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ABSTRACT

Precision measurements and sensing are crucial in every scientific and technological
field. Quantum metrology, a branch of quantum information science, aims to maximize
precision in estimating relevant physical quantities. One notable application of quantum
metrology is the use of squeezed states to detect gravitational waves with unparalleled
sensitivity, which is a prime example of a phase estimation problem. Although quantum
probes can provide higher precision in parameter estimation compared to classical
strategies, many quantum states of light have limited practical advantage in real-world
sensing scenarios subject to dephasing and loss mechanisms.

In this thesis, we propose new sensing architectures with the aim of achieving
meaningful, practical precision improvements. To accomplish this, we focus on bright
Gaussian probe states, which can be generated with large photon numbers, and engineer
their interaction with the physical object being characterized.

We leverage circular birefringence and dichroism to estimate the concentration of
chiral molecules in solution. This is an important metric in a wide range of industrial
applications and material science research. Our proposed strategy employs a common-
mode interference scheme with bright polarization squeezed states of light and balanced
detection. We find it is possible to enhance the precision in estimating the concentration
by a factor of four when compared to a classical probe with the same mean photon
number.

We then investigate the use of all-pass ring resonators for absorption and refractive-
index estimation. Remarkably, we find that, because of the combined effects of interfer-
ence and resonant enhancement, coherent states are the optimal probe in a ring resonator
scheme. Moreover, this strategy is superior to any single-pass method independent of
the quantum nature of the probe state.

Finally, we propose a novel gas sensing strategy that employs frequency modulated
amplitude squeezed state probes together with homodyne detection. This strategy allows
for independent sampling of multiple points within an absorption line profile, facilitating
precise determination of the temperature, concentration, and pressure of a given gas.
The signal-to-noise ratio scales exponentially with the squeezing level. At currently at-
tainable squeezing levels, we predict a significant improvement over classical absorption
estimation strategies with the same input energy.
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ates a photocurrent î. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Homodyne detection of a quantum state âs, which is mixed with a phase
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1
INTRODUCTION

Quantum metrology is a branch of quantum information science that is primarily focused

on maximizing the precision in estimating relevant physical parameters [1]. Precise

measurements and sensing play a crucial role in many scientific and technological

advancements, both in classical and quantum systems.

Light has a long history of being used to probe physical systems. A variety of optical

systems have been developed over human history to go beyond the limited sensory

capacity of our eyes. Many highly precise measurements today are performed with light.

For example, measuring the round trip time of light reflected from arrays of cornered

cubes on the moon’s surface has allowed us to determine the earth to moon distance with

millimeter precision [2]. The use of classical laser beams allows one to reach the so-called

standard quantum limit, where the measurement uncertainty scales inversely with the

square root of the number of probe photons.

For a fixed input energy, this limit can be surpassed through the use of nonclassical

probes. Quantum states of light have improved measurement precision of gravitational

wave detectors to an extraordinary degree [3–5]. Path length changes due to gravitational

1



CHAPTER 1. INTRODUCTION

waves that are ten thousand times smaller than the proton size have been detected in

interferometers with 4 km arms. Such precision would not be possible without the use

of squeezed light probes, a fundamental quantum resource that allows one to reduce

measurement uncertainty beyond that obtainable with classical states of light. This

key component was first proposed by Carlton Caves in 1981 [6], which spurred decades-

long research efforts into engineering quantum states of light to enhance measurement

precision.

Apart from manipulating the fluctuations of a single-mode of light, entangling two

separate modes is an alternate route of leveraging fundamental quantum effects to

surpass the standard quantum limit. N00N states, which have equal superpositions of N

photons in one mode with vacuum in the other mode, have been proposed as a way of

reaching the ultimate precision limit in phase estimation [7–9]. This is known as the

Heisenberg limit, characterized by a measurement uncertainty inversely proportional

to the number of probe photons [10]. While the theoretical implications of using entan-

glement as a resource are profound, N00N states are of limited practical use. This is

because they are very sensitive to loss, which quickly nullifies any quantum advantage

they provide, as well as being difficult to generate with large photon numbers [11, 12].

Alternatively, measurement uncertainty can be reduced by increasing the brightness

of the probe state. In practice, this means that coherent state probes often surpass the

performance of quantum probes given that the former can easily be generated with

far larger mean number of photons. Additionally, squeezing highly displaced coherent

states can result in the generation of bright squeezed states of light. This quantum probe

combines the advantages of large photon numbers with reduced fluctuations in a given

quadrature that allow one to surpass the standard quantum limit [13, 14].
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1.1. THESIS OUTLINE

1.1 Thesis outline

The focus of this thesis is on exploring practical configurations that leverage the advan-

tages of bright Gaussian states of light and allow for precise measurements of absorption

and phase in real-world scenarios subject to external dephasing and loss mechanisms.

We begin by introducing fundamental concepts of quantum metrology and optics

in Chapter 2. Specifically, we review the framework of single-parameter quantum metrol-

ogy, as well as the most common optical probe states and measurement schemes in phase

and loss estimation. We also describe key phenomena and considerations in absorption

spectroscopy and chirality that will form the basis of subsequent chapters.

In Chapter 3, we focus on using circular birefringe or dichroism to estimate the con-

centration of chiral molecules in solution. Most chiral compounds have a weak response

that motivates the development of precise sensing schemes. We quantify the quantum

advantage of bright, polarization squeezed probe states over coherent state probes and

outline practical measurement schemes to realize it.

In Chapter 4, we explore the use of all-pass ring resonators, a resonant photonic inte-

grated structure, for absorption and refractive index estimation. We find that coherent

state probes perform as well as arbitrarily squeezed Gaussian states. Furthermore, this

strategy can outperform any single-pass method regardless of the quantum probe used.

In Chapter 5, we propose a quantum-enhanced sensing strategy that employs a

squeezed frequency comb probe. This squeezed comb is generated from a broadband

squeezed vacuum state, which is displaced by superposing a coherent state on a beam-

splitter, followed by phase modulation.

We show that the signal-to-noise ratio is significantly improved over classical fre-

quency modulation techniques. Using homodyne detection followed by a spectrum ana-

lyzer, we show that it is possible to sample the absorption profile at multiple frequencies

and extract the transmission at each individual comb tooth frequency. Remarkably, this
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measurement scheme is robust against dispersion.

We conclude in Chapter 6 with a summary of the main results of the thesis and

discuss possible future research directions.
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Statement of work

This chapter contains no new material and its contents are entirely based on the existing

literature.

2.1 Introduction

Quantum parameter estimation is a fundamental task in quantum information science

that involves estimating the values of unknown parameters in physical systems [1].

This task is essential in many areas of quantum technologies, such as quantum sensing,

computing, and communications. Photonic quantum metrology is a rapidly growing field

that uses quantum states of light to enhance measurement precision and sensing [10,

21, 22]. Key applications range from biological sensing and environmental monitoring to

gravitational wave detection.

In this chapter, we provide an overview of the general framework for quantum
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parameter estimation. We describe the main properties of various quantum probe states

of light and measurement schemes used in this field. We also review two paradigmatic

scenarios for quantum parameter estimation, namely optical phase and loss estimation.

2.2 Parameter estimation

The main goal of single-parameter metrology is to estimate a given physical parameter

X with high precision. The following four step framework, schematically represented

in Fig. 2.1, is typically used [22–24]:

1. Probe state preparation: A suitable quantum state of light characterized by the

density matrix ρ0 is prepared to probe the physical system under study;

2. Interaction process: The probe state interacts with the physical system that

encodes the parameter we seek to estimate. For a unitary interaction process UX ,

the density matrix of the probe states evolves through ρX =UXρ0U†
X ;

3. Measurement: A set of positive operator valued measurements Mx are per-

formed, resulting in a set of identically distributed measurement outcomes x =
{x1, x2, . . . , xN } with probability pX (x) = Tr

{
ρX Mx

}
in the case of N independent

measurements;

4. Estimation: Based on the measurement results x, assumed to be random and iden-

tically distributed, one should select an appropriate estimator X̃ (x) that provides a

precise estimate of X .

Ideally, the estimator X̃ should be [23]

• unbiased so that, on average, it coincides with the parameter’s true value that we

seek to estimate, namely 〈X̃N〉 =X ;
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Figure 2.1: Graphical representation of the four main steps in a general parameter
estimation scheme. See the text for further details.

• optimal meaning it minimizes the variance ∆2X̃N = 〈(
X̃N(x)−X

)2 〉
. In other words,

the deviation of the estimator from the true value of the parameter X should be

minimum;

• efficient such that it saturates the Cramér-Rao Bound.

For a given experimental strategy with ν trials, the precision with which the physical

parameter X can be estimated is bounded by the Cramér-Rao Bound [25, 26]

∆2X̃ ≥ 1
νF (X )

, (2.1)

which relates the unbiased estimator’s variance X̃ to the classical Fisher information

(CFI), F (X ), formally defined as

F (X )= (
∂X lnpX

)2 . (2.2)

The Fisher information quantifies the amount of information about the parameter X

encoded in the output probability density function pX [27]. The larger the variation of

pX with the parameter X that we seek to estimate, the larger the amount of information.

Maximizing F (X ) over all possible positive operator valued measurements, Mx, leads

to the quantum Fisher information (QFI), Q(X )=max{Mx}F (X ) [28]. By definition, the

CFI of any quantum measurement is lower bounded by the QFI resulting in a tighter

bound on the variance of the unbiased estimator [1, 28]

∆2X̃
(1)≥ 1
νF (X )

(2)≥ 1
νQ(X )

. (2.3)
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The Quantum Cramér-Rao bound (QCRB), inequality (2) in Eq. (2.3), denotes the ultimate

precision limit in estimating the parameter X for a given probe state and interaction

process, regardless of the measurement scheme [29].

The QFI can be formally defined in terms of the symmetric logarithmic operator L

as [28, 30]

Q(ρX )=Tr
[
ρX L2

X
]
. (2.4)

Here, LX is the self-adjoint operator that satisfies the equation

1
2

(
LXρX +ρXLX

)= ∂XρX . (2.5)

When the spectral decomposition of the density matrix is know, the symmetric logarithmic

operator is given by [23]

LX =∑
k, l

2
〈
ψk(X )

∣∣∂X ∣∣ψl(X )
〉

λk(X )+λl(X )

∣∣ψk(X )
〉〈
ψl(X )

∣∣ , (2.6)

where the sum is taken over the terms with non-vanishing denominator and {ψk} are the

eigenvectors of ρX =∑
kλk(X )

∣∣ψk(X )
〉〈
ψk(X )

∣∣.
An optimal measurement is one whose CFI equals the QFI and thus saturates in-

equality (2) in Eq. (2.3). It can be shown that a projective measurement in the eigenbasis

of LX is always optimal, although it is not necessarily unique nor always straightforward

to implement in an experiment [28, 29].

2.3 Probe states

In this section, we will describe the main properties of several quantum probe states of

light that are widely used in photonic quantum parameter estimation, particularly in

phase and loss estimation scenarios.
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2.3.1 Number states

The Hamiltonian of a one-dimensional harmonic oscillator with resonant frequency ω

is [31]

H= ℏω
(
â†â+ 1

2

)
, (2.7)

where â† and â are the creation and annihilation operators, which obey the commutation

relation
[
â, â†]= 1. The eigenstates of the harmonic oscillator are the number states |n〉

such that [31]

H |n〉 = En |n〉 . (2.8)

These states have energy En = ℏω(n+ 1
2 ) and well defined photon number n = 0,1,2, . . . .

The lowest energy state of the harmonic oscillator is the vacuum state |0〉 with zero-point

energy E0 = 1
2ℏω.

The creation (annihilation) operator creates (destroys) a photon in a given mode

according to [31]

â† |n〉 =
p

n+1 |n+1〉 and â |n〉 =p
n |n−1〉 . (2.9)

By definition, the action of the annihilation operator on vacuum, â |0〉 = 0, while the

repeated application of the creation operator â† yields higher order number states [31]

|n〉 =
(
â†)n

p
n!

|0〉 . (2.10)

The number of photons in a given number state can be determined by applying the

photon number operator n̂ = â†â, i.e. [31]

n̂ |n〉 = n |n〉 . (2.11)

The mean number of photons in a Fock state 〈n̂〉 = n and the variance∆2n̂ = 〈n̂2〉−〈n̂〉2 = 0,

consistent with Fock states having a specified number of photons [32].
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2.3.2 Coherent states

Coherent states |α〉 with a complex amplitude α = |α|eiθ are the eigenstates of the

annihilation operator â, that is [31]

â |α〉 =α |α〉 . (2.12)

In the number basis, a coherent state can be expressed as [31]

|α〉 = e−|α|/2
∞∑

n=0

αn
p

n!
|n〉 . (2.13)

Note that a coherent state with null amplitude, i.e. α= 0, is equivalent to the vacuum

state |0〉. Starting from Eq. (2.13), it is easy to verify that the mean number of photons

in a coherent state 〈n̂〉 = |α|2 and that 〈n|α〉 = exp
(−|α|2/2

)
αn(n!)−1/2. The probability of

finding n photons in a coherent state [31]

|〈n|α〉|2 = 〈n̂〉n

n!
e−〈n̂〉 , (2.14)

follows a Poissonian distribution with equal mean and variance ∆2n̂ = 〈n̂〉 = |α|2. The

standard deviation ∆n̂ =p〈n̂〉 is commonly referred to as the shot-noise level, also known

as the standard quantum limit [33].

Coherent states can be generated by displacing the vacuum state |0〉, that is [31, 32]

|α〉 = D̂(α) |0〉 . (2.15)

Here D̂(α)= exp
(
αâ† −α∗â

)
is the displacement operator, whose action on the annihila-

tion operator reads D̂†(α) â D̂(α)= â+α.

The phase space is defined as the space spanned by the position-like, x̂, and momentum-

like, p̂, quadrature operators, which can be defined in terms of the ladder operators â†

and â as [34, 35]

x̂ =
√

ℏ
2

(
â† + â

)
and p̂ = i

√
ℏ
2

(
â† − â

)
. (2.16)
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These operators are conjugate variables that obey the commutation relation [x̂, p̂]= iℏ.

The standard deviations of the measurements carried out by these operators satisfy the

uncertainty relation [34–36]

∆x̂∆p̂ ≥ ℏ
2

. (2.17)

The displacement operator produces a translation in phase space, transforming the

quadrature operators according to [37]

D̂†(α) x̂ D̂(α)= x̂+Re[α] and D̂†(α) p̂ D̂(α)= p̂+ Im[α] . (2.18)

2.3.3 Gaussian states

Consider a general bosonic system with N modes described by the quadrature operators

vector r̂ = (x̂1, p̂1, . . . , x̂N , p̂N). The commutation relations of the various position and

momentum operators can be succinctly expressed as [r̂k, r̂ l]= iℏσkl , where σkl are the

elements of the symplectic matrix [38]

σ=

 0 1N

−1N 0

 . (2.19)

We can now define characteristic function χ(Λ)= 〈D̂(Λ)〉, where D̂(Λ)= exp[ir̂σΛ] is

the multimode displacement Weyl operator and Λ ∈R2N .

