in the slice with momentum component 𝑘∥ along

magnetic field B, 𝑟 is an integer and 𝛾 is a phase term. The phase 𝛾 is closely related to the Berry curvature

in momentum space, but is almost always very close to 1/2 [108].

As a simple starting point to understanding the effect of this quantisation on the electronic properties of

a metal, consider a free electron Fermi surface at 𝑇 = 0 without the Zeeman effect and with a fixed chemical
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Figure 2.14: Landau levels in a Fermi sphere. On the left is the non-quantised gas in

zero field. Landau levels appear in field (centre), and on increasing the field the levels

are depopulated (right).

potential (no conservation of charge22). The Fermi surface is defined by the isosurface at Fermi energy

𝐸(k) = 𝐸F =
ℏ2𝑘2

F

2𝑚e

. (2.69)

As magnetic field is applied, electrons are quantised in to Landau levels. On increasing the field, the

Landau levels expand in k-space, each eventually expanding outside of the Fermi surface and becoming

depopulated. When one of these crossings happens, the density of states at the Fermi level will suddenly

drop, as a large degeneracy of electrons is lost at the intersection of the Landau tube and the Fermi surface.

These jumps in the density of states at the Fermi level will happen every time the maximal Fermi surface

area is equal to the Landau tube area:

𝑎𝑟 = 𝐴ext = 𝜋𝑘2

F
, (2.70)

and so using Equation 2.68

1

𝐵𝑟
=

2𝜋𝑒
ℏ
(𝑟 + 𝛾)𝐴ext , (2.71)

The crossing are therefore periodic in inverse field 1/𝐵

𝐹 =

(
1

𝐵𝑟+1

− 1

𝐵𝑟

)−1

=
ℏ

2𝜋𝑒
𝐴ext , (2.72)

implying a frequency in the inverse field proportional to the maximal area of the Fermi surface. In a more

general Fermi surface, these oscillations are observed strictly if there exists an extremal Fermi surface area

perpendicular to the magnetic field. Explicitly, 𝑘∥ defines the set of planes (‘slices’) each with normal along

k∥ ∥ B and containing the point k∥. The area inside the intersection of the Fermi surface and each slice is

the area 𝐴k∥ , and 𝐴ext is defined where 𝑑𝐴k∥/𝑑𝑘∥ = 0.

The size of the jump in the density of states is dependent on the number of states at the intersection

of the highest occupied23 Landau tube with the Fermi surface. This degeneracy can be affected in two

22It is possible to calculate the density of states at the Fermi level with fixed electron number instead, which yields very good

agreement for frequencies much larger than the field [121]. A slight frequency deviation is present when the number of occupied

Landau levels is small, for example in the case of a void-like Lifshitz transition. This idea is tested in Appendix B.

23Or unoccupied for orbits enclosing a hole.
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fashions. The first is via the degeneracy of electrons on the crossing Landau tube, which increases with field

(linearly) to conserve the total charge as the tubes become more spaced out. The second is via the amount

of overlap between the Landau tube and the Fermi surface, which is determined by the curvature factor

|d2𝐴k∥/d𝑘2

∥|
−1/2

. This can be large for example in orbits of a cylinder24, or with angular dependence relative

to the axis of a corrugated cylinder (weak curvature at ‘Yamaji’ angles [149]).

As the electronic properties of metals depend upon the density of states at the Fermi level, these

oscillations can be observed in measurements of properties like magnetisation (de Haas–van Alphen effect)

or the resistivity (Shubnikov–de Haas effect). The former is directly related to the density of states at the

Fermi level. The latter is slightly more subtle, but related to the density of states through the probability of

scattering in to an empty state.

2.5.1 Back-projection

It is important to explicitly relate the Onsager frequency to the observed frequency, as the two are not

necessarily identical when the extremal area has a field dependence. The shape of the density of states at

the Fermi level is not purely sinusoidal at 𝑇 = 0, as the change is sharp when a Landau level crosses the

Fermi surface, implying the existence of higher harmonics. In general it can be constructed from a sum of

sinusoidal terms for all the 𝑝th harmonics of each orbital frequency 𝐹𝑖 . The fundamental frequency 𝐹(𝐵),

associated with an orbit of a field dependent Fermi surface, contributes a component to the total signal

𝑦 ∝ sin

(
2𝜋
𝐹(𝐵)
𝐵
+ 𝜙

)
, (2.73)

where 𝐹 is the Onsager frequency proportional to the area. By Taylor expanding to first order about a field

𝐵0 (assuming that the we observe the frequency somewhere that the frequency changes smoothly) we find,

𝑦 ∝ sin

(
2𝜋
𝐹(𝐵0) + 𝐹′(𝐵0)(𝐵 − 𝐵0)

𝐵
+ 𝜙

)
= sin

(
2𝜋
𝐹(𝐵0) + 𝐹′(𝐵0)𝐵0

𝐵
+ 𝜙′

)
, (2.74)

where 𝐹′ = 𝑑𝐹/𝑑𝐵, and a field independent term has been absorbed in to a new phase 𝜙′. It is apparent

that the frequency we observe is not the Onsager frequency but rather a frequency that has been linearly

‘back-projected’ to its zero field intercept

𝐹meas =

(
1 + 𝐵 𝑑

𝑑𝐵

)
𝐹. (2.75)

This is important in magnetic systems such as ZrZn2 [111] and (BEDT – TTF)2KHg(SCN)4 [114], where there

can be a non-linear frequency dependence on field due to exchange coupling, and in the heavy fermions

24Even with a field angled off axis, the Landau tubes will align with the cylinder. This can be thought about by considering the

Landau tubes as being made up of circles of constant energy inside planes (‘slices’) parallel to the field. A Landau tube can then be

stitched together from circles in different slices with the same quantised area.
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such as UPt3 [86] and YbRh2Si2 [103] where Lifshitz or other transitions are seen as a function of field. UPt3

is an interesting example of this phenomena as the back-projection results in a negative observed frequency

– physically this means that the Fermi surface is expanding quicker than the Landau levels, so the direction

of the oscillations is reversed! This should also be expected in general when new orbits emerge from a point

as a function of field (for example a void-like Lifshitz transition where a new pocket emerges), as the Fermi

surface must expand quicker than the first Landau level to observe any oscillations.

It is also insightful to consider the effect of a jump Δ𝐹 in the Onsager frequency at 𝐵0, which could be the

case if the Fermi surface reconstructs as a function of field. In this scenario 𝐹(𝐵) rather jumps, and the same

change is seen in the measured frequency. This is indistinguishable from an abrupt change in the gradient

of 𝐹(𝐵) using only the measured frequency. However, there should be a phase change at the reconstruction

of

Δ𝜙 =
2𝜋Δ𝐹
𝐵0

. (2.76)

This may be observable if Δ𝜙 is not close to a factor of 2𝜋.

2.5.2 Damping

In real systems, the distribution of electrons does not give a single perfectly sharp Fermi surface. The effects

of finite temperature, disorder, and spin splitting are considered here. These are understood through the

effect of ‘phase smearing’, where the contributions of a distribution of frequencies/phases add together

resulting in a reduced amplitude [121]. The total effect of these damping factors is to reduce the amplitude

by the damping factor 𝑅

𝑅 = 𝑅𝑇𝑅D𝑅s , (2.77)

where the multiplicative terms the temperature, disorder (‘Dingle’), and spin damping terms respectively.

Temperature

Temperatures 𝑇 > 0 result in a smoothed out Fermi-Dirac distribution

𝑓 (𝜀) = 1

1 + 𝑒(𝜀−𝜇)/𝑘B𝑇
. (2.78)

The effect of increased temperature is to introduce more states above the Fermi level, resulting in a less

sharply defined Fermi surface. The Landau tubes are therefore depopulated in a more smooth fashion, and

the amplitude of the oscillations are decreased. The form of this term for oscillations of the 𝑝th harmonic

are

𝑅𝑇 =
𝑋

sinh(𝑋) , where 𝑋 =
2𝜋2𝑘B

ℏ𝑒

𝑝𝑚c𝑇

𝐵
, (2.79)
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and 𝑚c is the cyclotron mass

𝑚c =
ℏ2

2𝜋
𝜕𝐴ext

𝜕𝜀
. (2.80)

While this is slightly different from the mass defined in electronic transport and heat capacity, typically

it will be similar in scale. This is the mass averaged around the cyclotron orbit. As probing the mass

requires measurements of oscillations over a window of field 𝐵0 < 𝐵 < 𝐵1, the central point in inverse field

is typically taken

𝐵 =

(
1

𝐵0

− 1

𝐵1

)−1

. (2.81)

Studies of oscillation amplitude as a function of temperature therefore allow estimates of the effective

mass 𝑚∗ ≈ 𝑚c of quasiparticles. Harmonics will appear to have a mass 𝑝𝑚∗, so will be quicker damped with

increasing temperature, resulting in the fundamental frequency being easier to resolve. For heavy fermion

systems 𝑚∗ is large, so very low temperatures (i.e. on a dilution refrigerator or
3

He probe) are typically

required to observe even the fundamental frequency.

Disorder

The role of disorder is to reduce the quasiparticle scattering time 𝜏, which in turn causes the Landau levels to

become broadened. This broadening is reduced relative to the spacing of the Landau levels as the magnetic

field is increased, resulting in higher damping at low fields. The form of this damping for the 𝑝th harmonic

is

𝑅D = exp

(−𝜋𝑝𝑚c

𝑒𝐵𝜏

)
, (2.82)

which grows exponentially in field. With information of the mass 𝑚c from temperature dependence, the

scattering time 𝜏 can be extracted from fixed temperature field sweeps. Low disorder and high magnetic

fields maximise this term, so it is beneficial to use very clean single crystal samples in high magnetic field

facilities.

For an isotropic parabolic energy dispersion, 𝑅D can be expressed in terms of a mean free path 𝑙0 = 𝑣F𝜏

where 𝑣F =
√

2𝐸F/𝑚 is the Fermi velocity. With the substitution of the Fermi energy in terms of the frequency

𝐸F = 𝑒ℏ𝐹/𝑚,

𝑅D = exp

(
−
√

2ℏ𝐹

𝑒

𝜋
𝑙0𝐵

)
, (2.83)

which does not require knowledge of the effective mass. This form demonstrates that higher frequencies

are typically more difficult to observe. This form will be used for presenting Dingle damping results in this

thesis. While this form is strictly for orbits of isotropic Fermi surfaces with parabolic energy dispersions,

an equivalent 𝜏 (or Dingle temperature) can be found with the presented information (frequencies and

cyclotron masses).
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Spin splitting (and spin zeros)

A magnetic field also acts to split the electron bands by the Zeeman energy in to majority (spin parallel) and

minority (antiparallel) parts, and so the observed signal is the sum of two terms. For a parabolic Zeeman

split band the energy has terms proportional to 𝑘2
and 𝐵, the majority and minority bands will both split

linearly in area with field resulting in the same back projected frequency (see subsection 2.5.1). The sum of

the two is then an oscillatory signal with the zero field frequency, damped by a factor

𝑅s = cos

(
𝜋
2

𝑝𝑔
𝑚c

𝑚e

)
, (2.84)

where 𝑝 is the harmonic and 𝑔 the quasiparticle 𝑔-factor.

The cyclotron mass 𝑚c and the 𝑔-factor can both be anisotropic with field, resulting in a variation of 𝑅s

with field direction. The term 𝑅s can be reduced to zero, a phenomena known as ‘spin-zeros’, as a function

of field direction if these anisotropies are strong enough. This can provide a route to probe the 𝑔-factor

of the charge carriers in a metal, which is experimentally rare. Notably however, on its own this method

can only determine the 𝑔-factor with the addition of a term times an integer due to the periodic nature of

Equation 2.84. Further, for spin zeros to appear the amplitude of both majority and minority oscillations

needs to be similar, and they must back-project to the same frequency (i.e. their extremal areas must be split

sufficiently linearly in magnetic field). Note also that the appearance of a spin zero in the 𝑝th harmonic

coincides with a maximum |𝑅s| in the (𝑝 + 1)th harmonic.





Chapter 3

YbNi4P2

YbNi4P2 is a heavy fermion ferromagnetic metal with a low Kondo temperature 𝑇K ∼ 8 K and a very

low Curie temperature 𝑇C ≈ 160 mK [74, 130]. The ferromagnetism in YbNi4P2 is further unusual in its

preference to order perpendicular to the high temperature paramagnetic easy axis. The real component

𝜒′ of magnetic susceptibility data measured by Lausberg [78, 130] on a single crystal are presented in

Figure 3.1 panel (a). For temperatures between 50 K and 400 K, there is Curie-Weiss behaviour of the

susceptibility, and an effective moment 𝜇eff = 4.52𝜇B consistent with Yb
3+

ions [74]. This suggests that the

YbNi4P2

Bprobe = 10 µT
f = 113.7 Hz

(a)

(c)

(b)

Figure 3.1: Magnetic susceptibility of YbNi4P2 and magnetic phase diagrams (repro-

duced from Steppke et al. [130]). (a) Magnetic susceptibility. (b) Phase diagram with

H ⊥ [001]. Symbols 𝐶 are from heat capacity measurements, 𝜒 magnetic susceptibility,

and 𝜌 resistivity. Regions are labelled as paramagnetic (PM), ferromagnetic (FM), and

field polarised (FP). (c) Phase diagram with H ∥ [001]. Symbols Δ𝐿/𝐿 are from magne-

tostriction measurements.
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Ni sites are non-magnetic1. Below 10 K, the magnetic easy axis is [001], with the magnetic susceptibility

in this direction following a power law 𝜒′∥ ∼ 𝐻
−0.66

, which saturates for 𝑇 < 𝑇C. At low temperatures, the

susceptibility perpendicular to [001] 𝜒′⊥ diverges faster than a power law on approaching 𝑇C, which is in

contrast to the classical behaviour of Ising or Heisenberg ferromagnets [41]. There is a crossover of the

magnetic susceptibilities near 200 mK, resulting in a ferromagnetic order oriented in the high temperature

hard axis. This unusual behaviour has been observed in several other heavy fermion ferromagnets [49] and

the ordering has been proposed to be induced by large fluctuations in the easy direction [75]. Probes of the

static magnetic moment inside of the the ferromagnetic phase have been made via 𝜇SR measurements2 by

Spehling et al. [126], estimating a strongly reduced magnetic moment ∼ 0.03(1)𝜇B of the Yb ions. These

measurements have been extended to the YbNi4(P1 – xAsx)2 series by Sarkar et al. [113] finding a reduced

magnetic moment with increased substitution.

The unit cell of YbNi4P2 is shown in Figure 3.2, which has 𝑃42/𝑚𝑛𝑚 tetragonal structure and lattice

parameters 𝑎 = 7.0560(3)Å and 𝑐 = 3.5876(5)Å [67]. Atomic positions were determined by Kuz’ma et

al. [77]. The 42 screw axis along the [001] direction is evident in panel (a) of Figure 3.2, causing the two

Yb sites in the tetragonal unit cell to experience a crystalline electric field (CEF) rotated by 90
◦
. This is

expected to introduce significant magnetic frustration [130] that may enhance fluctuations. The crystalline

electric field has been determined by Huesges et al. [54] using inelastic neutron scattering, heat capacity,

magnetic susceptibility and NMR measurements, finding a ground state dominated by a 𝐽 = 5/2 state. The

material is often considered quasi-1D [74, 73, 130, 41, 21], with the Yb sites viewed as chains along [001].

Uncorrelated DFT calculations have suggested the presence of quasi-1D flat sheets in the Fermi surface [74],

and a resistivity anisotropy of 𝜌c/𝜌a ∼ 5 is reported in literature [130].

The ground states of heavy fermion compounds are typically very sensitive to tuning due to their vastly

reduced energy scales (with 𝑇K being similar to an effective Fermi energy). Further the ferromagnetic

ground state is only stable at very low temperatures – this is thought to be due to an ideal combination of

low Kondo temperature, low dimensionality, and magnetic frustration [41]. Tuning of the magnetic phases

has been studied by Steppke et al. [130] through heat capacity, magnetic susceptibility, resistivity and

magnetostriction, their results are presented in panels (b) and (c) of Figure 3.1. While the Curie temperature

appeared to be tuned continuously to zero through a field H ∥ [001] of 60 mT, In the following sections,

tuning of the ferromagnetism to a quantum critical point via As substitution is briefly discussed, then the

tuning of the Fermi surface through Lifshitz transitions in large magnetic fields is covered.

1At least at high temperatures.

2While 𝜇SR is somewhat of a ‘bulk’ probe measuring many unit cells, the muons will always have a preferential position to be

implanted in each unit cell. The measurement is rather of the local 𝐵 experienced at the muon’s preferential site, from which the

magnetic moment of the suspected magnetic ion (Yb) can be calculated.
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Yb
P Ni

[010]

[100]

[010]

[001]

[100]

(a)

(b)

Figure 3.2: Tetragonal unit cell of YbNi4P2. (a) View along [001]. Atoms outside the unit

cell are displayed and grey polygons are shaded to illustrate the 90
◦

rotation between

neighbouring Yb environments. (b) 3D view.

3.1 Ferromagnetic quantum criticality in YbNi4(P1 – xAsx)2

The isoelectronic substitution of As into the P sites expands the unit cell [67], providing a negative chemical

pressure, and suppressing the ferromagnetism. Steppke et al. [130] provided strong evidence that 𝑇C of

the series YbNi4(P1 – xAsx)2 can be suppressed to a quantum critical point at 𝑥 ≈ 0.1. The volume thermal

expansion 𝛽(𝑇) and the heat capacity 𝐶(𝑇) were measured near the critical point, where 𝛽/𝑇 and 𝐶/𝑇

were shown to diverge. The Grüneisen ratio Γ = 𝛽/𝐶 was also shown to diverge with a critical exponent

behaviour Γ ∝ 𝑇−0.22
, which was noted to rule out an itinerant QCP scenario. Isothermal measurements of

the Hall effect on a sample with 𝑥 > 0.1 under hydrostatic pressure (to tune back into the ferromagnetic

phase) were suggested to explore the possibility of destruction of the Kondo hybridisation at the QCP.

The role of disorder is difficult to address in the FM quantum criticality of YbNi4(P1 – xAsx)2, as 𝑇C in Yb

based HF ferromagnets is enhanced by hydrostatic pressure, chemical substitution is needed. However,

a ferromagnetic quantum critical point has also been reported in a Ce based heavy fermion CeRh6Ge4,

through the use of only hydrostatic pressure [72, 119].

3.2 Lifshitz transitions

The electronic structure of YbNi4P2 is highly renormalised, with a low Kondo temperature of 8 K, and hence

is highly susceptible to tuning by a magnetic field. Many anomalies have been observed in literature, as

summarised in Table 3.1. Using a variety of low temperature probes, Pfau et al. observed nine anomalies in

YbNi4P2 for fields up 30 T along the c direction [98]. They were assigned labels 𝐵1 to 𝐵9. For consistency

the same labels are used in this thesis. Kinks at 𝐵1, 𝐵3, and 𝐵6–9 were observed in the magnetoresistance up
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to 30 T with I ∥ B ∥ c and temperatures down to 350 mK (18 T and 30 mK for a second sample). Kinks were

also observed in measurements of magnetostriction up to 10 T at 𝐵1 and 𝐵5–7. Further, measurements of the

thermopower up to 12 T showed a variety of signals at all measured transitions 𝐵1–8. Lastly, in the specific

heat coefficient 𝛾 and the magnetisation gradient 𝑑𝑀/𝑑𝐵, kinks followed by accelerated decreases are seen

at 𝐵1, and near 𝐵5–7 (but too broad to be assigned to a signal index).

Pfau et al. [98] Karbassi et al. [61]

LT Probe 𝐵 (T) Type Probe 𝐵 (T)

𝐵1 𝜌𝑥𝑥 , Δ𝐿, 𝑆, 𝛾 0.40 N

𝐵2 𝑆, 2.45 N

𝐵3 𝜌𝑥𝑥 , 𝑆, 4.65 N 𝜌𝑥𝑥 4.8
‡

𝐵4 𝑆, 5.15 N 𝜌𝑥𝑥 5.1

𝐵5 Δ𝐿, 𝑆, 6.15 N

𝐵6 𝜌𝑥𝑥 , Δ𝐿, 𝑆, 𝛾† 6.7 V

𝐵7 𝜌𝑥𝑥 , Δ𝐿, 𝑆, 7.70 N 𝜌𝑥𝑥 7.8

𝐵8 𝜌𝑥𝑥 , 𝑆, 11.0 N 𝜌𝑥𝑥 11.0

𝐵9 𝜌𝑥𝑥 , 17.5 V

Table 3.1: Summary of Lifshitz transitions in literature for B ∥ c. The quantities with

anomalies are listed in the probe column: these were magnetoresistance 𝜌𝑥𝑥 , magne-

tostriction Δ𝐿, thermopower 𝑆, and heat capacity 𝛾 (and magnetisation gradient 𝑑𝑀/𝑑𝐵
wherever 𝛾 is listed). All magnetoresistance anomalies listed here are observed with

current I ∥ c. Predictions of the types of Lifshitz transition was made by Pfau et al.,

either void (V) or neck (N).
†

This is a broad feature that could be assigned to any of 𝐵5–7.

‡
This feature was additionally observed at 4.7 T with I ∥ a by Karbassi et al.

All of these anomalies have temperature independent positions in field, which is behaviour consistent

with Lifshitz transitions. The thermopower has a sign change only at 𝐵 = 𝐵c = 60 mT: while this is

stated by Pfau et al. to further rule out symmetry-breaking (phase) transitions at any of 𝐵1 to 𝐵9 in an Yb

compound, theoretical discussions in literature are limited to sign changes over quantum critical points

[65], attributing the sign to the position of the 𝑓 level relative to the Fermi level. These two observations are

therefore consistent with Lifshitz transitions, but cannot rule out other possibilities such as weak temperature

independent metamagnetism, which would require clarifying with very sensitive magnetic measurements

to high fields (note that magnetisation features were seen by Pfau et al. at 𝐵1 and near 𝐵5–7). Comparison of

the thermopower signal of 𝐵3, with a theoretical toy model, indicated that at this field a neck joins two parts

of a hole band with increasing field. No other thermopower signatures could be unambiguously analysed

in this way, but comparison of magnetoresistance signatures with theory indicate that all transitions other

than 𝐵6 and 𝐵9 are neck-type.
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Figure 3.3: Anisotropic Lifshitz transition anomalies in the magnetoresistance of

YbNi4P2. Reproduced from [61]. (a) Magnetoresistance for several angles 𝜃 of B
relative to [001], on the path [001] to [100]. (b) Signatures of 𝐵3 and 𝐵9 in the derivative

and raw resistivity respectively. Consecutive angles are vertically offset. (c-g) Positions

of five Lifshitz transitions as a function of 𝜃, fitted with an anisotropic 𝑔-factor model

(red lines) discussed in text. For 𝐵9 a poor fit with anisotropy 𝜂 = 1.5 is displayed, and

a grey dashed line represents 𝜂 = 3.

Several of these Lifshitz transitions have been tracked by Karbassi et al. [61] as a function of field direction

from [001] to [100] in magnetoresistance measurements, as shown in Figure 3.3, revealing that all features

move to higher fields along the [100] direction. Signatures of 𝐵3, 𝐵4, and 𝐵7–9 were tracked in a sample with

I ∥ c (panels (c-g)), and 𝐵3 was also tracked in a sample with I ∥ a (panel (c)). The anisotropy indicates that

the 𝑔-factor (and so the Zeeman shift) is stronger along the [001] direction, so that band structure extrema

pass the Fermi level more rapidly in this direction. For all observed transitions other than 𝐵9, the angular

dependence could be fit using an anisotropic 𝑔-factor rigid band shift model

𝑔 =

√
𝑔2

[001] cos
2(𝜃) + 𝑔2

[100] sin
2(𝜃), (3.1)

where 𝑔[001] is the 𝑔-factor for field in the [001] direction, and likewise for 𝑔[100]. This can be related to an

anisotropy of the Lifshitz transitions by Equation 2.36. The anisotropy 𝜂 = 𝑔[001]/𝑔[100] of the 𝑔-factor was

estimated to be 𝜂 = 3.8, which is consistent with the anisotropy of the 𝑔-factor expected from the Yb crystal

electric field ground state 𝜂CEF = 3.93 [54].





Chapter 4

Methods

The results in this thesis are divided into two sections, measurements of magnetoresistance and Hall effect

by myself on a dilution refrigerator at fields up to 12 T, and analysis of measurements by Owen Moulding,

Takaki Muramatsu, and Jake Ayres in fields up to 35 T. This chapter will provide details on the experimental

methods of my own measurements, and my analysis and computational methods of both sets of results.

The experimental portions of this thesis have required setting up a dilution refrigerator for low noise

measurements of magnetoresistance and Hall effect in ambient pressure samples and pressure cells. This

has involved making significant adaptations to an existing dilution refrigerator setup in Bristol. An overview

of some of the changes is as follows:

1. Optimised the dilution refrigerator’s performance, achieving a base temperature ∼ 35 mK lower by a

factor of 2 than previous use.

2. Installed low temperature transformers (LTT-m CMR-Direct) on the 1 K pot for low noise measure-

ments, with Lemo connectors for relatively quick changeover.

3. Replaced wiring from 1 K pot to mixing chamber with superconducting NbTi loom and microminature-

D connectors for quick sample mounting/dismounting.

4. Many other miscellaneous fixes to the dilution refrigerator, including fixing a curve in the mounting

surface of the mixing chamber, and fixing a leak in to the IVC.

5. Calibrated ruthenium oxide thermometers and installed with superconducting niobium magnetic

shielding.

6. Built a new sample stage and rod, capable of cooling down steel pressure cells, including a novel

centring ring mechanism.
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7. Designed and adapted measurement programs, specifically for studying ferromagnets where field

history is present.

8. Extended operating temperature up to 8.5 K for significant overlap with
3

He or
4

He systems.

Firstly, descriptions of the experimental setup that provided the majority of the data in chapter 5 are given.

This will first cover specifics of the operation of this dilution refrigerator, sample stage design, thermometry

and magnetic fields. Next, details of the electronic transport measurements that are performed on the

dilution refrigerator are given, outlining measurement and analysis procedures. Lastly details are given

of data analysis methods of quantum oscillation data, as well as details of the programs used for density

functional theory and extraction of extremal orbits.

4.1 Cryogenic methods

4.1.1 Dilution refrigeration

To achieve millikelvin temperatures, a dilution refrigerator (Oxford Instruments Kelvinox 25 as shown in

Figure 4.1) was used with a base temperature around 35 mK. Dilution refrigerators use the heat of mixing

3

He and
4

He isotopes as a mechanism for removing heat from the mixing chamber. Thorough descriptions

of both the physics and engineering involved in these systems are readily available in low temperature

methods textbooks (see books by F. Pobell [101] or J. Ekin [33]), for this reason discussion of this system

will be kept brief and specific. A dilution refrigerator is well suited to the measurements performed here,

as they are relatively quick to operate and reliable in high magnetic fields.

The cooling power produced by this system follows the expected form, 𝑃 = 𝛼𝑇2
. The coefficient 𝛼 was

determined by varying the heater power on the mixing chamber and measuring the steady state temperature

(where the cooling power is matched by the input heat), with 𝛼 = 38 mW K
−2

. A base temperature of 35 mK

therefore gives us an estimate of total heat leaks to the mixing chamber and the cooling power at base of

46 µW. This is a useful figure to know as it allows us to estimate acceptable heat loads due to sample stage

design or other aspects such as wiring.

With the full quantity of
3

He–
4

He mixture circulating it is difficult to stabilise this dilution refrigerator

near 1 K1, and too much mixture is boiled at higher temperatures leaving a significant pressure in the lines.

To measure temperatures that overlap with a
4

He system (𝑇 > 1.8 K), a fraction of the total mixture is

condensed in allowing easier stabilisation above 800 mK, this will be referred to as ‘micro-circulation’. This

on its own however leads to temperature instability in our system at around 1.7 K, but can be somewhat

1This will vary for other dilution refrigerators with different impedances, and is most likely due to vapour bubbles forming

somewhere in the mixture circulation.
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Figure 4.1: Dilution refrigerator and sample stage design. (a) Dilution refrigerator, inside

the IVC, from 4 K flange down. A long copper rod connects the mixing chamber to the

sample stage as described in the text. (b) Sample stage block with a sample of YbNi4P2

and two samples of U1−𝑥Mo𝑥 mounted. (c) Close up of centring ring mechanism.

(d) Sample stage block mounted simultaneously to a diamond anvil pressure cell.

circumvented by increasing the still vapour pressure by partially closing the valve to the pumping line. This

valve has been automated inside of measurement programs to allow relatively easy temperature stabilisation

and even continuous temperature sweeps from 0.8 K to 8 K. Occasionally some stability issues will remain

resulting in slightly higher noise in these temperature regions. Overlap of ∼ 0.2 K is always given between

full circulation and micro-circulation in fixed field temperature sweeps.
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4.1.2 Sample stage design

Samples are mounted in the centre of the magnetic field on the end of an oxygen-free high-purity copper

(OFHC) rod (see Figure 4.1). The design is such that it can simultaneously accommodate several bare

samples and pressure cells in a small magnet bore (there is an inner diameter of approximately 7 cm in the

inner vacuum can at the centre of the magnet). The rod has a cut out along the field direction (see panel

(c)) to prevent large eddy-currents. For non-pressurised samples an OFHC block (see panel (b)) is used for

easy sample mounting and further field centring such that these samples are aligned with the centre of the

pressure cells we use. The block, rod, and the bottom of the mixing chamber have been electrochemically

cleaned then plated in gold. This provides two advantages, firstly it prevents the copper from forming

an oxide layer with lower thermal conductivity, and secondly the reflectivity of gold is higher providing

lower heat input from radiation. Mechanical thermal joints between these gold coated faces are formed by

austenitic stainless steel screws, which have very similar thermal expansion to copper [101] so should not

lead to loosening of screws with thermal cycling, and are weakly paramagnetic so can be used in high fields.

Aluminium washers can be used to provide extra tightening on cool-down (due to their lower thermal

expansion), however equilibrium at zero field between thermometers at the top and bottom of the rod were

always reached here.

It should be noted that the choice of copper for high field measurements can sometimes be problematic

due to the magnetoresistance of copper, reducing the thermal conductivity via the Wiedemann–Franz law.

At 5 K and 5 T, the resistivity has been reported to increase by a factor of 15 in very high purity (RRR = 1207)

copper [55]. Using the empirical relation for copper 𝜅 = (RRR/0.76)𝑇 [W K
−1

m
−1] (with 𝑇 units K) [101],

and assuming a pessimistic value for the quality of the OFHC used with RRR = 50, the thermal conductivity

through the rod at a base temperature 30 mK and zero field is 𝜅 ≃ 2 W K
−1

m
−1

. The rod has a cross-section

of 160 mm
2

and length 260 mm, yielding a conductance ∼ 1250 W K
−1

. To maintain a thermal gradient of

1 mK from one end of the rod to the mixing chamber at zero field, a heat load of greater than 1 W would

be needed. Assuming a reduction of thermal conductivity by a factor around 30 at a field of 10 T, 33 mW

of heat would need to be incident on one end of the rod. This is a large amount of heat compared to the

dilution refrigerator’s cooling power, enough to boil off the mixture entirely. It is clear that the thermal

conductance of this design is more than ample for low temperatures and high fields.