Taking the Fourier transform of the characteristic function, we obtain the Wigner

function [39, 40]

W(r̂)=
∫

d2NΛ

(2π)2N exp[−ir̂σΛ]χ(Λ) . (2.20)

The Wigner function is a quasi-probability distribution since it can take negative values.

The negativity of W has been proposed as an indicator of the nonclassicality of a quantum

state [41, 42].

Gaussian states are the only pure states that have strictly positive Wigner func-

tions [43]. Conversely, number states are non-Gaussian and have negative Wigner
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functions. Gaussian states are characterized by a Gaussian characteristic function and

their Wigner function can be expressed as [38]

W(r̂)=
∫ exp

[−1
2 (r̂−〈r̂〉)⊺ Σ−1 (r̂−〈r̂〉)]

(2π)Np|Σ| , (2.21)

where 〈r̂〉 is the displacement vector and |Σ| is the determinant of the covariance matrix,

whose elements Σkl = 1
2〈r̂k, r̂ l + r̂ l , r̂k〉−〈r̂k〉〈r̂ l〉.

Coherent states are Gaussian. The corresponding Wigner distribution [40, 44, 45]

WC(x, p)= 1
π

e−
(
x−p2 Reα

)2
/ℏ−(

p−p2 Imα
)2

/ℏ , (2.22)

has circular symmetry with equal projections along both quadratures, as shown in

Fig. 2.2. They’re minimum uncertainty states with ∆x̂ = ∆p̂ = p
ℏ/2 , thus saturat-

ing Eq. (2.17).

Figure 2.2: Wigner functions of the (a) vacuum state and (b) coherent state with α= 2eiπ/4,
which have equal variance along the position x̂ and momentum p̂ quadratures.

For completeness, note that quantum states can be represented in phase space using

other distributions such as the Husimi Q [46, 47] and Glauber–Sudarshan P [48, 49]

functions.
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2.3.4 Squeezed states

By squeezing a given quadrature, it is possible to reduce the uncertainty along said

quadrature below that of the vacuum state at the expense of anti-squeezing the conjugate

quadrature.

2.3.4.1 Single-mode squeezed states

An optical mode can be squeezed by applying the single-mode squeezing operator [50–52]

Ŝ(ζ)= exp
[

1
2

(
ζ â2 −ζ∗ â†2

)]
, (2.23)

where ζ = seiθ is the squeezing parameter with squeezing factor s and angle θs. The

squeezing factor s, also commonly referred to as the squeezing level, is often given

in decibels (dB), i.e. sdB = 10log10 e2s. The squeezing operator transforms the ladder

operators according to [53]

Ŝ†(ζ) x̂ Ŝ(ζ)= âcosh s− â†eiθs sinh s , (2.24)

Ŝ†(ζ) p̂ Ŝ(ζ)= â† cosh s− âe−iθs sinh s . (2.25)

Applying the squeezing operator on vacuum leads to the squeezed vacuum state |ζ〉 =
Ŝ(ζ) |0〉, which takes the following form in the Fock basis [53]

|ζ〉 = 1p
cosh s

∞∑
m=0

(
−eiθ tanh s

)m
p

(2m)!
2mm!

|2m〉 . (2.26)

This state is composed solely of even-photon-number terms and has a mean photon

number 〈n̂〉 = sinh2 s. The variance of the quadrature operators is given by [53]

∆2 x̂ = 1
4

(
cosh2 s+sinh2 s−2sinh scosh scosθs

)
, (2.27)

∆2 p̂ = 1
4

(
cosh2 s+sinh2 s+2sinh scosh scosθs

)
. (2.28)

For a squeezing angle θs = 2πm with m ∈ Z, the quadrature variances simplify to

∆2 x̂ = e−2s/4 and ∆2 p̂ = e2s/4 such that the resulting state is squeezed along the po-

sition quadrature and anti-squeezed along the momentum quadrature. The contour of
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the Wigner function of such a state is an ellipse with its minor axis parallel to the x̂

quadrature as shown in Fig. 2.3 (a). This state is commonly referred to as amplitude

squeezed. Conversely, for θs = (m+1)π/2, the momentum quadrature is squeezed by a

factor e−2s at the expense of anti-squeezing the position quadrature by an equivalent

amount. This state is usually designated as phase squeezed and the minor axis of its

ellipse is parallel to the p̂ quadrature, as depicted in Fig. 2.3 (b).

Applying the displacement operator on a squeezed vacuum state, we obtain a bright

squeezed state |ζ〉α = D̂(α)Ŝ(ζ) |0〉 [6]. Its Wigner function is given by [40, 54]

WS(x, p)= 1
π

exp
(−e2sa2

x − e−2sa2
p
)
, (2.29)

where ax = (x−Reα)cos(θ/2)+(p−Imα)sin(θ/2) and ap =−(x−Reα)sin(θ/2)+(p−Imα)cos(θ/2).

In the particular case where the displacement angle θ = θs/2, it can be shown that the

resulting state has a photon number variance ∆2n̂ = |α|2e−2s+2sinh2 scosh2 s [55]. For a

large amplitude |α| and a small squeezing factor s, the photon number variance becomes

∆2n̂ ≈ e−2s〈n̂〉 leading to a number-squeezed state with sub-Poissonian statistics [56]. In

phase space, the minor axis of the ellipse of this state is oriented along the displacement

α and is commonly referred to as a number squeezed state.

In the presence of optical loss η≤ 1, the variance along the minor axis of the squeezed

ellipse, ∆2χ, increases according to ∆2χ′ = (1−η)∆2χ+η [57]. For large losses, a squeezed

state tends towards a classical, coherent state – a phenomenon that can neutralize any

quantum-enhanced precision gains in real-world sensing scenarios [58].

2.3.4.2 Two-mode squeezed states

It is also possible to squeeze two optical modes by applying the two-mode squeezing

operator [35]

Ŝ2(ζ)= exp
(
ζ∗ â1 â2 −ζ â†

1 â†
2

)
. (2.30)
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Figure 2.3: Wigner functions of (a) amplitude and (b) phase squeezed states with a
squeezing factor s = 0.58(≈ 5dB).

Acting on vacuum leads to the two-mode squeezed vacuum state Ŝ2(ζ) |0,0〉 [34, 35, 59,

60], which is evidently an entangled state when written in the number basis [61]

Ŝ2(ζ) |0,0〉 = 1
cosh s

∞∑
m=0

(−eiθ tanh s)m |m,m〉 . (2.31)

Two-mode squeezed vacuum states are eigenstates of the photon number difference

operator n̂1 − n̂2 with null eigenvalue, i.e.

(n̂1 − n̂2) |ζ〉2 = 0 . (2.32)

The two modes are symmetric and have equal mean photon number 〈n̂1〉 = 〈n̂2〉 = sinh2 s,

hence why they are also commonly designated twin-beam states in the literature [55].

It should be noted that each of the modes of a two-mode squeezed state is not

individually squeezed, but rather in a thermal state. In fact, the probability of finding n

photons in each of the two modes is thermally distributed according to [62]

Pni =
〈n̂i〉n

1+〈n̂i〉n+1 , i = {1,2} . (2.33)

15



CHAPTER 2. BACKGROUND

2.3.4.3 Polarization squeezed states

The four Stokes parameters {S0,S1,S2,S3} completely characterize the polarization state

of an arbitrary beam of light [63]. Classically, S0 describes the total intensity of the light

beam. S1 = IH − IV equals the difference between the intensity of light transmitted by

a horizontally oriented linear polarizer IH and that transmitted by a vertical one IV .

S2 = I+45◦ − I−45◦ corresponds to the difference in intensity between linear polarizers

with transmission axes oriented at ±45◦. Finally, S3 = Iσ+ − Iσ− describes the intensity

difference between right and left circularly polarized components. The Stokes vector can

be visualized on a Poincaré sphere with three orthogonal axes S1,S2,and S3 and radius

S = (
S2

1 +S2
2 +S2

3
)1/2.

Experimentally, S1 (or S0) can be determined using a polarization beamsplitter (PBS)

to separate the horizontal and vertical components. Their respective intensities are then

measured using separate detectors and subtracted (or added) [64]. An identical setup

can be used to determine S2 with the addition of a half-waveplate with its fast axis

oriented at a 22.5◦ angle placed before the PBS. To determine S3, an additional quarter-

waveplate with the fast axis at a 45◦ angle should be placed after the aforementioned

half-waveplate.

In the {H,V } polarization basis, the Stokes parameters can be expressed as the

following Hermitian operators [65–67]

Ŝ0 = â†
H âH + â†

V âV , (2.34)

Ŝ1 = â†
H âH − â†

V âV , (2.35)

Ŝ2 = â†
H âV + â†

V âH , (2.36)

Ŝ3 = i(â†
V âH − â†

H âV ) . (2.37)

The Stokes operator Ŝ0 commutes with all the other Stokes operators, i.e. [Ŝ0, Ŝ j] = 0

with j = {1,2,3}, while the remaining Stokes operators satisfy the following commutation
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relations

[Ŝ1, Ŝ2]= 2iŜ3 , [Ŝ2, Ŝ3]= 2iŜ1 , [Ŝ3, Ŝ1]= 2iŜ2 . (2.38)

In Chapter 3 on estimating the concentration of a circularly birefringent medium,

we focus on precisely determining the linear polarization state of a beam transmitted

through the chiral medium. Thus, we are interested in a probe state with a reduced

variance in the equatorial plane of the Poincaré sphere. This can be accomplished

by equally squeezing each of the two linear polarization modes. In the case of using

horizontally and vertically polarized modes as the basis states, a suitable probe state is

D̂H(α) ŜH(ζ) ŜV (ζ) |0H ,0V 〉 . (2.39)

A displacement D̂H(α) along the horizontal direction is performed to obtain a bright

squeezed state with a macroscopic number of photons. Here, the displacement of the

horizontal mode is an arbitrary choice that serves as an initial reference polarization.

A straightforward calculation yields the variances of the Stokes vectors ∆2Ŝ1 =∆2Ŝ2 =
|α|2e−2s + sinh2(2s) and ∆2Ŝ3 = |α|2e2s such that

∣∣ψ〉
G is equally squeezed along Ŝ1

and Ŝ2 and anti-squeezed along Ŝ3 as shown in Fig. 2.4. Note that this differs from

simultaneously squeezing the horizontal and vertical polarizations.

The main applications of polarization squeezed states have been in quantum-enhanced

magnetometry [68–71] and polarimetry [72–76] as well as cryptography [77], spec-

troscopy [78] and in characterizing quantum processes [79].

2.4 Measurement schemes

In this section, we will describe two prominent measured schemes used to detect quantum

states of light after they have interacted with a given physical system.
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Figure 2.4: Artistic sketch of the Poincaré sphere with a bright polarization squeezed
state. The state is equally squeezed along Ŝ1 and Ŝ2 and anti-squeezed along Ŝ3.

2.4.1 Direct detection

Direct detection of a quantum state employs a photodetector (e.g. a photodiode) that

produces a photocurrent proportional to the number of photons absorbed (see Fig. 2.5).

The detector output can be described by the photocurrent operator [80]

î(t)= q
p
ηd n̂(t) , (2.40)

where q is the electron charge and p
ηd is the quantum efficiency of the detector.

Figure 2.5: Direct detection of a quantum state of light, â, using a photodiode that
generates a photocurrent î.

On-off photodetectors, such as conventional avalanche photodiodes, are capable of

detecting the presence of at least one photon, but cannot determine the exact number of

photons that reach the detector [81]. The latter requires photon-number-resolving detec-

tors that, as the name indicates, can resolve and count the number of individual photons.
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An example are transition edge sensors that have enabled efficient discrimination of

detection events with different photon numbers [82–84].

2.4.2 Balanced homodyne detection

Balanced homodyne detection mixes the input signal with a bright local oscillator (LO)

field at a 50:50 beamsplitter, evenly illuminating two detectors whose photocurrents are

subtracted as shown in Fig. 2.6.

Figure 2.6: Homodyne detection of a quantum state âs, which is mixed with a phase
tunable classical local oscillator bLO at a beamsplitter (BS). The two detectors are
evenly illuminated and their photocurrents are subtracted, resulting in the subtraction
photocurrent î−.

In the following, we denote the input signal by âs and assume that the LO is a

bright classical field BLO with amplitude
∣∣β∣∣2 ≫ 〈â†

sâs〉 and a tunable phase φLO, i.e.

bLO = ∣∣β∣∣eiφLO . We also assume that the photodiodes are identical and have a quantum

efficiency p
ηd .

The fields at the output port of the 50:50 beamsplitter are

â1 = 1p
2

(
âs +

∣∣β∣∣eiφLO
)

and â2 = 1p
2

(
âs −

∣∣β∣∣eiφLO
)

, (2.41)
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leading to a subtraction photocurrent î−(t) at the homodyne detector output

î− =p
ηd q (n̂1 − n̂2)=p

ηd q
∣∣β∣∣(â†

s eiφLO + âs e−iφLO
)

. (2.42)

Noting the generalized quadrature operator q̂s = 1p
2

(
âse−iφLO + â†

seiφLO
)
, the subtraction

photocurrent can be written as

î− =√
2ηd q

∣∣β∣∣q̂s . (2.43)

By adjusting the LO phase φLO, we can measure either quadrature of the signal field [85].

The projection on the x̂ quadrature is accessible by setting φLO = 0 while the p̂ quadrature

is measured when φLO =π/2. The subtraction photocurrent is solely dependent on the

amplitude of the LO, that is any noise associated with the LO field is automatically

suppressed in balanced homodyne detection [85, 86].

2.5 Phase estimation

Phase estimation is a fundamental task in quantum metrology with important applica-

tions in interferometry [87, 88], imaging [89], and biosensing [90].

The key task in phase estimation is to precisely estimate the phase difference between

two optical modes. This can be accomplished with a variety of interferometers, a common

configuration being the Mach-Zehnder interferometer (MZI) depicted in Fig. 2.7. A 50:50

beamsplitter interferes two input modes, â1 and â2, which pick up phases φ1 and φ2,

and are interfered on a second 50:50 beamsplitter before being detected. Let φ=φ2 −φ1

be the relative phase shift between the two modes, which we seek to estimate.