The bore size of the magnet on this system limits the sample space to less than 5 cm diameter. To fit several

pressure cells and bare samples the rod has been designed to have as large an area as possible. This leads

to the possibility of cold touch to the inside of the vacuum can which is at 4.2 K, if there is a small bend2. To

2In our system, slight bending can occur through the rod of G-10 that thermally separates the mixing chamber and the still
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prevent this, a centring ring is suspended by braided polyethylene fishing line under tension, which acts as

a good thermal insulator at low temperatures. Using such a setup, it is possible to have the centring ring act

as an insulating support between the rod and the ‘hot’ vacuum can. Three pieces of fishing line of diameter

0.22 mm and length 12 mm were used to support the ring. Taking an approximate thermal conductivity of

polyethylene at 2 K (between the 4 K vacuum can and base temperature) as 6 mW K
−1

m
−1

[117], the heat

transported from the can to the sample stage is 0.3 µW, this would equate to only 0.1 mK heating of the

mixing chamber at base temperature (using the value of 𝛼 = 𝑑𝑃/𝑑𝑇2
derived in subsection 4.1.1). The

use of a braided fishing line was advantageous over monofilament as it stretched less over time and so

needed replacing less frequently3. Stretching will be present over thermal cycling due to the larger thermal

contraction of polyethylene [117] compared to the copper ring, but this also keeps the structure tight at low

temperatures.

4.1.3 Thermometry

Thermometry at millikelvin temperatures and fields up to 12 T poses several challenges: (1) The thermal

conductivity of metals reduces with temperature and the thermal resistance at connections increases [101],

increasing the time for thermal equilibrium between sample and thermometer, or even preventing equilib-

rium in the case of sample (or thermometer) heating larger than the thermal link. (2) Many thermometers

have a field dependence, such as the magnetoresistance of a resistive thermometer. This can become further

complicated as the dependencies are not necessarily monotonic.

The first point can be mitigated in two ways, either the thermal links are improved or the heat going

in to the sample/thermometer is reduced. For all parts used here, oxygen-free high-purity copper (OFHC)

has been used for its excellent residual resistivity, which provides a high thermal conductivity at low

temperatures via the Wiedemann–Franz law [101]. This part is somewhat simple to check by using two

thermometers, one at the mixing chamber and one as close to the sample stage as possible.

Several steps are used to mitigate the field dependency of the thermometry. Ruthenium oxide thick film

chips at millikelvin temperatures typically have a low magnetoresistance of around −4% at 1 T, followed

by an upturn in the magnetoresistance at higher fields [101]. The magnetoresistance is weaker at higher

temperatures. With the magnet used here at a maximum field of 12 T, the mixing chamber experiences a

stray magnetic field of less than 0.2 T. By mounting the thermometer on the mixing chamber, the magne-

toresistance should be reduced to less than one percent. To reduce the field incident on the thermometer

further, a niobium can (𝜇0𝐻c1 = 199 mT [35]) is used to magnetically shield the thermometer. The niobium

3Stainless steel cable was also tested, as pictured in panel (c) of Figure 4.1 which has poor conductivity at very low temperatures,

however this resulted in a worse base temperature > 50 mK.
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Figure 4.2: Calibration of a PdFe susceptometer. (a) PdFe susceptometer voltage signal

as a function of the germanium temperature, fitted with a Curie–Weiss law. Error bars

correspond to the standard deviation during each measurement held at a stabilised

temperature. (b) Deviation from Curie–Weiss fit. (c) Linearised form.

can is bored out from a solid cylinder leaving a wall thickness of 1 mm to ensure there are no weak points

for magnetic flux to enter.

To calibrate the ruthenium oxide chip to base temperature, a calibrated LakeShore doped germanium

thermometer was used in conjunction with a home-made PdFe alloy susceptometer. The germanium chip

came calibrated down to 50 mK, below which the resistance quickly becomes larger than the 100 MΩ limit of

a SIM921 AC resistance bridge. Germanium chips are also typically more magnetoresistive than ruthenium

oxide chips in high magnetic fields [101]. The susceptometer contains a palladium sample with a small

amount of iron impurities, which provides a strong Curie’s law 𝑉 ∝ 𝑇−1
signal. By calibrating the PdFe

susceptometer above 50 mK, its temperature dependence can be extrapolated to base temperature. This was

then used to calibrate the ruthenium oxide chip.

All devices were first tested with varying input excitations against each other to find non-heating settings.

A rough calibration of the ruthenium oxide was performed by sweeping temperature from 50 mK up, and

extrapolating a log–log fit of its resistance versus the germanium/Cernox temperature. This allowed to

stabilise using a PID setup on the ruthenium oxide in the entire accessible temperature range. A program

was then written to stabilise at fixed temperature set points, logarithmically spaced for higher point density

at lower temperatures where the ruthenium oxide is more sensitive. By stabilising for a fixed time, direct

measurements of uncertainties on the susceptometer and resistive thermometers were also recorded, and
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Figure 4.3: Calibration of a ruthenium oxide thermometer (a) Calibration over the range

[30 mK, 18 K]. Below 50 mK the PdFe susceptometer is used as an extrapolated reference

temperature. Above this and below 5 K, the doped germanium resistive thermometer

provides the temperature. Finally the highest temperatures are provided by a Cernox

resistive thermometer. A fourth order polynomial fits well to the log–log plot. There

is no sign of resistance saturation at lowest temperatures. (b) The residual from the

polynomial fit has been propagated in to temperature difference as an error estimate.

thermal lag between thermometers was avoided. These measurements were made on a single cooldown as

the calibrations of a susceptometer often drift on subsequent cooldowns.

A Curie–Weiss law is found to provide best agreement for the PdFe susceptometer with a relatively

small Curie temperature of 𝑇C = 5.1(3)mK, as shown in Figure 4.2 panel (a). A temperature cutoff of 0.5 K is

used as the susceptometer’s sensitivity is weaker at higher temperatures. The deviation of the temperature

dependent part of this fit, Δ (𝑉PdFe −𝑉∞) as shown in panel (b), has a maximum of ∼ 1.5%. Given that 𝑇C

(and its error) is small compared to measured temperatures, and the error on the coefficient 𝐶 is small,

the percentage error on the temperature associated with a voltage error will be of similar magnitude when

propagated through the Curie–Weiss fit (so 𝜎(𝑇)/𝑇 ∼ 𝜎(𝑉)/𝑉). A plot of the inverse voltage after subtraction

of the fitted high temperature saturation 𝑉∞ provides convincing linearity in panel (c).

The resulting ruthenium oxide calibration is presented in Figure 4.3, using a combination of the PdFe

susceptometer and germanium/Cernox resistive thermometers as temperature scales. A fourth order

polynomial to log(𝑅) as a function of log(𝑇) provides a good fit in the full temperature range. Propagating

the residual of this fit, in terms of temperature deviations, again shows an uncertainty within 1.5%, implying

that the stitching together of different thermometer temperatures has worked well.
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Figure 4.4: Remanent magnetic field of superconducting magnet, in a TiSe2 pressure

cell. After poling to ±12 T there is a remanent field of ±3 mT, causing hysteresis in a

non-magnetic sample. Arrows indicate field sweep direction at 60 mT min
−1

.

4.1.4 Magnetic fields

A superconducting magnet (Oxford Instruments) was used to generate magnetic fields up to 12 T at the

sample stage. A long copper rod, described in subsection 4.1.2 separates the sample stage from the mixing

chamber, such that the magnetic field experienced at the mixing chamber is less than 200 mT (field profile

determined by Oxford Instruments). This minimises the magnetic field effects on thermometry placed on

the mixing chamber, as described in subsection 4.1.3.

Slight hysteresis has been observed in non magnetic samples, due to small remanent fields of this

magnet after being poled to high magnetic fields. In measurements of TiSe2 under hydrostatic pressure on

the experimental setup, a sharp and symmetric magnetoresistance peak near zero field was seen in one pair

of contacts inside of the superconducting dome, which was ideal for quantifying this4. This is shown in

Figure 4.4. On reducing the field from +12 T at −60 mT min
−1

the peak was centred at +3 mT. This is not

due to the time constant on the lock-in amplifier (1 s) as that would result in the centre shifting to negative

fields, this is a rate independent feature. Sweeping up from a negatively poled field of −12 T, the peak is

instead at−3 mT. The values of𝐻 are determined from the current in the magnet, these non-magnetic peaks

therefore indicate where the field is truly zero. While this might seem counterintuitive that the remanent

field has the opposite sign to the poling direction, at the field centre the stray fields due to the trapped flux

point in the opposite direction to the trapped dipoles [106].

Care has been taken regarding the remanent magnetic field for measurements near the ferromagnetic

4This peak was not present in another contact which was much more field symmetric and where the resistivity goes to zero in the

SC phase, the same hysteresis is observed in both contacts. Although the cause of this peak is unclear it is still a useful metric for the

field centring.
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dome of YbNi4P2, as it is comparable to observed features such as the ferromagnetic saturation field. Some

zero field measurements have been taken in a quenched magnet state, where the magnet has not been

ramped since being cooled in to a superconducting state, this is always explicitly mentioned. For low field

measurements in the vicinity of the ferromagnetic dome, the magnet had not been ramped past ±0.25 T

since cooldown. This was particularly important for Hall effect measurements with field in the direction of

the ferromagnetic ordering, so hysteresis could be ruled out to less than 1 mT.

4.2 Electronic transport measurements

Resistivity and Hall effect measurements are made using Stanford Research Systems SR830 lock-in amplifiers.

The settings used for measurements in this thesis are: a time constant of 1 s, filter slope 24 dB and low noise

dynamic reserve mode. All measurements of YbNi4P2 on this dilution refrigerator have been made with AC

excitation currents (amplitudes described in subsection 4.2.3) with frequencies in the range 110 Hz to 140 Hz

(avoiding multiples of 50 Hz mains frequency). These frequencies are in the optimal range of operation of

the transformers discussed in the following subsection. To decouple any high-frequency (inductive) noise in

the copper wiring outside of the cryostat from the wiring inside, pi filters are used at the top of the dilution

refrigerator insert, this prevents an unwanted heat load on the mixing chamber.

In this section the noise limits of the voltage measurements are first discussed, then measurement

procedures are outlined, and finally details of all YbNi4P2 samples presented in this thesis are given.

4.2.1 Noise limits

Electronic measurements of highly metallic samples at low temperatures typically require methods to reduce

electrical noise, due to the small voltage signals. As an example, the measured RMS voltage change of the

Hall voltage when switching the polarity of the YbNi4P2 sample with B ∥ a and 1 mA current (as studied

in chapter 5) is roughly 0.2 nV before amplification. If we consider the Johnson–Nyquist noise due to the

room-temperature copper wiring running from the cryostat with resistance of the order of 100 Ω, and we

use an SR830 lock-in amplifier to measure with a time constant of 1 s, we should expect an RMS noise level

of 0.4 nV [127]. To overcome this inherent temperature noise, the signals were amplified by a factor of 100

at low temperatures using low temperature transformers (LTT-m CMR-Direct) attached to the 1 K pot stage

of the dilution refrigerator. This amplifies the signal and the Johnson noise of the circuit at 1.4 K (a factor of

∼ 200 lower, this noise is then ∼ 2 pV before amplification), improving the signal to noise ratio in the copper

wiring above.
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Johnson noise is not the only contribution of temperature to the noise in these measurements. The

temperature stability of the mixing chamber is also important, as fluctuations Δ𝑇 will cause a voltage

noise of size ∼ |𝑑𝑉/𝑑𝑇|Δ𝑇. Taking an example measurement of 𝜌𝑥𝑥 of YbNi4P2 with I ∥ c (as shown

later in Figure 4.5), we had expected Johnson noise of the size 2 pV before amplification (0.2 nV after

amplification), however the measured voltage noise is roughly5 10 nV. With a current of 0.1 mA we find

that |𝑑𝑉𝑥𝑥/𝑑𝑇| ≈ 30 µV K
−1

(from a temperature sweep). If this noise is due to temperature fluctuations of

the sample, then Δ𝑇 ≈ 0.3 mK. This is very similar to temperature variations observed on the ruthenium

oxide thermometers. It is evident that our setup is now often noise limited by sample temperature variation

(given a large enough |𝑑𝑉/𝑑𝑇|) rather than Johnson noise.

While Johnson noise can be partially overcome by increasing the current, yielding a larger signal to noise

ratio, temperature fluctuations of the sample will not be overcome by this as |𝑑𝑉/𝑑𝑇| is proportional to the

input current. To achieve a stable temperature, a PID controller (Stanford Research Systems SIM 960) is used

to stabilise the ruthenium oxide temperature on the mixing chamber by applying variable heat to the mixing

chamber heater. PID values have been optimised to stabilise the temperature quickly with sample stage

attached, in either full circulation of the dilution refrigerator or in microcirculation (see subsection 4.1.1),

allowing temperature control from 35 mK to 8 K.

4.2.2 Measurement procedures

In non-ferromagnetic metals, Onsager relations restrict the magnetic field dependence of the resistivity

tensor by symmetry, with 𝜌𝑥𝑥(H) = 𝜌𝑥𝑥(−H) and 𝜌𝑥𝑦(H) = −𝜌𝑥𝑦(−H). This is not true for ferromagnetic

metals, where time reversal symmetry is broken at zero field by a finite magnetic moment. The relations

can be extended to include the magnetisation:

𝜌𝑥𝑥(H ,M ) = 𝜌𝑥𝑥(−H ,−M ), (4.1)

𝜌𝑥𝑦(H ,M ) = −𝜌𝑥𝑦(−H ,−M ). (4.2)

Experimentally, it is impossible to perfectly align contacts on crystals, and so a combination of 𝜌𝑥𝑥 and

𝜌𝑥𝑦 are probed by the the longitudinal and transverse voltages 𝑉L and 𝑉H (before gain):

𝑉L =
𝐼𝑙

𝑤𝑡
𝜌𝑥𝑥 + 𝛿1𝜌𝑥𝑦 , (4.3)

𝑉H =
𝐼

𝑡
𝜌𝑥𝑦 + 𝛿2𝜌𝑥𝑥 , (4.4)

5Using a time constant of 1 s on the lock-in amplifier.
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Figure 4.5: Example symmetrisation of 𝜌𝑥𝑥 and antisymmetrisation of 𝜌𝑥𝑦 . Sample

information is given in subsection 4.2.3. (a) Raw longitudinal voltage. (b) Symmetrised

𝜌𝑥𝑥 . (c) Raw transverse (Hall) voltage. (d) Antisymmetrised 𝜌𝑥𝑦 .

where the 𝛿 terms account for small misalignments, 𝑙 is the length between voltage contacts (along the

current direction), 𝑤 the width (in the direction of the Hall voltage6), and 𝑡 is the sample thickness. The

leading term pre-factors can be optimised in experiments to give as large as possible a measured signal

above noise. Intuitively, a large current will produce a large signal, however too large a current will cause

the sample to heat (if the sample heats to temperatures above the thermometer, the symptom is a saturating

signal at low temperatures). For magnetoresistance measurements (probing 𝜌𝑥𝑥), it is optimal to have a long

sample with small cross-section, 𝑤𝑡, perpendicular to the current. For Hall effect measurements (probing

𝜌𝑥𝑦), the thickness along the field direction needs to be reduced.

For isothermal field sweeps it is more practical to think in terms of sweep directions – the magnetisation

M of a ferromagnet in an isothermal field sweep is uniquely described by the magnetic field and the

magnetisation/field history. In a field sweep procedure sweeping between positive and negative fields

of equal amplitudes, and ignoring the virgin curve from a non-polarised state, the magnetisation can be

replaced by the sweep direction. The symmetry of Equation 4.1 and Equation 4.2 can be used to extract 𝜌𝑥𝑥

and 𝜌𝑥𝑦 with an increasing magnetic field magnitude:

𝜌↑𝑥𝑥(H) =
𝑤𝑡

2𝐼𝑙

(
𝑉→

L
(H) +𝑉←

L
(−H)

)
, (4.5)

6When the field points along the direction of 𝑡
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𝜌↑𝑥𝑦(H) =
𝑡

2𝐼

(
𝑉→

H
(H) −𝑉←

H
(−H)

)
, (4.6)

where ‘↑’ and ‘↓’ refer to an increasing/decreasing field magnitude |H| respectively, and ‘→’ and ‘←’ refer

to field H becoming more positive/negative respectively. Equivalent symmetrisation for 𝜌↓𝑥𝑥 and 𝜌↓𝑥𝑦 can

be achieved by swapping all arrow directions. To allow this symmetrisation, data must first be interpolated

on to an array of fields symmetric about zero. This is achieved by choosing symmetric bin windows when

binning data. Example raw longitudinal and transverse voltages of YbNi4P2 sample 041_st1_4 (samples

outlined in subsection 4.2.3) and the resulting symmetrised 𝜌𝑥𝑥 and antisymmetrised 𝜌𝑥𝑦 are shown in

Figure 4.5. Where hysteresis is no longer seen (high fields or high temperatures) the sweep direction can be

ignored to recover normal symmetrisation routines.

Temperature sweeping procedures at fixed field are also possible. The same symmetrisation can be

performed by measuring at both +H and −H , binning both with the same bins and then symmetrising/an-

tisymmetrising. It is important to note that for hard ferromagnets careful attention must be taken to the field

history: it is not appropriate to run a list of fields from most negative to most positive then symmetrise/an-

tisymmetrise – consider if we were to run temperature sweeps at fields {−2,−1, 1, 2}T in that order, then the

magnetisation history of ±1 T are not equivalent. Therefore options were included in experiment control

programs to pole the magnetic field equivalently before each measurement, and used whenever required

(i.e. for sweeps inside the ferromagnetic phase of YbNi4P2).

4.2.3 Samples

As discussed in the previous subsection, optimal resistance geometry is long along the current direction

with a small perpendicular cross section, while optimal Hall geometry is thin in the direction of the magnetic

field. Samples presented in this thesis are detailed in Table 4.1 with images in Figure 4.6. Samples with only

longitudinal contacts are long and thin, with voltage contacts between the current contacts to ensure the

current density is uniform. Hall samples have been prepared in Hall bar geometry – long, wide and thin,

as shown in Figure 4.6 panels (a,b,e), and have an additional pair of voltage contacts on the opposite side

across the width 𝑤. Three of these voltage contacts are then used to measure the longitudinal voltage and

a Hall voltage simultaneously, one of the contacts is shared. Again these voltage contacts are placed closer

together and between the current contacts to ensure a uniform current density.

All samples were prepared by Sven Friedemann prior to my project. Oriented single crystals were

provided by Kristin Kliemt and Cornelius Krellner (Goethe University Frankfurt), which were cut in to

suitable geometries 𝑤 and 𝑙 using a wire saw, then ground down to reduce 𝑡. Flat copper or silver sheets

with thin cigarette paper GE varnished on were used as a base for mechanical strength, with good thermal
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Figure 4.6: Images of samples used in this thesis. Gold wires have been spot welded to

the samples for contact resistances less than 1 Ω, with silver paint on top for mechanical

strength. Below are flat copper or silver sheets with cigarette paper GE varnished on, GE

varnish has also been added to the gold wires to minimise chance of damaging contacts.

Some gold wires have been extended by soldering (Sn60/Pb40) to new gold wires.

Sample I VH 𝑙 (µm) 𝑤 (µm) 𝑡 (µm) 𝑅300 K/𝑅4.2 K 𝑅300 K/𝑅0.35 K 𝑅300 K/𝑅𝑇C

043_st1_3 a a 860 796 64 1.8

041_st1_4 c a 445 836 41 6.6 19 27

040_2_6_1 a 1014 140 47 1.9 7.4

040_2_6_4 c 810 155 37 4.7 30

040_2_6_6 a a 284 218 37 1.9 7.4 12

Table 4.1: Samples measured in this thesis. The lengths and widths given correspond to

the distances between the𝑉𝑥𝑥 and𝑉𝑥𝑦 contacts respectively. Resistivity ratios have been

listed between room temperature and several base temperatures.

conductivity and electrical insulation. All samples had gold wires spot-welded directly to the sample

for contact resistances below 1 Ω, this was always confirmed prior to measurements. Further mechanical

stability is given to the spot weld by a small amount of silver paint on top, and the gold wires were GE

varnished to the cigarette paper base to prevent damage near the weld.

Samples 043_st1_3 and 041_st1_4 were previously used in measurements on a
4

He probe above 1.8 K in

a magnetic field up to 14 T by Florian Jurries as part of his masters degree. These were mounted such that

the magnetic field pointed along the thickness 𝑡, [001] and [100] respectively. Samples 040_2_6_1, 040_2_6_4

and 040_2_6_6, were used in quantum oscillation studies by Owen Moulding, Takaki Muramatsu, and Jake

Ayres at HFML in Nĳmegen. These quantum oscillations studies used a
3

He rotator probe in a 35 T Bitter
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magnet. The QO samples were mounted on a small cube allowing magnetic field directions to be swept

between [100], [110] and [001], with a single axis of rotation by orienting the block on the sample stage at

the start of each run. Note that this means that the field orientation in quantum oscillation measurements

is not always in the direction of 𝑡.

Samples 040_2_6_6 and 041_st1_4 were measured for this thesis on a dilution refrigerator, mounted with

magnetic field in [001] and [100] respectively (along the thickness 𝑡). For both samples, an excitation current

of 0.1 mA has been determined to be non-heating at the dilution refrigerator’s base temperature.

4.3 Quantum oscillations

The bulk of the quantum oscillations presented in this thesis were measured by Owen Moulding, Takaki

Muramatsu, and Jake Ayres at the High Magnetic Field Laboratory (HMFL) in Nĳmegen. They measured

three samples (cut from the same crystal), mounted on a rotating platform at the end of a
3

He refrigerator,

in a 35 T Bitter magnet. The samples are described in subsection 4.2.3, properties are listed in Table 4.1,

and images are shown in Figure 4.6. Oscillatory electronic transport signals were measured as a function

of field, holding the temperature approximately constant. As high fields were used here, field independent

thermometry is hard to achieve, and so the flow rate of the cryostat was held constant instead.

There are several methods used in this thesis to analyse the oscillatory signals seen, all of which first

require isolating an oscillatory signal. There are many possible background subtraction methods, each

with different advantages and disadvantages. Three types of background subtraction have been compared

here, using data in this thesis of YbNi4P2 with B ∥ a and I ∥ a, as shown in Figure 4.7 panel (a). In

the following paragraphs, these are examined with the aim of isolating the 1.6 kT frequency with minimal

loss of oscillation amplitude, to demonstrate the validity of the background subtractions used in chapter 6.

Oscillatory signals versus inverse magnetic field are shown in panel (b), and fast Fourier transform (FFT)

amplitudes are shown in panel (c). To calculate the FFT, the oscillatory signals are first interpolated on arrays

equally spaced in 1/𝐵 with more points than the original data, to prevent reduction of the data sampling.

The number of points is chosen to be a 2
𝑛
, with 𝑛 integer, for compatibility with FFT. The oscillatory signals

are multiplied with a windowing function, forcing both ends of the signal to zero (or close) so that the

signal is periodic in the window. A Hamming window has been used for analysis in this thesis (other than

moving window plots, where a Hanning window is used) for its sharper frequency response. Lastly, the

arrays are padded with zeros to increase the FFT frequency resolution. The signals are finally transformed

into frequency space by FFT.

To extract oscillatory signals for FFT a background subtraction is usually required. In simple cases it
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Figure 4.7: Example background subtractions for quantum oscillation analysis. (a) Mag-

netoresistance measurement of YbNi4P2 with field and current in [100]. (b) Oscillatory

component after four different background subtractions. (c) FFT after four different

background subtractions.

is often sufficient (and ideal) to remove the non-oscillatory background using a low order polynomial fit.

Using a low order prevents introducing low frequency oscillations in to the background signal. A fourth

order polynomial has been fit as an example background in Figure 4.7, however it is apparent from both the

oscillatory signal and the FFT that some low frequencies remain. As the high frequency peak is well resolved

and no component of the highest frequency is removed by this background subtraction, the magnitude of

this FFT peak is used as a baseline for comparison with the other methods. Low order polynomials are

always used for mass studies, as they are sensitive to the FFT amplitude.

An intuitive method to remove a slow moving background is to use a high-pass Fourier filter. Here the

signal is transformed in to frequency space by FFT (after interpolation on equidistant 1/𝐵), low frequencies

are suppressed by a high pass filter, and then the signal is returned back to ‘time’ space (1/𝐵) via another FFT.

The third curve of panels (b/c) in Figure 4.7 shows what happens if we do not use a windowing function
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prior to applying FFT high pass filter with cutoff 1 kT. Without a windowing function a fictitious 1 kT

frequency appears, causing beating in the oscillatory signal in 1/𝐵. This can be mitigated by multiplying

by a Hamming window prior to filtering, then dividing out the Hamming window7 afterwards to recover

the filtered signal shown in the fourth curve of panel (b). Either Fourier filter method has resulted in a loss

of peak amplitude near the high field boundary, and a slight loss of FFT peak amplitude (0.8%). While this

appears to be good enough to fit with a Dingle damped oscillation up to about 32 T, better can be achieved.

Another useful background subtraction method is to use a smoothing function (e.g. LOESS, Savitzky–

Golay) to smooth out the oscillations of interest, leaving an estimate of the background. For many of the

signals in this thesis, ‘smoothing splines’ have been found to be useful and quite computationally cheap; A

smoothing spline 𝑠 with smoothing parameter 0 < 𝑝 < 1 minimises

𝑝
∑
𝑖

(𝑠(𝑥𝑖) − 𝑦𝑖)2 + (1 − 𝑝)
∫ (

𝑑2𝑠

𝑑𝑥2

)
2

𝑑𝑥, (4.7)

for data 𝑦𝑖 at 𝑥𝑖 . The first term provides a measure of the error, while the second term limits how ‘rough’

the spline is (implemented in MATLAB [85]). This acts similar to a lowpass filter, with values of 𝑝 closer to

one having a higher effective cutoff. A value of 𝑝 = 0.99 is shown to work effectively for the second curves

in panels (b,c) of Figure 4.7. Very little loss of peak amplitudes is seen, only noticeable in the highest field

peak, and only 0.3% of the FFT amplitude is lost in comparison to the 4th order polynomial. The remaining

oscillatory form is perfect for Dingle analysis. For this reason smoothing splines have been used for Dingle

analysis.

In a similar fashion, high frequencies can instead be amplified by the use of derivatives. A derivative

acts to amplify each term in the Fourier decomposition by a factor proportional to the frequency. This is

particularly useful for high frequency orbits which are often heavily damped, and also provides another

route to suppressing low frequency backgrounds.

The FFT method can be further applied to select cuts of the data, providing an insight in to the evolution

of frequency with field. This can be done using a moving window in 1/𝐵, with a fixed width so that the

frequency resolution is constant. By sacrificing some of the frequency resolution (small window→bad

frequency resolution), resolution is gained in 1/𝐵. There is a tradeoff between the two resolutions which

must be optimised depending on the frequencies and fields of interest. A Hanning window is used for

moving window FFT plots in this thesis as it provides a smoother image8.

For rotation plots, peaks have been extracted from the FFT using a peak finding algorithm. As the noise

level varies over samples and runs (for example due to differing temperature stability of the probe), the

7Here a window that does not go to zero at the boundaries is useful, so that this does not diverge at the boundaries.

8This is due to the suppression to zero at the boundaries of the window, so that there are less edge effects which rapidly change

as the window is moved.
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Figure 4.8: Example angle correction of quantum oscillations for YbNi4P2 sample 040_-

2_6_1, using the 𝐹𝛾 branch. The angle 𝜃 is the field angle relative to c, while 𝜙 is the

angle in the [100]-[010] plane relative to the a direction. At 𝜃meas ≈ 5
◦

the sample is

aligned closest to 𝜃 = 0.

parameters are altered to select peaks that are above noise semi-manually. Some slight misalignment in the

mounting of samples occurred to the order of 5
◦
, requiring adjustment of the measured sample stage angle.

This has first been corrected for by studying rotation dependences at directions equivalent by symmetry,

an example is shown in Figure 4.8. This procedure was used every time samples were re-mounted. Note

that this can only correct a misalignment in one rotation axis, however very good overlap is seen between

samples.

In special cases that a singular frequency is visible (or dominant), other methods can be used to extract

information. Direct fitting of the Lifshitz–Kosevich form to oscillations is beneficial in these cases as

information about the Dingle damping can also be probed. This can become difficult in the case of field

dependent frequencies, as a guess at the form of 𝐹(𝐵)must be made. In such a case, it can be informative to

track peaks directly as a function of 1/𝐵, effectively counting the Landau levels. A peak finding algorithm

has been used for this. The gradient of the level numbers as a function of 1/𝐵 is then the frequency.

4.4 Density function theory

For theoretical comparisons, DFT calculations were performed using WIEN2k [17, 18], using the GGA

scheme of Perdew, Burke and Ernzerhof [97] to converge to the ground state density. Non spin-orbit

calculations were performed with a linearised augmented plane wave basis (LAPW). Spin-orbit calculations

were performed as a second variational step using relativistic local orbitals for the core electrons of heavy

elements.
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There are several computational parameters in WIEN2k that require optimising for each system. Calcu-

lations are performed with a basis set of wave functions, the size of this set is determined by the parameter

𝑅MT𝐾max, where 𝑅MT is the smallest atomic muffin tin radius and 𝐾max is the largest 𝑘-vector. While a large

𝑅MT𝐾max value will yield more accurate results, the computational power required scales as (𝑅MT𝐾max)3 and

so optimisation is typically required to provide accuracy in a reasonable computation time. The calculations

are performed on a discrete 𝑘-mesh. The size of this mesh is also important to optimise, especially where an

accurate Fermi energy is of interest (requiring an accurate Fermi volume). In WIEN2k, the option to shift the

𝑘-mesh a small amount such that the points are not degenerate under the crystal symmetry. This shift is used

for convergence of ground state density in this thesis but not for subsequent calculations of properties (such

as generating the Fermi surface). Lastly for the spin-orbit calculations, which are performed as a second

variational step, their is often sensitivity to the upper energy cutoff 𝐸max of the calculated eigenstates that

requires converging. The total energy 𝐸tot has been used as criteria for the convergence of these parameters

in this thesis.

The convergence of the ground state density in WIEN2k uses a self-consistent-field (SCF) algorithm.

This is split in to several routines starting from a trial ground state density:

• LAPW0: calculates potential from input ground state density

• LAPW1: calculates eigenvalues and eigenvectors of valence states

• LAPW2: calculates new ground state density of valence states

• LCORE: calculates density and eigenvectors of core states

• MIXER: mixes initial and new ground state density (to improve convergence) to generate output

ground state density

The routine is iterated with the output density being used as an input, until SCF convergence criteria are

reached. A criteria of total energy 𝐸tot convergence of 0.0001 Ryd ≈ 1.36 meV is used for all SCF loops in

this thesis.

To extract orbitals from calculated Fermi surfaces, the ‘supercell k-space extremal area finder’ (SKEAF)

[109] algorithm has been used to generate rotation plots. A library of MATLAB code provided by Tony

Carrington with large contributions by Ed Yelland has been used for illustrations of orbits on the Fermi

surface, in good agreement with the SKEAF results. Some modifications to this code were made by myself

such that it is more robust at finding orbits of 3D Fermi surfaces, using an orbit matching condition similar

to that of SKEAF. While SKEAF has the functionality to output orbits, the process was more efficient directly

in MATLAB where Fermi surface plots for this thesis were generated.



Chapter 5

Magnetoresistance and Hall effect of YbNi4P2

This chapter is ordered such that the phase diagram of YbNi4P2 is first viewed with as large a scope as

possible, studying the onset of the Kondo hybridisation from high to low temperatures and with fields up

to 12 T. Hall effect data are studied against anomalous Hall effect models to determine contributions. Next,

the effect of the large magnetic fields on the low temperature ground state will be addressed, documenting

the suppression of the Kondo hybridisation and Lifshitz transitions up to 12 T. Finally the phase diagram

near and inside the ferromagnetism, at low temperatures and small fields, is investigated through resistivity

power laws and anomalous Hall effect.

As YbNi4P2 has significant anisotropy in both resistivity and magnetic susceptibility along a and c, two

current and field orientations have been measured here: (i) B ∥ c, I ∥ a; and (ii) B ∥ a, I ∥ c. The directions

of the Hall voltages are always such that B, I , and VH are mutually perpendicular. High temperature

studies in the region 𝑇 > 1.8 K and 𝜇0𝐻 ≤ 14 T were performed by Florian Jurries at Bristol during his

master’s project before the start of my own project, using samples 041_st1_4 and 041_st1_3 (corresponding

to orientations (i) and (ii) respectively) on a
4

He probe. The low temperature region was measured as

part of this thesis on a dilution refrigerator with temperatures 30 mK < 𝑇 < 8.5 K and fields 𝜇0𝐻 ≤ 12 T,

using samples 041_st1_4 and 040_2_6_6 (orientations (i) and (ii) respectively). See subsection 4.2.3 for a full

description of the samples used.

5.1 Onset of Kondo hybridisation and anomalous Hall effect

To begin to understand the complex magnetoresistance and Hall effect signatures in YbNi4P2 it is useful to

start from the normal metallic state at higher temperatures and work downwards in temperature, where

Kondo hybridisation sets in and finally where magnetic phases appear. The magnetic susceptibility has

an unusual temperature-dependent anisotropy, with the easy axis in the c direction and hard axis in the

65



66

a direction at higher temperatures, but reversing at low temperatures before the ferromagnetic phase is

reached (𝑇 > 𝑇C) so that the easy axis of the ferromagnetism points in a [130]. The nature of Kondo

hybridisation is itself anisotropic, as it involves the hybridisation of 4 𝑓 electrons which have anisotropic 𝑔

factors determined by the crystal electric field. It is therefore interesting to study both orientations B ∥ c

and B ∥ a.

Resistance measurements act as a probe of the scattering rate 𝜏−1
experienced by the charge carriers in

a metal. The scattering rates associated with the onset of Kondo hybridisation are of particular interest in

heavy fermion compounds, where a large drop is observed in the resistivity as a coherent Kondo lattice

forms. Often an upturn in the resistivity similar to the ∼ log(𝑇) dependence in metals with magnetic

impurities [71] is seen on cooling (for examples in a broad range of HF compounds see CeCu6 [139] and

CeAl3 [93], YbNiAl and YbPtAl [30], UBe13 [39] and U2Pt2In [133]). The energy scales of the Kondo effect

𝑘B𝑇K and the RKKY interaction 𝑘B𝑇m are typically not easy to separate through the resistivity [112], and

a variety of 𝜌𝑥𝑥(𝑇) shapes can occur depending on their relative size [70]. Kondo scattering is a spin-flip

process, and can be suppressed by application of magnetic field leading to a negative magnetoresistance

[71, 112]. This negative magnetoresistance often occurs well above the Kondo temperature. Measurements

of magnetoresistance in a large field and temperature range are important to study the onset of a coherent

Kondo state.

The Hall effect is more complex (a more complete description is given in section 2.4), comprised of

an ordinary term 𝑅0 dependent on the carrier density, and an anomalous term 𝑅s𝑀 dependent on the

magnetisation (anomalous Hall effect or AHE)1. The ordinary term is a measure of the Fermi volume in a

single band metal, but is slightly more complicated in multiband systems where bands contribute differently

depending on their mobility (see for example LuRh2Si2 [38]). The anomalous term has many contributing

mechanisms, including intrinsic Berry curvature, skew-scattering and side-jump scattering [90]. A common

strategy to differentiate between these components is to study the temperature dependence of the Hall

coefficient in the low field limit (for example in YbRh2Si2[96]). The intrinsic contributions to the AHE are

dependent on geometric concepts of the band structure so have no dependence on the scattering rate 𝜏−1
(or

𝜌𝑥𝑥), in contrast the skew-scattering mechanism is expected to be dependent on either 𝜌𝑥𝑥 or 𝜌2

𝑥𝑥 . However,

often separation in to such simple terms is not possible, for example in CeRu2Si2 [29]. Much of the interest

in Hall effect measurements of heavy fermion compounds is in an attempt to determine the ordinary Hall

effect term, so that the Kondo hybridisation (through the volume of the Fermi surface) can be tracked as

a function of a parameter such as magnetic field. The anomalous term is also of interest, particularly in

ferromagnetic systems, as it is sensitive to the magnetisation. Studies of heavy fermion ferromagnets may

1Not including the relatively new field of topological Hall effect.
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provide a route to understanding the anomalous Hall effect in heavy fermion systems, where an anomalous

Hall component can unambiguously be separated via the magnetic hysteresis, such as in USbTe [123] where

it was recently shown that a scaling relation due to the intrinsic Berry curvature breaks down.

Here, scaling relations of the resistivity of YbNi4P2 over a wide range of temperatures and fields are first

presented, then attempts are made to identify the Hall effect components so that physical meaning can be

given to its features, finally a wide view of the phase diagram is given. The results will first be presented

for the orientation B ∥ c, I ∥ a, then for B ∥ a, I ∥ c. The former is with field in the high temperature

(paramagnetic) easy axis, and the latter is with field in the low temperature (ferromagnetic) easy axis.

5.1.1 Single-ion Kondo scaling of resistivity

High temperature easy direction: 𝑩 ∥ 𝒄, 𝑰 ∥ 𝒂

In this orientation the current points along the more resistive direction, while the field points along the

high-temperature easy-axis. Isotherms at selected temperatures are presented in Figure 5.1 panel (a) to

illustrate the onset of the Kondo effect and a sizeable negative magnetoresistance. The magnetoresistance

signal displayed is dominated by a peak at zero field, which broadens in field with increasing temperatures.

This negative magnetoresistance is due to the suppression of incoherent spin-flip scattering of the Kondo

effect, as commonly seen in many other Kondo lattice systems (e.g. CeCu6 [25]). We can begin a quantitative

analysis of this feature considering the Coqblin–Schrieffer model of local 𝑓 moment impurities, in particular

making comparison to the 𝐽 = 1/2 solution2 by Schlottmann [115]. The calculated magnetoresistance in this

model can be scaled on to a universal function

𝜌𝑥𝑥(𝑇, 𝐻)
𝜌𝑥𝑥(𝑇, 0)

= 𝑓

(
𝐻

𝐻∗

)
, (5.1)

where 𝐻∗ is a characteristic field. The function 𝑓 takes values 0 < 𝑓 < 1 and is scaled so that 𝑓 (1) = 0.5 (i.e.

at 𝐻 = 𝐻∗). The single characteristic field is indicative of only a single energy scale in the scattering process,

and is sometimes related to the Kondo temperature (for example in CePb2 [151] and YbNiAl [30]). Scaling

of the magnetic field of isotherms can be achieved simply by choosing a value of 𝑓 to scale all isotherms to.

In Figure 5.1 panel (b), fractional magnetoresistance isotherms have been scaled such that 𝑓 = 90% at the

field 𝐻90%, with good scaling for 𝑇 > 7 K. Good scaling is also found at low fields for lower temperatures.

The calculated form of 𝑓 for 𝐽 = 1/2 is digitised from [115], for which 𝐻∗ = 3.4𝐻90%, and included for

comparison, which appears to describe the scaled magnetoresistance. The temperature dependence of the

2While the CEF state is dominantly 𝐽 = 5/2 [54], the higher 𝐽 solutions fit the data worse at higher fields.
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Figure 5.1: Selected resistivity isotherms and Coqblin–Schrieffer scaling for B ∥ c. (a)
Selected isotherms with negative magnetoresistance. (b) Scaling of magnetoresistance

fraction for many temperatures. The Coqblin–Schrieffer solution for 𝐽 = 1/2 derived by

Schlottmann [115] is presented for comparison with a shift of −0.1 as a dotted line. (c)
Characteristic field 𝐻∗ as a function of temperature and power law fit.

characteristic field 𝐻∗ is plotted, which is non-linear, and empirically fits well to

𝑇 = (𝐻∗)𝑛 + 𝑇0 , (5.2)

where𝑇0 = 0.0(1)K is the 𝑦-intercept of Figure 5.1 panel (c), and the exponent 𝑛 = 0.91(2). The 𝑦-intercept𝑇∗

is close to zero, which cannot be attributed to the Kondo temperature. Notably a negative 𝑇∗ is more typical

for heavy fermions with ferromagnetic correlations such as UBe13 [4] and YbPtSn [3]; the Coqblin–Schrieffer

scaling does not appear to work well in the vicinity of magnetic order. However, considerations of this

non-magnetic model are a useful starting point, with close similarity to the 𝐽 = 1/2 form for temperatures

𝑇 > 7 K.

We will now consider the evolution of the resistivity over a larger range of temperatures, using similar

scaling methods. Resistivity are shown in Figure 5.2 panel (a) as a function of temperature for a selection

of magnetic fields, using temperature sweep data on a dilution refrigerator for 30 mK < 𝑇 < 8 K and values

extracted from field sweep data for 𝑇 > 4 K on a
4

He probe. Below 80 K and in zero field, there is an upturn

in the resistivity associated with a single-ion Kondo effect, towards a maximum at ∼ 20 K. On further

cooling the Kondo scattering begins to become coherent, causing a large drop in resistivity. This Kondo
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Figure 5.2: (a) Magnetoresistance and (b) percentage magnetoresistance at fixed fields

for B ∥ c. Measurements on the dilution refrigerator of sample 040_2_6_6 are shown

with solid lines, while higher temperature measurements taken by Florian Jurries on

sample 043_st1_3 are shown in dotted lines.

scattering can be suppressed by magnetic field, resulting in the scaling previously presented. To apply a

similar scaling to temperature sweeps, the magnetoresistivity has first been presented in Figure 5.2 panel

(b) as a percentage change

Δ𝜌𝑥𝑥(𝑇, 𝐻) =
𝜌𝑥𝑥(𝑇, 𝐻) − 𝜌𝑥𝑥(𝑇, 0)

𝜌𝑥𝑥(𝑇, 0)
. (5.3)

Data below 𝑇C = 170 mK have been removed as the scaling does not apply inside the ferromagnetic phase.

The shape of the percentage magnetoresistance has very similar character for all fields. This suggests a

better scaling can be found to describe a very large portion of the magnetoresistance for 𝑇 > 𝑇C, with the

addition of a rescaling factor of the magnetoresistance.

Tracking the positions of the minima 𝑇min as a function of field fits reasonably well with a power law

𝑇min ∝ 𝐻0.79
as shown in Figure 5.3 panel (c). Normalising the percentage magnetoresistance so that minima

are the same size, and instead scaling an 𝑥-axis with 𝑥 = 𝑇𝛽/𝜇0𝐻, where 𝛽 = 1.3, yields better overlap than

the Coqblin–Schrieffer model. This implies the magnetoresistance can be written in the form

𝜌𝑥𝑥(𝑇, 𝐻) = 𝜌𝑥𝑥(𝑇, 0)
(
1 + 𝐴(𝐻) 𝑓 (𝑥)

)
, (5.4)

where 𝐴 is a factor only dependent on field and proportional to Δ𝜌min

𝑥𝑥 as shown in Figure 5.3 panel (b), and

𝑓 describes the universal curve in panel (a). This temperature scaling implies the magnetoresistance in this

direction is dominated by a very low energy scale 𝑇∗ ∼ 0. Notably the scaling is worse below the minima,

potentially it is not appropriate to model the whole field range of 𝑇min with a single polynomial, especially

on passing through the Lifshitz transitions that are discussed later in subsection 5.2.2. An empirical fit of
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Figure 5.3: Scaling of magnetoresistance for B ∥ c. (a) Normalised magnetoresistance

Δ𝜌𝑥𝑥 = 𝜌𝑥𝑥(𝐻) − 𝜌𝑥𝑥(0) versus a rescaled 𝑥 axis with 𝛽 = 1.3. (b) Minima values, used

for 𝑦 scaling with an empirical stretched exponential fit. (c) Temperature position of

minima, a slight negative curvature visible around 2 T indicates that 𝛽 > 1 is needed to

scale the minima. An empirical fit to a power law is included.

the minima sizes 𝜌min

𝑥𝑥 using a stretched exponential function

Δ𝜌min

𝑥𝑥 ∝ (1 − 𝑒−𝑏𝐻
𝑛 ), (5.5)

works better than a power law or simple exponential, and would suggest the presence of a second scale

𝐻𝑏 = 𝑏−𝑛 = 0.95 T that is independent of temperature. As this extra scaling term saturates at high fields,

perhaps it is related to the complete suppression of the Kondo screening or a magnetic saturation. A theory

with the presence of ferromagnetic fluctuations is likely required to understand this scaling. Similar 𝜌𝑥𝑥(𝑇)

have been commented on in other HF ferromagnets which order along their high temperature magnetic

hard axis [49] (YbRh0.73Co0.27)2Si2, CeRuPO and YbIr3Ge7). It would be interesting to see if similar scaling

in magnetic field is present in these materials.

High temperature hard direction: 𝑩 ∥ 𝒂 , 𝑰 ∥ 𝒄

In this orientation, the field is in the direction of the ordered ferromagnetic (FM) phase, and current along

the low resistance direction. With this field direction the FM phase strictly only exists at 𝐻 = 0, as the

magnetic field breaks the time reversal symmetry in both the ferromagnetic polarised and paramagnetic

state (so there is not a change of symmetry between the two). The zero field resistivity is markedly different
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Figure 5.4: (a) Magnetoresistivity and (b, c) percentage magnetoresistance for B ∥ a.

Measurements on the dilution refrigerator of sample 040_2_6_6 are shown with solid

lines, while higher temperature measurements on a
4

He probe taken by Florian Jurries

are shown in dashed lines. Crossings points from positive to negative magnetoresistance

at 5 K and 30 K are labelled by arrows.

in this orientation (see Figure 5.4), on cooling the resistivity only decreases; there is no maximum associated

with the single-ion Kondo effect. Instead there is a shoulder at around 100 K, where a large drop in

the resistivity begins. Further the magnetoresistance in this orientation is drastically smaller than in the

previous orientation, and has two sign changes from negative at high temperatures to positive below 30 K,

and finally back to negative below 5 K. The existence of two magnetoresistance crossings is incompatible

with a single-ion Kondo effect scaling, as scaling by 𝑥 = (𝑇 +𝑇∗)𝛽/𝐻 can only give a single crossing point at

𝑥 = 0. This implies that the Kondo scattering is not the only dominant mechanism for this field and current

setup, over a wide range of temperatures. Magnetoresistance measurements of the reference compound

LuNi4P2 could be helpful to isolate the contribution of the Kondo effect to these signatures.

The shoulder associated with a single-ion Kondo effect in this current orientation (along the high

temperature easy axis c), and likewise the peak when I ∥ a, bear good resemblance to the features seen in

UTe2 where many field and current orientations have been tested thoroughly [138]. In UTe2 a maximum

is seen with current in the more resistive direction (perpendicular to the easy axis), and both features are

suppressed by magnetic field. A similar shoulder is seen in CeRh6Ge4 [72], another candidate material close

to a FM QCP, with current in the magnetic hard direction. Unfortunately no complementary measurements

with current along the easy direction are available in this material.
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Figure 5.5: High temperature scaling of the magnetoresistance for B ∥ a. (a) Scaled

magnetoresistance, divided by the maximal value. There is very good overlap above the

crossing at 4 K. An anomalous point has been removed from 1 T at 5 K. (b) Tracking of

maxima and minima sizes, which show very similar field dependence. Lines connect

points as a guide.

There is disagreement between measurements taken on the dilution refrigerator and measurements

taken by Florian Jurries on a
4

He probe, despite these being measurements of the same sample. Mostly

significantly, there is disconnect between the zero field resistivity. This is likely due to the sample self

heating (which will mean the thermometer reading is lower than the sample) in the latter measurements as

an excitation current of 5 mA was used at all temperatures; in contrast for the low temperature measurements,

the sample has been heating tested over a broad range of temperatures. The size in the maximum of the

percentage magnetoresistance cannot be accounted for by this however, and may rather be due to the lack

of magnetic shielding of the resistive thermometer used in the higher temperature experiments3.

Above the low temperature crossing at 5 K, scaling the magnetoresistance size without any temperature

scaling gives good similarity of all curves as in Figure 5.5, so that

𝜌𝑥𝑥(𝑇, 𝐻) = 𝜌𝑥𝑥(𝑇, 0)(1 + 𝐴(𝐻) 𝑓 (𝑇)), for 𝑇 > 5 K, (5.6)

where 𝐴 is a function of field proportional to Δ𝜌min/max

𝑥𝑥 in Figure 5.5 panel (b), and 𝑓 is the universal curve

in panel (a). This scaling appears to end below the crossing point near 5 K, simultaneous with the field

independent shoulder in the Hall coefficient. The function 𝐴(𝐻) continues to grow as a function of field

without saturating, more similar to the semiclassical high field limit for open orbits of the Fermi surface [7].

3To expand on this, even a small thermometry error could result in a sizeable error as the sample has a high sensitivity to

temperature but not magnetic field. For 𝑇 ∼ 5 K, the sample has a temperature sensitivity 𝑑𝜌𝑥𝑥 ∼ 2.3 µΩ cm K
−1 ∼ 30% K

−1
, which

will relate the temperature error to a measurement error. A fairly small thermometry error of 0.2 K would be enough to add a sizeable

percentage magnetoresistance of 6%. Notably, a +0.15 K error was observed in the thermometry at a max field of 14 T, for the base

temperature of 1.7 K where no heating is applied to the sample stage and so the cooling power should be roughly independent of field.
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Figure 5.6: Low temperature scaling of the magnetoresistance for B ∥ a. (a) Scaled

magnetoresistance, divided by the maximal value and plotted against a scaled axis with

𝛽 = 2.2, 𝑇∗ = 0.22 K. (b) Tracking of minima size with an empirical power law fit. (c)
Tracking of minima positions with an empirical exponential fit.

Perhaps this is an indication of open orbits along the quasi-1D sheets in this field orientation, however this

will not explain the negative magnetoresistance above 30 mK. It appears the dominant scattering mechanism

must change as a function of temperature.

Moving to lower temperatures, a single-ion Kondo scaling relationship can be attempted as shown in

Figure 5.6. The minima of Δ𝜌𝑥𝑥 are used for scaling of Δ𝜌𝑥𝑥 . The minima positions 𝑇min are tracked and

fitted with a power law

𝑇min = 𝑇0 + 𝐶𝐻𝑛 , (5.7)

as a starting point for temperature/field scaling, with a best fit suggesting 𝑇∗ = 0.23 K and 𝛽 = 1/𝑛 = 2.2.

With some slight tuning of these parameters, visually better scaling is found for 𝑇∗ = 0.22 K. Maximal

values of the magnetoresistance can be fit well by an exponential decay

Δ𝜌min

𝑥𝑥 ∝ 1 − 𝑒−𝑏𝐻 . (5.8)

This value begins to saturate at high fields in contrast to the high temperature scaling behaviour. This scaling

appears to work less well for temperatures further above the 𝑇min, where the high temperature region is

approached in which the extrema do not broaden in field. This scaling implies the relation

𝜌𝑥𝑥(𝑇, 𝐻) = 𝜌𝑥𝑥(𝑇, 0)(1 + 𝐴(𝐻) 𝑓 (𝑥)), for 𝑇 ≲ 2 K, (5.9)
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Figure 5.7: Hall coefficient and Hall resistivity for B ∥ c. (a) Hall coefficient 𝜌𝑥𝑦/𝜇0𝐻 at

fixed fields. Measurements on the dilution refrigerator of sample 040_2_6_6 are shown

with solid lines, while higher temperature measurements taken by Florian Jurries on

sample 043_st1_3 are shown in dashed lines. Two points from high field measurements

up to 35 T have been included in grey, detailed later in section 5.2.2, where the Hall

coefficient is constant above 𝐵9 = 17 T. A dotted grey line has been included as a guide

(b) Hall resistivity 𝜌𝑥𝑦 at lower temperatures. Black arrows illustrate the field evolution

of two series of minima. The curve at 2 T (dotted line) has been offset by −0.1 µΩ cm for

clarity, and a red arrow illustrates a sign of the high field minima beginning to develop.

is close to being held, with 𝑥 = (𝑇 +𝑇∗)𝛽/𝐻, and where 𝐴 is a factor that only depends on field (proportional

toΔ𝜌min

𝑥𝑥 ), and 𝑓 is the universal curve in Figure 5.6 panel (a). For this orientation, again theories of single-ion

Kondo scaling are likely needed in the presence of magnetic fluctuations.

5.1.2 Anomalous Hall effect

High temperature easy direction: 𝑩 ∥ 𝒄, 𝑰 ∥ 𝒂

Hall effect data are presented in Figure 5.7 as the Hall coefficient 𝑅H = 𝜌𝑥𝑦/𝜇0𝐻 over the full temperature

range, and as the Hall resistivity 𝜌𝑥𝑦 for temperatures below 8 K. Above 30 K the Hall resistivity is close

to linear in magnetic field, displaying normal metal behaviour dominated by ordinary Hall effect (as 𝜒 is

small). On reducing temperature however, the Hall effect becomes very non-linear due to an anomalous Hall

effect, and minima in 𝜌𝑥𝑦(𝑇) form at all magnetic fields. These minima broaden with increasing magnetic

field and move to higher temperatures, qualitatively similar to how the magnetoresistance broadens. The

minima do not follow a monotonic field evolution (see Figure 5.7 panel (b)). The low field minima appear
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to be suppressed by 4 T, with a new series of minima appearing at lower temperatures, and there appears

to be signs of both features at 2 T. Notably there is a large change in the behaviour at lowest temperatures

above 4 T. It is clear from the presence of different high and low field minima that the Hall effect cannot

be scaled in a likewise fashion to the magnetoresistance (i.e. is not dominated by single-ion Kondo). These

minima are addressed again later in section 5.2.1 and section 5.3, once more of the phase diagram has been

outlined.

Where the Hall coefficient is not field independent, it is necessary to think carefully about the expected

anomalous Hall effect (AHE) components that may grow as the magnetic susceptibility increases at low

temperatures (𝜒 ∝ 𝐻−0.66
, for 𝑇 > 𝑇C [130]). It is a common occurrence for heavy fermion materials to

exhibit a broad positive peak in the Hall effect about a coherence temperature 𝑇coh [90, 91], attributed to

resonant skew scattering by strongly fluctuating moments of 𝑓 electrons at the onset of Kondo coherence. In

this model and below 𝑇coh, a large reduction in scattering due to a coherent Kondo state forming is thought

to lead to a large reduction in the skew-scattering, eventually leaving only the normal Hall effect, intrinsic

anomalous Hall effect, and skew-scattering from any remaining defects. In YbNi4P2 however, we further

have the appearance of ferromagnetic and ferromagnetic polarised states at low temperatures, where we

can again expect a significant presence of the AHE due to the increased magnetisation/susceptibility. It

will be shown in section 5.3 that a positive AHE is developed in the ferromagnetic polarised state, and

inside the ferromagnetic state for 𝑇 ≪ 𝑇C, hence minima should appear due to a growing magnetisation

as the magnetically ordered states are entered. However this leaves unanswered questions: which series of

minima should be attributed to this magnetic order, and what do the other series of minima correspond to?

In an attempt to understand the dominant mechanism of the AHE, the Hall coefficient 𝑅H above 1.8 K

has been compared to the susceptibility 𝜒 and the resistivity 𝜌𝑥𝑥 . In this way comparisons to models of

intrinsic, skew scattering, and side-jump scattering can be made (detailed in subsection 2.4.3), using 𝜒 as

a proxy for the magnetisation 𝑀 and 𝜌𝑥𝑥 as a measure of the scattering rate 𝜏−1
. The susceptibility data

are extracted from SQUID magnetisation measurements by Florian Jurries on the bulk sample 041_st1 (that

the electrical transport sample was cut from), a probing field of 10 mT was used. The Hall effect is non

saturating for fields 𝜇0𝐻 ≲ 0.5 T and temperatures down to 1.8 K; the Hall coefficient and resistivity are

extracted at 0.25 T for this analysis where 𝑀 ∝ 𝜒 is expected. Comparisons are made in Figure 5.8. There

is no linear behaviour observed in 𝑅H as a function of 𝜒, 𝜒𝜌𝑥𝑥 or 𝜒𝜌2

𝑥𝑥 so a robust separation of AHE terms

cannot be achieved. Extrapolation of the high temperature limits of 𝑅H versus 𝜒 or 𝜒𝜌𝑥𝑥 (which appear

more linear than versus 𝜒𝜌2

𝑥𝑥), as was done in YbRh2Si2[96], points to a near zero ordinary Hall coefficient

in the non-magnetic limit. A combination of metallic behaviour and near zero ordinary Hall coefficient

confirms the presence of multiple bands. Interestingly the product 𝜒𝜌𝑥𝑥 seems to tend to a constant value
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Figure 5.8: Hall coefficient 𝑅H comparison for B ∥ c with (a) magnetic susceptibility 𝜒
and linear fit extrapolating to +9(4) × 10

−11
m

3
C
−1

, (b) a skew-scattering term 𝜒𝜌𝑥𝑥 and

linear fit extrapolating to 0(6) × 10
−11

m
3

C
−1

, and (c) an intrinsic/side-jump scattering

term 𝜒𝜌2

𝑥𝑥 . 𝑅H and 𝜌𝑥𝑥 have been evaluated at 0.25 T, while 𝜒 is evaluated from mag-

netisation data at 10 mT.

for 1.8 K < 𝑇 < 5 K, resulting in the curve in panel (b) of Figure 5.8 appearing to turn back on itself.

The power law of the resistivity and the magnetic susceptibility are close to each other’s inverse at low

temperatures so 𝜒𝜌𝑥𝑥 approaches a constant. Therefore, the low temperature limit cannot be explained by

a skew scattering term, at least not one where the scattering rate is determined by the single-ion Kondo

magnetoresistance. The low temperature anomalous Hall effect is likely therefore dominated by either an

intrinsic contribution (as in heavy fermion ferromagnet USbTe [123]), or side-jump scattering.

High temperature hard direction: 𝑩 ∥ 𝒂 , 𝑰 ∥ 𝒄

The evolution of the Hall effect in this orientation (see Figure 5.9 panel (b) for 𝑅H in the full temperature

range, and Figure 5.9 for 𝜌𝑥𝑦 below 8 K) is complex. At temperatures above 100 K a field independent

Hall coefficient is seen to grow close to logarithmically on cooling. On further cooling the Hall coefficient

becomes field dependent and approaches a maximum at around 40 K, this maximum is shifted to higher

temperatures by magnetic fields, and is in proximity to (but above) the high temperature magnetoresistance

crossing point. This reduction in 𝑅H is then interrupted by a field independent shoulder near 5 K close to

the lower temperature magnetoresistance crossing, and notably at this shoulder 𝑅H is monotonic in field

but 𝜌𝑥𝑦 is not. In terms of an ordinary and anomalous component respectively,

𝑅H = 𝑅0 + 𝑅s

𝑀

𝐻
, (5.10)

so a monotonic decreasing 𝑅H here indicates a monotonic decreasing magnetic susceptibility as a function

of field (assuming field independent 𝑅0 and 𝑅s). This 𝜌𝑥𝑦(𝑇) shoulder is very close to the resistivity crossing
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Figure 5.9: Hall coefficient and Hall resistivity for B ∥ a. (a) Hall coefficient at fixed

fields. (b) Hall resistivity for 𝜇0𝐻 ≤ 6 T, and (c) for 𝜇0𝐻 > 6 T. Black arrows illustrate

the progression of extrema with field. Dashed lines show measurements at higher

temperatures by Florian Jurries.

point at 5 K, so all contributions to 𝑅s will be approximately field independent.

In the low temperature region shown in Figure 5.9 panels (b) and (c), 𝜌𝑥𝑦(𝑇) has two series of maxima

and minima which are both field dependent, these appear to be too close to each other to fully form

extrema from 4 T to 6 T. Presumably these are related to growing anomalous Hall effect contributions,

as the magnetic susceptibility increases rapidly (stronger than logarithmically [130]) on cooling towards

𝑇C. The field dependence of these extrema is included in the phase diagram Figure 5.13 later, it is not

obvious whether the maxima at high field correspond to the maxima or minima at low temperature and

vice versa (whether the minima and maxima intersect at some field). The temperature dependence at

lowest temperatures switches sign from 𝑑𝜌𝑥𝑦/𝑑𝑇 < 0 to 𝑑𝜌𝑥𝑦/𝑑𝑇 > 0 as field is increased above 3 T, which

rather suggests the sign of the lowest temperature extrema changes (i.e. that the low field minima are the

same feature as the high field maxima). This sign change will be discussed further when examining low

temperature isotherms of the Hall resistivity subsection 5.2.2. This series of extrema therefore appears to

trace an increase in the magnetisation on cooling into a field polarised state, as the minima up to 1 T sit

just above the maxima observed in heat capacity data [130]. This suggests that a sizeable anomalous Hall

component is still present at lowest temperatures, a stark difference in comparison to several heavy fermion

antiferromagnets such as YbRh2Si2 [96] and CeRu2Si2 [29].
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Figure 5.10: Hall coefficient 𝑅H comparison for B ∥ a with (a) magnetic susceptibility

𝜒, (b) a skew-scattering term 𝜒𝜌𝑥𝑥 , and (c) a side-jump scattering term 𝜒𝜌2

𝑥𝑥 . 𝑅H and

𝜌𝑥𝑥 have been evaluated at 1 T, while 𝜒 is evaluted from magnetisation data at 10 mT.

Comparisons to models of AHE (detailed in subsection 2.4.3), using magnetisation via low field suscep-

tibility, and scattering rates via the resistivity, are made in Figure 5.10. The Hall effect is quite linear and

non saturating4 up to around 1 T for temperatures above 2 K, so measurements of 𝑅H and 𝜌𝑥𝑥 at 1 T are

used for this analysis. Magnetic susceptibility is calculated from SQUID magnetisation data at 10 mT. No

linear behaviour is seen between 𝑅H and 𝜒, 𝜒𝜌𝑥𝑥 , or 𝜒𝜌2

𝑥𝑥 over extended temperature ranges. Extrapolation

against the susceptibility 𝜒 for 𝜒 → 0 points to a negative ordinary Hall effect at high temperatures, in

contrast to the sample with current along a, again indicative of multiple bands at the Fermi level. It is

possible that a saturation of the ordinary Hall coefficient at higher temperatures is missed here, as is seen in

LuRh2Si2 above 100 K [38]. It remains unclear what mechanisms are dominant in the anomalous Hall effect

of YbNi4P2, so we must be careful about drawing conclusions. Hall effect measurements of the non heavy

fermion reference compound LuNi4P2 would be insightful to understand what the normal Hall coefficient

of the ‘small’ Fermi surface is, where the 4 𝑓 electrons are localised and not contributing to the Fermi volume.

The localised 𝑓 electron reference could then be subtracted before attempting scaling relations (as done for

the heavy fermion ferromagnet YbPtGe by Katoh et al. [63]).