Probing the MZI with a coherent-state in mode 1 and vacuum in mode 2, that is the

state |α,0〉 with mean photon number 〈n̂〉 = |α|2 yields a precision ∆φ= ∣∣αsinφ
∣∣−1 when

measuring the difference in intensity between the two detectors [91]. This uncertainty is

minimum at φ=π/2 when it simplifies to

∆φ= 1p〈n̂〉 . (2.44)
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Figure 2.7: Mach-Zehnder interferometer where two quantum states of light, â1 and â2,
are interfered on a beamsplitter. They pick up phases φ1 and φ2 and are interfered on a
second beamsplitter before being detected.

The 〈n̂〉−1/2 scaling here is generally referred to as shot-noise scaling, and this probe

saturates the standard quantum limit bound ∆φSQL ≥ 〈n̂〉−1/2.

In 1981, Carlton Caves showed that it is possible to surpass the standard quantum

limit by injecting squeezed vacuum into the second port of the MZI [6]. For φ=π/2 and

|α|2 ≫ sinh2 s, the Caves state |α,ζ〉 can achieve a precision [6, 92]

∆φ= 1
〈n̂〉3/4 , (2.45)

thus surpassing the performance of the coherent state probe given in Eq. (2.44). No-

tably, this probe has been used to enhance the sensitivity of the LIGO and GEO 600

gravitational wave detectors in a series of landmark experiments [3–5, 93, 94].

About thirty years later, by optimizing the QFI, Lang and Caves determined the

optimal product state probe. They concluded this is the twin squeezed vacuum probe

|ζ,−ζ〉, which can reach a precision [95]

∆φ= 1p〈n̂〉 (〈n̂〉+2)
. (2.46)

This probe saturates the Heisenberg limit – the ultimate precision limit in phase estima-

tion with a fixed number of probe photons n̄, ∆φHL ≥ n̄−1. Accordingly, the n̄−1 scaling is
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known as Heisenberg scaling. Another probe capable of saturating the Heisenberg limit

is the maximally entangled N00N state probe (|n,0〉+ |0,n〉)/p2 [7–9].

Various probes have been proposed in the literature to estimate the phase φ. A

representative sample is summarized in Table 2.1 and the attainable phase uncertainty

is plotted in Fig. 2.8. Please refer to Refs. [87, 90] for detailed reviews. The majority of

these states cannot be currently generated with large brightness, which may diminish

their utility in real-world sensing scenarios. In particular, N00N states are especially

hard to generate with large N and their performance degrades significantly in the

presence of optical loss.

Table 2.1: Performance of various probe states in estimating the phase difference ∆φ in
a MZI proposed in the literature.

Probe state References ∆φ

Coherent state |α,0〉 [91] 〈n̂〉−1/2

Caves state |α,ζ〉 [6, 92] 〈n̂〉−3/4

Twin Fock state |n,n〉 [96]
p

2
(〈n̂〉2 +2〈n̂〉)−1/2

Twin squeezed vacuum state |ζ,−ζ〉 [95, 97–99]
(〈n̂〉2 +2〈n̂〉)−1/2

Entangled coherent state (|α,0〉+ |0,α〉) /
p

2 [100]
(〈n̂〉2 +〈n̂〉)−1/2

N00N state (|n,0〉+ |0,n〉) /
p

2 [7–9] 〈n̂〉−1

2.6 Loss estimation

Precisely estimating loss is important in a wide range of physical scenarios [101]. Deco-

herence of quantum states plays a critical role in all major areas of quantum technologies,

from communication [102, 103] and sensing [88, 104] to computing [105–107].

Optical loss on a given mode – an amplitude damping channel – can be modeled

quantum mechanically as a finite transmission through a beamsplitter [108]. This has

the consequence that the open port couples in vacuum, as shown in Fig. 2.9. For a channel
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Figure 2.8: Standard deviation ∆φ attainable by various probe states in estimating the
MZI phase shift φ. The Heisenberg and standard quantum limits are denoted by HL and
SQL, respectively. The orange shaded region denotes a phase uncertainty at or below
the Heisenberg limit, while the blue region denotes phase uncertainties larger than the
SQL. Note that according to Eq. (2.46), the twin squeezed vacuum probe surpasses the
Heisenberg limit for small average photon numbers.

with attenuation η, a fraction η of the input light is transmitted and the remainder 1−η
is coupled into an environmental mode through the beamsplitting operation [109, 110]

B̂ = exp
[
−cos−1pη

(
â†

inâvac − âinâ†
vac

)]
, (2.47)

where âin and âvac denote the input and vacuum modes, respectively.

Figure 2.9: Quantum-mechanical model of optical loss as a beamsplitter that couples in
vacuum.

A variety of schemes have been investigated to estimate loss precisely. The most
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significant studies are reviewed below, and the performance of various probes and corre-

sponding measurement schemes are summarized in Table 2.2 and plotted in Fig. 2.10.

Monras and Paris [111] evaluated the effectiveness of pure single-mode Gaussian

probes in estimating η. Coherent states |α〉 were found to yield a QFI

QC = 〈n̂〉
η

, (2.48)

which defines the standard quantum limit for a given mean number of probe photons

〈n̂〉. Single-mode amplitude squeezed vacuum probes were found to surpass this limit

in the low loss (η≈ 1) and small photon number regime. An upper bound on the QFI for

N uncorrelated probes each with mean photon number 〈n̂〉 in parallel was also derived,

namely

Qη ≤ 〈n̂〉
η (1−η)

. (2.49)

Adesso et al. [112] showed that Fock states |n〉 can saturate the bound in Eq. (2.49),

thus proving they are optimal probes in estimating the attenuation of a single damping

channel for any loss value. Photon counting was also shown to be an optimal measure-

ment. Intuitively, one expects Fock states, with initial zero-energy uncertainty, to perform

well in loss estimation given they are energy eigenstates of the modes undergoing loss.

Monras and Illuminati [113, 114] restricted themselves to dissipative Gaussian

channels and ancilla-assisted probes, i.e. auxiliary modes that do not experience loss,

finding that two-mode squeezed vacuum probes outperform both single-mode squeezed

and coherent state probes.

Nair [115] considered the general distributed sensing problem of estimating the

transmissions {pηn }N
n=1 of N damping channels. An upper bound on the quantum Fisher

information matrix for N (entangled) probe states with ancilla modes was derived. Fock

states and two-mode squeezed vacuum probes with vanishingly small squeezing levels,

combined with on-off detection, were found to be optimal.
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Table 2.2: Performance of various probe states in estimating the loss η of an amplitude
damping channel proposed in the literature.

Probe state References QFI/〈n̂〉 Optimal measurement

Coherent state [111] 1/η Intensity

SMSSa [111, 116, 117]
[
η−η2 (

1− e−2s)]−1 Intensity

Fock state [112, 115]
[
η (1−η)

]−1 Photon counting

TMSVb [113–115, 117, 118]
[
η (1−η)

]−1 Intensity difference
a Single-mode squeezed state, b Two-mode squeezed vacuum state
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Figure 2.10: Variance ∆2η in estimating the transmission η of an amplitude damping
channel for coherent state probes, bright single-mode squeezed states (SMSS) with
various squeezing levels s, Fock and two-mode squeezed vacuum (TMSV) state probes.

2.7 Absorption spectroscopy

Absorption spectroscopy is an important method widely employed to identify and char-

acterize gas species with topical applications in environmental monitoring, industrial

process control, and chemical analysis [119–121].
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Vibrational and rotational spectra of molecules in the gas phase lie in the near and

mid-infrared spectral regions. The absorption spectra of five environmentally relevant

gases, using data from the HITRAN database [122, 123], are plotted in Fig. 2.11. The

absorption lines in this spectral region for gas phase molecules are usually well defined

with full widths at half maximum that rarely exceed a few GHz even at atmospheric

pressure.

In the subsequent chapters in this thesis, we will limit our considerations to linear

loss mechanism where the number of photons lost is proportional to the number of

incident photons. In this regime, loss can be modeled as an effective beamsplitter with

an open port vacuum mode. This precludes the study of any systems with saturated

absorption or coherent effects such as electromagnetic induced transparency.
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Figure 2.11: Absorption spectra of five pure gases in the near and mid-infrared regions,
a temperature of 300 K and a pressure of 1 bar.

2.7.1 Direct absorption spectroscopy

In direct absorption spectroscopy, a tunable narrowband laser is scanned over a given

absorption feature of interest while monitoring the reduction in the light transmitted
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through the sample under study. According to the Beer-Lambert law, light transmitted

through a gas cell with length l is given by

I = I0e−αl , (2.50)

where I0 is the incident intensity and α is the absorption coefficient of the target analyte.

This law assumes linear absorption (i.e. no saturation) at a laser linewidth that is

narrower than the absorption line profile.

This method can result in large signal-to-noise ratios but requires identification of

isolated absorption lines and large interaction path lengths typically on the order of

meters.

2.7.2 Single frequency comb spectroscopy

Competing techniques involve the use of frequency combs generated by mode-locked

lasers [124–126], electro-optical modulators [127–130] or optical ring resonators [131–

133]. These sources generate a train of frequency lines, equally spaced by the laser or

ring cavity’s free spectral range with a fixed phase relationship [134, 135].

Typically, the frequency spacing between the comb teeth is large compared to the

linewidth of gas phase absorption profiles such that only a single comb tooth probes the

target transition [136]. Ideally, one of the teeth of the generated comb is resonant with

the target transition to readily extract the peak absorption.

Conventional spectrometers are, however, incapable of resolving each individual comb

tooth, which has led to the development of high-resolution spectrometry techniques such

as virtual image phase arrays [137], comb-cavity Vernier [138] and Michelson-based

Fourier transform spectrometers [139, 140]. The latter splits the transmitted beam into

two arms with different lengths, which are then interfered on a detector. One of the arms

of the Michelson interferometer has a fixed length, while the length of the other arm

is scanned at a constant velocity, imparting a small Doppler shift on each comb line.
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Figure 2.12: (a) “Frequency comb Fourier transform spectroscopy with a scanning Michel-
son interferometer and an absorbing sample.” (b) “In the moving arm of a scanning
Michelson interferometer, the frequency of all the comb lines are Doppler shifted. The
beat notes between pairs of shifted (red) and unshifted (blue) comb lines at the detector
produce an acoustic comb (black).” Reproduced with permission from [136].

The beating between the Doppler-shifted and unshifted signals produces a kHz acoustic

frequency comb as shown in Fig. 2.12. By Fourier transforming the interference signal,

the sample’s absorption characteristics can be extracted [141].

The main disadvantage of this technique is the need for mechanical translation of

the scanning mirror, whose maximum excursion ∆L places a fundamental limit on the

instrument resolution

∆ fmin = c
2∆L

. (2.51)

To achieve a resolution of 100MHz, a path length difference of at least 1.5 m is required.
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2.7.3 Dual-comb spectroscopy

Dual comb spectroscopy attempts to overcome this limitation by resorting to a second,

frequency shifted comb [142]. One or both combs probe the sample, and the transmitted

beams are interfered on a photodiode. This leads to a radio frequency beat signal in

which the modifications introduced by the absorbing sample are encoded in either its

amplitude or the phase as shown in Fig. 2.13.

Dual comb spectroscopy is not limited by the optical path length of the instrument as

is the case for Fourier transform and grating spectrometers; the resolution is instead set

by the integration time τ of the radio frequency signal acquisition.

The main technical challenge in dual comb spectroscopy has been to ensure the two

combs are mutually coherent [136, 143]. The time available for detection is determined by

the temporal window over which phase coherence can be maintained, which in practice

limits the signal-to-noise ratio (SNR). In the ideal shot-noise limit and when using a

single-detector to record the temporal variation in the beating between the two combs,

the SNR scales as [143]

SNR∝
p
τ

M
, (2.52)

where M is the number of comb teeth. There can be a tradeoff between the SNR and the

spectral bandwidth ∆ν= M frep, where frep is the comb repetition frequency. A broader

comb will in general have lower relative power at each of the comb teeth, resulting in a

lower SNR overall.

2.8 Chirality

Chirality, also known as handedness, is a geometric property of objects whose mirror

image cannot be identically superimposed through translations, rotations, or conforma-

tional changes. Conversely, achiral objects possess mirror symmetry planes. In molecular
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Figure 2.13: (a) “Dual-comb spectroscopy with one comb interrogating the sample and
the other acting as a local oscillator.” (b) “The beat notes between pairs of comb lines,
one from each comb (blue, lines of comb 1 with spacing frep; red, lines of comb 2 with
spacing frep +δ frep), generates a radio-frequency comb (black, with line spacing δ frep).”
Reproduced with permission from [136].

systems, a chiral object and its mirror image are called enantiomers. Many important

biomolecules that form the building blocks of nature are chiral, including DNA molecules

and all essential amino acids.

Chiral media have important optical properties. Left and right circularly polarized

(denoted LCP or L and RCP or R) light traveling through isotropic chiral media experi-

ences different complex refractive indices ñ j = n j + iχ j with j = {L,R} [144].

The difference in the real parts of the refractive indices leads to circular birefringence,

characterized by a differential phase shift φ j = 2πn j l/λ accumulated by each circularly

polarized beam with wavelength λ after traversing a chiral medium of length l [145].

The RCP and LCP light components also suffer differential absorption due to the
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difference in the imaginary part of the respective refractive indices – circular dichroism.

A linearly polarized light field incident on a chiral medium can be decomposed into

two equal amplitude RCP and LCP components. It can be shown that propagation

through a circularly birefringent medium leads to a rotation ∆φ of the polarization plane

due to the different phases experienced by the LCP and RCP modes as shown in Fig. 2.14.

The rotation angle of the polarization plane per unit length ∆φ/l = (π/λ)(nL −nR). Note

that despite the refractive index differences typically being very small (of the order of 1

ppm for dilute samples), significant rotations can occur when the chiral medium length

l ≫λ.

Figure 2.14: (a) Decomposition of the electric field vector of a linearly polarized beam
into two equal amplitude components of circularly polarized light. (b) Rotation of the
linear polarization plane by an angle ∆φ due to circular birefringence.

Traversing linearly polarized light through a circularly dichroic medium results in

an elliptically polarized beam due to the differential absorption suffered by the LCP and

RCP components (see Fig. 2.15). It can be shown that the ellipticity of the transmitted

beam is given by [146]

tanψ= tanh
[
πl
λ

(χL −χR)
]

. (2.53)

Physically, due to differential absorption, the transmitted light is elliptically polarized

with the major axis inclined by the angle ψ relative to the incident linear polarization.
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The phenomenon called optical rotatory dispersion is associated with a complex

rotatory power that varies as a function of frequency, that is [147–149]

Γ(ω)= ω

2c
[
(nL(ω)−nR(ω))+ i

(
χL(ω)−χR(ω)

)]
. (2.54)

A detailed derivation of this expression, which requires a quantum-mechanical treatment,

can be found in the review of Ref. [150]. Typically, circular dichroism arises due to

electronic transitions, which for most biologically relevant molecules are localized in the

ultraviolet spectral region. On the other hand, circular birefringence can extend well into

the visible region due to the long tails of the real part of the complex refractive index.