4Field sweeps are presented later in subsection 5.2.2 Figure 5.20. There is slight negative curvature at low fields, so the 𝑅H

presented here is slightly underestimated in comparison to the gradient at zero field.
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5.2 Evolution of the ground state with magnetic field

The low temperature ground states of YbNi4P2 are itinerant ferromagnetism at low fields [74], and a field

polarised heavy Fermi liquid at high fields [98]. The Fermi surface of a heavy fermion compound is

tuned by magnetic fields in two ways. Firstly is due to the energy splitting of spins by the Zeeman effect

Δ𝜀 = ±(1/2)𝑔𝜇B𝐵, which expands a ‘majority’ spin Fermi surface, and shrinks a ‘minority’ spin Fermi

surface. The second is regarding the Kondo hybridisation, which expands the Fermi surface due to the

addition of 𝑓 electrons to the Fermi volume.

The Fermi surface of YbNi4P2 evolves rapidly as a function of field due to its very low Kondo temperature

[98]. Due to the flatness of the bands (characterised by the small energy widths 𝑘B𝑇K), the Zeeman splitting

±(1/2)𝑔𝜇B𝐵 can quickly become comparable or larger than the band width. When shifts are large enough

to shift energy extrema of the band structure through the Fermi level, topological changes in the Fermi

surface can occur known as Lifshitz transitions, these are outlined more generally in subsection 2.3.5. The

change in the density of states 𝑑𝑔(𝐸F)/𝑑𝐵 when one of these extrema pass through the Fermi level will be

discontinuous, and so Lifshitz transitions typically result in anomalies of thermodynamic and transport

properties.

Magnetic fields act to suppress this hybridisation and so a ‘de-renormalisation’ of the band structure

results in a suppression of this large effective mass, towards the ‘small’ Fermi surface. This is apparent in

measurements of the specific heat and the 𝐴 coefficient of resistivity [98], which decrease as the magnetic

field suppresses the Kondo hybridisation and reduces the effective mass.

In the following sections the evolution of the ground state will be studied in two parts. First the evolution

of the Fermi liquid ground state will be studied through power laws of the resistivity. This will detail the

de-renormalisation of the effective mass, and also provide a phase diagram in which extrema of the Hall

effect can be re-examined. The anomalies associated with Lifshitz transitions will then be documented and

discussed in detail.

5.2.1 Heavy Fermi liquid state

Low temperature hard direction: 𝑩 ∥ 𝒄, 𝑰 ∥ 𝒂

At low temperatures, a Fermi liquid state with 𝜌𝑥𝑥(𝑇, 𝐻) = 𝜌𝑥𝑥(0, 𝐻) + 𝐴(𝐻)𝑇2
is formed. To illustrate

the power law on a phase diagram, piecewise power law fits with a variable power 𝑛 have been made to

fixed-field temperature sweeps of 𝜌𝑥𝑥 (symmetrised at ±𝐻), as shown in Figure 5.11. Two separate width

fitting windows 𝑇w are used as features become broader in temperature as field is increased, 𝑇w = 0.15 K for

𝑇 < 0.9 K, 𝜇0𝐻 < 1 T, and 𝑇w = 1.5 K elsewhere. The Fermi liquid regime extends up to a limit of 5 K at 12 T,
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Figure 5.11: Resistivity power law and feature tracking for B ∥ c (sample 043_st1_-

3). Power law fits are performed using a moving window. Two separate width fitting

windows in temperature𝑇 are used,𝑇w = 0.15 K for𝑇 < 0.9 K, 𝜇0𝐻 < 1 T, and𝑇w = 1.5 K

elsewhere. A Fermi liquid regime expands to higher temperatures at higher fields. Hall

effect minima are extracted from temperature dependences, and features due to Lifshitz

transitions (LT) are tracked as detailed later in subsection 5.2.2.

a limit that shrinks close to zero at low fields (this will be explored in more detail later when studying the

ferromagnetic dome, see section 5.3). If we associate the departure from Fermi liquid behaviour with the

thermal fluctuations (𝑘B𝑇) becoming comparable to the width of the bands (∼ 1/𝑚∗), then it appears that

the quasiparticle mass decreases with increasing field as expected from the specific heat, magnetisation and

𝐴 coefficient of resistivity [98].

The minima in the Hall coefficient are presented on top of the power law map in Figure 5.11. The high

field minima appear to point towards an intercept near the origin, and are therefore likely to be related to the

boundary of the ferromagnetically polarised state (along c). The low field minima in contrast point back to a

finite 𝑇-intercept close to 2 K which is an order of magnitude larger than 𝑇C. Maxima have been observed in

the magnetic susceptibility [78] up to 1 T, however these maxima only coincide with the Hall minima at 1 T,

reducing quicker than the Hall minima on decreasing field. This leaves only a non-monotonic dependence

of the AHE term 𝑅s with temperature as an explanation (where 𝜌𝑥𝑦 = 𝑅0𝐻 + 𝑅s𝑀). This could be as

reasoned in Sr3Ru2O7, where avoided crossings near the Fermi level due to spin-orbit interactions cause

large changes in the Berry curvature relevant to the intrinsic AHE [34]. There are many candidate avoided

crossings in the band structure calculations seen in a later chapter chapter 6 Figure 6.11, for example on

the path from Γ–Z. Temperature sweeps of magnetisation at fixed fields above 1 T are needed to accurately
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Figure 5.12: 𝐴 coefficient analysis for B ∥ c. (a) Resistivity as a function of 𝑇2
at a

selection of fields. Linear fits from lowest temperature to a deviation of 10 nΩ cm are

shown. These deviations 𝑇dev are labelled by arrows. (b) 𝑇dev as a function of field. Error

bars are standard deviations of positive and negative field sweeps. (c) 𝐴 coefficient as a

function of field. An inset shows a close up of saturation in the FM phase.

decompose the high field Hall effect in to normal and anomalous components. It will be shown later in

section 5.3 that the two series of minima are separated by a feature that tracks back to the boundary of the

ferromagnetic phase.

The suppression of the Kondo effect can be addressed through analysis of the 𝐴 coefficient of resistivity,

using fixed field temperature sweeps as shown in Figure 5.12. Linear fits in the low temperature limit are

shown in panel (a) to 𝜌𝑥𝑥 as a function of 𝑇2
. By extrapolating the linear fit, the temperature 𝑇dev where

a deviation of 10 nΩ cm is seen is also extracted for each field, shown in a log-log plot in panel (b). This

method provides a better measure of the 𝑇2
region than a moving window power law, as the latter will

smear together a changing power law at either ends of the window. The gradient of each linear fit is then the

𝐴 coefficient of the ground state, as shown in a log-log plot in panel (c). This decreases roughly consistent

with a power law as previously noted [98]. Deviations seen near Lifshitz transitions are most likely due to

an enhancement of the effective mass, and so 𝐴, near extrema of flat bands (see Figure 2.9 for an example

hybrid band with enhanced mass near the extrema). The 𝐴 coefficient, and so the effective mass, appears to

be mostly unchanged inside the ferromagnetic dome, only slightly increasing from 86.6(5) µΩ cm K
−2

at zero
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Figure 5.13: Resistivity power law and feature tracking for B ∥ a (sample 040_2_6_6).

Power law fits are performed using a moving window. A moving window in temperature

𝑇 of 𝑇w = 2 K is used. A Fermi liquid regime expands to higher temperatures at higher

fields. Hall effect extrema are extracted from both temperature and field dependences,

dotted straight lines have been added as guides. Lifshitz transitions are tracked in the

resistivity and Hall effect as a function of field, presented later in subsection 5.2.2. A

dashed horizontal line marks the 𝜌𝑥𝑥(𝑇) crossing (zero MR) and shoulder in 𝜌𝑥𝑦(𝑇).

field to 90.5(5) µΩ cm K
−2

at 𝜇0𝐻 = 62 mT. This is also close to where the minimum value of 𝑇dev = 76 mK

is found, at 84 mT. The absence of 𝑇dev → 0 again points to the absence of a QCP induced by a transverse

field. The magnitude of 𝐴 is larger than found in literature [74, 78], yielding a Kadowaki-Woods ratio

𝑅KW = 𝐴/𝛾2 ≈ 20 µΩ cm J
2

K
2

mol
−2

(using the value of 𝛾 = 𝐶/𝑇 ≈ 2 J mol
−1

K
2

[130]), which is higher than

the universal ratio [60] for heavy fermions by a factor of two.

Low temperature easy direction: 𝑩 ∥ 𝒂 , 𝑰 ∥ 𝒄

A Fermi liquid resistivity is seen at high fields and low temperatures. Piecewise power law fits have been

made to the resistivity below 4 K with a temperature window of 2 K, with results shown in Figure 5.13. A

large window was needed for analysis in this direction, as the weaker 𝐴 coefficient results in a worse signal

to noise ratio5. A Fermi liquid 𝜌𝑥𝑥 ∼ 𝑇2
regime is found at high fields and low temperatures, crossing over

to a sub-linear dependence at higher temperatures. Non Fermi liquid behaviour is seen at low fields. More

precise studies of the low temperature resistivity curves and their departure from a Fermi liquid will be

5The power law colour plot should not be viewed as a precise quantitative map, but rather as a rough visualisation of the regions

of the phase diagram, and as a background for quantitative Hall effect features.
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Figure 5.14: 𝐴 coefficient analysis for B ∥ a. (a) Resistivity as a function of 𝑇2
at a

selection of fields. Linear fits from lowest temperature to a deviation of 1 nΩ cm are

shown. These deviations 𝑇dev are labelled by arrows. (b) 𝑇dev as a function of field. Error

bars are standard deviations of positive and negative field sweeps. (c) 𝐴 coefficient as a

function of field. An empirical fit is included for 𝜇0𝐻 ≥ 0.5 T.

deferred to subsection 5.2.2 in discussion of the evolution of the ground state with field. It is apparent that

the Fermi liquid region ends above 2 K at 12 T, approximately a factor of three lower temperature than with

field in the c direction. Interpreting this departure as the energy scale of temperature fluctuations becoming

comparable to the band width, the quasiparticle mass appears to decrease quicker with field along c than

along a. However, a study on a sample with B ∥ a ⊥ I ∥ a ⊥ VH ∥ c would be needed to check this is not

rather a feature of the current or Hall voltage direction.

Extrema of the Hall resistivity have been included in the phase diagram Figure 5.13. The Fermi liquid

state appears to be somewhat bounded by these features. Dotted lines have been included to illustrate the

apparent crossover of the two series. This could indicate a change in sign of the anomalous Hall term 𝑅s

as the 𝑥-intercept near 3 T. This could signal the crossover from dominant AHE mechanisms, or a change

in sign of a single AHE mechanism’s contribution (for example a sign change of the intrinsic term due to a

change in Berry curvature), and will be addressed again in subsection 5.2.2.

The evolution of the Fermi liquid ground state is probed through the 𝐴 coefficient of resistivity at

lowest temperatures, using fixed field temperature sweeps. A selection of fields are shown in panel (a)
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of Figure 5.14, against 𝑇2
so that the gradient is the 𝐴 coefficient. Linear fits are performed from lowest

temperatures, extracting the point 𝑇dev at which 𝜌𝑥𝑥 deviates by more than 1 nΩ cm. The resulting 𝑇dev are

presented in panel (b) and 𝐴 coefficient in panel (c). Deviations from the general trend are seen in both

𝑇dev and 𝐴 near the Lifshitz transitions 𝐵1 and 𝐵1b. The enhanced 𝐴 coefficient near 𝐵1b is consistent with

an enhanced effective mass, so this Lifshitz transition is due to a flat region of the band structure passing

through the Fermi level. An exponential decay of the 𝐴 coefficient is seen from 0.5 T to 12 T. This is fit to

𝐴 = 𝐴∞ + (𝐴0 − 𝐴∞)𝑒−𝜆𝜇0𝐻 , (5.11)

with 𝐴0 = 4.84(7)µΩ cm K
−2

, 𝐴∞ = 0.52(1)µΩ cm K
−2

, and 𝜆 = 0.52(2)T−1
. Below 0.5 T, the 𝐴 coefficient

becomes further enhanced towards a value of 8.45(2) µΩ cm K
−2

at zero field. The zero field value is approx-

imately factor of ten smaller than the sample with alternate current direction I ∥ a, with a corresponding

Kadowaki-Woods ratio 𝑅KW = 𝐴/𝛾2 ≈ 2 µΩ cm J
2

K
2

mol
−2

in agreement with measurements by Pfau et al.

[98]. Comparison of the effect of field orientation can be made to the measurements by Pfau et al., in which

a sample with the same current orientation (I ∥ c) is tuned instead by B ∥ c, where a reduction of 𝐴 by

a factor of approximately 100 at 12 T. The measurements presented in this section have an 𝐴 coefficient

suppressed instead by a factor of 17 with field B ∥ a. Magnetic field therefore suppresses the Kondo

hybridisation slower for field along a.

5.2.2 Lifshitz transitions

The measurements presented in this section add to the body of evidence of the field induced Lifshitz

transitions in YbNi4P2 (see section 3.2), by including magnetoresistance and Hall effect of two more samples

at very low temperatures. Nine Lifshitz transitions were previously identified in YbNi4P2 for fields up 30 T

along the c direction [98], at temperature independent positions in a variety of low temperature probes, and

assigned labels 𝐵1 to 𝐵9. For consistency the same labels will be used here. No Hall effect studies of YbNi4P2

have been published, and so both samples are unique in that regard. Further, only magnetoresistance with

I ∥ B ∥ c has been previously measured to high fields below 0.4 K. Temperature is particularly important

for the features at low field, where a large and broad zero field peak in the magnetoresistance hides Lifshitz

transitions at higher temperatures. Here, the two samples with orientations B ∥ c, I ∥ a and B ∥ a, I ∥ c

are presented in this order, neither of which orientations have been previously measured below 0.4 K.

Low temperature hard direction: 𝑩 ∥ 𝒄, 𝑰 ∥ 𝒂

Isothermal measurements of the magnetoresistance and its derivatives are presented in Figure 5.15, and

likewise the Hall effect and its derivatives are presented in Figure 5.16. Binning has been used every 24 mT
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Figure 5.15: Lifshitz transitions in 𝜌𝑥𝑥 for B ∥ c. Derivatives have been taken linearly

between points then smoothed by a moving mean of 10 points, and used to identify

Lifshitz transitions. The solid lines are in good agreement with previously observed

Lifshitz transitions in thermopower and magnetoresistance with current along c [98],

while the dotted line at high fields corresponds to a transition that is too weak to be seen

here. Two new peaks at 0.67 T and 1.65 T are indicated with dashed lines. Quantum

oscillations can be seen above 8 T.

before symmetrisation/antisymmetrisation, and derivatives have had noise reduced further by a moving

window of 10 points (equivalent to a window of 0.24 T). Features are difficult to observe directly in the

magnetoresistance as previously noted [61] likely due to their underlying Lifshitz transitions relating to

necks in the c direction, other than 𝐵1 = 0.4 T. This transition corresponds to a peak in the magnetostriction

and a kink followed by an increased drop of 𝛾 and 𝑑𝑀/𝑑𝐵. The appearance of this Lifshitz transition in

thermodynamic properties implies that the density of states associated with this Lifshitz transition is large,

this corresponds to either a feature of a band with particularly large mass or a lower dimensionality Lifshitz

transition [98].

Peaks in the magnetoresistance derivative can be resolved close to all other previously observed Lifshitz

transitions in this field range other than 𝐵8 as shown in Figure 5.15, highlighting the high sample quality,

temperature stability and low noise of the measurements. At lowest temperatures, quantum oscillations are

present above 8 T, again confirming the sample quality. This also provides proof that the sample resistivity

has not saturated at low temperatures due to any heating effects on sweeping the field, rather the intrinsic
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Figure 5.16: Lifshitz transitions in 𝜌𝑥𝑦 with field in the c direction, and current in the a
direction. Hall resistivity isotherms are presented (upper panel) and derivatives (lower)

smoothed by a moving mean of 10 points. Shifts of −0.01 µΩ cm T
−1

have been added

to consecutive derivatives with base temperature unshifted, and data above 1 K have

been omitted for clarity. The solid lines are in good agreement with the features in the

magnetoresistance shown in Figure 5.15, while the dotted lines indicate features in 𝜌𝑥𝑥
that do not have prominent features here and 𝐵8. Two peaks at 4.9 T and 6.55 T are

indicated with dashed lines.

scattering rate must have saturated. The analysis of these quantum oscillations will be deferred to chapter 6,

where it will be shown that these follow the Lifshitz–Kosevich temperature dependence, and so we can have

further confidence in the thermometer calibration, field independence, and its equilibrium with the sample

at high fields. Two additional peaks at 𝐵1a = 0.67 T and 𝐵1b = 1.65 T can be identified, with labelling given

to preserve previous naming conventions [98, 61] rather than having any relation to 𝐵1.

There is a large negative magnetoresistance at low fields, associated with a peak at zero field that gets

stronger and broadens in field with increasing temperature. It is this feature which is scaled well by the

single-ion Kondo model at high temperatures (see section 5.1). This feature prevents detection of the low

field Lifshitz transitions without temperatures below 300 mK.

For the Hall effect presented in Figure 5.16, it is difficult to observe any Lifshitz transitions directly

in the raw signal. In the derivative however there are visible kinks at 𝐵1b and 𝐵2 consistent with the
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Figure 5.17: (a) High field Hall resistivity for B ∥ c. A dotted line has been included

to illustrate a constant Hall coefficient behaviour at high fields. (b) Field derivative,

tending to a constant value at high fields after a kink at 𝐵9.

magnetoresistance. There are two prominent peaks in the derivative at 4.9 T and 6.55 T, which sit between

𝐵3/𝐵4 and 𝐵5/𝐵6 respectively. Further, above the 6.55 T peak there is a sudden change in slope of the Hall

gradient. This change in gradient most likely corresponds to the change in the slope of 𝑑𝑀/𝑑𝐵 [98] through

the anomalous Hall effect, however a change due to the ordinary Hall effect could also be feasible as there

are many bands which likely have different mobilities. A similar feature was also seen in the slope of the

specific heat and the 𝐴 coefficient of the resistivity, linking it to a change in the slope of the effective mass

[98]. Hall effect data can narrow this effect down to the Lifshitz transition 𝐵6 (previously reported at 6.7 T),

as this appears to be where the change in slope happens at higher temperatures when the peak is smeared

out.

The Lifshitz transitions quickly become too smeared out to resolve at higher temperatures due to the

high effective masses, however their signatures appear quite temperature independent. The features in this

orientation are too weak and too quickly washed out to reliably track widths as a function of temperature6.

Extracted feature positions have been overlaid in the Fermi liquid phase diagram Figure 5.11 and appear to

follow vertical lines, as expected for a Fermi surface that is only altered by magnetic field (𝑇 ≪ 𝑇K).

The change in the slope of 𝑑𝜌𝑥𝑦/𝑑𝐵 at 𝐵6 could reasonably be attributed to either normal or anomalous

components of the Hall effect. At a Lifshitz transition charge needs to be conserved, and so the ordinary

Hall components are expected to be similar above and below. A single spin-split band toy model is given for

CeRu2Si2 [29] which is argued to be dominated by ordinary Hall effect at lowest temperatures: The signature

of a parabolic band undergoing a void transition of its minority band is a plateau in the magnetoresistance

accompanied by a weak kinked feature in the Hall effect, but the Hall gradient is the same above and

6Especially as a sizeable moving mean window is required to observe these features in the derivative
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below and linear. This is in contrast to the shape seen here – a continuous 𝑑𝜌𝑥𝑦/𝑑𝐵 but discontinuous

𝑑2𝜌𝑥𝑦/𝑑𝐵2
. This change in the gradient is then either due to multiband effects (where each band contributes

differently depending on its mobility) or to the behaviour of the anomalous component proportional to 𝑀.

A contribution from an anomalous component 𝑅s𝑀 would be expected to have a feature like this, as there

is a discontinuous change in 𝑑2𝑀/𝑑𝐵2
[98]. If the anomalous component only changes due to this change

in magnetisation, comparison to the slopes of 𝑑𝑀/𝑑𝐵 would restrict 𝑅s < 0 for fields greater than 2 T. This

attribution must be made tentatively for the moment however, as there is no way currently to determine

with certainty what the Hall effect mechanism is at these fields and temperatures. A similar change of slope

is not seen at 𝐵1 despite the feature in 𝑑𝑀/𝑑𝐵.

Finally, analysis of a high field measurement of the Hall effect of sample 040_2_6_6 reveals a similar

change in the slope of the Hall gradient at the 𝐵9 void type Lifshitz transition, visible at both measured

temperatures of 0.42 K and 1.25 K, as shown in Figure 5.17. Above 𝐵9 the Hall gradient 𝑑𝜌𝑥𝑦/𝑑𝜇0𝐻 dips

slightly to a constant value near 0.1 µΩ cm T
−1

. Further the Hall resistivity 𝜌𝑥𝑦 appears to extrapolate linearly

to zero for fields above 𝐵9, with a saturating Hall coefficient 𝑅H = +10.5 m
3

C
−1

indicating a much more

normal metallic behaviour, with a Hall coefficient comparable to the field independent value at 30 K (refer

back to Figure 5.2). High field measurements of the magnetisation would help confirm the similarity to 𝐵6

(measurements do exist but are too noisy to see any features [68]). These two points have been included in

Figure 5.2, along with a sketch of what this high field state might look like in combination with the field

independent 𝑅H at high temperatures. This is qualitatively similar to Hall effect measurements on LuRh2Si2

(non 4 𝑓 reference compound to YbRh2Si2), where two band effects lead to a growth in the Hall coefficient at

low temperatures, and so it should be insightful to likewise measure the Hall effect of LuNi4P2. If the high

field behaviour of YbNi4P2 is reproduced at low fields in LuNi4P2, it would be quite conclusive evidence that

the spin-split band structure of YbNi4P2 at high fields is similar to the spin-split band structure of LuNi4P2,

at least near the Fermi level. This is either via suppression of the Kondo hybridisation or by Zeeman shifting

flat regions (or the CEF 𝑓 levels) well away from the Fermi level.

The observed Lifshitz transitions have been tabulated along with literature values [98, 61] in Table 5.1.

These measurements are well resolved and the samples are very high quality, as all but one of the previously

identified transitions are reproduced in the magnetoresistance, and a further two are identified at low fields.

Hall effect measurements also show features associated with five of these Lifshitz transitions, and narrow

down the Lifshitz transition that causes a broad kink in 𝑑𝑀/𝑑𝜇0𝐻 to the void type Lifshitz transition at 𝐵6

[98]. Further a similar feature is seen at 𝐵9 = 16.8 T, we would expect to see a similar feature to that of 𝐵6

in the magnetisation, and interestingly the Hall effect returns to an ordinary metallic behaviour above 𝐵9.

This will be important in the discussion of quantum oscillations in chapter 6. Thorough studies of these
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LT

Pfau et al.

[98]

Karbassi et

al. [61]

𝜌𝑥𝑥

(I ∥ a)

𝜌𝑥𝑦

(I ⊥ VH ∥ a)

𝐵1 (T) 0.40 0.40

𝐵1a (T) 0.67

𝐵1b (T) 1.65 1.65

𝐵2 (T) 2.45 2.62 2.62

𝐵3 (T) 4.65 4.8
‡

4.62 4.9*

𝐵4 (T) 5.15 5.1 5.40

𝐵5 (T) 6.15 6.18

𝐵6 (T) 6.7 6.9 6.55**

𝐵7 (T) 7.70 7.8 7.8

𝐵8 (T) 11.0 11.0

𝐵9 (T) 17.5 16.8
†

16.8
†
**

Table 5.1: Summary of Lifshitz transitions for B ∥ c in literature and this thesis. *This

Hall effect feature could either be a feature of 𝐵3 or 𝐵4, but seems to be closer to the

Karbassi et al. [61] values. **These features are accompanied by a change in slope of the

𝑑𝜌𝑥𝑦/𝑑𝜇0𝐻.
†
From high field and quantum oscillation measurements with I ∥ a and

I ∥ c.
‡
Also seen at 4.7 T with I ∥ a.

Lifshitz transitions will hopefully help decipher the low field Fermi surface if renormalised band structure

calculations become available.

Low temperature easy direction: 𝑩 ∥ 𝒂 , 𝑰 ∥ 𝒄

The 𝑔-factor in the a direction appears to be 3.8 times weaker, according to the previously measured

anisotropy of 𝐵3, 𝐵4, and 𝐵7–9 [61]. Assuming this anisotropy is constant as a function of field (i.e. that the

quasiparticle 𝑔-factor is determined by the CEF scheme of the 4 𝑓 electrons), we should expect to observe

Lifshitz transitions up to and including 𝐵2 using magnetic fields up to 12 T. Isothermal measurements of the

magnetoresistance and Hall effect as a function of field are presented in Figure 5.18, along with their field

derivatives. Measurements have been binned every 0.025 T prior to symmetrisation/antisymmetrisation.

Three troughs in the magnetoresistance derivatives 𝑑𝜌𝑥𝑥/𝑑𝜇0𝐻 are seen at lowest temperatures. Noise

has been further reduced in the derivative by applying a moving window of 10 points, equivalent to a

field width of 0.25 T. The trough near 0.1 T is a result of a heating effects near the ferromagnetic phase

at higher field sweep rates that will be discussed in section 5.3. The two other troughs at 1.23 T and

4.55 T have temperature independent centres and so are most likely signatures of Lifshitz transitions. Both

become too smeared out to resolve above 300 mK. Assuming the anisotropy 𝜂 = 3.8 that works well for the
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Figure 5.18: Lifshitz transitions in 𝜌𝑥𝑥 for B ∥ a. Magnetoresistance isotherms (upper

panel), and field derivatives (lower) taken linearly between points then smoothed by a

moving mean of 10 points = 0.25 T, and used to identify Lifshitz transitions. Solid lines

mark Lifshitz transitions at 1.23 T and 4.55 T. Temperatures above 1 K have been omitted

from the derivatives for clarity.

higher field Lifshitz transitions, these would correspond to features with field along c at 0.32 T ∼ 𝐵1 and

𝐵1a < 1.12 T < 𝐵1b. The feature at 4.55 T will be tentatively attributed to 𝐵1b as 𝐵1a does not have a feature

in the Hall effect with B ∥ c.

The feature in the magnetoresistance at 1.2 T is strong enough to observe directly in 𝜌𝑥𝑥 without a

derivative. As the derivatives require noise reduction via a sizeable moving average, features will be

smoothed out. This is particularly problematic for Lifshitz transitions which we typically expect to observe

sharpening to a single field in the zero temperature limit. Therefore strong features that can be seen in the

raw signals7 are ideal for this analysis. Empirical fits are made from 0.5 T to 3.5 T to quantify the temperature

dependence of the width of this feature. The derivatives in Figure 5.18 appear to have quite symmetric

troughs, similar to a Gaussian shape. The integral of a Gaussian is proportional to the error function, which

7Note that symmetrisation routines can also smear features via binning and any residual field offset. The minimal feature width

should always be compared to the size of the bin windows (0.25 T) and any field offset (for this magnet < 0.01 T).
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Figure 5.19: Empirical fitting of 𝐵1 in the magnetoresistance for B ∥ a. (a) Magnetore-

sistance and empirical fits as described in text. Fits have been slightly offset vertically.

Note that the sharp negative MR at very low fields (< 0.1 T) is due to a magnetocaloric

heating detailed in section 5.3 not the intrinsic resistivity (b) Fitted width parameter as

a function of temperature, with a linear fit extrapolating to a 𝑦-intercept of 0.13 T.

looks like a smooth step, and provides a convenient tool for this fitting. In this way, the feature width

(FWHM in the derivative) can then be directly extracted from a single fitted parameter. With this in mind,

the empirical function was found to fit the data well:

𝜌𝑥𝑥(𝐵) = 𝑎 + 𝑏𝐻 + 𝑐𝐻2 + (Δ𝑎 + Δ𝑏𝐻) erf

(
𝐻0 − 𝐻√
(2)𝑤

)
, (5.12)

where 𝑎, Δ𝑎, 𝑏, Δ𝑏, 𝑐, 𝑤 and 𝐻0 are fitted parameters. The FWHM is 𝑤, and 𝐻0 is the central position of the

step. Fits are shown in Figure 5.19 up to 190 mK. A linear extrapolation of the fitted widths extrapolates

to a finite width at zero temperature of 0.13 T. If this is a single Lifshitz transition it does not have the

𝐸/𝑇 scaling seen in YbRh2Si2[36]. It is apparent that this fitting is not limited by field binning resolution,

as the minimum measured width of 0.2 T is an order of magnitude larger than the binning resolution of

0.025 T. It is plausible that this is actually rather two Lifshitz transitions in close succession near 1 T and

1.4 T. Alternately, a toy quasiparticle band structure has been studied before by Hackl and Vojta [46] in

which 𝑤 does not vanish at zero temperature.

Only the feature at 4.55 T has a corresponding feature in the Hall effect, as shown in Figure 5.20. This

can be seen directly in the Hall resistivity as a kink at lowest temperatures, or in the gradient as a step, and

gets smeared out with increasing temperatures. There appears to be a slight change in the second derivative
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Figure 5.20: Lifshitz transitions in 𝜌𝑥𝑦 for B ∥ a. (a) Hall resistivity isotherms. A

vertical line at 3.2 T marks a crossing point at low temperatures. (a) Field derivatives,

taken linearly between points then smoothed by a moving mean of 10 points, and used

to identify Lifshitz transitions. Shifts in steps of 5 nΩ cm T
−1

have been added for clarity

with base temperature unshifted. The solid line at 𝐵1b is in good agreement with

the magnetoresistance feature. A dotted line marks the Lifshitz transition seen in the

magnetoresistance but not the Hall effect.

which persists to slightly higher temperatures. Isothermal measurements of magnetisation over this feature

are required to check whether this is due to a kink in the magnetisation, and rule out the possibility of

a sudden change in the Fermi volume. The scenario of Kondo destruction seems very unlikely however

as Lifshitz transitions have been observed at higher fields in this orientation [61], an indication that the

band structure is still significantly renormalised. Empirical fitting was attempted to quantify the thermal

smearing of this feature, similar to used in the magnetoresistance at 𝐵1 but using an integrated error function

to produce a kink, however the features were too weak to produce reliable fits.

An unusual crossing point is seen at the Hall resistivity at 3.2 T up to 1 K, which would correspond to

a feature at 0.84 T ∼ 𝐵1a for field in the c direction using the anisotropy 𝜂 = 3.8 [61]. An explanation for

this could be a continuous evolution of the anomalous Hall component 𝑅a through a change in sign. This
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LT 𝐵𝑐
𝑖
/𝜂 Karbassi

et al. [61]

𝜌𝑥𝑥 𝜌𝑥𝑦

𝐵1 (T) (1.5) 1.23
†

𝐵1a (T) (2.5) 3.2**

𝐵1b (T) (6.3) 4.55 4.55

𝐵2 (T) (10.0)

𝐵3 (T) (17.6) 13*

Table 5.2: Summary of Lifshitz transitions for B ∥ a. Expected values based on the

anisotropy 𝜂 = 3.8 [61] are calculated from the 𝜌𝑥𝑥 features seen in B ∥ c. *Only for

I ∥ a. **A crossing point rather than a feature seen in each.
†

Might rather be two

features as width does not go to zero with decreasing temperature.

would result in the Hall effect at this crossing point becoming independent of the magnetisation, instead

only dependent on the ordinary term 𝑅0 which should be quite independent of temperature well below the

Kondo temperature. Extrapolating the fit to the ferromagnetic polarised phase of the susceptibility by A.

Steppke [129] (data up to 1 T), the phase boundary would be around 1.8 K at this crossing point field, and

so the magnetisation 𝑀 should be fairly constant up to 1 K. The temperature dependence of the 𝑅s would

then have to be opposite in sign at fields above and below this crossing point. Sign changes in anomalous

Hall effect as a function of field have been seen in Nd2Mo2O7 [136] as evidence of changing chirality of

spins structures (via the Berry phase due to a real space spin texture), which could be one possibility given

the frustrated geometry of YbNi4P2. Sign changes of 𝑅s are also seen as a function of temperature and

hydrostatic pressure in ZrTe5 [134], due to Berry curvature changes in reciprocal space of the band structure

(see also SrRuO3 [34] and USbTe [123]).

A summary of the observed Lifshitz transitions with comparison to previously observed anomalies

(only 𝐵3 [61]) for B ∥ a is given in Table 5.2. Measurements of magnetisation in this field range are highly

encouraged, to resolve the nature of the Hall effect kink at 𝐵1b. It would also be worthwhile to repeat this

for a sample with I ∥ a, as if any of these are neck-type Lifshitz transitions their magnetoresistance features

are expected to be stronger along the neck axis [98] providing information about the type/orientation of the

Lifshitz transitions. Further, measurements with I ∥ a may have a different signature for 𝐵1b, to understand

the kink in 𝜌𝑥𝑦 . Finally, once a strong understanding of the band structure has been gained (via renormalised

band structure calculations) it would be useful to identify Lifshitz transitions that would have the strongest

change in Berry curvature, to study the crossing point at 3.2 T.
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5.3 Ferromagnetism

A ferromagnetic phase has been identified to exist through susceptibility measurements [130] in a very small

pocket of the phase diagram of YbNi4P2, with moments ordering along theadirection (the high temperature

hard axis). It has an unusually low Curie temperature of 170 mK, polarised very quickly by magnetic field

along the ordered a direction, or by a small transverse field of 60 mT along c in the low temperature

limit. Such a strongly suppressed ordering temperature is thought to be due to a combination of low

dimensionality, geometric frustration and a very low Kondo temperature [41]. Strong evidence of quantum

criticality was found in the arsenic substituted YbNi4(P1 – xAsx)2 series at 𝑥 ∼ 0.1 via measurements of the

Grüneisen parameter [130], which has challenged the large body of experimental and theoretical studies of

clean metallic ferromagnets that suggest these quantum phase transitions should generically be first order

(or avoided by other phases) [21].

The magnetoresistance of samples with I ∥ c has been studied in the vicinity of the FM dome previously

with B ∥ c and B ∥ a [130, 78]. While Hall effect measurements are appealing as a measure of the Fermi

volume in the case of Kondo destruction at the quantum critical point, akin to some AFM heavy fermions

(YbRh2Si2[96], CeNiAsO [84] and Ce3Pd20Si6 [28]), anomalous Hall effect is sensitive to the magnetisation

and so provides a route to mapping the magnetic phase diagram. More recently AHE has become a tool in

detecting novel Berry curvature band structure features (e.g. SrRuO3 [34], Ce3Bi4Pd3 [32] and ZrTe5 [134])

and even unusual spin textures (MnSi [92] and Nd2Mo2O7 [136]).

In some regards, it is unsurprising that the normal and anomalous Hall effect contributions could not

be identified in section 5.1 using theoretical models developed for either ferromagnets8 (skew scattering)

or for heavy fermions without magnetic order (resonant skew scattering) [91], given that YbNi4P2 features

a ferromagnetic dome near a QCP as well as Kondo lattice physics. Studies of the Fermi volume via

the ordinary Hall effect component in heavy fermions with quantum critical magnetic phases are very

appealing to separate the SDW and locally critical scenarios (discussed briefly in subsection 2.3.4). It is

difficult to make such comparisons without convincingly separating the ordinary and anomalous Hall effect

contributions. For a typical ferromagnet these components should be simple to separate as a spontaneous

magnetic moment can exist at zero field, so the Hall effect here will be entirely due to the AHE component.

One such example has been demonstrated very recently in USbTe [123], where intrinsic Berry curvature is

found to dominate the AHE but does not follow any previously known scaling relations.

In the following sections, magnetoresistance and Hall effect measurements for the two orientations are

presented in detail at low fields and low temperatures. Evidence of an Ising type QCP is again searched

8or more strictly broken time reversal symmetry, also achievable by application of a magnetic field
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for in the sample with B ∥ c, looking for 𝑇 linear resistivity at the field where the ferromagnetism is

completely suppressed, as 𝜌0 is over five times smaller in this crystal than previous in literature [130]. A

feature in the Hall effect is shown to track the ferromagnetic polarised boundary with B ∥ c, the nature

of which appears to be AHE for 𝑇 ≪ 𝑇C, however it will also be argued that this cannot be the case at

higher temperatures. For B ∥ a, the AHE is used to track the saturation field of the ferromagnetism and

the paramagnetic to ferromagnetic polarised boundary, however again is found to be not consistent with a

temperature independent AHE term 𝑅s.

Low temperature hard direction: 𝑩 ∥ 𝒄, 𝑰 ∥ 𝒂

Fixed-field temperature sweeps of the resistivity and their derivatives are shown in Figure 5.21 panels (a)

and (b). No hysteresis was observed on warming and cooling, even after training the magnetic field at base

temperature from above 𝐻c = 60 mT. Noise has been reduced by a binning window of 1 mK, and further

by a moving window of five points (∼ 5 mK) in the derivatives. With no magnetic field (the magnet in a

field quenched state, as described in subsection 4.1.4), a Curie temperature of 160 mK separates a 𝑇-linear

resistivity in the paramagnetic phase and a 𝑇2
resistivity in the ferromagnetic phase. Application of a

magnetic field along c continuously suppresses and broadens the peak in the derivative, until it is no longer

visible above 60 mT. Notably all curves appear to be bounded by the zero field curve, with essentially no

magnetoresistance in the ferromagnetic phase. The derivatives also appear bounded by the zero field curve,

seemingly preventing the non Fermi liquid term (constant in the derivative above 𝑇C) continuing to zero

temperature, avoiding a hallmark of quantum criticality. The tendency of the derivatives towards a singular

curve at low temperatures indicates a constant 𝐴 coefficient of resistivity inside the ferromagnetic phase,

the mass is not suppressed by field in the ferromagnetic phase unlike in the ferromagnetic polarised state

[98]. A linear fit to the zero field derivative below 0.12 K has an intercept of 0.4(2)µΩ cm K
−1

, almost zero

within error. A 𝑇2
resistivity is consistent with Fermi liquid theory or electron-magnon scattering [10, 44].

Significantly, this is not the behaviour reported in previous literature where lower quality samples were

used (𝜌0 was a factor of 5 higher), where 𝑇2.9
was observed [130].

As the sample measured has a residual resistivity over five times lower than in previous literature [130],

finer field steps of 2 mT have been recorded near𝐻c to thoroughly check for an Ising type quantum criticality

(to the minimum achievable base temperature ∼ 40 mK). Direct fits to the resistivity curves, with

𝜌𝑥𝑥 = 𝐴𝑇2 + 𝐶𝑇 + 𝜌0 , (5.13)

have been performed to check for signs of a linear component of resistivity, a selection are shown in the

derivative graph Figure 5.21 panel (b) to demonstrate the 𝑇 linear component (a finite 𝑦-intercept). These
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Figure 5.21: (a) Resistivity temperature sweeps inside and close to the ferromagnetic

phase for B ∥ c. (b) Temperature derivatives. Peaks separate the ferromagnetic and

paramagnetic phases. Fitted components of 𝜌𝑥𝑥 , as described in the text, are displayed

to illustrate the presence of a 𝑇-linear component (a 𝑦-intercept in the derivative). (c)
Resistivity components as a function of field.

fits are performed below 120 mK for 𝐵 ≤ 50 mT, 80 mK for 60 mT ≤ 𝐵 < 90 mK, 100 mK for 90 mT ≤

𝐵 < 100 mK, 110 mK for 110 mT ≤ 𝐵 < 120 mK, and 150 mK for 120 mT ≤ 𝐵. The field dependence of

𝐴 and 𝐶 are presented in Figure 5.21 panel (c). There is an increased linear component towards a peak

𝐶max = 3.8(2)µΩ cm K
−1

at 80 mT which may suggest the proximity of to a quantum critical point. However,

no divergence is seen in the 𝐴 coefficient at 𝐻c. Measurements to a lower base temperature would be useful

to determine whether the 80 mT curve truly has a 𝑇-linear term at lowest temperatures, or whether it tends

to the zero field curve.

In the search for any magnetic hysteresis, isothermal sweeps in magnetic field have been used to check

for any field history dependence. Some field sweep rate dependent hysteresis was observed, which relaxed

back to a stationary value when the field sweep was stopped. There is good evidence this is due to the

sample temperature changing inside the ferromagnetic phase, and crucially not any stationary hysteresis of

the magnetisation, the discussion of which is left to Appendix A. Even with a sweep rate of 1 mT min
−1

,

slight hysteresis was seen of the order 1 mK. This was the lowest sweep rate possible on our magnet power

supply, and so a program was developed to ramp the field in steps, pausing at each field step to record at a

stationary field. By discarding the initial part of the signal that decays in time, the sample was only recorded
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Figure 5.22: (a) Isothermal field sweeps of magnetoresistance for B ∥ c. (b) Field

derivatives, with markers at the edge of the ferromagnetic state.

when in good thermal equilibrium with the mixing chamber9. No hysteresis could be observed within the

experimental resolution in either magnetoresistance or Hall effect; the experimental noise of ∼0.2 nΩ cm at

base temperature in the FM state is equivalent to a field resolution of ∼2 mT for 𝜌𝑥𝑦 at 35 mK.

Isothermal magnetoresistance field sweeps (after relaxation) are shown in Figure 5.22. The magnetore-

sistance inside the ferromagnetic phase, and below 150 mK, is close to zero. This is in contrast with the

single-ion Kondo behaviour, with negative magnetoresistance above 𝑇C. A shoulder can be easily identified

in the field derivative, at lowest temperatures this is at 65(5)mT, agreeing well with the continuous suppres-

sion of 𝑇C to zero at 60 mT in literature [130]. This feature is associated with the edge of the ferromagnetic

phase, and will be referred to as 𝜌FM

𝑥𝑥 . The field at which the ferromagnetism is suppressed to zero will be

referred to as 𝐻c, although it is not certain whether this is a quantum critical point.

Field sweeps of the Hall resistivity (after relaxation) inside and close to the ferromagnetic dome are

shown in panel (a) of Figure 5.23. At lowest temperatures a sudden change in gradient is seen near

𝐻c (squares in Figure 5.23). However, at higher temperature this shoulder shifts to higher fields, so is

not a signature of the ferromagnetic phase, but rather a signature of ferromagnetic polarisation (which

will now be referred to as 𝜌FP

𝑥𝑦). The movement of the ferromagnetic polarised boundary to higher fields

9Note that this results in somewhat of a zigzag history through field and temperature, however a low sweep rate minimises the

temperature variation. Further, we do not expect any field history dependence due to cooling in a fixed field as no hysteresis is seen in

temperature sweeps.
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Higher temperature and field sweeps, illustrating how this shoulder evolves at higher

temperature. Shifts have been added to the resistivity, all Hall resistivities are zero at

zero field by symmetry.
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Figure 5.24: Comparison of 𝜌𝑥𝑦 at 75 mK with the magnetisation at 70 mK for B ∥ c.

Magnetisation data have been provided by Manuel Brando. (a) Hall effect data at

75 mK, with a fitted function dependent on magnetisation data at 70 mK. Ordinary

and anomalous components to the Hall effect have been included separately. (b) Hall

coefficient as a function of 𝐻/𝑀, and a linear fit above 60 mT. The 𝑦-intercept is the

ordinary component and the gradient is the anomalous component.
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with increasing temperatures is consistent with the magnetisation of the insulating (local moments) Ising

ferromagnet LiHoF4 in a transverse field [148]. This is same feature that develops in to the broad but sizeable

hump at higher temperatures (shown in panel (b) of Figure 5.23). We cannot experimentally distinguish

whether 𝜌FP

𝑥𝑦 is a feature of the ordinary or anomalous Hall effect through the normal method of comparing

temperature sweeps of 𝜌𝑥𝑦 and 𝑀 (or 𝜒), as no scaling relation could be found to determine if there is a

dominant mechanism. We can however make comparisons of 𝜌𝑥𝑦 at 75 mK to an isothermal measurement

of magnetisation at 70 mK (originally presented as 𝑑𝑀/𝑑𝐵 [98], Manuel Brando has supplied the raw data)

which also has a kink at 80 mT. This is shown in Figure 5.24. For a field independent Hall coefficient 𝑅0 and

anomalous term 𝑅s, the Hall coefficient 𝑅H = 𝜌𝑥𝑦/𝐻 is linear as a function of the magnetisation divided by

the field,

𝑅H = 𝑅0 + 𝑅s

𝑀

𝐻
. (5.14)

A linear fit is shown in panel (b) of Figure 5.24, with fitted parameters 𝑅0 = −3.1(2) × 10
−10

m
3

C
−1

and

𝑅s = 63(2) × 10
−10

m
3

C
−1

. Note that by taking 𝑅s to be constant, we have neglected dependence on the

scattering time 𝜏, which will vary depending on the AHE mechanism. A skew scattering dependence

(versus 𝜌𝑥𝑥𝑀/𝐻) can also be fit with a similar straight line above 60 mT, and instead yields a value of

𝑅0 = −2.0(2)×10
−10

m
3

C
−1

. As there is only a very small change in 𝜌𝑥𝑥 in this field range, there is negligible

difference in the range of linearity – we cannot distinguish which AHE mechanism is present. There is

significant deviation at lowest fields from a straight line, however this appears less concerning in the resultant

curve in panel (a) and is perhaps due to the slight discrepancy between the Hall effect and magnetisation

data temperature, or sample variations. It appears that this signature can be adequately described as being

dominated by an anomalous Hall effect, and so the Hall effect at low fields and temperatures could be

a useful measure of the magnetisation. Further this is good evidence against Kondo destruction at this

quantum phase transition where 𝑅0 would be expected to change – the ferromagnetic phase is also a heavy

fermion metal. The similarity to a local moment Ising ferromagnet LiHoF4 is therefore strikingly unusual,

as some of the 4 𝑓 levels here are rather hybridised with the conduction electrons at the Fermi level (i.e. they

are itinerant).

More isotherms of the magnetisation would be useful to confirm that this holds at a variety of tempera-

tures and to check whether the fitted parameters are temperature dependent. This is particularly important

above 125 mK as an anomalous Hall effect cannot account for the negative slope of 𝜌𝑥𝑦 at lowest fields, which

would then rather be a signature dominated by the ordinary Hall effect (or an unusual field dependent 𝑅s

with a changing sign). At 170 mK this low field gradient is −2.5(5) × 10
−10

m
3

C
−1

below 40 mT, very similar

to the fitted value −3.1(2) × 10
−10

m
3

C
−1

at 70 mK. This would imply that the magnetic susceptibility is
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Figure 5.25: (a) Empirical fits of kinks in the Hall effect for B ∥ c. Fits described in text.

(b) Phase diagram of fitted kink position, where error bars are the fitted FWHM.

small at zero field and 170 mK but increases with field at around 50 mT, which is not observed [78]. Instead

it seems that the anomalous component 𝑅s𝑀 becomes more sensitive to magnetisation (𝑅s is positively

enhanced) as the ferromagnetic polarised state is approached in field. Likely this hump is then due to a

component of the AHE that is enhanced near the polarised state. The hump bears slight resemblance to the

hump that develops in CeRu2Si2 at its field induced metamagnetic transition as temperature is raised [29,

48], however has a centre that moves with temperature and is not related to a feature in the resistivity. The

lack of feature in the resistivity means this cannot be ascribed to a skew-scattering or side-jump contribu-

tion. This leaves either an intrinsic AHE component that is enhanced (i.e. the Berry curvature is strongly

enhanced due to part of the band structure passing through the Fermi level) or an entirely new contribution

to the AHE. The former would require the band structure or chemical potential to evolve as a function of

temperature, even well below 𝑇K.

To quantify the evolution of 𝜌FP

𝑥𝑦 with temperature, empirical fits were made with a form based around

an integrated error function to produce a kink with a variable width (similar as previously described for

the step in 𝜌𝑥𝑥 I ∥ c ⊥ B ∥ a, see Figure 5.19 and Equation 5.12). Integrating a form that looks like a step

function with finite width

𝜌𝑥𝑦(𝐻) =
∫ (

𝑏 + Δ𝑏 erf

(
𝐻 − 𝐻0√

2𝑤

))
𝑑𝐻, (5.15)

where 𝑏 is the gradient well below the 𝐻0 kink, 𝑏 + Δ𝑏 is the gradient well above, and 𝑤 is the width of the
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Figure 5.26: (a) Evolution of kink in Hall effect to high temperatures, tracked through

derivative extrema for B ∥ c. Derivatives are taken linearly from 𝜌𝑥𝑦 data binned every

24 mT, further binning is avoided as it shifts the maxima positions at low temperatures.

(b) Feature included on power law phase diagram (from Figure 5.11).

step (FWHM of the derivative of the step which is a gaussian). Using integration by parts10 gives the form

𝜌𝑥𝑦(𝐻) = 𝑎 + 𝑏 + Δ𝑏
(
(𝐻 − 𝐻0) erf

(
𝐻 − 𝐻0√

2𝑤

)
+

√
2

𝜋
𝑤 exp

(
−(𝐻 − 𝐻0)2

2𝑤2

))
, (5.16)

with five free parameters for fitting 𝑎, 𝑏, Δ𝑏, 𝐻0 and 𝑤. The fitted parameter 𝑤 is then directly related to the

width without having to rely on numerical derivatives of data. Fits are shown in Figure 5.25, and the fitted

𝐻0 and their widths 𝑤 are displayed on a phase diagram. Fitting windows of 0.02 T < 𝜇0 < 0.2 T are used

for 𝑇 ≤ 125 mK, and 0.02 T < 𝜇0 < 0.2 T at higher temperatures to avoid this low field positive curvature

that develops. The fitted 𝐻0 values extrapolate to ∼ 25 mT at zero temperature – it appears that this kink is

not fixed to the critical field and proceeds inside of the ferromagnetic dome at lower temperatures. Due to

the small signal to noise ratio here, the width𝑤 is not fit well quantitively, however qualitatively the features

appear to get broader with increasing temperature.

At higher temperatures 𝜌FP

𝑥𝑦 is characterised by a growing hump and is much broader (as previously

shown in Figure 5.23 panel (b)), so we can quantify it easily using derivatives as in Figure 5.26 panel (a). As

this hump does not always have a local maxima, the turning points (maxima and minima in the derivative)

either side of it have been used to track the edges of this feature and also provide information on the width.

To track these turning points, extrema in 𝑑𝜌𝑥𝑦/𝑑𝐻 have been extracted at each temperature. Derivatives for

this are taken linearly from 𝜌𝑥𝑦 data binned every 24 mT. Smoothing the derivatives further is avoided here

10

∫
erf(𝑧)𝑑𝑧 = 𝑧 erf(𝑧) + 𝑒−𝑧

2

√
𝜋

.
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Figure 5.27: Phase diagram in the vicinity of ferromagnetic dome for B ∥ c. Features of

𝜌𝑥𝑥 and 𝜌𝑥𝑦 have been plotted, including a feature from the higher temperature analysis

(from Figure 5.26) for reference. A low temperature low field power law fit using a

window of 35 mK is displayed.

as it shifts the low temperature maxima. These features have been plotted on top of the resistivity power

law phase diagram at high temperatures (see section 5.1 for information on the power law fitting). For

temperatures below 1 K the minima of 𝑑𝜌𝑥𝑦/𝑑𝐻 appear to become a signature of the Lifshitz transition 𝐵1b

instead. This hump in the resistivity appears to separate the discontinuity in the minima of 𝜌𝑥𝑦(𝑇) between

2 T and 4 T, which perhaps is an indication of a change in the magnitude of the anomalous Hall component

𝑅s in this temperature range11. Interestingly, the maxima of 𝑑𝜌𝑥𝑦/𝑑𝐻 track well with the boundary of the

Fermi liquid state at low temperatures, but deviate above 3 K.

For visualisation the resistivity temperature sweeps have been fit using a moving window to extract

power laws and features are collated in the vicinity of the ferromagnetic dome, in Figure 5.27. A moving

window of 35 mK has been used to extract power laws of 𝜌𝑥𝑥 . As these fits can be unreliable when the

crossover from power laws is not smooth (i.e. at 𝑇C), the maximum of 𝑑𝜌𝑥𝑥/𝑑𝑇 and the shoulder in 𝑑𝜌𝑥𝑥/𝑑𝐻

have been used to show this crossover. The maxima in 𝑑𝜌𝑥𝑦/𝑑𝐻 for 𝑇 > 0.3 K follow well with the fitted

𝜌𝑥𝑦 kinks at lower temperatures, so the high temperature hump and the low temperature kink are both

signatures of 𝜌FP

𝑥𝑦 . The evolution of 𝜌FP

𝑥𝑦 has not saturated at low temperatures and appears that it may reach

11The low temperature≲ 5 K low field region has been determined to not include a skew scattering term earlier (see subsection 5.1.2).

As an example this could signal the growth of the skew scattering contribution in the high field region



103

lower fields than the feature 𝜌FM

𝑥𝑥 at lowest temperatures. Measurements of 𝜌𝑥𝑦 to lower temperatures would

be needed to check this.

Low temperature easy direction: 𝑩 ∥ 𝒂 , 𝑰 ∥ 𝒄

This field orientation allows us to study the ferromagnetic moment ordered along the a direction, which is

expected to give an anomalous Hall effect signature dependent on the magnetisation.

Temperature sweeps of the resistivity are shown in Figure 5.28. The zero field feature at 𝑇C is much

less pronounced than in literature [130]. There are two significant differences between this study and the

previous. Firstly the available sample quality has improved, the sample used here has a residual resistivity

reduced by a factor of two. This may also be an indication that the current orientation is better aligned in

our sample, as the a direction is the low resistance direction. With these higher quality samples the residual

resistivity anisotropy is ∼ 3/2, which is half the value found by Steppke et al. [130] (the impurity scattering

appears less anisotropic). The second experimental difference is regarding magnetic shielding, the zero

field data here is taken after sweeps to 0.25 T have been performed so there may be a small remanent field

(< 3 mT) as described in subsection 4.1.4. Further, we do not make any attempt to shield against the Earth’s

magnetic field. To do so inside of a superconducting magnet bore would be a difficult task requiring a very

compact Helmholtz coil setup [101]. We do not expect the Earth’s magnetic field∼ 50 µT to have a significant

effect, susceptibility data with this field orientation indicate the magnetisation has not saturated at 500 µT

[78], and no effect is seen in the previous sample orientation in which the Earth’s field will point strictly in

the [100]–[010] plane12. The shape of the zero field resistivity curve near the Curie temperature is different

to observed in literature, with a slight reduction in the gradient near 200 mK, so that the ferromagnetic state

looks slightly more resistive than would be expected if a line is extrapolated from 𝑇 > 200 mK. It may be

interesting to repeat these experiments in a setup with capabilities to cancel out any remanent field (i.e. a

low field vector magnet with well calibrated field sensors) to see if the feature at 𝑇C can be made sharper.

Derivatives in temperature are also shown in Figure 5.28 (smoothed via a moving average over 20 mT

to reduce noise). A linear fit to the zero field curve below 0.1 K extrapolates to a very small 𝑦-intercept of

0.14(7)µΩ cm K
−1

, the ferromagnetic state is a Fermi liquid with effectively no linear term remaining at zero

temperature.

Isothermal measurements are again made by allowing relaxation (see Appendix A for discussion of

heating effects in field sweeps) after slowly ramping the field to set points, the resulting curves at a few

temperatures are shown in Figure 5.29. No hysteresis is observed (after relaxation) in either longitudinal or

12The magnet is oriented so that its field Bmag points perpendicular to the floor, so with Bmag ∥ c the Earth’s magnetic field in

Bristol will be in the [100]–[010] plane of the sample. With Bmag ∥ a the direction of the Earth’s magnetic field will be in the [010]–[001]

plane of the sample.
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Figure 5.28: (a) Resistivity temperature sweeps in the vicinity of the ferromagnetic phase

for B ∥ a. (b) Derivatives with consecutive vertical shifts of −0.5 µΩ cm K
−1

for clarity,

zero field is unshifted. A linear fit below 0.1 K is made to the zero field curve with an

intercept of 0.14(7) µΩ cm K
−1

.

Hall resistivity, despite this being the ferromagnetic easy axis – there is no observable stationary magnetic

hysteresis. If this is a ferromagnet then it must be an extremely soft ferromagnet with a very small amount

of hysteresis and a coercive field of less than 1 mT, the domains walls are broad and easy to move [19].

There is a large step in the Hall effect at low fields for 𝑇 < 𝑇C due to an anomalous Hall effect, as shown

in Figure 5.29, the kink is at the saturation of the ferromagnetic polarised phase (the ferromagnetic phase is

strictly at𝐻 = 0 in the direction of the ordered moments). Above 𝑇C this maximum moves outwards in field,

marking the boundary between the paramagnetic and ferromagnetic polarised states. The ferromagnetically

polarised saturation field will be referred to as 𝐻sat. When ferromagnetically polarised there is a negative

gradient of 𝜌𝑥𝑦 , which then indicates a negative ordinary Hall effect term 𝑅0.

Characterisation of the Hall effect is made by linear fits above and below the saturation field 𝐻sat, as

shown for several temperatures in Figure 5.30. The intersection of these two fits is the saturation field, where

the magnitude of 𝜌𝑥𝑦 is related to the saturation magnetisation. The saturation field reduces near 𝑇C, to a

minimum recorded value of 2 mT at 170 mK. There is a peak in the gradients 𝑑𝜌𝑥𝑦/𝑑𝐻 near 𝑇C consistent

with an AHE as there is also a peak in the magnetic susceptibility data [78]. On cooling further below 𝑇C

𝑑𝜌𝑥𝑦/𝑑𝐻 however increases unlike the susceptibility, so this Hall effect cannot be described by

𝜌𝑥𝑦 = 𝑅0𝐻 + 𝑅s𝑀, (5.17)
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Figure 5.29: (a) Magnetoresistance and (b) Hall effect isotherms in vicinity of FM for

B ∥ a. Data are taken only after any magnetocaloric heating has been dissipated.

with temperature independent 𝑅0 and 𝑅s. The magnitude of 𝜌𝑥𝑦 at 𝐻sat is therefore not a good measure of

the magnitude of the saturation magnetisation 𝑀sat – we cannot quantify the temperature dependence of

the magnetisation using anomalous Hall effect for any critical exponent analysis. As the components of the

anomalous Hall effect could not be separated in subsection 5.1.2, it is difficult to speculate what could give

a change in the magnitude of 𝑅s.

The gradients 𝑑𝜌𝑥𝑦/𝑑𝐻 at fields above 𝐻sat are all negative in this temperature range (𝑅0 ∼ −1 ×

10
−10

m
3

C
−1 ,13), and are very similar above and below 𝑇C (ignoring a slight negative peak near 𝑇C). This

negative sign is in contrast to the positive sign at high temperature where the Hall coefficient is independent

of magnetic field. This is either due to multiband effects as in YbRh2Si2 and LuRh2Si2 [38], or due to a

change in the Fermi volume of bands due to Kondo hybridisation. Hall effect measurements in LuNi4P2

would be useful to determine what causes this shift to a negative ordinary Hall effect. We cannot make

any inference about 𝑅0 inside of the ferromagnetic phase from this direction, as the anomalous Hall effect

signature has a much larger gradient (∼ 50 × 10
−10

m
3

C
−1

in the units of 𝑅0) than 𝑅0 at high temperatures

or in the ferromagnetic polarised phase.

The Hall effect has been demonstrated as an effective probe to track the position of magnetic features in

13For the units of 𝑅0, use the conversion 1 nΩ cm T
−1 = 10

−10
m

3
C
−1
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Figure 5.30: Analysis of Hall effect isotherms in the vicinity of FM for B ∥ a. (a)
Isotherms of Hall resistivity, with linear fits above and below the kink. (b) Gradients

𝑑𝜌𝑥𝑦/𝑑𝜇0𝐻 above and below 𝐻sat. Separate 𝑦-axes are used as the scales are different by

an order of magnitude. (c) Saturation field measured by the crossing point of the two

linear fits.

the phase diagram via field sweeps. These are superior in some aspects to the susceptibility measurements,

which were only possible to do in fixed field while sweeping temperature [78]. Firstly, the features of

magnetic saturation in temperature sweeps are shoulders that quickly broaden with field, while in field

sweeps the features are resolved sharply (to around 1 mT) below 𝑇C. The second advantage is regarding

field history, which is crucial in hard ferromagnets. It has been shown that no hysteresis can be seen within

a 1 mT resolution, classifying this as a very soft ferromagnet.

5.4 Summary

A range of physics has been probed in YbNi4P2 over a very large portion of the phase diagram, through

magnetoresistance and Hall effect measurements. These will be summarised, highlighting both new insights

and regions that are not yet clear with current measurements and theory.
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Magnetoresistance measurements with B ∥ c and I ∥ a have revealed a novel scaling relation, which

seems to be an extension of single-ion Kondo model. A similar behaviour is seen for B ∥ a and I ∥ c at

low temperatures, but another mechanism appears to become dominant above a few kelvin. This scaling is

similar to a single-ion Kondo model used in literature against 𝑥 = (𝑇 + 𝑇∗)𝛽/𝜇0𝐻, in which a temperature

scale 𝑇∗ is often related the Kondo temperature [30], but with further scaling of the magnitude of 𝜌𝑥𝑥 . We

find this temperature scale to be close to zero for both sample orientations, which may put YbNi4P2 near the

boundary of a heavy Fermi liquid and suggest the possibility of Kondo breakdown at the FM QCP. However,

unusual scaling is likely rather related to ferromagnetic fluctuations which sometimes result in a negative

temperature in the scaling relation [3]. Theoretical models of single-ion Kondo scaling in the presence of

ferromagnetic fluctuations need to be explored to distinguish what 𝑇∗ relates to here.

There are open questions for the Hall effect in YbNi4P2 that will require further experiments and

theoretical insight to understand. At high temperatures a positive but anisotropic ordinary Hall effect

is seen, increasing in magnitude on decreasing temperature. This is likely due to multiband physics,

and should be tested through Hall effect measurements of the non heavy fermion reference compound

LuNi4P2,14. On cooling in fixed fields, unusual extrema in the Hall effect are seen that cannot be described

by common models of anomalous Hall effect, and would likely need very advanced theoretical modelling

to understand. With B ∥ c, the minima of 𝜌𝑥𝑦(𝑇) are abruptly shifted to lower temperatures on entering

a transverse ferromagnetic polarised state, suggesting complicated behaviour of the anomalous Hall effect.

With B ∥ a, two series of extrema in 𝜌𝑥𝑦(𝑇) appear to intersect, with minima becoming maxima and vice

versa over the intersection, implying a change in sign of the anomalous Hall term 𝑅s. Potentially this is

due to the intrinsic Berry curvature term of the AHE, which may require good knowledge of the location of

features such as avoided crossings in the band structure.