Optical rotary dispersion and circular dichroism spectroscopy leverage the afore-

mentioned optical phenomena to probe the structure, conformation and thermodynamic

properties of biomolecules with important applications in drug screening, material and

food processing [151–153].

Circular dichroism spectroscopy measures the difference in absorption between LCP

and RCP circularly polarized beams incident on a chiral medium. For a beam with

incident and transmitted intensities I0 and I l , the molecular extinction coefficient is

given by

ϵ= 1
Cl

log
I0

I l
, (2.55)

which is related to the imaginary part of the refractive index of each circularly polarized

component through [146]

χ j = 2.303λc
4π

ϵ j . (2.56)

The difference in absorption between left and right circular components is typically four

orders of magnitude lower than the extinction coefficient for unpolarized light, making it

a changing quantity to measure. Nonetheless, this parameter can be crucial in assessing

the quality of protein synthesis in practice.

When optical rotation measurements are performed, the optical rotary power (also

designated specific rotation) of a given chiral compound is typically specified. For a
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Figure 2.15: Elliptically polarized state of light with ellipticity ψ. The left and right
circularly polarized components have different amplitudes.

solution with an optically active substance at a concentration C, this quantity is given

by [149]

δγ= ∆φ
Cl

. (2.57)

Most chiral compounds have a weak response such that large concentrations or path

lengths are required to measure sizeable signals [154]. For example, given the optical

rotatory power of sucrose, δγ= 66.37◦dm−1cm3g−1 at λ= 589nm [155], obtaining at least

a 1◦ rotation in a solution with a concentration of 1mg/cm3 would require a path length

l ≈ 1.5m. This shows the necessity for developing precise and sensitive sensing schemes.
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ESTIMATING THE CONCENTRATION OF CHIRAL MEDIA

WITH BRIGHT SQUEEZED LIGHT
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CHAPTER 3. ESTIMATING THE CONCENTRATION OF CHIRAL MEDIA WITH
BRIGHT SQUEEZED LIGHT

3.1 Introduction

The precise estimation of physical quantities is ubiquitous in science and technology.

Quantum resources can enhance measurement precision beyond that obtainable with

classical strategies [22, 88]. Notable applications include gravitational wave detection

with squeezed light interferometry [4, 5], sub-shot noise imaging [156–158], and probing

delicate samples [159, 160].

The polarization degree of freedom has been the resource of choice in seminal quan-

tum optics experiments such as the violation of Bell’s inequalities [161], quantum key

distribution [162], teleportation [163] and super-resolving phase measurements using

N00N states [164]. Besides being a useful degree of freedom for encoding quantum

information, polarization can also be employed to probe physical properties of mat-

ter. When traversing optically active media, left (LCP) and right circularly polarized

(RCP) light accumulate different phases — circular birefringence — and can undergo

differential absorption — circular dichroism. Practical use cases comprise the characteri-

zation of protein structures [151, 165, 166], nucleic acids [167], and the conformation of

biomolecules [152].

Characterizing optical phase and loss has been the subject of many quantum metrol-

ogy studies [168–173]. Both phase and loss are sensitive to concentration, which is a

key control parameter in several industrial processes such as pharmaceutical screening,

material and food processing [153]. In these applications, the chiral properties of matter

are often leveraged to probe dilute analytes [174–176].

Recently, theoretical studies have investigated the use of quantum probes to char-

acterize various properties of chiral media [177–179]. Rudnicki et al. [177] found that

tailored beams with a Mathieu wavefunction and displaced two-mode squeezed states

can outperform coherent states in optical ellipsometry. Ioannou et al. [178] focused on es-

timating the difference in transmission between LCP and RCP light probing a circularly
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dichroic sample. Using multi-parameter estimation analysis, Fock and twin-beam states

were found to be optimal probes. Wang and Agarwal [179] studied the simultaneous

estimation of the net phase and absorption coefficients of circularly dichroic chiral media.

They quantified the performance of Fock and two-photon N00N state probes, concluding

that the latter offers more substantial precision gains over coherent states. Proof of prin-

ciple experiments using polarization entangled photon pairs [180] and heralded single

photons [181] performed sub-shot noise estimation of the optical rotatory dispersion and

concentration of a sucrose solution, respectively.

Here, we extend the above studies to investigate the estimation of the concentration

of optically active media, leveraging circular birefringence or circular dichroism. Using

quantum estimation theory, we determine the highest precision achievable with bright

Gaussian state probes. We find that polarization squeezed state probes can provide a

fourfold precision enhancement over equally bright classical strategies in a low loss,

circularly birefringent system. The quantum advantage is found to scale exponentially

with the squeezing factor in this scenario. We also predict an order of magnitude precision

enhancement for highly dilute circularly dichroic solutions.

3.2 Fundamental quantum limit

The concentration C can be estimated with a precision bounded by [1]

∆2C̃
1≥ 1
νF (C)

2≥ 1
νQ(C)

. (3.1)

The Cramér-Rao bound (inequality 1) relates the variance of the unbiased estimator C̃

to the classical Fisher information, F (C), for a given strategy with ν trials. Maximizing

F (C) over all physical measurements leads to the quantum Fisher information (QFI),

Q(C) [28]. Inequality 2 in Eq. (3.1), the Quantum Cramér-Rao bound, specifies the best
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precision achievable in estimating C for a given channel and probe state. In the following,

we assume that all other parameters of the system are known.

3.3 Circular birefringence

For many systems of interest, circular birefringence is reasonably strong in the visible

and near infrared [151], where quantum probes are more readily available. In these

spectral regions, circular dichroism is generally vanishingly small. Hence, we first

concentrate on estimating concentration from circular birefringence alone and neglect

circular dichroism.

In media with optical activity, the LCP and RCP eigenpolarizations of light experience

unequal refractive indices. Upon propagating through a chiral medium of length l, these

components accumulate a differential phase [149]

∆φ=φR −φL = δγC l , (3.2)

where δγ is the optical rotatory power (see Fig. 3.1 (a)). When linearly polarized light

is incident on a circularly birefringent medium, the different phases acquired by the

LCP and RCP eigenmodes result in a net rotation of the polarization angle upon exit.

The angle of rotation is proportional to the concentration C of the analyte, leading to a

straightforward estimate of C provided the optical rotatory power per path length δγ/l is

known.

3.3.1 Polarization squeezed state probe

Because we are interested in determining C through the rotation angle that linearly

polarized light undergoes when traversing a circularly birefringent medium, it is op-

portune to consider Gaussian states that have reduced fluctuations in the equatorial

plane of the Poincaré sphere. We thus consider the following single spatial mode, two
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Figure 3.1: (a) Quantum-mechanical model of circular birefrigence where the LCP and
RCP modes undergo phase shifts φL/R, respectively. (b) Optimal balanced detection
scheme for a two-mode polarization squeezed state probe. A polarization beamsplitter
separates the H and V polarization components, whose intensities are measured by two
photodiodes and then subtracted. External losses are modeled using a beamsplitter with
transmission η and λ/2 denotes a half-waveplate. See the text for further details.

polarization mode squeezed state

∣∣ψG
〉= D̂H(α) ŜH(s,θ) ŜV (s,θ) |0H ,0V 〉 , (3.3)

where Ŝi(s,θ) = exp
[

s
2

(
e−iθ â2

i − eiθ â†2
i

)]
and D̂ i(αi) = exp

[
αi

(
â†

i − âi

)]
are the single-

mode squeezing and displacement operators, respectively. The subscripts H and V

denote the horizontal and vertical polarization modes. This state is fully characterized

by a displacement vector d with elements di = 〈Â i〉 and a covariance matrix Σ with

elements Σi j = 〈Â i Â†
j + Â†

j Â i〉−2〈Â i〉〈Â†
j〉 where Â =

(
âH , âV , â†

H , â†
V

)⊺
[106].

External system losses such as non-unitary channel transmission and photodetection

efficiency can be modeled using a fictitious beamsplitter with transmittance η as depicted

in Fig. 3.1 (b). In the presence of external system losses η, the displacement vector after

traversing a circularly birefringent medium becomes

d̃ =p
η



αcos
(
∆φ/2

)
ei(φL+φR )/2

αsin
(
∆φ/2

)
ei(φL+φR )/2

α∗ cos
(
∆φ/2

)
e−i(φL+φR )/2

α∗ sin
(
∆φ/2

)
e−i(φL+φR )/2


. (3.4)
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The 4x4 covariance matrix takes the following form

Σ̃=



Σii 0 Σ13 0

0 Σii 0 Σ24

Σ31 0 Σii 0

0 Σ42 0 Σii


, (3.5)

where Σii = 1−η+ηcosh2s, Σ13 =Σ24 =−ηsinh(2s)ei(θ+φL+φR )/2 and Σ31 =Σ42 =Σ∗
13.

The QFI for a two-mode Gaussian probe state is given by [182]

QG(C)= 1

2
(∣∣∣∣σ̃∣∣∣∣−1

){∣∣∣∣σ̃∣∣∣∣Tr

[(∣∣∣∣σ̃∣∣∣∣−1
∂C

∣∣∣∣σ̃∣∣∣∣)2]
+

√∣∣1+ σ̃2
∣∣ Tr

[((
1+ σ̃2)−1

∂Cσ̃
)]

+4(λ2
1 −λ2

2)

(
∂Cλ

2
2

λ4
2 −1

− ∂Cλ
2
1

λ4
1 −1

)}
+2(∂C d̃)⊺ σ̃−1 (∂C d̃) , (3.6)

where 1 denotes the identity matrix and |·| the determinant. The symplectic form of the

covariance matrix, σ̃, can be obtained through σ̃= k ·Σ̃ with k = diag(1,1,−1,−1). Finally,

λi are the eigenvalues of σ̃. The first term in this expressions evaluates to

4η2 l2δγ2 sinh(2s)2

1−η+η2 + (1−η)ηcosh(2s)
, (3.7)

while the information contained in the displacement vector 2(∂C d̃)⊺ Σ̃−1 (∂C d̃) is equal to

η|α|4 l2δγ2 (
1−η+ηcosh2s+η∣∣sin∆φ

∣∣ sinh2s
)

. (3.8)

In the absence of external system losses, i.e. η= 1, the QFI reduces to

QG(C)= 4l2δγ2 sinh(2s)2 +|α|2 l2δγ2 (
cosh2s+ ∣∣sin∆φ

∣∣ sinh2s
)

, (3.9)

at the optimal squeezing angle θ =π−φL −φR . The second term in Eq. (3.9) represents

the information contributed by the displacement vector 2(∂C d̃)⊺ Σ̃−1 (∂C d̃) [182], which

we call the bright term. When |α|2 ≫ 4sinh2stanh2s, the bright term dominates over

the first term, i.e. the vacuum contribution. Even for squeezing levels as large as s = 1.8

(≈ 15.6dB), a value of |α|2 = 750 will ensure that the bright term is more than ten times
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greater than the vacuum term. As such, the bright term provides a lower bound on the

QFI

QG(C)≥ |α|2 l2δγ2 (
cosh2s+ ∣∣sin∆φ

∣∣ sinh2s
)

, (3.10)

which, in practice, accounts for the near entirety of the QFI.

The QFI for the coherent state probe |αH ,0V 〉 is readily obtained by setting the

squeezing factor s → 0, yielding

QSQL(C)= |α|2 l2δγ2 , (3.11)

which corresponds to the standard quantum limit (SQL).

Comparing Eqs. (3.10) and (3.11), the two-mode polarization squeezed probe
∣∣ψG

〉
surpasses the SQL for any finite level of squeezing, providing a quantum advantage

QG /QSQL ≳ e2s in the limit of large squeezing. The current squeezing level record is

15 dB (s ≈ 1.73) [183] which, for low loss systems, translates to a fourfold precision

enhancement beyond the SQL in estimating the concentration of a chiral analyte as

shown in Fig. 3.2.

As an example, we consider estimating the concentration of a dilute 1% w/w aqueous

sucrose solution where δγ= 1.16cm3 g−1 dm−1 at λ= 589nm [155]. For a standard cuvette

length l = 1cm and |α|2 = 109, we find that the two-mode polarization squeezed state∣∣ψG
〉

with a squeezing level s = 1 (≈ 8.7dB) can attain a relative precision ∆C/C = 0.008,

twice better than achievable with a coherent state probe ∆C/C = 0.016. A brightness of

|α|2 = 109 and a squeezing level s = 1 are within experimentally achievable ranges with

standard laser and optical parametric oscillator sources [184].

3.3.2 Optimal measurement scheme

Having derived the fundamental precision limit attainable with the two-mode polar-

ization squeezed state
∣∣ψG

〉
given in Eq. (3.9), we now show that a balanced detection

scheme can saturate it.
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Figure 3.2: Precision enhancement in estimating the concentration of a chiral analyte
via circular birefringence calculated using Eqs. (3.6) to (3.8)

. The enhancement beyond the SQL is plotted as a function of the squeezing level for the
two-mode polarization squeezed state

∣∣ψG
〉

and different system efficiencies η. In low
loss systems, state-of-the-art squeezing levels yield up to a fourfold precision

enhancement over an equally bright classical strategy.

The optimal measurement operator is

Ŝ = 1p
2

(
â†

H cosξ+ â†
V sinξ+ â†

vac,V

)
·h.c.− 1p

2

(
â†

H sinξ− â†
V cosξ+ â†

vac,H

)
·h.c. , (3.12)

where ξ is a rotation angle and h.c. denotes the Hermitian conjugate. Experimentally,

Ŝ can be determined using a half-waveplate that induces a rotation ξ followed by a

polarization beamsplitter to separate the H and V components, whose intensities are

measured by separate detectors and then subtracted as depicted in Fig. 3.3 (b). Please

refer to Appendix A for a detailed derivation. This measurement strategy yields a mean

value 〈Ŝ〉 = |α|2 cos
(
∆φ−2ξ

)
and variance 〈∆2Ŝ〉 = |α|2(cosh2s−cosθsinh2s) in the bright

limit where |α|2 ≫ sinh2 2s.

For Gaussian probes, we can readily obtain the variance in estimating the concentra-
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tion using error propagation

∆2C = 〈∆2Ŝ〉
∣∣∣∣∣∂〈Ŝ〉∂C

∣∣∣∣∣
−2

= (|α| lδγ es)−2 , (3.13)

for a rotation angle ξ= (2∆φ−π)/4 induced by the waveplate. For small dilute samples

where
∣∣sin∆φ

∣∣≈ 0, ∆2C is equal to the reciprocal of Eq. (3.9) such that a measurement of

the operator Ŝ in Eq. (3.12) saturates the QCRB.

Note that this differs from the conventional measurement carried out for a classical

probe state, where one would typically measure the circular birefringence induced

rotation angle by crossing a linear polarizer with the transmitted beam. Practically, this

conventional strategy is susceptible to DC noise and intensity fluctuations of the incident

probe field, while the balanced detection scheme advocated is immune to common mode

noise sources.

3.4 Circular dichroism

In addition to circular birefringence, optically active media can also exhibit circular

dichroism. This phenomenon refers to the differential absorption experienced by LCP

and RCP light traversing a chiral medium with length l. According to the Beer–Lambert

law, the absorbance of each circularly polarized component is directly proportional to the

concentration, i.e. [185]

A i = ϵi C l , (3.14)

where ϵi is the molar extinction coefficient. This effect is typically strongest in the UV

region where bright quantum states are challenging to generate [151]. For completeness,

we quantify the performance of bright Gaussian probes in estimating the concentration

C of a circularly dichroic analyte.

The differential absorption of the LCP and RCP modes can be modeled quantum

mechanically using fictitious beamsplitters with intensity transmissions Ti = 10−A i as
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Figure 3.3: (a) Quantum-mechanical model of circular dichroism where the LCP and
RCP modes undergo phase shifts TL/R , respectively. (b) Optimal detection scheme for a
twin single-mode amplitude squeezed state probe. External losses are modeled using a
beamsplitter with transmission η before each detector.

depicted in Fig. 3.3 (a). Ref. [178] used this model to estimate the transmission circular

dichroism parameter TL −TR. However, to estimate the concentration C, one should

instead resort to absorbance circular dichroism, where the parameter of interest is the

difference in absorbance ∆A = AL − AR between the LCP and RCP modes. For most

biological samples, this quantity is of the order 3 · 10−4 [165]. A practical detection

strategy is to measure the intensities I i of the LCP and RCP modes after traversing the

chiral medium as shown in Fig. 3.3 (b). From the ratio IL/IR = 10∆A, one can readily

obtain an estimate of the concentration C provided the molar circular dichroism per path

length ∆ϵ/l is known.

Fock or squeezed vacuum probes have been shown to be optimal in single-mode

transmission estimation on a mean input photon basis [112, 115]. Single-mode bright

squeezed states were shown to approach the performance of these probes for large

squeezing values [117]. Bright squeezed state probes can be generated with macroscopic

numbers of photons, unlike Fock or squeezed vacuum states, resulting in an overall

higher precision estimate of the transmission as the QFI is proportional to the mean

number of probe photons. Given that each circularly polarized input mode in our system is

independent and undergoes a transmission Ti, the twin single-mode amplitude squeezed
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state

∣∣ψB
〉= D̂L(α)D̂R(α)ŜL(s,θ)ŜR(s,θ) |0L,0R〉 , (3.15)

is a good candidate for estimating the concentration C. This quantity can be determined

from the ratio between the transmitted intensities I i of the LCP and RCP modes, that is

R = IL/IR = 10∆ϵCl .

The mean value and variance for an intensity measurement are 〈n̂i〉 = 〈â†â〉 and

∆2n̂i = 〈n̂2
i 〉 − 〈n̂i〉2, respectively [57]. In the bright limit, these quantities evaluate

to 〈n̂i〉 = Ti(|α|2 + sinh2 s) and ∆2n̂i = |α|2Ti(1+2Ti sinh2 s−Ti cosθsinh2s), which is

minimum for a squeezing angle θ = 2πm, m ∈Z indicating that the displacement and

squeezing operations should be along the same direction.

Using error propagation, we can readily obtain the uncertainty in estimating the

concentration

∆2C =
∣∣∣∣∂C
∂R

∣∣∣∣2∆2R

=
∣∣∣∣∂R
∂C

∣∣∣∣−2
R2

(
∆2n̂R

〈n̂R〉2 + ∆
2n̂L

〈n̂L〉2

)
(3.16)

=β[
2(e−2s −1)+1/TR +1/TL

]
,

where β= (|α|∆ϵ l ln10)−2. Compared to a coherent state probe where s = 0, the squeezed

probe
∣∣ψB

〉
provides a precision enhancement that scales approximately as 1/

√
1−Ti .

For dilute samples where Ti ≳ 0.9, the quantity 1/TR +1/TL ≲ 2.22. In this case, a large

squeezing factor s results in a standard deviation ∆C ≈ √
0.22β , about three times

smaller than that obtainable with a coherent state probe. The larger Ti is, the greater

the quantum advantage provided by bright squeezing reaching an order of magnitude

for Ti ≈ 0.99.
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3.5 Conclusion

In summary, we have quantified the performance of bright squeezed states in estimating

the concentration of chiral solutions.

For media exhibiting circular birefringence, we found that two-mode polarization

squeezed state probes can provide a fourfold precision enhancement over an equally

bright classical strategy in low loss systems with state-of-the art squeezing levels. The

quantum advantage scales exponentially with the squeezing factor and balanced detec-

tion is the optimal measurement strategy for probing dilute analytes.

In the case of absorbance circular dichroism, twin single-mode amplitude squeezed

states can outperform coherent state probes. An order-of-magnitude higher precision

estimate of the concentration is predicted for highly dilute samples. The development of

bright squeezed states in the UV spectral region would allow these performance gains to

be attained.

In this work we assumed that all system parameters, apart from the concentration,

are known. In practice, there may be uncertainty in the rotary power or the extinction

coefficients. These can be readily accounted for using standard error propagation.

Our results benchmark the potential precision enhancement that Gaussian quantum

probes with a macroscopic number of photons can provide in estimating the concentration

of chiral media. They are especially pertinent in characterizing dilute chiral solutions.
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CHAPTER 4. QUANTUM-LIMITED ABSORPTION ESTIMATION WITH RING
RESONATORS

4.1 Introduction

Quantum metrology seeks to determine and attain the fundamental quantum limits in

estimating physical parameters [22]. Its primary focus is to identify quantum strategies

that outperform classical sensing schemes for an equivalent set of resources [186]. For

example, given a mean number of probe photons, nonclassical states have been used

to enhance precision in estimating both phase and absorption in various applications

including interferometry, magnetometry, and spectroscopy [95, 168, 187–189].

Detecting and characterizing analytes using optical ring resonators has been applied

in a wide range of scenarios such as gas sensing [190], measurements of mechanical

strain [191], and biochemical analysis [192]. The fundamental limits in estimating

analyte properties using these structures are a largely unexplored topic in quantum

metrology. A goal of this study is to quantify whether engineered photonic circuits with a

classical light source can outperform nonclassical state probes in a standard single-pass

(SP) scheme. Compared to SP strategies, resonant optical cavities raise the prospect

of enhanced precision, both as a result of a buildup of the optical intensity and the

increased number of interactions.

In this chapter, we quantify the magnitude of these precision gains when estimating

the absorption coefficient and refractive index changes induced by an analyte evanes-

cently coupled to an all-pass ring resonator. Using quantum estimation theory, we

determine the experimental parameters that yield the highest possible precision for

single-mode Gaussian probe states. At the optimal operating point, we find there is no

advantage in using bright squeezed states over coherent state probes. Furthermore,

coherent state probes in all-pass ring resonator systems are capable of outperforming SP

strategies with quantum probes, including squeezed light and Fock states with the same

mean input photon number.
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4.2 All-pass ring resonator

The system we consider is an all-pass ring resonator comprised of a ring resonator

coupled to a bus waveguide, as depicted in Fig. 4.1. This contrasts to a SP strategy where

the analyte is slotted into or surrounds a single-bus waveguide [190]. Light traveling in

the ring is evanescently coupled to an analyte with an unknown absorption coefficient

αA, which we seek to estimate.

Figure 4.1: All-pass ring resonator with a self-coupling coefficient r, round trip phase φ
and attenuation a. We seek to estimate the absorption coefficient αA or refractive index
nA of an analyte evanescently coupled to the ring resonator.

The ratio between the field transmitted through the bus waveguide, Epass, and the

continuous wave input field, Einput, is given by [193]

Epass

Einput
= ei(π+φ) a− re−iφ

1− raeiφ , (4.1)

where r is the self-coupling coefficient, φ is the round-trip phase, and a is the atten-

uation coefficient. By taking the square modulus of Eq. (4.1), we obtain the intensity

transmission of the system [193]

ηR =
∣∣∣∣ Epass

Einput

∣∣∣∣2 = a2 −2racosφ+ r2

1−2racosφ+ (ra)2 . (4.2)

The buildup factor, i.e. the ratio between the circulating intensity in the ring and the
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incident intensity is [193]

B =
∣∣∣∣ Ering

Einput

∣∣∣∣2 =
(
1− r2)a2

1−2racosφ+ (ra)2 . (4.3)

Note that B is independent of the intensity as the all-pass ring resonator is a linear

system. At resonance and negligible attenuation (a ≈ 1), Eq. (4.3) is maximized and

becomes Bmax = 1+r
1−r .

When the round-trip phase is an integer multiple of 2π, i.e. φ= 2πm with m ∈Z, the

fields circulating in the ring and traveling in the bus waveguide interfere constructively.

The amplitude of the light circulating in the ring builds up after each successive round

trip such that the intensity in the ring can become significantly larger than that in the

bus waveguide. For example, for a self-coefficient r = 0.95 and negligible attenuation, the

intensity circulating in the ring is about 40 times higher than in the bus waveguide [194].

Figure 4.2: Phase shift imparted on the optical mode traveling in the bus waveguide
as a function of the round trip phase for an all-pass ring resonator with a self-coupling
coefficient r = 0.85 and three different attenuation coefficients a.
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The optical mode traveling through the bus waveguide suffers a phase shift [193]

θR =π+φ+arctan
rsinφ

a− r cosφ
+arctan

rasinφ
1− racosφ

. (4.4)

The phase shifts for an all-pass ring resonator with self-coupling r = 0.85 and different

attenuation values a are plotted in Fig. 4.2. Three different coupling regimes are clearly

observable [193, 195]

• Overcoupling. When r < a, there is a continuous positive phase delay;

• Critical coupling. At r = a, the transmission ηR becomes null at resonance which is

accompanied by an abrupt π phase shift (see Fig. 4.3);

• Undercoupling. When r > a, the phase shift near the resonance decreases consider-

ably.

From the Beer-Lambert law, the attenuation coefficient a = e−αT L/2 where L is the

ring length and αT the total linear absorption coefficient, which has two contributions

αT =αI +ΓαA . (4.5)

Here, αI characterizes the intrinsic ring-waveguide loss in terms of an effective absorp-

tion coefficient and αA is the targeted analyte absorption coefficient. The fraction of

guided light in the ring that interacts with the analyte is quantified by the confinement

factor Γ.

4.3 Fundamental quantum limit

The all-pass ring resonator can be modeled as a channelΛ that imparts a loss
√

1−ηR(αA)

and a phase shift θR(αA) on the probe state. This system is linear and passive, with

the waveguide having a continuum of frequency modes each of which can be analyzed

independently.
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Figure 4.3: Transmission and phase shift of the bus waveguide mode as a function of the
round trip phase for a critically coupled all-pass ring resonator with r = a = 0.85.

The precision with which αA can be estimated is bounded by [1]

∆2α̃A ≥ 1
νQ(αA)

. (4.6)

For a given experimental strategy repeated ν times, the Quantum Cramér-Rao bound

(QCRB) relates the variance of the unbiased estimator α̃A to the Quantum Fisher

Information (QFI), Q(αA) [28]. It specifies the best precision achievable for a given

channel and probe state.

4.4 Coherent state probes

We now quantify the performance of a coherent state probe in estimating αA. A coherent

state
∣∣β〉

with mean photon number
∣∣β∣∣2 is fully characterized by a displacement vector d

with elements di = 〈x̂i〉 and a matrix Σ= I/2 of covariances of the quadrature operators
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x̂1 = (â† + â) and x̂2 = i(â† − â) [196]. The application of the channel transformation∣∣β〉 Λ7→ ∣∣pηR eiθRβ
〉

results in a displacement vector d = ∣∣β∣∣pηR (cosθR ,sinθR)T .

The QFI of a single-mode Gaussian state is [116]

QG = Tr
[
(Σ−1Σ′)2]

2(1+P2)
+ 2P ′2

1−P4 +∆X′⊺Σ−1∆X′, (4.7)

where •′ ≡ ∂αA•, P = det(Σ)−1/2 is the purity of the state and ∆X′ = d〈XαA+ϵ−XαA〉/dϵ
∣∣
ϵ=0

with X = (x̂1, x̂2). For a coherent state probe, the first two terms in Eq. (4.7) are null,

resulting in a QFI

QC =
(∣∣β∣∣LΓB eαT L/2

)2
, (4.8)

as derived in Appendix B. We find that Eq. (4.8) is maximized when r = a and φ =
2πm,m ∈Z, that is when the all-pass ring resonator is critically coupled and on resonance.

Under these conditions, Eq. (4.8) reduces to

QC
∣∣
r=a,φ=2πm = ∣∣β∣∣2 L2Γ2 B

1− e−αT L . (4.9)

Note that we assume that the incident optical field has a temporal coherence length that

is sufficiently large to permit interference between light circulating in the ring and light

entering the ring via the bus waveguide. In this respect, Fock state probes are beyond

the scope of this work due to their wavepackets’ finite temporal coherence.

Instead of estimating loss, the above formalism readily allows one to estimate phase

or equivalently refractive index changes nA induced by an analyte. This quantity is

related to the round trip phase φ= 2π(nI+ΓnA)L/λ, where λ is the free-space wavelength

and nI is the intrinsic refractive index. The only difference is a scaling factor (4π/λ)2, such

that the QFI when estimating nA with a coherent state probe under optimal operating

conditions is

QC(nA)= ∣∣β∣∣2 (
4π
λ

)2 L2Γ2 B
1− e−αT L . (4.10)
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4.5 Single-mode Gaussian probes

We now determine the performance of pure single-mode Gaussian state probes. Using

a numerical optimization algorithm, we find that the QFI in estimating αA for these

probes is also maximum at critical coupling and on resonance (see Appendix B). At this

optimal operating point, the QFI is given by

QS =
(∣∣β∣∣2 +sinh2 s

) L2Γ2 B
1− e−αT L , (4.11)

where s is the squeezing factor. Note that the term in parenthesis is equal to the mean

number of photons in this bright squeezed state. Therefore, when normalized by the mean

input photon number, an arbitrarily bright pure single-mode squeezed state performs at

the same level as a coherent state probe at the optimal operating point given in Eq. (4.9).