At the lowest temperatures for the sample with B ∥ c (transverse to the ferromagnetic moments), we

find a resistivity with enhanced 𝑇-linear components near the suppression of the magnetic field, which

may suggest the proximity to a transverse-field-induced QCP due to improved sample quality. The Hall

effect is modelled well by a constant ordinary Hall effect 𝑅0 and an AHE with a constant coefficient 𝑅s, and

so this is strong evidence against Kondo destruction at this quantum phase transition; the ferromagnetic

state is also a heavy fermion metal. A field independent 𝑅0 and 𝑅s cannot however be the case at higher

temperatures (above 125 mK) where constant 𝑅0 and 𝑅s would result in inconsistencies with susceptibility

data. The mechanism behind the hump 𝜌FP

𝑥𝑦 that develops above 125 mK therefore remains unsolved until

further magnetisation measurements are available, however it appears to track the magnetic saturation

field similarly to the local moment Ising ferromagnet LiHoF4 with a transverse field. This poses interesting

14This may also give some insight in to any magnetism due to nickel.
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physical questions to the nature of the ferromagnetism in YbNi4P2, as there are itinerant 4 𝑓 electrons

(hybridised with conduction electrons at the Fermi level) but parallels can be drawn to a local moment

ferromagnet.

For the sample with B ∥ a, we are able to track the magnetic saturation of the ferromagnetism via

the anomalous Hall effect. The Hall effect inside the ferromagnetic dome however cannot be modelled

consistently with susceptibility data using temperature independent ordinary and anomalous terms (𝑅0

and 𝑅s respectively), and so it appears a situation where 𝑅s varies must be considered (for example as

due to Berry curvature effects in USbTe [123]). Because of this, we cannot assess critical exponents of the

magnetisation using the anomalous Hall effect.

Up to 12 T, additions are made to previous works on the Lifshitz transitions in YbNi4P2, which will

hopefully help relate the high field Fermi surface observed in quantum oscillations data to the low field

Fermi surface once renormalised band structure calculations are available. We identify two additional

low field Lifshitz transitions with B ∥ c and three new with B ∥ a. For B ∥ c, a sharp kink in 𝑑𝜌𝑥𝑦/𝑑𝐻

coincides with a kink in 𝑑𝑀/𝑑𝐵which we can now narrow down to the Lifshitz transition𝐵6. This feature has

previously been related to a change in the field dependence of the effective mass [98]. A similar kink is seen

in a high field measurement at 𝐵9 so it is likely a similar feature in the magnetisation exists there, and further

above 𝐵9 a constant Hall coefficient consistent with high temperatures is recovered. This is significant for the

interpretation of quantum oscillation data, and suggests that either the Kondo hybridisation is suppressed

or the 4 𝑓 CEF levels have been Zeeman split away from the Fermi level at highest fields. For B ∥ a, a

crossing point followed by a kink is observed in the Hall effect. The crossing point appears to be due to

a change in sign of 𝑅s as a function of field, while the kink could either be a kink in the magnetisation

or an abrupt change in Fermi volume. Both of these measurements would benefit from field sweeps of

magnetisation at low temperature so that the components of the Hall effect can be decomposed.

There are several open questions in YbNi4P2 that have not been addressed here. For one, only two of

the possible field orientations aligned with [100] and [001] have been measured, another unique sample

orientation could be used with field in [100], current along [010] and Hall voltage in [001]. Hall effect

measurements with Hall voltage in the [110] direction and field in [11̄0] would also be interesting as the

CEF of YbNi4P2 at neighbouring Yb sites is rotated by 90
◦

[130], which should lead to significant frustration

– it is not obvious where the moments will order in the [100]-[010] plane. The Hall effect should be

able to accurately map the ferromagnetic phase diagram with field in this direction. The issue of tuning

to the FM QCP by chemical pressure has not been addressed, but the non-substituted system has been

explored thoroughly through magnetoresistance and Hall effect measurements, providing key signatures

to track in future studies. Likely the most interesting property to determine on the non-FM side of the QCP
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(substitution 𝑥 ≳ 0.1) is the ordinary Hall coefficient 𝑅0 for a sample with B ∥ c and I ∥ a such that the role

of the Kondo hybridisation can be determined (i.e. whether there is localisation of the 𝑓 moments).





Chapter 6

Fermi surface studies of YbNi4P2

In metals, electronic properties are shaped by the charge carriers near the Fermi level, i.e. those near

the Fermi surface. It is instructive to map the Fermi surface, both to see the effective dimensionality

of the quasiparticles, and to work towards the underlying band structure of the system for theoretical

models. There are two big questions related to the ferromagnetic quantum criticality of YbNi4P2 that can

be explored by studying its Fermi surface. The first is regarding the dimensionality of the quasiparticles

that order magnetically. A common explanation of why a ferromagnetic quantum critical point can exist

in YbNi4P2 relies on the ‘quasi-1D’ character of the chain-like arrangement of Yb ions [74, 130]. This aims

to avoid a problem due to soft modes, which must be present in higher dimension metals, coupling to

the ferromagnetism and driving the transition to become first order [12]. A second point is regarding

the inclusion of the Yb 4 𝑓 electrons in the Fermi surface, via the Kondo hybridisation that forms the

heavy fermion quasiparticles. The Kondo hybridisation is expected to add a 4 𝑓 hole to the Fermi volume,

expanding the Fermi surface from a ‘small’ to a ‘large’ version [122], and forming flat bands giving rise to

heavy fermion quasiparticles.

The onset of Kondo hybridisation is often seen as a continuous change in the Fermi surface as a function of

temperature, as in CeCoIn5 [56] and CeIrIn5 [24]. Similarly in YbRh2Si2 at high fields well within the heavy

Fermi liquid region, as field is increased the 4f electrons become ‘progressively de-renormalised’ [153],

and the Fermi surface evolves continuously over several Lifshitz transitions [109, 103]. Non-continuous

evolutions also exist; hydrostatic pressure drives CeRhIn5 to a sudden reconstruction of the Fermi surface

from localised 4f to itinerant [120]. There is significant evidence that small magnetic fields drive YbRh2Si2

to reconstruct [94] to its large Fermi surface at an antiferromagnetic quantum critical point, although

questions remain about its relation to the quantum criticality as both pressure [140] and chemical pressure

[37] remove this coincidence. There is a large amount of interest to resolve the connection between the

111
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Kondo hybridisation and quantum criticality in many heavy fermion materials so that behaviours can be

properly grouped (ideally in to universality classes). This is particularly important where parallels are to

be drawn from the highly tuneable ‘playground’ of heavy fermion compounds, to gain insight in to highly

debated topics such as the high-temperature cuprate superconductors. Whilst attempts have been made to

group behaviours in the widely studied heavy fermion antiferromagnetic QCPs [122], more experimental

exploration is needed in the ferromagnetic QCPs due to their rarity [40].

Fermi surfaces of heavy fermion metals are often particularly challenging to probe. High quasiparticle

masses (𝑚∗ = 4–90𝑚e in UPt3 [137], 𝑚∗ = 14–94𝑚e in CeCoIn5 [87]) result in the Fermi surfaces becoming

quickly smeared out by temperature, as the energy scale 𝑘B𝑇 becomes comparable to the effective Fermi

energy defined by the Kondo temperature 𝑘B𝑇K. When quantum oscillations are used as a Fermi surface

probe, the Lifshitz–Kosevich formula describes the damping of the oscillation amplitudes as a function of

temperature. It is typical for the high mass orbits to quickly become obscured by noise above 1 K. This

damping can be overcome by the use of large magnetic fields, taking advantage of the growing oscillation

amplitude with field due to the Dingle damping term. At 350 mK, the samples used in this study begin to

show low frequency oscillations at around 10 T. Higher fields up to 35 T at HFML in Njimegen were needed

to probe many periods (which become further spaced out at higher fields).

High magnetic fields bring further complications for the heavy fermion materials, again due to the

heavily renormalised energy scale 𝑘B𝑇K. In heavy fermion materials, the Zeeman energy 𝑔𝜇B𝐵 can quickly

become comparable to the Kondo energy scale at relatively low magnetic fields [99, 103]. Qualitatively, the

Kondo scale gives an indication of the effective Fermi energy of the heavy quasiparticle bands. A Zeeman

shift comparable to the Kondo energy scale therefore implies that the quasiparticle bands can be shifted

enough to fully cross the Fermi level, i.e. the spin minority band can disappear completely (or conversely

a spin majority band could appear). This is known as a void-type Lifshitz transition, as the topology of

the Fermi surface suddenly changes. Neck-type Lifshitz transitions also exist, where a saddle point in the

band structure crosses through the Fermi level resulting in a neck forming or breaking. A very simple void

transition can be constructed by considering a spin-split free-electron like dispersion

𝐸±(k,B) = ℏ2𝑘2

2𝑚∗
± 1

2

𝑔𝜇B𝐵, (6.1)

with Fermi surfaces defined by

𝐸F =
ℏ2𝑘∓2

2𝑚∗
± 1

2

𝑔𝜇B𝐵. (6.2)

At small fields 𝐵 solutions exist for the minority pocket 𝑘+ (spin ↓) and the majority pocket 𝑘− (↑), however

on increasing field the minority pocket will eventually be reduced to zero: a void type Lifshitz transition
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Figure 6.1: YbNi4P2 unit cell and definition of field orientation.

occurs. The field at which this happens goes as 𝐵LT ∝ 1/𝑔𝑚∗ intuitively1, these Lifshitz transitions are easier

to access when the bands are flatter and the 𝑔-factor is stronger.

In this chapter, data from Shubnikov–de Haas measurements taken by Owen Moulding, Takaki Mura-

matsu, and Jake Ayres at HMFL in Nĳmegen are presented, with analysis and calculations by myself. Three

oriented single crystals of YbNi4P2 grown by Kristin Kliemt were measured simultaneously, on a rotating

3

He probe (base temperature 350 mK) in a 35 T Bitter magnet. Two samples 040_2_6_1 and 040_2_6_4 (see

subsection 4.2.3 for full description) were long crystals with a small cross section, geometry optimising

the 𝜌𝑥𝑥 signal to noise, with current in a and c respectively. The third sample, 040_2_6_6 was long and

flat (Hall bar geometry), for simultaneous measurements of 𝜌𝑥𝑥 and 𝜌𝑥𝑦 , with current and Hall voltage in

perpendicular a directions (here a and b are equivalent by symmetry). The chapter will be presented as

following:

• Firstly, details of the observed quantum oscillations will be given, outlining their dependence on field

direction, field strength, and temperature. Particularly, changes in the oscillations over the transition

𝐵9 are outlined.

• Next, Fermi surface studies through DFT calculations are presented.

• Finally, DFT calculations are compared with the observed field rotation plots above and below 𝐵9 to

assign oscillations to orbits of the Fermi surface.

6.1 Quantum oscillations

The quantum oscillation studies presented in this chapter are a compilation of a large number of mea-

surements (several hundred field sweeps of three samples simultaneously) with varied field direction and

1Here 𝐸F has been fixed by the carrier concentration 𝑛, so that the value of 𝐸F will change with 𝑚∗ to keep 𝑛 constant.
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temperature. In this section an overview of the observed oscillations is given. Examples of oscillations will

be given in detail for sample 040_2_6_1 with I ∥ a, for fields from B ∥ [100] to [001], and heavy fermion

behaviour will be demonstrated via the Lifshitz–Kosevich temperature dependence. Next, anomalous be-

haviour of oscillations over the transition 𝐵9 are briefly outlined, and field rotation plots of the frequencies

observed in sample 040_2_6_1 are presented above and below 𝐵9. Lastly, oscillations of all three samples

are compiled into rotation plots above and below 𝐵9, and a summary of quasiparticle masses and mean free

paths at selected field directions is made.

For reference a field orientation diagram is provided relative to the unit cell of YbNi4P2 in Figure 6.1.

Two angles define the field direction: the angle 𝜃 of B relative to the [001] direction, and the angle 𝜙 of

the projection of B in to the [100]–[010] plane relative to the [100] direction. The directions [100] and [010]

are equivalent by symmetry in YbNi4P2. For consistency, the square bracket notation will be used for field

along high symmetry directions in this chapter (as opposed to using a or c). Where generality is needed for

more precise field orientations, the notation (𝜃, 𝜙) is used.

6.1.1 Example quantum oscillations for 𝑰 ∥ 𝒂

To provide direct evidence for a fraction of the large data set of quantum oscillations analysed, oscillations

observed in sample 040_2_6_1 with I ∥ a are first presented in detail for a selection of field orientations.

All oscillations in this chapter will be presented after background subtractions and angle corrections, as

detailed in section 4.3. The measured oscillations with B ∥ [100] are first used to demonstrate analysis

of ordinary quantum oscillations with a field independent frequency 𝐹𝛽, the extraction of a quasiparticle

mean free path from the Dingle damping term 𝑅D, and a large effective mass 𝑚∗ through the Lifshitz–

Kosevich temperature dependence. Next the anomalous quantum oscillations of frequencies 𝐹𝛾 and 𝐹𝛿

with B ∥ [001] are presented. This is the field orientation where the Fermi surface evolves through many

Lifshitz transitions [98], as outlined in section 3.2. Lastly, oscillations 𝐹𝛼 with B ∥ [101] are presented to

demonstrate the heavy fermion behaviour of the largest observed frequency through the Lifshitz–Kosevich

temperature dependence.

𝑩 ∥ [100]

As the simplest point to start from, a field B ∥ [100] in YbNi4P2 tunes the Fermi surface the least, and as

a result the observed oscillations are similar to in a normal metal. To make matters even more simple, a

single frequency is dominant in the oscillatory component Δ𝜌𝑥𝑥 in this field orientation. Oscillations are

visible above 22 T. The oscillatory signal is presented in Figure 6.2, after subtraction of a smoothing spline
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Figure 6.2: Quantum oscillations of orbit 𝐹𝛽 in 𝜌𝑥𝑥 for I ∥ a andB ∥ a. (a) The oscillatory

signal Δ𝜌𝑥𝑥 is presented after subtraction of a smoothing spline background with 𝑝 =

0.99. A damped sinusoid is fitted as described in the text (shifted by −0.02 µΩ cm).

(b) Residuals to the fit.

background with 𝑝 = 0.99 (as demonstrated in section 4.3 Figure 4.7). For all oscillatory signals in this

chapter linear spacing is used in a 1/𝐵 axis, so that oscillations are periodic, and with 𝑥 direction reversed

such that magnetic field increases towards the right. An equivalent field 𝐵 scale is always included above

for reference. A damped sinusoid is fitted in Figure 6.2, of the form

𝜌𝑥𝑥 = 𝐴 exp

(
−
√

2ℏ𝐹

𝑒

𝜋
𝑙0𝐵

)
sin

(
2𝜋𝐹
𝐵
+ 𝜙

)
(6.3)

to find parameters: 𝐹 the frequency, 𝜙 a phase, and 𝑙0 the mean free path (see subsection 2.5.2 Equation 2.83).

A mean free path of 𝑙0 = 27.1(5)nm is extracted from the fit and a frequency 𝐹 = 1629.7(5)T. This orbit is

given the label 𝐹𝛽.

A quasiparticle mass study was performed for this orbit by studying the oscillation amplitude as a

function of temperature. Temperatures were recorded prior to sweeping the magnetic field. The oscillatory

signals and the resulting fast Fourier transform (FFT) spectrums (calculated in the field range 22 T < 𝐵 <

35 T) are shown in Figure 6.3 for several temperatures. The reduction of the integrated FFT peak is tracked as

a function of temperature and fit with the Lifshitz–Kosevich temperature dependence (see subsection 2.5.2

Equation 2.79) to extract a quasiparticle mass 𝑚∗ = 6.2(2)𝑚e. This is a fairly large effective mass, and
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Figure 6.3: Mass study of orbit 𝐹𝛽 in 𝜌𝑥𝑥 for I ∥ a and B ∥ a. (a) Oscillatory signal 𝜌𝑥𝑥
at several temperatures. Different temperatures are offset by −0.05 µΩ cm consecutively.

(b) FFT

indicates that some of the Kondo hybridisation is still present at high fields B ∥ [100].

𝑩 ∥ [001]

The oscillations in the orientation are visible above noise at the base temperature 0.35 K for B ≳ 10 T, and

the maximum field is 35 T. In this field window two previously reported Lifshitz transitions [98] are present,

𝐵8 = 11 T and 𝐵9 = 17 T. The former lies too close to the first visible oscillation to study, however the latter

lies conveniently central in the range of inverse field. We find a significant field dependence of the oscillation

frequencies over the transition 𝐵9, which will be detailed in this section.

In Figure 6.4, the oscillatory part of the magnetoresistance is presented and analysed in three ways. The

oscillatory signal has been presented with a low order polynomial background removed such that the kink

at 𝐵9 is visible in panel (a). The following analysis is rather performed after removing smoothing spline

backgrounds. FFT spectrums are presented taken below and above 𝐵9. Below 𝐵9 there are two peaks that

can be resolved above noise in the FFT, which are given labels 𝐹𝛾 ≈ 530 T and 𝐹𝛿 ≈ 400 T. Above 𝐵9, the most

prominent frequency 𝐹𝛾 is seen to be replaced by another frequency 𝐹+𝛾 ≈ 600 T at high fields, with new low

frequencies 𝐹+𝛿 and 𝐹−𝛿 also appearing2. The naming convention of these peaks becomes more evident later

2It appears later in rotation plots that 𝐹−𝛾 is very close to 𝐹+𝛿 at this field orientation, so the 𝐹−𝛿 peak is likely a mixture of the two

oscillations that cannot be resolved.
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Figure 6.4: Quantum oscillations of orbits 𝐹𝛾 and 𝐹𝛿 over the 𝐵9 Lifshitz transition

with current in the a direction and field in the c direction. (a) Residual resistivity after

removing a second order polynomial background fit. Pink lines mark the position of

peaks. The 𝐵9 Lifshitz transition is visible as a dip near 17 T. (b) Moving window FFT.

The shift is visible centred around 17 T. Some further frequencies begin to appear at

highest field. (c) Fast Fourier Transforms (FFT) above and below 𝐵9. The 550 T peak

moves higher, and new low frequencies are seen. (d) Peak index versus field position of

the indexed peaks. Linear fits above and below 𝐵9 are used to extract the frequencies. (e)
Fitting residual. A sharp deviation is seen at 16.8 T indicating the change of frequency

is sudden.

in section 6.3, with + and − labels referring to higher and lower frequency spin split versions of the Fermi

surface.

To gain insight in to how this frequency evolves with field, a moving window FFT approach is adopted

with fixed width in the inverse field 0.018 T
−1

, providing frequencies as a function of field. This is presented

as a colour plot in panel (b) of Figure 6.4, with the inverse field (at the centre of the 1/𝐵 window) on the

𝑥-axis and the frequency on the 𝑦-axis. FFT intensity is displayed as a colour map, with hot (red) colours

for high amplitude and cool (blue) for low amplitude. This reveals an upwards shift of the 525 T oscillation

at the Lifshitz transition, as illustrated by white circles that track the maximum FFT amplitude as a function

of inverse field. The field dependence here should be interpreted with caution however, as this window
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Figure 6.5: Dingle and mass analysis of 𝐹𝛾 and 𝐹+𝛾 . (a) Oscillatory signal as a function

of magnetic field, as grey dots, 𝐹+𝛾 has been offset by 0.01 µΩ cm for clarity. Solid lines

show damped sinusoid fits of the form of Equation 6.3. (b) FFT amplitude as a function

of temperature, solid lines show Lifshitz–Kosevich fits of the form of Equation 2.79.

corresponds to a width of ∼5 T at the transition.

To avoid the smearing effects of a finite window, the peak positions are extracted using a peak finding

algorithm to study their spacing, as indicated by grey lines in panel (a) of Figure 6.4. Above and below 𝐵9,

the peak spacing remains linear in inverse field, as shown in panels (d) and (e), however there is an abrupt

frequency shift at the transition with negligible phase shift.

We can characterise properties the quasiparticles involved in the oscillations 𝐹𝛾 and 𝐹+𝛾 above and below

𝐵9. The signatures of these are dominant in the oscillatory signal and so Dingle analysis and a mass study

can be performed reliably. The Dingle analysis as presented in Figure 6.5 panel (a), finds identical mean free

paths 𝑙0 = 45(1)nm and 𝑙+
0
= 44(2)nm within error. Further, the masses of the quasiparticles 𝑚∗𝛾 = 3.2(1)𝑚e

and 𝑚∗𝛾+ = 3.2(1)𝑚e are the same within error, as shown in panel (b). This is strong evidence that this is the

same orbit observed continuously across 𝐵9, in which only the frequency changes.

It is tempting to imagine the sudden increase in frequency as an indication the Fermi surface orbit has

suddenly expanded, but care must be taken in relating observed frequencies back to the ‘true’ Onsager

frequency due back-projection (discussed in more detail in section 2.5). A single oscillatory component
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depending on a field dependent Onsager frequency can be written as

𝑦 = 𝑅 sin

(
2𝜋
𝐹(𝐵)
𝐵
+ 𝜙

)
, (6.4)

where 𝑅 contains damping factors. If a frequency has an abrupt step-like jump, a phase shift will be occur at

the discontinuity. Note however that this phase shift can be a factor of 2𝜋 if the frequency jump is a multiple

of the field it occurs at: The absence of a phase shift is not definitive evidence of the absence of a frequency

jump. It is visually clear in Figure 6.5 that there is very little phase change over 𝐵9 from the fitted damped

sinusoids. Further, the fitted parameters can be used to estimate the total phase shift at 𝐵9

2𝜋
Δ𝐹

𝐵9

+ Δ𝜙 ≈ 0.3(1)𝜋, (6.5)

where the frequency change3 is Δ𝐹 = −58.2(6)T, the (𝐵→∞) phase difference is Δ𝜙 = 0.511(9)𝜋, 𝐵9 = 17 T,

and an arbitrary 2𝑛𝜋 has been subtracted. There is strong evidence that these frequencies really are the

same orbit evolving continuously (but discontinuous in 𝑑𝐹/𝑑𝐵) over 𝐵9, as supported by the very similar

masses and mean free paths.

𝑩 ∥ [101]

The highest frequency branch can be observed with field in this orientation. The field derivative of the

oscillatory signal is shown in Figure 6.6 panel (a). A derivative is used as it acts to amplify the Fourier

components by their frequency, and so enhances high frequencies. Oscillations are present again below and

above the transition 𝐵
[101]
9

= 20 T, where the anisotropy of this transition has been taken in to account [61].

Here, the oscillations above 𝐵9 are focussed on, where frequencies are spin split and the highest frequencies

are observable. Three low frequency peaks are observable in the FFT (panel (c)) of the signal from 20 T to

35 T: 𝐹+𝛾 , 𝐹−𝛾 , and 𝐹𝛿. The former two are interpreted later as spin-split versions of the 𝐹𝛾 orbit, and hence

again given labels ‘+’ for the higher frequency and ‘−’ for the lower. The spin splitting of 𝐹𝛿 is not resolvable

at this angle.

Above 29 T high frequency oscillations are also present, as presented in more detail in panel (b). FFT

spectrums in this range are overlaid in panel (c) for frequencies above 3 kT. There are two high frequency

peaks 𝐹+𝛼 ≈ 5.5 kT and 𝐹−𝛼 ≈ 4.1 kT present4. Mass studies have been performed at (𝜃, 𝜙) = (49
◦ , 0), where

the oscillation amplitude was maximised, as presented in panel (d). The FFT amplitude quickly dampens

with increasing temperature. Fitting using the Lifshitz–Kosevich temperature dependence yields large

cyclotron masses of 𝑚∗𝛼+ = 6.7(5)𝑚e and 𝑚∗𝛼− = 10(1)𝑚e respectively, suggesting the Kondo hybridisation is

not yet fully suppressed with fields up to 35 T in this orientation.

3These frequencies differ slightly from the indexing fits in Figure 6.4

4The spin split labels are given tentatively, the signature of 𝐹−𝛼 is only observed at a very limited angle range
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Figure 6.6: Example analysis of the resistivity oscillations with current in the [100]

direction and magnetic field near the [101] direction. (a) Derivative of the resistance after

removing a second order polynomial background. Magnetic field is shown on the top

axis, and its inverse is shown equally spaced on the bottom axis. A low frequency can be

seen clearly from 15 T upwards. A high field region is highlighted in red. (b) Expanded

view from 29 T to 35 T showing high frequency oscillations. (c) Fast Fourier transforms

of signal over two windows. The high field window is displayed for frequencies higher

than 3 kT. (d) Mass studies of 𝐹±𝛼 for (𝜃, 𝜙) = (49
◦ , 0). Points below the noise floor are

grey and not included in the fit.

6.1.2 Quantum oscillations of all samples

Three magnetic field paths are swept, so that a total path of [001]–[100]–[110]–[001] is mapped. By probing

many field orientations a good knowledge of the Fermi surface shape can be built up. Further, two distinct

sample current orientations have been used (two samples I ∥ a and one sample I ∥ c), providing different

sensitivity to orbits. Resistivity signals of samples with current directions I ∥ a and I ∥ c, both with field

B ∥ [001], are shown in Figure 6.7 after a linear background subtraction. It is evident that in this field

orientation the sample with I ∥ a is more sensitive to the higher frequency oscillations (these are 𝐹𝛾 and its

spin split versions), and the I ∥ c sample is dominated by lower frequencies (𝐹±𝛿 ). The signature of 𝐵
[001]
9

is

more prominent in the sample with I ∥ c as previously noted by Karbassi et al. [61].

In this section, oscillations of all samples and field directions are compiled together to provide a complete

picture. First the field rotation plots will be presented, then quasiparticle properties (masses and mean free

paths), associated with specific orbits, will be summarised at important field orientations.



121

10 15 20 25 30 35
B (T)

−0.04

−0.02

0

0.02

0.04

0.06

 "
;
xx

 (μ
+

 c
m

)

I j j  a
I j j  c

B j j  [001]
T = 0.36 K

Figure 6.7: Comparison of oscillatory signals with B ∥ c and current in a or c. A linear

term has been subtracted from each for easier comparison. The anomaly at 𝐵9 = 17 T is

stronger with I ∥ c.

Rotation plots

The angular dependence of the orbits is tracked in Figure 6.8 strictly below and above the 𝐵9 transition,

where significant changes in the observed frequencies occur. Frequencies were extracted from peak values

of the FFT, where a frequency and its amplitude were extracted if the amplitude was approximately twice

as large as the noise. A peak finding algorithm was used with manually selected thresholds to make this

more efficient. The threshold values were manually selected as the noise level is dependent on experimental

factors such as temperature stability, which are not necessarily constant. This procedure can introduce false

(noise) peaks in to the rotation plots, but due to the large quantity of data the validity of frequencies can be

confirmed on comparison of samples and nearby angles. Clear branches form in the rotation plots, which

can be tracked over sizeable angle ranges.

The angular dependence of the Lifshitz transitions has been previously reported by Karbassi et al. [61]

for the rotation from [001] to [100], allowing the oscillations to be carefully separated. The value of 𝐵9

is assumed to only be only dependent on the angle between 𝜃 (between B and [001], see Figure 6.1) for

separation of frequencies in the [001]–[110] sweep. The region 𝐵 > 𝐵9 is not accessible for 𝜃 ≳ 85
◦

as 𝐵9

becomes larger than the maximum magnetic field of 35 T, and so there are no data in the region [100]–[110]

for 𝐵 > 𝐵9. A further experimental limit is imposed by 𝐵9, in that the maximum field for probing 𝐵 < 𝐵9 in

the [001] direction is 17 T, meaning that the Dingle damping term cannot be overcome. The Dingle damping

is more significant for large orbits (see subsection 2.5.2), which likely prevents the observation of the highest

frequencies for 𝐵 < 𝐵9 near [001].

Starting in the low field regime 𝐵 < 𝐵9, there are two low frequency branches 𝐹𝛾 and 𝐹𝛿 with positive

curvature about [001], suggesting two thin cylindrical sections of Fermi surface pointing along c. For fields

in the [100]–[110] plane, a larger frequency 𝐹𝛽 is seen increasing from 1.6 kT to 2.1 kT as the [110] direction
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grey region marks where 𝐵9 is greater than the maximum field of 35 T. Labels have

been assigned to branches. Symbol size is proportional to the logarithm of the FFT

amplitude5.
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is approached. Near [100], two further branches are observed above 𝐹𝛽. These have near perfect overlap

with the 𝐹𝛽 branch multiplied by 2 or 3 respectively, and so are harmonics of the same orbit.

The high field regime 𝐵 > 𝐵9 has the benefit of being able to overcome the Dingle field damping term,

providing access to the strongly damped high-frequency high-mass branches 𝐹+𝛼 and 𝐹−𝛼 . Only a very small

portion of 𝐹−𝛼 is observed, this branch has the highest mass and so is heavily damped. These may be of

importance in understanding the Kondo hybridisation of the 4f electrons, as large frequencies are typically

expected when the 4f electrons are included in the Fermi volume. Part of the 𝐹𝛽 branch is present near [100],

indicating this branch is present above and below 𝐵9. Finally, there are now four cylinder-like branches

oriented along the [001] direction, 𝐹+𝛾 , 𝐹−𝛾 , 𝐹+𝛿 , and 𝐹−𝛿 . These are revisited later in the chapter in section 6.3;

careful attention is required as observed frequencies do not directly correspond to the Onsager frequencies

(see back-projection in section 4.3).

Relating observed orbital areas to the underlying Fermi surface is non-trivial, and in most cases the areas

do not uniquely determine a Fermi surface [121]. It is therefore necessary to rely on band structure calcu-

lations for comparison. These calculations can become very involved in heavy fermion systems, as accurate

calculations require accounting for the Kondo hybridisation through techniques such as the renormalised

band structure method [154]. For analysis in this thesis, uncorrelated band structure calculations through

density functional theory (DFT) and used to extract expected frequencies in section 6.2.

Quasiparticle mass and mean free paths

Cyclotron masses and mean free paths are compiled in Table 6.1. Mass studies have been performed at a

selection of field orientations by performing field sweeps at a variety of temperatures. The analysis has

been performed strictly above or below 𝐵9 (as evident from notation in Table 6.1, where the spin splitting

is only observable above 𝐵9). Example analyses are given earlier in the chapter in subsection 6.1.1. The

orientations studied are B ∥ [001], B ∥ [001] and near B ∥ [101] (specifically (𝜃, 𝜙) = (0, 49
◦)), to probe

as many of the observed orbits as possible. All possible orbits of interest have been probed for samples

with I ∥ a. The largest masses are associated with the largest frequencies, with the highest mass observed

𝑚∗𝛼− = 10(1)𝑚e. Where possible, Dingle analysis has been performed at base temperature (0.36 K) by fitting

a damped sinusoid (examples given in subsection 6.1.1).

Uncertainty estimates of frequency are preferentially taken from the fit uncertainty of the Dingle analysis

where available. Otherwise the standard deviation of the peak FFT position over the mass study is used.