Outside the optimal operating point, i.e. critical coupling and on-resonance, bright

squeezed states provide an advantage over coherent state probes. Following Ref. [197],

the third term in Eq. (4.7) is maximized by orienting the uncertainty ellipse of the

squeezed state so that its minor axis is parallel to ∂αA d. The information D contained in

the displacement vector is then

D = (〈n̂〉in −nsq)
4ηR

2(∂αAθR)2 + (∂αAηR)2

ηR[e−2sηR + (1−ηR)]
, (4.12)

where nsq = sinh2(s) is the mean photon number of the initial squeezed vacuum state.

Levels of 15 dB of squeezing have been experimentally demonstrated, which cor-

respond to a mean photon number nsq ≈ 7.4 [183]. When nsq ≪ 〈n̂〉in, the amount of

information in the displacement vector per mean number of probe photons becomes

D
〈n̂〉in

= 4ηR
2(∂αAθR)2 + (∂αAηR)2

ηR[e−2sηR + (1−ηR)]
. (4.13)

In Fig. 4.4, we plot the ratio D/QC,opt. for different levels of squeezing s, where

QC,opt. is the QFI of a coherent state at the optimal operating point given in Eq. (4.9).

Compared to coherent state probes, squeezed states yield higher information outside
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the optimal operating point, i.e., a resonant, critically coupled all-pass ring resonator.

Nevertheless, there is still an extended region around this optimal point where coherent

probe states perform remarkably well. This is because the transmission η remains low,

greatly reducing the impact of the squeezing dependent term e−2sηR .
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Figure 4.4: Ratio between the information contained in the displacement vector D and
the QFI of a coherent state at the optimal operating point QC,opt. for probes with different
levels of squeezing as a function of (a) the self-coupling coefficient r and (b) round trip
phase φ.

4.5.1 Optimal Gaussian probe state

Birchall et al. [172] considered the situation where both the phase θ and loss η imparted

on a channel depend on a common parameter χ. Using a unitary dilation with a single

free environmental parameter, the following upper bound on the QFI was derived when

estimating χ

Q(χ)≤ 〈n̂〉in
4η2(∂χθ)2 + (∂χη)2

η(1−η)
. (4.14)

Here 〈n̂〉in is the mean number of input probe photons. Unitary dilations are a common

procedure to describe the unitary evolution of the larger closed system that includes the

environment [108]. If the environment is not included through a unitary dilation, the

system will in general experience non-unitary evolution due to leakage to environmental
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Figure 4.5: QFI when estimating the absorption coefficient αA normalized by the mean
input photon number 〈n̂〉in as a function of the all-pass ring resonator’s (a) self-coupling
coefficient r and (b) round trip phase φ. At critical coupling (r = a = 0.8) and on resonance
(φ = 0), the QFI for a coherent state probe is maximum and equals the upper bound
in Eq. (4.15), i.e. QC = Qub. Common parameters to both sub-figures are as follows:
αA = 20cm−1, αI = 5dBcm−1, Γ = 0.43, and ring radius R = 75µm. φ = 0 was set in
sub-figure (a) and r = 0.8 in sub-figure (b).

modes. For an all-pass ring resonator where the parameter of interest χ=αA, this upper

bound takes the form

Q(αA)≤ 〈n̂〉in
L2Γ2 B

1− e−αT L
:=Qub . (4.15)

As shown in Fig. 4.5, Qub is identical to the QFI for a coherent state probe at the optimal

operating point given in Eq. (4.9). The upper bound in Eq. (4.15) is thus tight for pure

single-mode Gaussian probe states.

4.6 Optimal measurement strategy

Having derived the fundamental precision limit that can be achieved with pure single-

mode Gaussian probes, we now show that intensity measurements are capable of satu-

rating it.

The variance in the photon number n̂ with this measurement strategy is

〈∆2n̂〉 = ηR
2〈∆2n̂〉in +ηR(1−ηR)〈n̂〉in . (4.16)
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For a coherent state probe, the input variance ∆2n̂in and mean photon number 〈n̂〉in

are both equal to
∣∣β∣∣2. The mean photon number at the output 〈n̂〉 = ηR

∣∣β∣∣2. Using

error propagation, the variance in estimating αA for a resonant, critically-coupled ring

resonator is

∆2αA = 〈∆2n̂〉
∣∣∣∣∂〈n̂〉∂αA

∣∣∣∣−2
=

(∣∣β∣∣2 L2Γ2 B
1− e−αT L

)−1

, (4.17)

which is the reciprocal of Eq. (4.9). Thus, an intensity measurement saturates the QCRB.

Note that under critical coupling and on resonance where the QFI is maximum, no light

is transmitted. A null output, i.e. no transmitted light, in this case is not synonymous

with no information. At critical coupling, r = a and, provided one knows the all-pass ring

parameters {αI , r,Γ,L} with high precision, maximum information in estimating αA is

obtained. While operating at this optimal point can be experimentally challenging, slight

detunings in r and/or φ still yield near maximum QFI as shown in Fig. 4.5. In a practical

experiment, one would most likely operate just above or below critical coupling where

the QFI is near its peak value.

4.7 Single-pass absorption estimation strategies

We now compare the performance of the all-pass ring resonator with SP strategies where

the analyte is directly probed by an input quantum state. The transmission ηSP = e−αAL

in the ideal case where propagation and reflection losses are neglected.

Fock states with photon number N0 have been shown to be optimal in estimating the

transmission of an analyte on a per input photon basis [112]. This is also the case when

estimating αA, with an associated QFI [198]

QFIF,SP = N0
L2

eαAL −1
. (4.18)

This expression is maximized for an analyte length LF,opt ≈ 1.59/αA. Despite yielding

the highest precision in estimating αA for a fixed number of input photons in a SP
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strategy, Fock state probes are of limited practical use due to the difficulty in generating

these states with high photon number. Their performance can be readily surpassed by

coherent state probes with higher brightness as the QFI scales with the mean input

photon number [198]

QFIC,SP = ∣∣β∣∣2L2e−αAL . (4.19)

The optimal analyte length in this case is LC,opt = 2/αA.

Comparing Eqs. (4.9) and (4.19), we observe that a ring resonator amplifies the mean

input photon number by the buildup factor B leading to an effective mean photon number∣∣β∣∣2
eff = B

∣∣β∣∣2 in the ring. Furthermore, the effective path length of the analyte Leff =ΓL

is decreased due to the finite coupling factor Γ of the evanescent waves interacting

with the analyte. Finally, the SP strategy transmission factor e−αAL is converted into

(1− e−αT L)−1 reflecting the fact that at critical coupling the light remains circulating in

the ring until it is lost by an absorption or scattering event. Thus, in a critically coupled

ring resonator, every photon interacts with the analyte in the limit of negligible intrinsic

loss. The combination of the enhancement due to the buildup factor with high analyte

interaction efficiency can result in an appropriately designed ring resonator structure

reaching higher QFI values than SP strategies.

When intrinsic loss is present, not all of the input photons are absorbed by the analyte.

Nevertheless, provided the intrinsic loss is small enough, the critically coupled all-pass

ring resonator with a coherent state probe will outperform an optimal SP strategy

employing Fock state probes on a mean input photon number basis. The limiting value

for the intrinsic loss under which this occurs can be readily obtained by comparing

Eqs. (4.9) and (4.18) with LF,opt, yielding the inequality

αIL ⪅ 2csch−1(1.61/LΓαA)−ΓαAL . (4.20)

As an example, we consider estimating the absorption coefficient of N-methylaniline

near 1500 nm, which has previously been studied using a classical approach by Nitkowski

58



4.8. MULTI-PASS ABSORPTION ESTIMATION STRATEGIES

et al. [199]. N-methylaniline is a convenient organic compound for proof of principle

telecom experiments as it has an absorption line near 1500 nm. The silicon all-pass

ring resonator used had a radius R = 50µm and a confinement factor Γ = 0.43. Using

a coherent state probe, an average standard deviation ∆αA = 0.25cm−1 for ν= 8 trials

was reported. The peak absorption measured was approximately αA = 10cm−1. With

current technology, intrinsic silicon waveguide loss rates αI < 2.0dBcm−1 ≈ 0.6cm−1 are

achievable [200]. In Fig. 4.6, we plot the standard deviation ∆αA normalized by the

mean number of probe photons for a ring resonator with the aforementioned parameters

and a self-coupling coefficient r = 0.93 chosen to induce critical coupling at a target

αA = 10cm−1. This results in a standard deviation ∆αA = 11.1cm−1 per mean input

photon number for a single trial. For comparison, we also plot the standard deviations

achievable with Fock and coherent state probes in ideal SP strategies where the length

of the analyte has been continuously optimized as the absorption coefficient varies. At

the target absorption coefficient αA = 10cm−1, these are respectively 12% and 23% worse.

Using Eq. (4.20), the critically-coupled all-pass ring with optimal r outperforms any SP

strategy when αA > 4.4cm−1 . For perspective, operating an all-pass ring resonator with

αI = 2.0dBcm−1 at the optimal condition, a coherent state probe with 〈n̂〉in = 2000 would

be sufficient to reach a standard deviation better than that reported by Nitkowski et

al. [199].

4.8 Multi-pass absorption estimation strategies

Multi-pass (MP) strategies without resonant enhancement, where an analyte with a

fixed length L0 is traversed k times by the incident light, have been proposed to improve

precision beyond that of a SP strategy [168, 197]. However, since for a given analyte

thickness, the net effect of a MP strategy is to increase the analyte thickness by an

integer multiple, it can never surpass the precision of a SP strategy with an optimal
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Figure 4.6: Standard deviations ∆αA normalized by the mean input photon number for
an all-pass ring resonator probed by a coherent state (in blue), the quantum limit for a
single-pass (SP) strategy attainable with a Fock state (in purple) and SP with a coherent
state probe (in green). For both SP strategies, the analyte length has been continuously
optimized as αA varies. The all-pass ring resonator is critically coupled for a target
analyte absorption coefficient αA = 10cm−1. Optimizing the self-coupling coefficient r
further improves its performance (dotted blue).

analyte length.

4.9 Tunable coupling regime

Operating at critical coupling maximizes the QFI in estimating αA and nA. This would

require fabricating customized all-pass ring resonators for each individual analyte.

This can be overcome by using a Mach–Zehnder interferometer-coupled ring resonator,

which is formally equivalent to an all-pass ring with a tunable complex self-coupling

coefficient [201]

ρ = iexp
[
i
(
φ1 +φ2

)
/2

]
cos

[(
φ1 −φ2

)
/2

]
, (4.21)

where φ1 and φ2 are the phases in the upper and lower arms, respectively (see Fig. 4.7).

By carefully tuning both of these phases, one can shift the operating point of the equiv-
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alent all-pass ring resonator from undercoupled to overcoupled passing through the

desired critical coupling condition. For the case displayed in Fig. 4.6, the all-pass ring

resonator maintains its performance for analyte absorption coefficients within 20% of

the target value αA = 10cm−1, highlighting its robustness.

Figure 4.7: Mach–Zehnder interferometer-coupled ring resonator with tunable phase
shifters φ1 and φ2.

4.10 Conclusion

We have quantified the performance of pure single-mode Gaussian probes in estimating

the absorption coefficient and refractive index changes induced by an analyte evanes-

cently coupled to an all-pass ring resonator. We found that the highest precision in

estimating these parameters is achieved at critical coupling and on resonance. At this op-

timal operating point, there is no advantage in using bright single-mode squeezed states

over coherent state probes. Practically, operating at this ideal point can be facilitated by

using a Mach–Zehnder interferometer-coupled ring resonator.

There are many cases, such as when there is a limit in total optical probe power or

competing noise sources in an experiment [202, 203], where a key performance metric

is the precision attainable by a given strategy normalized by the mean input photon

number. On this basis, an all-pass ring resonator with coherent state probes can yield

higher precision than any single-pass strategy, including those using Fock or squeezed

state probes with optimal analyte length.
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Fully integrated, low-loss ring resonator systems [204] with shot-noise limited coher-

ent state sources [205] and state-of-the-art detectors [206, 207] can surpass the precision

attainable with single-pass quantum probe sensors. More generally, our results suggest

that engineered photonic circuits are promising candidates for enhancing precision in

parameter estimation. As is the case for the all-pass ring resonator, these precision gains

can preclude the need for sophisticated quantum probe state generation and detection

schemes.

Our findings are relevant for lab-on-chip resonator sensors [208], which have impor-

tant practical applications ranging from environmental monitoring [209] and ultrasonic

imaging [210] to antibody profiling [211] and cancer detection [212].
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CHAPTER 5. SQUEEZED FREQUENCY COMB ABSORPTION SPECTROSCOPY

5.1 Introduction

Spectroscopy is a precise and versatile tool to probe matter with key applications in

process control [213], chemical analysis [214], and environmental monitoring [215, 216].

Accurate characterization of a gas phase absorption profile provides important physical

information on gas composition, temperature, pressure, and velocity [217].

Direct absorption spectroscopy can be performed using high-resolution, tunable laser

diodes in the near and mid-infrared [119–121]. This technique, although common, is

susceptible to laser intensity fluctuations, low-frequency noise sources, and spurious

interference effects that limit the signal-to-noise (SNR) ratio and complicate the analysis

of acquired spectra [209].

An alternative to sweeping across the absorption spectrum is to frequency modulate

a narrowband continuous-wave laser. In the limit of weak modulation, as first proposed

by Bjorklund in 1979 [218], two weak sidebands can be created around the carrier

frequency. The sideband frequency can be easily tuned by adjusting the modulation

frequency, providing a convenient means to sweep probe light across an absorption

feature. Furthermore, orders of magnitude larger spectral resolution than is typical with

a visible or near-infrared spectrometer can be obtained.

Nonclassical states of light also promise enhanced SNRs in a variety of sensing

schemes [22, 88, 189, 219]. Yurke and Whittaker [220] realized that by squeezing the

two sidebands of a weakly frequency-modulated probe, the sensitivity of Bjorklund’s

frequency modulation scheme could be improved beyond the standard quantum limit. An

early experimental verification by Polzik et al. yielded a 3.1 dB sensitivity improvement

when probing the D2 line of atomic cesium [221].

Here, we propose a sensing strategy that extends the advantages of using squeezed

light in the weak modulation regime to a broader frequency comb generated by resorting

to a higher modulation depth. This enables one to sample the wider absorption profiles
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of molecules at a dense, discrete set of frequencies without the need for scanning the

incident laser or the modulation frequency. Instead of resorting to direct detection as

in Yurke and Whittaker’s scheme, we propose the use of homodyne detection combined

with an optical spectrum analyzer. This detection scheme amplifies the signal by the

amplitude of the local oscillator (LO) field and the impact of the associated shot noise is

avoided by subtracting the two photodiode currents [86]. Additionally, the transmission at

the various sidebands can be measured simultaneously. In the limit of high transmission

associated with low gas concentrations, we find that the SNR scales exponentially with

the squeezing factor. For squeezing levels of 10 dB, an order of magnitude enhancement

beyond the standard quantum limit is predicted.

5.2 Sensing strategy

The sensing strategy we consider is schematically represented in Fig. 5.1. Broadband

squeezed vacuum |ζ〉 is displaced by a coherent state |α〉 and then phase modulated

(PM) to produce a squeezed frequency comb. This probe state interacts with a gas whose

absorption properties we wish to characterize. The transmitted field is then detected

using a homodyne detector followed by a spectrum analyzer.

5.2.1 Probe state

To understand the scheme, it is helpful to initially focus our attention on the probe field

at the carrier frequency ωc. This is a bright squeezed state, obtained by displacing the

component of broadband squeezed vacuum |ζ〉 at ωc with a coherent state |α〉, i.e.

α(ωc)+ âs(ωc) . (5.1)

Here, α(ωc) is a classical coherent wave and âs(ωc) is the annihilation operator arising

from the squeezing operation. In the Caves formalism [196], the squeezed vacuum op-
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Figure 5.1: Schematic of the sensing strategy where a squeezed comb probes a gas
with a frequency-dependent transmission η. The probe is generated by displacing a
broadband squeezed vacuum state |ζ〉 with a coherent state |α〉 using a highly reflective
beamsplitter (BS) followed by a phase modulator (PM). The detection system consists of
a balanced homodyne detector (HD) with a phase-tunable local oscillator (LO) followed
by a spectrum analyzer (SA).

erator âs(ωc) = â(ωc)cosh(s)− e2iθs â†(ωc)sinh(s) where s is the squeezing factor, θs the

squeezing angle and â†(ωc)= [â(ωc)]† the creation operator. Squeezed vacuum can be gen-

erated using spontaneous parametric down-conversion [222] or four-wave mixing [223].

5.2.2 Phase modulation

This field is in turn phase modulated with a modulation frequency Ω and depth M. In

the following, we assume the phase modulator to be ideal, i.e. lossless and with negligible

dispersion over the bandwidth of the target absorption line. The action of the phase

modulator on the field at ωc produces a series of frequency sidebands ωc ± nΩ while

maintaining the nonclassical properties associated with âs, which is transformed via the

Jacobi Anger expansion to

âs(ωc)→
∑
n

Jn(M) âs(ωc +nΩ) , (5.2)
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where Jn(M) are the Bessel functions of order n [224, 225]. For simplicity, we have

assumed that the modulator has been appropriately tuned to eliminate a possible n-

dependent phase.

5.2.3 Interaction process

The gas’ absorption can be modeled as a frequency-dependent beamsplitter with an

amplitude transmission factor p
η±nΩ , which simultaneously introduces a vacuum com-

ponent with amplitude
√

1−η±nΩ . Due to the dispersion about the absorption line, each

frequency comb tooth also experiences a distinct optical phase shift φ±nΩ.

5.2.4 Detection scheme

The detection block consists of a balanced homodyne detector and a spectrum analyzer.

The classical LO, BLO = ∣∣β∣∣eiφLO , is derived from the initial coherent state field to ensure

phase coherence. The LO phase φLO is tunable, allowing us to measure either quadrature

of the signal.

The relevant detection signals are at one of the comb teeth frequencies of the modu-

lated coherent state. For a frequency bin centered on a pair of comb teeth at ωc ±nΩ, the

spectrum analyzer computes the spectral power

〈Ŝ(nΩ)〉 = 1
2

∑
r=±n

〈 î(ωc + rΩ) î(ωc + rΩ)†〉, (5.3)

where î(ωc±nΩ) is the subtraction photocurrent at the frequency sidebands ωc±nΩ. The

photocurrent has two components – a classical contribution I(nΩ)= 2α(nΩ)cosφLO and

a quantum part proportional to the quadrature operator x̂s(nΩ), taking the form [226]

î(nΩ)= ∣∣β∣∣[I(nΩ)+
p

2 x̂s(nΩ)
]

. (5.4)

For brevity, the frequency arguments have been referenced to the carrier frequency. In

addition to the squeezed vacuum component at the carrier frequency ωc in Eq. (5.1), the
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quadrature operator x̂s also contains contributions of the broadband squeezed vacuum

that were shifted by the phase modulator into the ωc ±nΩ sidebands. Accounting for

detector inefficiency, the quadrature operator x̂s in Eq. (5.4) is given by

p
2 x̂s(nΩ)=pηd

[p
ηnΩ eiφnΩ

∑
k

Jn−k(M) âs
(
(n−k)Ω

)+√
1−ηnΩ âvac(nΩ)

]
e−iφLO

+√
1−ηd âvac′(nΩ)+h.c. , (5.5)

where âvac is the vacuum operator that arises from the interaction with the absorbing

gas and h.c. denotes the Hermitian conjugate. This was obtained by using the standard

quantum optics model for detector inefficiency as a beamsplitter with a transmission

coefficient pηd . Physically, the finite detector efficiency means that the amplitude of the

quadrature component is reduced by a factor p
ηd while simultaneously introducing a

vacuum component âvac′ with amplitude
√

1−ηd .

5.3 Results

5.3.1 Classical spectral power

We first assume the experimentally challenging case of weak absorption such that the

difference in dispersion contributions ∆φ=φ+nΩ−φ−nΩ≪ 1.

We start with the classical coherent field α(t)= |α|eiωc t at the carrier frequency ωc.

After the phase modulator, we obtain αPM(t) = |α|∑n Jn(M)e−i(ωc+nΩ)t [218]. This field

can be written as a central frequency component at ωc together with a series of upper

and lower sidebands at frequencies ωc ±nΩ, that is

αPM(t)= |α|
[
J0(M)e−iωc t +

∞∑
n=1

Jn(M)e−i(ωc+nΩ)t +
∞∑

n=1
(−1)nJn(M)e−i(ωc−nΩ)t

]
. (5.6)

Following the interaction with the gas, the field components at a pair of sidebands
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ωc ±nΩ take the form

αG(t)= |α|
[p

η+nΩ e−iφ+nΩJn(M)e−i(ωc+nΩ)t +p
η−nΩ e−iφ−nΩ(−1)nJn(M)e−i(ωc−nΩ)t

]
.

(5.7)

For a classical signal field α(t), the subtraction photocurrent at the homodyne detector

output is given by [226]

i(t)=
∫

dτk(t−τ)
[
α(τ)B∗

LO(τ)+c.c.
]= ∫

dτk(t−τ)
p
ηd

∣∣β∣∣[α(τ)e−iφLO +c.c.
]

, (5.8)

where k(t) is the detector response function, assumed to be lossless and instantaneous

over the gas absorption line, and c.c. denotes the complex conjugate. Substituting Eq. (5.7)

into Eq. (5.8) leads to the subtraction photocurrent

I(t)=2
p
ηd

∣∣αβ∣∣Jn(M)
{
cos(nΩt)

[p
η+nΩ cos

(
φ+nΩ−φLO

)+ (−1)npη−nΩ cos
(
φ−nΩ−φLO

)]
+sin(nΩt)

[p
η+nΩ sin

(
φ+nΩ−φLO

)− (−1)npη−nΩ sin
(
φ−nΩ−φLO

)]}
. (5.9)

Defining ∆φLO :=φ+nΩ−φLO and κ :=p
ηd

∣∣αβ∣∣Jn(M), this equation can be written as

I(t)
2κ

=cos(nΩt)
{
cos

(
∆φLO

)[p
η+nΩ + (−1)npη−nΩ

]+sin
(
∆φLO

)
∆φ(−1)npη−nΩ

}
+sin(nΩt)

{
sin

(
∆φLO

)[p
η+nΩ − (−1)npη−nΩ

]+cos
(
∆φLO

)
∆φ(−1)npη−nΩ

}
,

(5.10)

where we have assumed weak absorption such that the dispersion between each pair of

comb teeth ∆φ=φ+nΩ−φ−nΩ≪ 1.

Taking the Fourier transform and computing the spectral power using Eq. (5.3)

readily yields

|InΩ|2
κ2 =cos2(∆φLO)

[p
η+nΩ + (−1)npη−nΩ

]2 +sin2(∆φLO)
[p
η+nΩ − (−1)npη−nΩ

]2

+2(−1)n sin
(
2∆φLO

)
∆φ

p
η+nΩη−nΩ . (5.11)

In general, this signal is proportional to a combination of the sum and difference between

the transmission at complementary sidebands. The maximum and minimum spectral
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powers occur at LO phases ∆φLO = mπ∨ (m+1)π/2, m ∈ Z. These extrema correspond

to measuring the amplitude X and phase P quadratures. Note that for these two LO

phases, the third term in Eq. (5.11) that contains the dispersion contribution ∆φ is

identically zero allowing us to readily identify the amplitude X and phase P quadratures

contributions

IX = |InΩ|
∣∣∣
∆φLO=mπ

= ∣∣κcos
(
∆φLO

)[p
η+nΩ + (−1)npη−nΩ

]∣∣ , (5.12)

IP = |InΩ|
∣∣∣
∆φLO=(m+1)π/2

= ∣∣κsin
(
∆φLO

)[p
η+nΩ − (−1)npη−nΩ

]∣∣ . (5.13)

It is possible to infer whether the central tooth is tuned to line center of a symmetric

absorption profile by observing whether the extrema of the signal switch between the

X and P quadratures for adjacent comb teeth. For a symmetric absorption profile with

the central tooth tuned to line center, pη+nΩ =p
η−nΩ . In this case, for even n, the X

quadrature will be a maximum and consequently the P quadrature signal will vanish.

The opposite occurs for odd n.

In practice, the X and P quadratures can be identified by sweeping the LO phase

through 2π radians. This readily allows one to separately obtain the transmission

coefficients p
η+nΩ and p

η−nΩ at each sideband [227]. The amplitude transmission

coefficient
p
η±nΩ = |IX ± IP |

2κ
. (5.14)

The influence of the dispersion on the maximum and minimum spectral power signals

can be readily obtained by calculating the null points of the derivative of Eq. (5.11) with

respect to ∆φLO, yielding

∆φLOmax/min =
1
2

atan

(
2∆φ

1+√
η+nΩ/η−nΩ

)
. (5.15)

Finally, by Taylor expanding around ∆φ= 0, we obtain ∆φLOmax/min = mπ
2 + ∆φ

1+
p
η+nΩ/η−nΩ

.

For low absorption, the phase difference accumulated between teeth pairs ∆φ ≪ 1
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such that ∆φLOmax/min ≈ mπ/2 to a good approximation, i.e. the zero dispersion limit.

Consequently, provided that the dispersion difference between symmetric teeth pairs

∆φ ≤ 0.01 , the change in the local oscillator phase ∆φLOmax/min that gives rise to a

maximum and minimum signal compared to the zero dispersion limit is less than 1/100th

of a radian.

5.3.2 Total spectral power

The subtraction photocurrent at frequency sidebands ωc ±nΩ takes the following form

î(nΩ)=I(nΩ)+ ∣∣β∣∣pηd

[p
ηnΩ eiφnΩ

∑
k

Jn−k(M) âs ((n−k)Ω)+
√

1−ηnΩ âvac(nΩ)
]
e−iφLO

+√
1−ηd âvac′(nΩ)+h.c. . (5.16)

For broadband squeezing where each relevant frequency component ωc±nΩ is quadra-

ture squeezed by an equal amount, it follows that 〈x̂s(nΩ)2〉 = e−2s. Substituting î(nΩ)

into Eq. (5.3) leads to the total spectral power at frequency sidebands ωc ±nΩ, that is

〈Ŝ(nΩ)〉 =|InΩ|2 +
∣∣β∣∣2ηd

[
1+ J2

n(M)
]
(η+nΩ+η−nΩ)e−2s + ∣∣β∣∣2ηd(1−η+nΩ+1−η−nΩ)

+ (1−ηd) . (5.17)

For a bright input coherent state and a strong LO, i.e. |α|2,
∣∣β∣∣2 ≫ 1, the classical term

|InΩ|2, whose explicit form is given in Eq. (5.11), dominates.

5.3.3 Spectral power variance

The spectral power variance is ∆2S(nΩ) = 〈S(nΩ)2〉− 〈S(nΩ)〉2 and a straightforward

calculation of 〈S(nΩ)2〉 yields

〈S(nΩ)2〉 =3η2
d
∣∣β∣∣4{[1+ J2

n(M)]2(η+nΩ+η−nΩ)2 e−4s

+2
[
1+ J2

n(M)
]
(η+nΩ+η−nΩ)(1−η+nΩ+1−η−nΩ)e−2s + (1−η+nΩ+1−η−nΩ)2}

+3(1−ηd)2 +|InΩ|4 . (5.18)
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Using the expression of 〈S(nΩ)〉 given in Eq. (5.17), the variance ∆2S at sidebands with

frequencies ωc ±nΩ is found to equal

∆2S(nΩ)=2η2
d
∣∣β∣∣4{[1+ J2

n(M)]2(η+nΩ+η−nΩ)2 e−4s

+2
[
1+ J2

n(M)
]
(η+nΩ+η−nΩ)(1−η+nΩ+1−η−nΩ)e−2s + (1−η+nΩ+1−η−nΩ)2}

+2(1−ηd)2 . (5.19)

By virtue of using a homodyne detector with a strong LO, the noise is dominated by

the losses associated with the finite transmission of the sample. For low gas absorption

η±nΩ⪅ 1, the first term in Eq. (5.19) dominates. The quantum advantage scales exponen-

tially with the squeezing factor, that is ∆SSQL/∆S ≳ e2s where the standard quantum

limit ∆SSQL is obtained by setting s = 0. For a squeezing level of 13 dB (s ≈ 1.5) measured

at 1550 nm [228], this translates to a precision enhancement by a factor of 20.

5.3.4 Practical example of probing acetylene

As an example, we consider probing Acetylene’s C2H2 ν1+ν3 rotational–vibrational band

around 1530 nm. Acetylene is highly combustible and has industrial applications in

welding and cutting. In Fig. 5.2, we plot the transmission profile of the P9 line for a path

length L = 1cm and a partial pressure of 1o/oo at a total pressure of 1 atm using data from

the HITRAN database [229]. The frequencies sampled by the central 17 tooth of a comb

with a modulation frequency Ω= 1GHz are also shown.