Mass errors are derived from the fit uncertainty of the Lifshitz–Kosevich analysis.
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(𝜃, 𝜙) 𝐵 (T) 𝐹 (T) Orbit 𝑚∗(𝑚e) 𝑙0(nm)
I ∥ a (0, 0) 7-11

†
548(2) 𝐹𝛾 2.0(4)

11-17 532.1(3) 𝐹𝛾 3.3(5) 45(1)

17-24 599.4(5) 𝐹+𝛾 3.2(1) 44(2)

342(6) 𝐹−𝛾/𝐹+𝛿 2.4(1)

223(3) 𝐹−𝛿 4.7(2)

(90
◦ , 0) 25-35 1629.7(5) 𝐹𝛽 6.1(4) 27.1(5)

(49
◦ , 0) 30-35 5512(6) 𝐹+𝛼 6.7(5)

4130(20) 𝐹−𝛼 10(1)

I ∥ c (0, 0) 18-35 307(4) 𝐹−𝛾/𝐹+𝛿 2.5(2)

(90
◦ , 0) 28-35 1654(1) 𝐹𝛽 6.6(8) 29(1)

Table 6.1: Summary of orbit frequencies and their cyclotron masses. Masses are fit using

the Lifshitz–Kosevich temperature dependence to the integrated FFT peak amplitude.

Where dominant frequencies are observed, mean free paths are estimated by directly

fitting damped sinusoids.
†
One frequency has also been observed at lower temperatures

and fields on a dilution refrigerator.

6.2 Density functional theory

Previous uncorrelated band structure calculations exist for YbNi4P2 [74], however there is little direct

evidence available linking observations to the Fermi surface (see chapter 3 for more detailed discussion).

The quantum oscillations study in this chapter provides much more specific evidence of the Fermiology of

YbNi4P2, it is therefore important to revisit the density functional theory calculations in detail.

Density functional calculations were performed using the Perdew–Burke–Ernzerhof generalised gradient

approximation [97] in the WIEN2k package. Itinerant and localised 4f calculations were both performed,

the former by using YbNi4P2 as the input (using atomic positions determined by Kuz’ma et al. [77] and

lattice parameters determined by Kliemt [67]), and the latter by keeping the same lattice parameters but

substituting Lu in to the Yb site. It is expected that the primary effect of Kondo hybridisation on the topology

is simply to add the volume of one 4f hole to the Fermi surface of LuNi4P2. The Fermi surface topology

should be almost entirely a result of the highly dispersive partially filled 𝑑-states of Ni sites [155, 154]. For

simplicity in the following sections, the LuNi4P2 Fermi surface will refer to the LuNi4P2 calculation with

the YbNi4P2 lattice parameters. Often in literature this is referred to as the ‘small’ or ‘ 𝑓 -core’ Fermi surface,

in contrast to the ‘large’ or ‘ 𝑓 -valence’ Fermi surface with itinerant 𝑓 -states.

In this section details of the DFT calculations are given. First the convergence testing is presented to

provide input parameters for reproducibility. Then DFT calculations LuNi4P2 and YbNi4P2 are presented,

making comparisons of the densities of states and band structures, to provide evidence that the LuNi4P2
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Figure 6.9: Convergence of LuNi4P2 DFT calculations. (a) Convergence of the total

energy 𝐸tot as a function of the size of the 𝑘-mesh, where Δ𝐸tot is relative to the value at

40000 points. (b) Convergence as a function of 𝑅MT𝐾min. (c) Convergence with respect

to the cutoff energy 𝐸max. Linear (to log-log) fits are included in (a,b) are included as a

guide and a dotted line joins points in (c).

calculations (which are computationally cheaper) with a shifted Fermi energy makes a good approximation

to the YbNi4P2 Fermi surface. Lastly the Fermi surfaces and extremal orbits calculations are outlined.

6.2.1 Convergence

The self consistent calculation was convergence tested for the LuNi4P2 Fermi surface, and then the same

parameters were used for the YbNi4P2 Fermi surface. Three parameters have been convergence tested, the

number of 𝑘-points in the mesh, the 𝑅MT𝐾max value that determines the size of the basis set, and the energy

cutoff 𝐸max (see section 4.4 for descriptions of these parameters). Convergence of the total energy 𝐸tot is used

as a criteria, as shown in Figure 6.9. Values have been used that provide a convergence within a few meV.

For this a 𝑘-mesh of 10000 points and 𝑅MT𝐾max = 9 was used. Spin-orbit coupling was included for the

Yb/Lu and Ni atoms, with a relativistic local orbitals basis for Yb/Lu. When including spin-orbit coupling,

an increased maximum eigenvalue energy is often required for converging this second variation [17]. For

convergence akin to the previous steps, the eigenvalue window was extended up to 𝐸max = 9 Ryd. It should

be noted that a large step of ∼200 meV in the total energy is seen when increasing 𝐸max from 7 Ryd to 8 Ryd.

6.2.2 Comparison of LuNi4P2 and YbNi4P2

Density of states plots are shown in Figure 6.10 to illustrate the effect of spin-orbit coupling and differing 4 𝑓

valency. A calculation of LuNi4P2 with no spin-orbit coupling is presented in panel (a). With spin-orbit in

panel (b), the most significant effect is on the large 4 𝑓 peaks in the density of states. Spin-orbit coupling lifts

the degeneracy of these states, with an energy difference between the new 𝑓 -levels of around 2 eV. With Lu,
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Figure 6.10: Density of states plots, comparing the effect of spin orbit (SO) coupling

and itinerancy of 4f electrons. (a) LuNi4P2 without SO, (b) LuNi4P2 with SO, and (c)
YbNi4P2 with SO. For LuNi4P2with SO, a dotted vertical line corresponding to removing

one electron is included at 𝐸 − 𝐸F = −210 meV

the 4 𝑓 electrons are fully localised, well below the Fermi level. For the calculations with Yb in panel (c), the

higher energy of these two peaks is rather situated just below the Fermi level. Using the density of states

of LuNi4P2, an equivalent chemical potential shift to remove a single electron per Lu was calculated to be

𝜇 = −210 meV, which is included as a dotted line in panel (b). We consider the Fermi surface of LuNi4P2

at 𝐸 = 𝐸F + 𝜇 (where 𝐸F is the Fermi energy of LuNi4P2) to be an approximation to the YbNi4P2 Fermi

surface, which we can support through band structure calculations. The practice of applying shifts to the

Fermi energy of calculated heavy fermion bands to achieve best agreement with observed Fermi surfaces is

fairly common, examples include for quantum oscillations of UPt3 [144], and for ARPES measurements of

CeRh2Si2 [102].

Band structure calculations of LuNi4P2 and YbNi4P2 are presented in Figure 6.11. A diagram of high

symmetry points and their labels is given in Figure 6.11. The calculations of LuNi4P2 are presented in panel

(a), with four bands intersecting the Fermi level, and the calculations of YbNi4P2 are included in panel (b).

A colour scheme has been used for bands here which is consistent with all other plots presented later in this

chapter. This colouring scheme is indexed from the lowest crossing band of YbNi4P2 as ‘band 0’ ( in plots)
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Figure 6.11: Band structure plots of (a) LuNi4P2 and (b) YbNi4P2 from LDA+SO calcu-

lations. For LuNi4P2, a dashed line corresponding to removing one electron is included

at 𝐸 = −210 meV. Band numbering is started from 0 at the lowest crossing dark blue

coloured band, up to the highest crossing light blue coloured band 5. (c) High symmetry

points are included for reference.

up to the highest occupied band in LuNi4P2 denoted ‘band 5’ ( ). A dashed horizontal line is included at

𝜇 = −210 meV in the band structure of LuNi4P2 to illustrate the Fermi level of the approximated YbNi4P2

band structure. In panel (b), band structure calculations for YbNi4P2 are presented, in which the upper 4 𝑓

levels near −0.2 eV are hybridised with the conduction electrons. There is good agreement with the bands

of LuNi4P2 at the intersection with the shifted Fermi level (dashed horizontal line panel (a)), and the bands

of YbNi4P2with its Fermi level (solid horizontal line panel (b)).

A more detailed comparison is now made between the band structure features at 𝐸F + 𝜇 in LuNi4P2

and those at 𝐸F in YbNi4P2. The intersections of the bands 0 and 1 ( and respectively) are in very good

agreement. The structure of avoided crossings between Γ–Z is well reproduced for all partially filled bands.

The only topologically incorrect sections are those of bands 2 and 3 ( and respectively) near the R point,

which appear to need a slightly smaller shift to recover the topology. This can be seen on the Z–R–X and
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Figure 6.12: Fermi surface evolution from small to large. (a) LuNi4P2 at 𝜇 = 0. (b)
LuNi4P2 at 𝜇 = −170 meV, as an approximation to YbNi4P2. (c) YbNi4P2 at 𝜇 = 0.

Z–R–A paths. A slightly better agreement can be made by shifting these bands slightly less than bands 0 and

1. Using several chemical potential shifts for different bands is not unique to heavy fermions, this method

has been used for example in LaFePO [22]. While rigid shifts will not in general conserve the charge of the

system, ultimately we are interested primarily in uncovering the shape of the Fermi surface using quantum

oscillations6.

The topology of YbNi4P2 is therefore mostly determined by the non- 𝑓 electrons, and we can use a

chemical potential shift with LuNi4P2 to mimic the effect of Kondo hybridisation7. This is useful as the

calculations involving Yb with spin-orbit coupling are much more computationally expensive than the

localised system, particularly when scaling up the 𝑘-mesh such that the Fermi surface can be computed

to a high resolution. Further it allows for a qualitative picture of ‘de-hybridisation’ of the quasiparticle

Fermi surface, simply by shifting the chemical potential back upwards to remove the hole. For quantum

oscillations there is of course another factor that effectively acts as a rigid shift, the Zeeman splitting of

majority and minority bands. Both of these effects will be considered to be of importance in understanding

the observed spin split quantum oscillation frequencies.
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6.2.3 Fermi surface and extraction of extremal orbits

The LuNi4P2 band structures were recalculated on a 2 × 10
5

point 𝑘-mesh to produce a smoother Fermi

surface, as shown in Figure 6.12 panel (a). The Fermi surface of YbNi4P2 was also recalculated on a mesh of

5× 10
4 𝑘-points and examined using SKEAF for comparison8. The Fermi surface from YbNi4P2 calculations

is presented in panel (c), and for comparison the Fermi surface of LuNi4P2 is plotted with chemical potential

𝜇 = −170 meV in panel (b). The approximation of YbNi4P2 with a chemical potential shift appears to

work quite well (comparing panels (b) and (c)), at least in terms of the topology for bands 1, 2 and 3

( , and respectively). The topology of the lowest band 0 ( ) is not well reproduced by this approximation

however, and there is a slight difference in band 2 ( ) due to a neck forming for the shifted LuNi4P2. All of

the Fermi sheets have significant changes in their topology on decreasing the chemical potential (or adding

𝑓 holes to the Fermi volume). The two small pockets from bands 4 and 5 ( and ) disappear. Necks form

along the c direction in band 3 ( ). A small pocket above the flat sheet of band 2 ( ) merges in to the flat

band. The doughnut shaped band 1 ( ) separates in to two surfaces via neck-type Lifshitz transitions along

c, and the outer surface forms necks in the a direction at the X point. Finally, The formation of the lowest

band 0 ( ) with shifting 𝜇 involves a void type transition as it is not present in LuNi4P2 at 𝜇 = 0.

Using the Supercell K-space Extremal Area Finder (SKEAF) program [109], frequencies were extracted

from the calculated Fermi surfaces, with the aim to reproduce the measured angular dependences in

Figure 6.8. This was done for both the LuNi4P2 and YbNi4P2 Fermi surfaces. To produce a better agreement

with data, the Fermi level 𝐸F+𝜇was searched as a parameter for the LuNi4P2 Fermi surface, producing many

rotation plots. A range of chemical potentials between zero and −158 meV (equivalent to 0.75 holes being

added to the Fermi volume per Lu) was searched. For completeness, rotation plots of LuNi4P2 and YbNi4P2,

both with 𝜇 = 0 are presented in Figure 6.13 and briefly discussed here. Line widths in calculated rotation

plots are proportional to the curvature factor |d2𝐴k∥/d𝑘2

∥|
−1/2

(described in section 2.5), with minimum

and maximum line width limits to contain 90% of the size variation9. The curvature factor is a component

determining the amplitude of the observed oscillations, and so orbits with an optimal curvature factor

(thicker lines in plots) are more likely to be resolvable. Both the LuNi4P2 and YbNi4P2 calculations give

cylindrical behaviour about the [001] direction so could be used to account for 𝐹𝛾 and 𝐹𝛿 in Figure 6.8

albeit with orbits of different bands in YbNi4P2 and LuNi4P2. More distinctive are the high frequencies

associated with band 1 ( ), in particular the highest frequency branches of the LuNi4P2 calculation are very

6Further, quantum oscillations will not give any signature of the 1D Fermi sheets, and the charge is conserved by all Fermi sheets,

so we do not know how much charge each observed sheet must have.

7Strictly only the topology of the bands, quasiparticle properties have not been renormalised [155]

8A calculation on a finer mesh of 9 × 10
4 𝑘-points by Sven Friedemann has been used for Fermi surface plots. Rotation plots

presented in this thesis use the 5 × 10
4

mesh.

9Otherwise the scale is dominated by a few outlier points
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Figure 6.13: Calculated rotation plots of (a) LuNi4P2 at 𝜇 = 0 and (b) YbNi4P2at 𝜇 = 0.
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Figure 6.14: Spin split interpretation of rotation plot above and below the 𝐵9 transition. (a)
Observed frequencies in YbNi4P2 above (black crosses) and below (red circles) 𝐵9. Branches have

been labelled, with ‘+’ and ‘-’ indicating the larger and smaller spin split orbits above 𝐵9. The

harmonics of 𝐹𝛽 are given a lighter shade as they will not be modelled by the DFT. (b) Predicted

frequencies from DFT Fermi surface of LuNi4P2 with band selective chemical potential shifts. A

maximal frequency of a circle in the Brillouin zone of YbNi4P2 is labelled 𝐹
[001]
◦ .

similar in shape and magnitude to the observed branch 𝐹+𝛼 , and there is an orbit just above 1 kT that forks at

[110], similar to the observed 𝐹𝛽 branch. More detailed discussion is given in the next section with refined

chemical potential shifts and consideration of the spin splitting above 𝐵9.

6.3 Spin split Fermi surface interpretation of rotation plot

To explain the changes seen over 𝐵9, the new branches about the [001] direction are considered as orbits

of a spin split Fermi surface, as shown in Figure 6.14 panel (a). In this model the Fermi surface evolves

continuously over the 𝐵9 transition, which we have seen evidence for in terms of a lack of phase shift of 𝐹𝛾

(see Equation 6.5) and a continuous evolution of the Hall effect (see Figure 5.17). Orbits have been given

labels with superscripts ‘+’ and ‘−’ for the proposed larger and smaller spin split orbits of the same sheet.

With this scheme, there is good angular agreement of 𝐹𝛾 and 𝐹𝛿 with their spin split versions above 𝐵9, in

the sense that they all end at the same angle with positive curvature away from [001]. Further, the masses

and mean-free paths of 𝐹𝛾 and 𝐹+𝛾 have exact agreement within error Table 6.1.
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Figure 6.15: LuNi4P2 Fermi surface and orbits, with band se-

lective chemical potential shifts.

Band Δ𝐸 (meV) Colour

(0) −14.3

1 −14.3

2 0

3 −61.9

(4) −61.9

(5) −61.9

Table 6.2: Details of rigid band

shifts of LuNi4P2 Fermi surface.

Bands 0, 4, and 5 do not cross the

Fermi level.

With the orbit assignment of Figure 6.14 panel (a) in mind, a closest fit in DFT calculations of LuNi4P2

with rigid band shifts has been found and presented in panel (b). The Fermi surface is shown in Figure 6.15

with orbits at example direction plotted, and the rigid band shifts are detailed in Table 6.2. The largest orbit

𝐹+𝛼 is assigned to the outer belly of band 1 ( ) with a small negative chemical potential shift. This frequency

becomes close to the maximal frequency of a circle 𝐹
[001]
◦ = 6.5 kT inside the Brillouin zone of YbNi4P2 with

B ∥ [001], and indicates that the outer edge of the doughnut Fermi surface of band 1 ( ) is close to a neck

type Lifshitz transition at the X points. The orbit 𝐹𝛽 is also a cross-section of band 1 ( ). We do not appear to

observe a convincing signal of the small inner orbit of band 1 ( ) along the [001] direction despite its optimal

curvature. A sizeable negative shift of 𝜇 is given to band 3 ( ) which contains the cylindrical structures of

𝐹𝛾 and 𝐹𝛿. In the DFT calculations this would result in a Fermi surface of band 2 ( ) with flat sheet and a

small pocket, potentially close to a Lifshitz transition where both join.

Cyclotron masses (as in Equation 2.80) have been calculated using SKEAF for comparison with the

experimental mass studies (which are presented in Figure 6.2), both are presented in Table 6.3. For all

measured orbits, the measured cyclotron mass is enhanced significantly by a factor of 5 or 6, indicating

Kondo hybridisation is still present. This mass enhancement is independent of the field direction, and is

the same for orbits of band 1 ( ) and 3 ( ).

The measured frequencies in quantum oscillations are always a ‘back-projection’ of the Onsager fre-

quency to zero field, a more complete description is given in subsection 2.5.1. The measured frequency
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Orbit (𝜃, 𝜙) 𝑚∗ 𝑚SKEAF

c

𝐹𝛼 (49
◦ , 0) 6.7(5) 1.26(1)

𝐹𝛽 (90
◦ , 0) 6.1(4) 0.966(5)

𝐹𝛾 (0, 0) 3.3(5) 0.535(2)

𝐹𝛿 (0, 0) 4.7(2) 0.91(3)

Table 6.3: Comparison of observed and calculated cyclotron masses. Masses are calcu-

lated using SKEAF with the shifted band structure, with shifts as detailed in Figure 6.2.

Experimental masses are the same as in Table 6.1 – 𝐹𝛽 and 𝐹𝛾 are taken below 𝐵9, whereas

𝐹𝛼 and 𝐹𝛿 have been taken above 𝐵9 from the ‘+’ and ‘−’ branches respectively.

is

𝐹meas =

(
1 + 𝐵 𝑑

𝑑𝐵

)
𝐹, (6.6)

where 𝐹 is the Onsager frequency. For Zeeman split bands of a non-magnetic metal, the majority and

minority spin bands are split by equal and opposite energies. Typically this results in a linear evolution of

the majority and minority Onsager frequencies10 and so the back-projected frequencies are equal to the zero

field Onsager frequencies. The majority and minority oscillations either add constructively or destructively

depending on the size of 𝑑𝐹/𝑑𝐵, as described by the spin splitting damping factor 𝑅s (see subsection 2.5.2).

This concept is used to explain a spin zero in the branch 𝐹𝛽 as a function of field angle in subsection 6.3.1.

The splitting of branches 𝐹𝛾 and 𝐹𝛿 above 𝐵9 cannot be explained by a linear splitting of the Onsager

frequencies from 𝐵 = 0, and instead requires consideration of non linear Onsager frequencies of the majority

and minority Fermi surfaces that do not back-project to the same observed frequency. We consider this to

be due to a change in the gradients 𝑑𝐹±/𝑑𝐵 at 𝐵9. This is explained in subsection 6.3.2 consistently with the

observation of a spin zero of the 𝐹𝛽 branch. Changes in 𝑑𝐹/𝑑𝐵 as a function of field are somewhat common

in heavy fermion compounds due to the high sensitivity of the Fermi surface to energy shifts (large𝑚∗), with

examples in CeCoIn5 [53], UCoGe [9, 80], YbRh2Si2 [110], and even in the anomalous quantum oscillations11

of Kondo insulator YbB12. It can be a very difficult problem to relate the observed frequencies back to the

true Onsager frequencies. An inventive approach has been adopted in a study of UPt3, where a broad step

in magnetisation is simultaneous with anomalous quantum oscillations [86]. Assuming the magnetisation

is entirely from the imbalance of electrons in the up-spin versus down-spin Fermi seas, the magnetisation

is related to the Fermi volume, which in turn is related to the extremal orbits giving rise to the oscillation

frequency. Using the magnetisation as a proxy for the extremal area (a reasonable assumption if the Fermi

surface is 2D), an oscillation with frequency proportional to the magnetisation plus a constant can be fit

10This is true for orbits of a parabolic energy dispersion since 𝐸 ∼ 𝑘2 = 𝐴ext.

11Although the nature of these quantum oscillations is debated.
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Figure 6.16: Spin zero in 𝐹𝛽 branch. (a) Oscillatory signals in resistivity after subtraction

of a smoothing spline background with 𝑝 = 0.999. (b) FFT. (c) FFT peak amplitude as

a function of the angle 𝜃 of the field relative to [001]. A spin zero is present near 72.5◦.
The first observation of the branch is seen at 55

◦
.

convincingly. For YbNi4P2 it will be argued that a kink at 𝐵9 in the Hall effect (see Figure 5.17) is related to

the abrupt frequency shifts seen at high fields in a similar fashion.

6.3.1 Spin zeros of 𝐹𝛽

YbNi4P2 is a good candidate for spin zeros as it has both large effective masses (Table 6.1) and 𝑔𝑚∗ anisotropy

[61], and indeed one can be observed in the 𝐹𝛽 orbit as field is rotated from [001] to [100] (see Figure 6.16).



135

Only one spin zero is observed so it is not possible to estimate the change of 𝑔𝑚∗ between two zeros12.

However, it does indicate that the 𝐹𝛽 orbit is a linearly split, with majority and minority frequencies back

projecting to the same frequency. Similar signs of spin zeros are not observed in other branches despite

the strong 𝑔𝑚∗ anisotropy. For the spin split frequencies above 𝐵9 this is expected. For the non-split back

projected frequencies observed below 𝐵9 the lack of spin zeros is unsurprising due to unequal oscillation

amplitudes of majority and minority branches (as observed in the spin-split versions above 𝐵9, see 𝐹±𝛾 in

Figure 6.6). This is a mechanism suggested for not observing spin zeros in Sr2RuO4 [13] due to differences

in the curvature factor of its majority and minority cylinders.

As the 𝐹𝛽 orbit is only observed near [100] and [110] (i.e at large 𝜃), and spin split branches are only

observed near [001] it is evident the 𝑔𝑚∗ anisotropy (and anisotropy of 𝐵9) is causing different behaviour

at small and large 𝜃. The heavy fermion material URu2Si2 provides a very similar example with one of its

branches experiencing many spin zeros, but then returning to a smoothly varying amplitude towards [001]

where splitting of the majority and minority frequencies can be resolved [8].

6.3.2 Spin splitting of 𝐹𝛾 and 𝐹𝛿

For branches 𝐹𝛾 and 𝐹𝛿 an apparent splitting is observed above 𝐵9, closing as field is rotated towards [100]. A

more detailed view of the observed frequencies near [001] is given in Figure 6.17 panel (a). Fits of cylindrical

forms 𝐹(𝜃) = 𝐹(0)/cos(𝜃) are overlaid, with frequencies constrained to converge at 65
◦
, demonstrating these

can be fit consistently with a splitting that reduces towards [100].

To explain the nature of this splitting for B ∥ [001], a simple model of the Onsager frequencies is

considered with only linear terms (but non-linear at 𝐵9), as shown in Figure 6.17 panel (b). Non-linear

terms above or below 𝐵9 are ruled out due to the linearity of the peak spacing of 𝐹𝛾 and 𝐹+𝛾 (see Figure 6.4).

Further a jump at 𝐵9, as illustrated in panel (d), is ruled out by evidence in subsection 6.1.1 that a phase shift

does not occur between 𝐹𝛾 and 𝐹+𝛾 . These Onsager frequencies can be written generally

𝐹±(𝐵) =

𝐹0

1
+ 𝐶1𝐵 ± 𝐷1𝐵, 𝐵 < 𝐵9 ,

𝐹±
2
+ 𝐶2𝐵 ± 𝐷2𝐵, 𝐵 > 𝐵9 ,

(6.7)

where 𝐹+ and 𝐹− refer to the larger and small spin split frequency respectively, 𝐹0

1
is the zero field Onsager

frequency and 𝐹±
2

are chosen such that 𝐹± are continuous over 𝐵9. The 𝐶 coefficients controls the frequency

change of an equivalent spinless Fermi surface, for example due to a continuous de-hybridisation of the

Kondo effect or a field dependent chemical potential. Coefficients𝐷 control the amount of Zeeman splitting,

12This can only be made reliably from the zeros of 𝑅s in Equation 2.84 as there are many other factors that can change the oscillation

amplitude. Further, this is a shame as the anisotropy of 𝑔 is known [61] – these two pieces of information that alone cannot determine

the absolute 𝑔 factor would in combination be able to uniquely determine 𝑔 (assuming it is the same on all parts of the Fermi surface).
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Figure 6.17: Splitting of 𝐹𝛾 and 𝐹𝛿 and schematics of back-projected frequencies. (a)
Separation of branches and cylindrical form fits in solid lines. (b) Schematic for field

along c direction where splitting is largest, not to scale. (c) Schematic for field away

from c, where splitting begins to close. (d) Scenario where the majority and minority

Fermi surface volumes change discontinuously. In panels (b-d), solid lines represent the

true Onsager frequencies of majority and minority bands, while dotted lines have been

included for a spinless band. Dashed lines trace the back-projection to the observed

frequency at the 𝑦-intercept. Spin directions have been assigned on the basis that both

𝐹𝛾 and 𝐹𝛿 are hole orbits of band 3 ( ).

dependent on 𝑔𝑚∗. The back-projected frequencies are then equal to the field independent terms 𝐹0

1
and 𝐹0

2

of Equation 6.7, as so

(1 − 𝐵 𝑑

𝑑𝐵
)𝐹± =


𝐹0

1
, 𝐵 < 𝐵9 ,

𝐹0

1
− 𝐵9Δ𝐶 ∓ 𝐵9Δ𝐷, 𝐵 > 𝐵9 ,

(6.8)

where Δ𝐶 = (𝐶2 − 𝐶1) and Δ𝐷 = (𝐷2 − 𝐷1). With these restrictions given to the Onsager frequencies the

only source of resolvable frequency splitting between majority and minority branches is due to a change in

the Zeeman splitting term 𝐷. A change in the spinless term governed by 𝐶 will result in no back-projected

frequency difference between majority and minority bands above 𝐵9, rather resulting in the same shift for

both majority and minority frequencies. Using the measured frequencies 𝐹𝛾, 𝐹±𝛾 , 𝐹𝛿 and 𝐹±𝛿 in the [001]

direction13, and 𝐵9 = 16.8(2)T, it is found for the 𝐹𝛾 orbits that Δ𝐶𝛾 = +3.7(2), Δ𝐷𝛾 = −7.7(2), while for the

13As in Table 6.1. For 𝐹𝛿 a value of 410 T from a single measurement of the sample with I ∥ c has been used, and an error of 10 T

has been assumed.
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𝐹𝛿 orbits Δ𝐶𝛿 = +7.6(6), and Δ𝐷𝛿 = −3.5(2) (dimensionless as these are a rates of frequency change with

field).

To relate these to more intuitive properties, consider the general energy dependence of Zeeman split

frequencies

𝐹±(𝜀) = 𝐹

(
𝐸F + 𝜇(𝐵) ∓

1

2

𝑔𝜇B𝐵

)
. (6.9)

Expanding these to first order in 𝐵 (assuming 𝐹 and 𝜇 are close to linear in 𝐵, and 𝑔 quite constant),

𝐹± ≈ 𝐹(𝐸F) +
𝑑𝐹

𝑑𝜀

(
𝑑𝜇

𝑑𝐵
∓ 1

2

𝑔𝜇B

)
𝐵, (6.10)

where 𝜇(0) = 0 has been chosen. This can be simplified by noting that 𝑑𝐹/𝑑𝜀 can be related to the cyclotron

mass, with 𝑑𝐹/𝑑𝜀 = 𝑚∗/ℏ𝑒 (or with a minus sign for a hole type orbit). The Onsager frequencies are therefore

𝐹± = 𝐹(𝐸F) +
𝑚∗

𝑒ℏ

(
𝑑𝜇

𝑑𝐵
∓ 1

2

𝑔𝜇B

)
𝐵. (6.11)

Comparing Equation 6.11 and Equation 6.7, and simplifying with 𝜇B = 𝑒ℏ/2𝑚e, we can attribute 𝐶 to a

linear change in the chemical potential,

𝐶 =
1

2𝜇B

𝑚∗

𝑚e

𝑑𝜇

𝑑𝐵
, (6.12)

and 𝐷 to a term proportional to the 𝑔-factor,

𝐷 = −1

4

𝑚∗

𝑚e

𝑔. (6.13)

We can apply this concept directly to the model of spin splitting over 𝐵9, as the Onsager frequencies are

linear in the regions 𝐵 < 𝐵9 and 𝐵 > 𝐵9. The change in the 𝐶 term is then due to a jump in 𝑚∗ or 𝑑𝜇/𝑑𝐵

over 𝐵9, and the change in the 𝐷 term is due to a jump in 𝑚∗ or 𝑔. Note that change of the 𝐷 term cannot

determine the sign of the change Δ𝑚∗𝑔, as a change of the opposite sign will produce the same amount of

splitting. In contrast, the sign of the 𝐶 term will uniquely determine the sign of Δ(𝑑𝜇/𝑑𝐵), and care must

be taken to reverse the sign of Equation 6.12 for hole type orbits. Within this model, resolvable spin-split

back-projected frequencies can strictly only be associated with a change in 𝑚∗ or 𝑔, and so this is what we

attribute the spin splitting above 𝐵9 to. Of course a change in these parameters will result in a change in the

observable properties. A change in the mass 𝑚∗ can be probed through the Lifshitz–Kosevich temperature

damping in quantum oscillations, the heat capacity or through the 𝐴 coefficient of resistivity. A change

in the 𝑔-factor would result in a change in the Pauli paramagnetism which would be observable through

magnetisation measurements (similar to in UPt3 [86]) or through anomalous Hall effect measurements14.

Applying this model to the measured frequencies yields the values in Table 6.4, using effective masses

𝑚∗𝛾 = 3.2(1)𝑚e and 𝑚∗𝛿 = 4.7(2)𝑚e from Table 6.1 where required (only the mass of the 𝐹−𝛿 branch is

14Alternatively by probing the Fermi volume with the ordinary Hall effect
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Orbit Δ(𝑑𝜇/𝑑𝐵) (meV T
−1

) |Δ𝑔|
𝐹𝛾 -0.132(8) -9.6(4)

𝐹𝛿 -0.19(2) -3.0(2)

Table 6.4: Estimated changes over 𝐵9 in spin split model using a spin split parabolic

model with spherical Fermi surface.

unambiguous). The mass of both branches has been assumed constant over 𝐵9 for simplicity, this is

experimentally justified for 𝐹𝛾 and 𝐹+𝛾 (see Table 6.1) however no reliable measure of the mass of 𝐹𝛿 could

be made below 𝐵9. This means a change in the quasiparticle 𝑔-factor would have to occur at 𝐵9 for there to

be resolvable spin splitting. As we have attributed 𝐹𝛾 and 𝐹𝛿 to hole type orbits of band 3 ( ), a negative

factor has been included in Equation 6.11 to the terms with 𝑚∗(and so Equation 6.12 and Equation 6.13).

The estimated values are a sensible order of magnitude, but suggest quite a large 𝑔-factor in the low field

state (𝑔∥c > 10 for the 𝐹𝛾 orbit15). In comparison to the earlier picture of Kondo hybridisation adding hole

volume (and roughly equivalent to a chemical potential shift 𝜇 = −210 meV), the small negative values

of Δ(𝑑𝜇/𝑑𝐵) would equate to a slight slowing down of the de-renormalisation (or possibly even the end

of the de-renormalisation). Another possibility for a change in this gradient is proposed in Appendix B,

attributing it to charge conservation over a Lifshitz transition. The Hall effect data in Figure 5.17 has a kink

at 𝐵9 which would be associated with non-linear behaviour. It was noted that the anisotropy 𝐵9 cannot be

well explained by only an anisotropic Zeeman splitting [61], likely requiring an additional mechanism.

Problematically, if we are to match both orbits to the same Fermi sheet it is difficult to justify both orbits

not having the same changes in 𝑔-factor and chemical potential. This might indicate the assumption of 𝐹𝛿

having an unchanged mass is wrong, or that a branch has been attributed to the wrong part of the Fermi

surface16.

Applying this model to the angular dependence of the splitting in 𝐹±𝛾 and 𝐹±𝛿 , as shown in Figure 6.17,

there is a reduction in the size of the resolved spin splitting as the field is rotated from [001] towards [100].

A schematic of the Onsager frequencies at larger 𝜃 has been constructed in panel (c), demonstrating how a

reduction in Δ𝐷 with angle results in a reduced spin splitting of the back-projected frequencies. This would

then be consistent with the observed spin zeros in 𝐹𝛽, which require the back-projected frequencies to be

approximately the same. This is a particularly interesting suggestion as 𝑔𝑚∗ has already been observed

to have a strong anisotropy 𝜂 = 𝑔[001]/𝑔[100] ≈ 3.8 [61] that causes the field induced Lifshitz transitions

to be anisotropic. This 𝑔-factor anisotropy is in good agreement with the Yb CEF ground state, which

suggests the quasiparticles have inherited the anisotropy of the 𝑓 states. If the 𝑔-factor change over 𝐵9 is

15Observations of larger 𝑔-factors do exist, take for example elemental bismuth where 𝑔 = 35.3(4) [20]

16Notably there are many candidates for cylindrical-like orbits about [001], see Figure 6.13
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strongest along [001], then the anisotropy of the 𝑔-factor also changes over 𝐵9. Mostly likely this would be

a reduction in the 𝑔-factor along [001] so that the quasiparticles have less of the anisotropic 𝑓 -character at

highest fields. A good experiment to confirm or rule out this reduction in anisotropy could be to search for

higher field Lifshitz transitions than 𝐵9 and study their anisotropy, however due to the suppression of the

Kondo hybridisation this may require very large magnetic fields. Further, higher field anomalies could be

difficult to observe reliably as the oscillatory part of the signal grows in field.

To summarise this model, several indications of spin splitting are seen in the data, leading to spin zeros

near [100] and resolvable frequency splitting towards [001]. Further, there appears to be good evidence

from the angular dependences of 𝐹𝛾 and 𝐹𝛿 that there is a change in the rate of splitting (equivalently a

change in 𝑔𝑚∗) of the Onsager frequencies over 𝐵9, an effect which reduces away from [001]. Further in the

𝐹𝛾 branch, no mass change is seen suggesting that the effect in this branch is almost entirely driven by a

change in the effective 𝑔-factor.

6.4 Summary

The first observations of quantum oscillations in YbNi4P2 have been presented and analysed here. Despite

the many complications in quantum oscillations of heavy fermion systems, remarkably good insight can

be found using simple DFT+SO calculations of the non-heavy fermion reference compound LuNi4P2. The

Fermi surface at high fields is consistent with LuNi4P2 with a small negative chemical potential shift (much

less than adding a hole), which we attribute to mostly de-renormalised quasiparticles in high fields. There

are signs that some Kondo hybridisation is still present at highest fields, with heavy masses up to 10𝑚e.

Anomalies in the quantum oscillations are observed at the 𝐵9 Lifshitz transition. The low frequencies

𝐹𝛾 and 𝐹𝛿 near [001] are particularly challenging to unravel here due to these anomalies, but point towards

effects of back-projection over the transition, with a continuous evolution of the Fermi surface rather than

any sudden change in Fermi volume (not a sudden destruction of the Kondo hybridisation). A change

in the effective 𝑔-factor is suggested as a mechanism driving the splitting of measured frequencies, and

further implies that the 𝑔-factor anisotropy reduces over the 𝐵9 transition which may be an indication that

the quasiparticles are losing the character inherited from the Yb 𝑓 -states.

This work gives a starting point to build a picture of the low field Fermi surface, and provides quantitative

estimates of what happens at the 𝐵9 transition. Hopefully this information can be combined with further

theoretical knowledge of the Lifshitz transitions of YbNi4P2 to work back towards the low field Fermi

surface. Relevantly, a toy model employed by Pourret et al. for heavy fermion material YbRh2Si2 has quite

accurately accounted for the Lifshitz transitions, and further was able to relate this back to the evolution of
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the Fermi surface directly through renormalised band structure calculations [103]. A similar method could

be fruitful for YbNi4P2.

No direct evidence can be gained about the quasi-1D Fermi surface, however the similarity of experimen-

tal data to the other predicted bands suggests that the DFT is reliable at high fields and that the quasi-1D

band does exist. This 1D sheet is also present in the 𝑓 -itinerant calculations of YbNi4P2 which suggests it

will also be present at low fields, however renormalised band structure calculations would be more trust-

worthy there. Whether the presence of a quasi-1D band alongside several very three dimensional bands is

sufficient as a reason for a ferromagnetic quantum critical point then remains a problem for theorists, but

seems unlikely to remove the soft modes that are expected to drive the transition first order.



Chapter 7

Conclusions

Electronic transport measurements have been used to probe a wide variety of phenomena in YbNi4P2 over a

very large range of temperatures and magnetic fields. A summary of the ground states is first given at lowest

temperatures. At high fields, quantum oscillations have revealed a Fermi surface with suppressed Kondo

hybridisation (similar to LuNi4P2), and an unusual frequency splitting over the transition 𝐵9. At low fields

and lowest temperatures, the Hall effect has been successfully decomposed in to ordinary and anomalous

components, finding that the Fermi volume does not change between the ferromagnetic and transverse

ferromagnetic polarised states – this confirms that Kondo hybridisation exists inside the ferromagnetic

state. Further, a potential sign of quantum criticality is seen near the transverse field induced quantum

phase transition, via a small 𝑇-linear component of the resistivity. For intermediate fields, additions are

made to the many Lifshitz transitions reported in literature, through signatures in the Hall effect, and with

new Lifshitz transitions in the magnetoresistance.

The observation of spin splitting, only above the transition 𝐵9, has been argued to be due to an abrupt

change in the 𝑔-factor of the quasiparticles, with the anisotropy of this 𝑔-factor also changing. A simple

model has been derived to decompose abrupt changes in observed frequency (without a phase change) in

two parts: a change in 𝑔𝑚∗, and a change in the chemical potential (more specifically a change in 𝑑𝜇/𝑑𝐵).

This may be of use in other heavy fermion systems where spin splitting of observed frequencies can be

resolved (e.g. URu2Si2 [8]), however the abrupt step (changing in less than a period) of observed frequency

appears to be a unique observation to YbNi4P2. This scenario poses interesting questions in regard to the

the quasiparticle 𝑔-factor anisotropy, which is derived from the anisotropy of Lifshitz transitions at lower

fields, and is in very good agreement with the CEF value of the Yb moments. Does the quasiparticle

𝑔-factor change due to an underlying change in the CEF ground state, or is there rather an abrupt change

in the Kondo hybridisation? Verification of a change in 𝑔-factor anisotropy may be achievable through

141
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measurements to higher magnetic field, to see whether any higher field Lifshitz transitions above 𝐵9 exist

with a reduced anisotropy. High field magnetisation measurements (with B ∥ c, and to fields higher than

𝐵9) are important for future work – the behaviour at 𝐵9 could help clarify what happens at this transition,

and rule out scenarios such as metamagnetism.

Knowledge of the high field Fermi surface and the Lifshitz transitions will be important in future work

if attempts are made to work back towards the zero field Fermi surface. Theoretical studies of the ‘large’

Fermi surface, in which the 𝑓 electrons are included in the Fermi volume via the Kondo hybridisation, will

most likely require the renormalised band structure method. As a computationally cheap starting point, it

has been demonstrated explicitly that the uncorrelated YbNi4P2 Fermi surface is well approximated by the

localised 𝑓 electron calculation (LuNi4P2) with a rigid chemical potential shift. These uncorrelated Fermi

surfaces all include bands with very 3D Fermi sheets. It therefore appears very likely that the zero-field

Fermi surface contains these very 3D sheets, considering that the resistivity anisotropy is not huge (a factor

∼ 10 in the 𝐴 coefficient) and as Kondo hybridisation is not expected to affect the Fermi surface topology

significantly. This presents a challenge to the quasi-1D hypothesis for the ferromagnetic quantum criticality,

as the 3D sheets will give rise to the soft modes that are believed to turn the phase transition first order.

At temperatures above 𝑇C, unusual scaling behaviours of the magnetoresistance are found which appear

to be an extension of single-ion Kondo scaling with an additional scaling that saturates at high magnetic

field. This scaling may be more general to other heavy fermion systems with ferromagnetic fluctuations,

and a theory of single-ion Kondo scaling in the presence of these fluctuations is likely needed for further

understanding. There are several unusual behaviours of the Hall effect that cannot be well understood

in terms of common models of the anomalous Hall effect. Measurements of the 4 𝑓 localised reference

compound LuNi4P2 may help such that the non-magnetic part of the Hall resistivity can be subtracted

prior to attempting scaling relations (for example as done for the heavy fermion ferromagnet YbPtGe [63]).

For the sample with B ∥ a, two series of extrema in 𝜌𝑥𝑦 are found, with maxima appearing to invert and

become minima and vice versa, implying a sign change of the anomalous Hall effect, potentially due to

an intrinsic contribution (as observed in USbTe [123]). For the sample with B ∥ c, an abrupt change in

𝜌𝑥𝑦(𝑇) minima occurs as transverse ferromagnetic saturation is reached. Further, a large hump develops

in 𝜌𝑥𝑦 following this saturation field at higher temperatures – this is reminiscent of the high temperature

Hall effect in CeRu2Si2 [29] at its metamagnetic transition, except the field centre of the hump in YbNi4P2 is

temperature dependent. Magnetisation isotherms at more temperatures (high quality data currently exists

for 70 mK) would be helpful to determine the anomalous Hall effect components.

Future work on YbNi4P2 should perform Hall effect measurements of the localised 𝑓 electron reference

LuNi4P2, and of samples YbNi4(P1 – xAsx)2 with suppressed ferromagnetism (𝑥 > 0.1). The former may
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provide better insight into the components of the Hall effect of YbNi4P2, and the latter can be used to

test the role of the Kondo hybridisation in the ferromagnetic quantum criticality. Anomalous Hall effect

measurements of LuNi4P2 would also be of interest to test whether there are magnetic contributions of

the nickel sites at lowest temperatures; while there is good evidence the nickel is non-magnetic at room

temperature, this has not been thoroughly explored at lower temperatures.





Appendix A

Heating

Magnetic field sweeps were used to try to detect any hysteretic behaviour inside of the ferromagnetic phase,

particularly in the Hall resistivity via an AHE. Hysteresis was observed in both contacts with a dependence

on field sweep rate, a particularly strong effect in the longitudinal contact is shown in Figure A.1. A likely

cause is due to a magnetocaloric effect, where the voltage increases simply because the sample has heated

up as the field is swept. With faster sweep rates, there is less time for the sample to dissipate heat in to the

sample stage and so the temperature rises more. The heat must be related to the sweeping of the magnetic

field as no hysteresis is seen in temperature sweeps. As the temperature sweeps are non-hysteretic, the

voltage at a fixed current was calibrated against the ruthenium oxide thermometer on the top of the mixing
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Figure A.1: Rate dependent magnetocaloric effect in longitudinal voltage for B ∥ c.

(a) Longitudinal voltage isotherms (mixing chamber temperature 𝑇MC held constant),

with different field sweep rates. Arrows indicate the field sweep direction (b) Estimated

temperature difference between sample and ruthenium oxide thermometer on mixing

chamber.
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Figure A.2: Temperature dependent magnetocaloric effect in longitudinal voltage for

B ∥ c. Longitudinal voltage isotherms are shown, at a range of temperatures in the

vicinity of 𝑇C. Arrows indicate the field sweep direction. No hysteresis is visible above

𝑇C.

chamber over many fixed field temperature sweeps and interpolated linearly, allowing for a conversion of

the sample voltage to temperature. At a sweep rate of 100 mT min
−1

a maximal heating of 48 mK is seen

on increasing the magnetic field inside the ferromagnetic phase. Some heating appears to persist outside

of the ferromagnetic phase, but mostly disappears on reducing the sweep rate to 50 mT min
−1

, so this is

likely some eddy current heating of the sample stage. The large amount of heating inside the ferromagnetic

phase therefore appears to be due to the ferromagnetism, and further occurs over an extended field range

inside the ferromagnetic phase so might be related to domain effects rather than a magnetocaloric effect at

the phase boundary. Magnetocaloric effects in heavy fermions can be particularly large as the electronic

entropy is proportional to the density of states at the Fermi level [141], and indeed there is interest to utilise

materials such as YbRh2Si2 for adiabatic demagnetisation refrigeration. However, we do not achieve any

cooling, again relating this to domain effects rather than the phase transition (the process is irreversible as

expected for a ferromagnet with a hysteresis loop).

We can rule out this being a heating effect of the sample stage by checking the germanium thermometer

mounted on the sample stage. While there is some hysteresis in the estimated germanium temperature,

this is about 12 mK at 100 mT min
−1

(or 6 mK at 50 mT min
−1

), which is very much in agreement with

the magnitude of the heating outside of the ferromagnetic dome1. We can also rule out heating due to a

magnetocaloric effect of Sn60/Pb40 solder at the contact pads, which can cause heating on reducing the field

1This is an estimate of the temperature as the magnetoresistance of the germanium thermometer is not calibrated and there is no

magnetic shielding
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Figure A.3: Estimated temperature relaxation after magnetocaloric heating for B ∥ c. A

stretched exponential is fit as described in the text.

through the superconducting critical field 𝐻c ∼ 80 mT [129, 33], as the heating effect stops above 𝑇C. This

is shown in Figure A.2 with a sweep rate of 20 mT min
−1

. Importantly, 𝑉L is still sensitive to temperature

changes above 𝑇C, as 𝑑𝜌𝑥𝑥/𝑑𝑇 does not reduce enough to coincidentally hide heating effects above 𝑇C. At

150 mK with a sweep rate of 20 mT min
−1

, a maximum hysteresis of 2% is seen at 25 mT. At 190 mK, the

sensitivity (𝑑𝜌𝑥𝑥/𝑑𝑇 as in panel (b) of Figure 5.21) is reduced by a factor of two, yet no hysteresis can be

resolved below the noise of ∼ 0.2%.

To quantify these heating effects further, a program was written to ramp the magnetic field from a

training field 𝐵t up to a probing field 𝐵p, recording the signal as a function of time. After about 5 s, the

signal was seen to decay back to a stationary signal. To record a high resolution time dependence, data was

recorded on to the lock-in amplifier buffer which could provide a higher sampling rate than by querying

through the Delphi experiment control program. The relaxation of the temperature back to equilibrium

with the mixing chamber at 70 mK is shown in Figure A.3 for a sweep from −250 mT to 40 mT at a rate of

100 mK min
−1

. An exponential does not fit the decay well, but a stretched exponential

𝑇YNP(𝑡) = 𝑇MC + Δ𝑇 exp

(
− 𝑡

𝑑

𝑏

)
(A.1)

works better with 𝑑 ∼ 6. This form however does not have a time constant, so the decay by a factor of

1/𝑒 was measured numerically instead as 𝜏 = 1.5 s. This is far from an ideal magnetocaloric measurement

setup, it would be worthwhile running an experiment where a crystal of YbNi4P2 is mounted directly on a

thermometer chip2, so that this can be isolated as a temperature effect and not something such as induced

voltages due to domain wall movement [76].

Notably, the most significant evidence that YbNi4P2 is a ferromagnet is via AC susceptibility measure-

2Avoid the use of Sn60/Pb40 solder to the thermometer as this can cause magnetocaloric heating [129, 33]
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ments [78, 130] which require an oscillating field. These studies used an oscillating field of roughly 10 µT

at a frequency of 113.7 Hz, this would equate to an average field sweep rate of 4 × 10
−2

mT × 113.7 Hz =

272 mT min
−1

which should result in a sizeable amount of heating! This somewhat brings in to question

the validity of those measurements as they show a mostly saturated susceptibility below 𝑇C, which could

rather be an indication of a decoupled sample and thermometer temperature (the sample gets stuck near

𝑇C independent of the thermometer temperature). It is important that these susceptibility measurements

are clarified at low temperatures, either through DC magnetisation measurements (such as via magnetic

torque) or by measuring the susceptibility with a significantly lower frequency.



Appendix B

Modelling quantum oscillations over a Zeeman

induced void transition

It is useful to consider how Lifshitz transitions can cause field dependent oscillation frequencies. In this

section a toy model of oscillations over a Lifshitz transition is presented to aid the discussion of the frequency

shifts observed over 𝐵9.

In the event of a Zeeman induced void transition where a Fermi surface of a minority spin disappears,

the simplistic picture of a the energy dispersion being shifted by ±(1/2)𝑔𝜇B𝐵 relative to the Fermi level

implies a significant non-conserved total charge, as the shrinking pocket can no longer account for the

added charge in the majority spin band. The total number of electrons however must be conserved1, and so

a field dependent chemical potential needed. To conserve charge after a void transition of the minority spin

Fermi surface, the field dependence of the chemical potential must change. The field dependence of this

chemical potential has implications for the observed frequency that will be outlined in the following. With

this motivation, it is informative to build a toy model of the quantum oscillations over such a transition such

that we can make comparisons to the experiment.

The simplest cases to calculate are those with axial symmetry, so that the Landau levels form cylinders.

To draw comparisons to the largely 3D Fermi surface of YbNi4P2, a good starting point is a paramagnet with

a spherical Fermi surface and a parabolic dispersion at 𝑇 = 0. Including the chemical potential 𝜇 so that the

total charge can be held constant,

𝐸F + 𝜇 =
ℏ2(𝑘±)2

2𝑚∗
± 1

2

𝑔𝜇B𝐵, (B.1)

where 𝐸F is the Fermi energy, 𝑚∗ is the effective mass, and 𝑔 determines the amount of Zeeman splitting.

1In Shubnikov–de Haas measurements where wires are attached to the sample this is less strict, as it is rather the total number of

electrons in the sample and the wiring that is conserved. However, it would be expected that the sample does not become significantly

charged.
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The number of electrons is then directly proportional to the volume contained inside the spheres of radius

𝑘±, with + denoting the minority band and − denoting the majority band.

It is useful at this point to consider what happens above and below the void transition of the minority

band. First considering in the absence of a chemical potential term, increasing the field from zero will act to

enlarge the majority band with Δ𝑘2 ∝ 𝐵 and shrink the minority band in an opposite fashion. The number

of electrons however is proportional to the volume 𝑘3
, and so the total number is not held constant, and

hence a chemical potential is needed2. With field 𝐵 > 𝐸F + 𝜇, the minority band vanishes, leaving a single

band to conserve the total number, hence the chemical potential must vary as

𝑑𝜇

𝑑𝐵
=

1

2

𝑔𝜇B. (B.2)

So far the effect of Landau quantisation that gives rise to quantum oscillations has been neglected. It is

common in derivations of quantum oscillations to neglect charge conservation, allowing the total charge to

suddenly drop as a Landau level exceeds the extremal Fermi surface orbit. This is usually sufficient in the

case of many occupied Landau levels [121], however can shift the last few Landau levels due to chemical

potential effects. Crossing a void Lifshitz transition implies that the lowest Landau level must be crossed,

as the Fermi volume becomes zero. Therefore the simple picture of back-projection that is usually very

effective, won’t strictly be accurate near the Lifshitz transition. The chemical potential must be allowed to

vary to maintain charge conservation as Landau levels are depleted. To model this, a numerical solution is

required.

For a spherical Fermi surface with an underlying parabolic dispersion, the Landau tubes are cylinders

with normals pointing along the field direction. Their areas are quantised such that 𝐴 ∝ (𝑛 + 𝛾)𝐵; for a

parabolic band 𝛾 = 1/2 [121]. The area quantisation means each level’s degeneracy must also be proportional

to the field, so that the number of states per area stays the same as without field. With Landau quantisation,

the number of electrons in each level at zero temperature then becomes the surface area of the Landau tube

contained within the Fermi surface.

Applying a field causes two changes, not only do the Landau levels expand, but the Fermi surfaces also

expand/contract. Charge conservation can then be imposed through a single chemical potential, then the

density of states at the Fermi level can be calculated. This was done as follows:

1. Set initial field 𝐵 > 0 (non-zero so that Landau tubes can be defined).

2. Make a 2D matrix of points on Landau tubes at field 𝐵0, with same number of points on each tube.

2This is best solved numerically.
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3. Count initial 𝑁0 = 𝑁+ + 𝑁− at energy 𝐸F (𝜇 = 0) and field 𝐵0, where 𝑁 is the degeneracy of electrons

on each tube (proportional to 𝐵) multiplied by the Fermi function (0 < 𝑇 ≪ 𝐸F) summed over all

matrix points.

4. Make matrix of points on Landau tubes at field 𝐵.

5. Find 𝜇 such that the total count 𝑁 = 𝑁0 (using a gradient descent algorithm).

6. Calculate 𝑔±(𝐸F+𝜇), counting the number of states in a small interval about the Fermi level𝐸F+𝜇±𝛿𝐸/2.

7. Increment 𝐵→ 𝐵 + 𝛿𝐵.

8. Repeat from step 4 until 𝐵1 is reached.

The results of this calculation are summarised in Figure B.1, using values 𝐸F = 0.5, 𝛿𝐸 = 0.001, 𝑠 = 1

and setting the number of Landau levels at ℎ = 0.1 to 20. As the field is increased, the majority pocket fills

and the minority depletes towards a Lifshitz transition at ℎ ≈ 0.37. The chemical potential remains fairly

constant up to this point, with oscillations as expected for a fixed 𝑁 system. Above the Lifshitz transition

the chemical potential becomes locked to the spin splitting of the majority band with oscillations remaining.

The oscillations of density of states are much more pronounced, with double peaked oscillations below

the transition and single peaks above. There is a striking increase in frequency over the Lifshitz transition,

which happens almost abruptly (see Figure B.1 d/e), and the peak spacing is linear above and below to a

very good approximation. Notably the majority and minority peaks are not quite in phase, as the extremal

areas are not directly proportional to the Fermi volume in a 3D system. The double peak structure will not

be resolvable at larger Δ𝐸 = 𝑘B𝑇 values, instead it will act to smear the two peaks together resulting in an

apparent phase shift.

There is very good similarity to the observed frequency jump at 𝐵9 seen in Figure 6.4, suggesting that a

void-type Lifshitz transition could be an explanation. A neck-type transition would give a weaker frequency

change, as the imbalance of volume change with field between the majority and minority bands would be

smaller. This simple example only considers a single spin-slit Fermi surface, however the concept will still

apply when other ‘spectator’ bands are present as they will also be affected by the chemical potential shift.

Spectator bands may reduce the effect slightly as the lost volume change will be a smaller fraction of the

total volume of all bands. Between three and five bands are expected to cross the Fermi level in YbNi4P2,

it is therefore apparent that this scenario cannot determine which band experiences a void-type transition

at 𝐵9. Note also that this scenario does not produce quite the same results as the changing 𝑔-factor alluded

to in the spin split Fermi surface interpretation earlier, as changing the chemical potential will shift both
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Figure B.1: Simulated quantum oscillations in a spin-split spherical Fermi surface with

a void-type Lifshitz transition marked by a grey dashed line on each graph. (a) Number

of states on Landau levels inside of the Fermi surface as a fraction of the total number of

electrons. (b) Variation of 𝜇 with field needed to keep𝑁 constant. (c) Density of states as

a function of inverse field. Note that the majority spin has been omitted here for clarity

of the plot, but can easily be inferred from the difference. (d) Indexing of the Landau

levels using the peaks of 𝑔−. Two linear fits have been included above and below the

transition (e) Residual plots of the previous fits, showing an abrupt crossover.
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majority and minority back-projected frequencies in the same direction (see Figure 6.17, this is equivalent

to a change in the spinless gradient).

It is useful to consider what factors would lead to a larger frequency shift. In this model it is caused by a

large imbalance in the volume change from Zeeman shifting the minority band through a Lifshitz transition.

The volume change is dependent on both the 𝑔 factor that determines the spin splitting and the flatness

of the band characterised by 𝑚∗. Lifshitz transitions of bands with large 𝑔 and 𝑚∗ will be most effective

at pinning the chemical potential, while smaller mass bands will have to shift further to compensate. It is

even possible to imagine a scenario where an energy saddle point occurs over a large region of 𝑘-space near

the Fermi level (this is suggested mechanism in CeCoIn5 [53] based on an idea from Sr3Ru2O7 [88]): such

a bandstructure could produce a large volume rate change over a neck-type transition, however this is a

much more coincidental circumstance. With these points in mind, it appears most likely that a heavy band

undergoes a void-type Lifshitz transition at 𝐵9 shifting the relatively light (𝑚∗𝛾 ∼ 3𝑚e) orbit’s frequency up

from 525 T to 600 T.

This concept provides one of the most basic scenarios for the anomaly seen at 𝐵9; the Fermi surface

evolves continuously as a function of field without relying on a sudden localisation of the 4 𝑓 electrons, and

Luttinger’s theorem is obeyed as there is no change in the total Fermi volume.





Appendix C

Kondo hybridisation interpretation of rotation

plot

At highest fields, the Kondo hybridisation is expected to be the most suppressed, as indicated by the falling

electronic heat capacity [129]. The closest fit obtained to this regime is shown in Figure C.1, using the

small Fermi surface with slightly shifted bands. The shifts used correspond to significantly less than one

hole added, consistent with an almost fully de-renormalised Fermi surface. Both the highest observed

frequencies 𝐹𝛼 and 𝐹𝛽 have good equivalent orbits in band 1 of the calculation, confirming the presence

of the doughnut shaped surface at the centre of the Brillouin zone. The frequency 𝐹𝛼 gets very close to

the maximal frequency 6.5 kT of a circle that can be fit within this unit cell, suggesting the proximity to a

neck-type Lifshitz transition at the X points. The existence of these necks along the a direction could be the

reason 𝐹𝛼 is not observed along [001]. The lower frequency of band 1 along c can be associated with the

weak signals seen of about 1 kT, slightly overestimated. This would be consistent with the underestimation

of the frequency 𝐹𝛽 from [100] to [110], suggesting the inner radius of the band 1 ‘doughnut’ should be

smaller than calculated, while the outer radius is very good.

For the low frequency orbits 𝐹𝛾 is attributed to an unshifted orbit of band 4, and 𝐹1,2
𝛿 are attributed to

orbits of band 3. A larger shift is needed for band 3 to connect the cylindrical features along the c direction

(a neck-type Lifshitz transition as 𝐸F is shifted downwards), however still smaller than the shift equivalent

to adding a single hole to all Fermi sheets. This is potentially conflicting with the shift of band 4, as this

would overlap with band 3, which would have to be remedied by more accurate calculations reshaping

either or both Fermi sheets.

The curvature factor also provides some insight in to the observed frequencies in Figure C.1. The highest

frequency branch 𝐹𝛼 through [001] has slightly increasing curvature towards the c axis, and so the weak
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Figure C.1: (a) Comparison of observed frequencies with a DFT+SO calculation of 4 𝑓
localised LuNi4P2. The experimental data is from the highest field range, above 𝐵9.

The solid lines show the frequencies extracted using SKEAF, where line thickness is

dependent on the curvature factor (|𝑑2𝐹/𝑑𝑘2

∥|)
−1/2

. Small shifts (adding much less than

one hole) to the Fermi levels have been used to achieve better agreement with the

experiment. (b) Fermi surface. There is a slight overlapping of the Fermi sheets of bands

3 and 4 with the shifts used here.

observed oscillations could become too small to resolve along c. Likewise, the highest frequency branch

through [100] and [110] has much higher curvature, preventing its detection. The lower frequency of band

1 around [001] is however not in good agreement with the prediction, as only a few weak oscillations at

around 1 kT are seen from [001] to [100]. This could either be due to other sources of damping, such as a

very high orbital mass, or an inaccuracy of using uncorrelated band structure calculations.

At low fields below 𝐵9 the Kondo hybridisation could be stronger, leading to a larger negative shift

of the Fermi level. In the LuNi4P2 calculation, band 1 undergoes two Lifshitz transitions on addition of

hole volume, firstly the previously mentioned necks along a, and secondly a neck-type Lifshitz transition

disconnects the inner and outer parts of the doughnut at around −55 meV forming a separate pillbox shape

elongated along c. At −60 meV band 2 undergoes a Lifshitz transition connecting the quasi-1D sheet with

the spheroid above it, resulting in a singular quasi-1D sheet. Bands 4 and 5 no longer cross the Fermi level

when shifted by −42 meV, both surfaces being destroyed by void-type Lifshitz transitions. A small pocket at
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Figure C.2: (a) Comparison of observed frequencies with a DFT+SO approximant of 4 𝑓
itinerant YbNi4P2, where a shift adding approximately one hole to the Fermi surface

of LuNi4P2 has been used. The experimental data is from the field range below 𝐵9.

The solid lines show the frequencies extracted using SKEAF, where line thickness is

dependent on the curvature factor (|𝑑2𝐹/𝑑𝑘2

∥|)
−1/2

. Harmonics in the data have been

greyed out, as they do not need matching to a model. (b) Fermi surface. Band 2 forms a

quasi-1D sheet hence produces no orbits.

the X point due to a lower energy band (band 0) also appears near −60 meV, but should produce negligibly

small frequencies. It is clear that the increased hole volume from Kondo hybridisation can lead to many

distinct changes in the Fermi surface topology.

A somewhat reasonable fit to the low field data can be achieved using a Fermi surface shifted by

approximately one hole as shown in Figure C.2. The shape of the branch associated with 𝐹𝛽 is much

different, as band 1 is no longer doughnut shaped. In this interpretation the observed frequency 𝐹𝛾 would

be associated with the inner pill box of band 1. The masses of 𝐹𝛽 is twice that of 𝐹𝛾, so there would have to

be a mass anisotropy of two for this band in the opposite direction to the effective 𝑔-factor anisotropy! The

only other significant detectable orbits would then be assigned to the cylindrical features of band 3 along c,

and a coincidental orbit of band 3 near [110] that also matches well with 𝐹𝛽. The edges of 𝐹𝛽 here however

appear very similar to the fringes that can be observed above 𝐵9, suggesting this portion of the Fermi surface

rather does not change over 𝐵9.
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Δ𝐸 (meV)

Band 𝐵 > 𝐵9 𝐵 < 𝐵9

1 −14.3 −85.7

2 −14.3 −100

3 −57.1 −100

4 0

5 −14.3

Table C.1: Details of rigid band shifts used for DFT calculations of 4 𝑓 localised and

itinerant case

To summarise this interpretation of the Fermi surface: At high fields very good agreement is seen

with the highest frequencies of the LuNi4P2 bandstructure with some inconsistencies to explaining the low

frequencies near c; meanwhile at low fields a reasonable agreement is found with shifted LuNi4P2 band-

structure calculations, but does not explain the similarity of 𝐹𝛽 to the high field values. It therefore appears

that these data do not support a sudden change in the Kondo hybridisation leading to a discontinuous jump

in orbital areas, and so a continuous scheme should be considered.
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