The Bessel function dependence on the modulation depth allows one to make the

signal at certain sidebands more prominent by varying M. This is illustrated in Fig. 5.3

(a) and (b) for two different modulation depths M = 2 and M = 5 where we see that, in

general, the strongest teeth extend roughly from −M to M. This is a reflection of the

Bessel function’s dependence on M known as Carson’s rule [230]. Note that at higher

modulation depths (e.g. M = 5), some of the lower-order teeth have a reduced amplitude.
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Figure 5.2: Acetylene’s ν1 +ν3 rotational vibrational P9 transmission line (in black) with
frequencies sampled by a 17-tooth comb with a modulation frequency Ω= 1GHz (in red).
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Figure 5.3: Comb amplitudes for a 17-teeth frequency comb with modulation depths (a)
M = 2 and (b) M = 5.

In practice, by repeating the experiment at different values of M, one can obtain a higher

SNR across the transmission profile. Additionally, the comb teeth density can be tuned

by adjusting the modulation frequency Ω.

In Fig. 5.4, we plot the predicted normalized SNR, 〈Ŝ(nΩ)〉/∆S(nΩ), for modulation

depths M = {2,5} under ideal conditions where ηd = 1 and there are no additional tech-
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nical noise sources. To normalize, we divided the SNR by the coherent state amplitude

under the assumptions that |α|2 ≫ sinh2(s) and the LO amplitude β≫ 1. In practice,

the SNR scales directly with |α| such that even a modestly bright coherent state will

give rise to a large SNR. For the largest squeezing level considered (s = 15dB), the

quantum advantage in the SNR reaches a factor of 31. At the higher modulation depth

M = 5, the squeezing advantage in the SNR at the n =±2 teeth is reduced due to the

small amplitude of the Bessel function for these teeth. Nevertheless, by using a lower

modulation depth M = 2, these central teeth can be measured with a large SNR.

5.4 Conclusion

In summary, we have proposed a quantum-enhanced absorption spectroscopy method

where a given gas is probed by a squeezed frequency comb. We predict an enhancement of

the signal-to-noise ratio by an order of magnitude at squeezing levels of 10 dB attainable

by squeezing a narrowband coherent state before phase modulation. This would allow

one to detect the presence of environmental gases at concentrations that are an order

of magnitude lower than with a classical input probe. Remarkably, for weak absorption

when the quantum advantage is greatest, the proposed measurement scheme is robust

against dispersion effects across the absorption profile.

In essence, this quantum enhancement arises from the reduced amplitude uncertainty

in the input broadband squeezed vacuum. While the phase modulator redistributes this

field into the various comb teeth, its nonclassical properties are retained provided the

squeezer is sufficiently broadband and the phase modulator has negligible dispersion

and loss over the target absorption line. As in any experiment involving squeezed light,

if the beam is subject to external losses e.g. from a lossy phase modulator, the quantum

advantage will be degraded and eventually disappear.

The spectral density of the transmitted signal is measured using a homodyne detector
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Figure 5.4: Signal-to-noise ratio 〈Ŝ(nΩ)〉/∆S(nΩ) normalized by the input-coherent state
amplitude |α| for different squeezing levels when probing acetylene’s P9 line at 1o/oo
partial pressure and a 1cm path length. A frequency comb with 17 teeth, modulation
frequency Ω = 1GHz and depth (a) M = 2 or (b) M = 5 was used. (inset) Quantum
advantage in the SNR as a function of the squeezing level s. We have assumed ideal
detection and a bright local oscillator as described in the text.
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and an optical spectrum analyzer. The transmission of the gas at each frequency sampled

by a given comb tooth can be independently determined by simply tuning the local

oscillator phase. We thus avoid the need for multiple sequential measurements as

in cavity ring-down spectroscopy [231, 232] or the long acquisition times present in

conventional Fourier-transform infrared spectrometers [233]. We also do not require high-

resolution dispersive spectrometers [137, 138, 234] or Fourier transform spectrometer

techniques with large delay lengths [140] commonly utilized in direct frequency comb

spectroscopy [235]. Moreover, in our method, the offset of the carrier frequency from

absorption line center can also be readily estimated from the asymmetry in the measured

absorption at the different comb teeth pairs.

Another key advantage of our scheme is the inherent mutual coherence between the

frequency comb teeth and the local oscillator. This in contrast to dual-comb spectroscopy

methods where it is non-trivial to ensure mutual coherence between the two combs [136,

143]. Care only has to be taken to ensure that the phase of the frequency modulation is

stable over the time required to sweep the LO phase. Furthermore, the ability to vary

the modulation depth allows sampling of both the wings and the central portion of the

absorption spectrum with roughly the same, large signal-to-noise ratio. Practically, this

enables one to accurately determine the line shape and strength of an isolated transition

and infer properties such as the concentration, temperature or pressure of a given gas

species.

The strategy we propose also has significant advantages over quantum-enhanced

absorption spectroscopy strategies using multiphoton entangled probes [236]. These

probe states are non-trivial to generate and their performance quickly degrades in the

presence of external system losses. Alternative sensing strategies using Fock [112, 237]

or two-mode squeezed vacuum [238] state probes are more robust to external losses.

However, compared to our proposal, these probe states cannot be readily generated with
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macroscopic photon numbers and require considerably more sophisticated detection

schemes, which involve optical parametric amplification before photodetection or photon

counting detectors.

Finally, the sensing setup we propose does not have any moving parts and could be

realized in fiber using standard components. Recent advances in integrated frequency

comb sources [239–242], low-loss waveguide-based sensing structures [204, 243] and

large-bandwidth on-chip homodyne detectors [206, 207] suggest the scheme proposed

could also be fully integrated, leading to a compact and robust spectroscopic gas sensor.
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CONCLUSION

In this thesis, we focused primarily on engineering sensing architectures to maximize

precision in estimating optical loss or phase in a variety of sensing scenarios. This departs

from the traditional quantum metrology route of concentrating efforts on optimizing

the probe state. While the latter is a viable route towards quantum advantage, many

of the states proposed in the literature cannot be generated with high brightness and

are of limited practical use in real-world sensing scenarios with non-negligible external

dephasing and loss mechanisms. To overcome this limitation, throughout this thesis,

we resorted to bright Gaussian probe states that can be generated with large photon

numbers.

In Chapter 3, we determined the performance of bright polarization squeezed state

probes in estimating the concentration of chiral molecules in solution. By utilizing the

optically active media’s circular birefringence or dichroism, we were able to estimate the

concentration with high precision. The quantum advantage scales exponentially with

the squeezing level. Using state-of-the-art squeezing levels and intensity measurements,

an enhancement of the precision by a factor of four over an equivalently bright classical
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strategy is attainable. The sensing strategy employed is essentially a common-mode

interferometer where the two polarization modes accumulate a phase difference from

which the concentration of a circularly birefringent solution can be estimated. This

is similar to the canonical quantum metrology problem of estimating the phase shift

between two optical modes in a Mach-Zehnder interferometer. However, being a common

spatial mode interferometer makes it more robust to unwanted disturbances that could

impart extraneous phase variations on the beams. Furthermore, the proposed balanced

detection scheme provides immunity to common mode noise sources that limit the

precision of the conventional classical measurement strategy where the induced rotation

angle is determined by identifying the angle at which a crossed polarizer minimizes the

transmission.

In Chapter 4, we considered estimating absorption using all-pass ring resonators.

We demonstrated that coherent states in this integrated structure can surpass the

performance of any single-pass quantum probe strategy, even when normalized by probe

photon mean number. Under optimal conditions, we found that coherent state probes are

able to match the performance of single-mode squeezed states in all-pass ring resonators,

regardless of the brightness or squeezing level of the latter. This result highlights that

engineering the interaction process, namely through the use of a resonant photonic

structure, can significantly enhance the performance of fully classical schemes. The

enhancement here can be so large that it nullifies the previous performance advantage

that quantum states of light were thought to yield in estimating absorption. This has

significant implications for lab-on-chip resonator sensors with a wide range of important

applications in ultrasonic imaging, environmental monitoring, and biochemical analysis.

A key feature of this sensing architecture is that maximum precision is obtained at critical

coupling, where the transmission through the bus waveguide vanishes. This could be the

fundamental reason why coherent state probes perform as well as arbitrarily squeezed
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states. When no light is transmitted, the photon statistics of the latter probe cease to be

relevant.

Although the all-pass ring resonator structure has a series of resonances, its free

spectral range is generally much larger than the typical absorption linewidths relevant

to gas sensing. This limits the probing of the analyte’s absorption profile to a single

frequency, prohibiting the characterization of the linewidth and consequently obtaining

information about temperature, concentration, or pressure.

In Chapter 5, we proposed a novel sensing strategy that overcomes this limitation and

enables one to fully reconstruct the absorption profile of a given species. The proposed

scheme merges the benefits of noise reduction in the amplitude quadrature of a suitably

squeezed probe with the inherent advantages of frequency modulation spectroscopy. The

frequency modulation creates a series of comb teeth with a spacing that can be readily

adjusted by tuning the modulation frequency. Furthermore, the distribution of tooth

amplitudes is readily modified by altering the modulation depth, allowing one to sample

the complete absorption profile with an approximately uniform signal-to-noise ratio.

A homodyne detection scheme enables probing the absorption profile simultaneously

at multiple frequencies grouped in pairs symmetrically displaced around the carrier

frequency. By adjusting the phase of the local oscillator, it is possible to separately

quantify the absorption at each frequency of the comb tooth pair. Remarkably, this

sensing scheme is, up to first order, unaffected by dispersion over the absorption profile.

We predict that the signal-to-noise ratio scales exponentially with the squeezing level.

Current squeezing factors should enable an order of magnitude precision improvement

beyond the standard quantum limit. Finally, this sensing strategy has several advantages

over state-of-the-art classical spectroscopy techniques, including dual-comb, direct single-

frequency comb, and cavity ring-down spectroscopy. Overall, this proposal could pave the

way for fully-integrated, high precision gas sensing.
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This thesis presents just three examples of a promising research direction in quantum

metrology where the emphasis is placed on taking a holistic view of the entire sensing

protocol. This involves not only optimizing the probe state but also carefully considering

the interaction and detection processes. Efforts were focused on developing practical

schemes that can be realized with current technology and are, in many cases, simpler to

implement than the typical strategy of resorting to intricate methods for generating and

detecting quantum probes.

An interesting fundamental question raised by the work on all-pass ring resonators

is whether schemes with vanishing signals necessarily imply that coherent state probes

perform optimally. Future research directions may also focus on extending the all-pass

ring resonator work to include frequency combs to characterize the broad absorption

profiles of molecules in solutions.

The three scenarios studied in this thesis all involved linear interactions with the

probe state, namely unsaturated absorption and linear phase shifts. A potentially inter-

esting research avenue would be to extend these studies to nonlinear interactions such

as saturable absorption or two-photon induced fluorescence. The former is often used

for passive Q-switching, while the latter is widely used in microscopy to avoid damage

thresholds and reach higher penetration depths [244, 245].

Finally, in this thesis we exclusively tackled single-parameter estimation problems.

Investigating potential performance gains by optimizing the interaction process in multi-

parameter estimation scenarios could be rewarding. In these problems, there are often

trade-offs between the precision with which individual parameters can be estimated [246,

247]. Topical examples include distributed sensing or quantum communication networks

with various users that have multiple sources of dephasing and loss [248–251].
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In this Appendix, we supplement Chapter 3 by deriving the measurement operator

Ŝ in Eq. (3.12) implemented by the balanced homodyne detection scheme depicted

in Fig. 3.1 (b), which is reproduced below for convenience:

Figure A.1: Balanced detection measurement scheme employing a half-waveplate de-
noted by λ/2, a polarizing beamsplitter (PBS) and two photodiodes, D1 and D2, whose
intensities are subtracted.
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For linearly polarized light, a half-wave plate induces a reflection of the incident

polarization about the fast axis of the waveplate. This results in a transformation of the

horizontal âH and vertical âV input modes according to

b̂H = cosξ âH +sinξ âV , (A.1)

b̂V = sinξ âH −cosξ âV ,

where ξ is the twice the angle between the fast axis of the waveplate and the horizontal

axis.

The subsequent polarizing beamsplitter, which couples in vacuum, applies the follow-

ing mode transformation

ĉ1 = b̂H + b̂vac,V , (A.2)

ĉ2 = b̂V + b̂vac,H .

Finally, the subtraction of the intensity measured by each photodiode in Fig. A.1 is

described by

Ŝ = ĉ†
1 ĉ1 − ĉ†

2 ĉ2 (A.3)

=
(
â†

H cosξ+ â†
V sinξ+ â†

vac,V

)
·h.c.−

(
â†

H sinξ− â†
V cosξ+ â†

vac,H

)
·h.c. ,

which corresponds to the measurement operator in Eq. (3.12) in Chapter 3.
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Statement of work

The contents of this Appendix are based on the publication:

• A. Belsley, E. J. Allen, A. Datta and J. C. F. Matthews, “Advantage of Coherent

States in Ring Resonators over Any Quantum Probe Single-Pass Absorption Esti-

mation Strategy”, Phys. Rev. Lett. 128, 230501 (2022).

All the work presented in this Appendix was carried out and written by myself.

In this Appendix, we supplement Chapter 4 by quantifying the performance of pure

single-mode Gaussian probe states in estimating the absorption coefficient of an analyte

evanescently coupled to an all-pass ring resonator.

Consider an arbitrary pure single-mode Gaussian probe state
∣∣ψG

〉= R̂(ϕ)D̂(β)Ŝ(ζ) |0〉
with ζ and β arbitrary complex parameters. Here R̂(ϕ)= exp

(
iâ†âϕ

)
, Ŝ(ζ)= exp

[1
2ζâ†2 − 1

2ζ
∗â2)

]
with ζ= seiχ, and D̂(β) = exp

[
β(â† − â)

]
are the rotation, squeezing, and displacement

operators respectively.

These states are fully characterized by a displacement vector d with elements

di = 〈x̂i〉 and a matrix Σi, j = 1
2〈x̂i x̂ j + x̂ j x̂i〉−〈x̂i〉〈x̂ j〉 of covariances of the quadrature op-

85

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.230501


APPENDIX B.

erators x̂1 = (â†+ â) and x̂2 = i(â†− â) [196]. Applying the all-pass ring resonator channel

transformation Λ, the covariance matrix becomes

Σ̃=

1−2ηsinh scosh scosΘ+2ηsinh2 s 2ηsinh scosh ssinΘ

2ηsinh scosh ssinΘ 1+2ηsinh scosh scosΘ+2ηsinh2 s

 , (B.1)

and the displacement vector d̃ = 2βpη

cos
(
ϕ+χ)

sin
(
ϕ+χ)

 where Θ= 2θR +2ϕ−χ.

The QFI for this probe state is given by Eq. (4.7), which is reproduced below for

convenience

QG = Tr
[
(Σ−1Σ′)2]

2(1+P2)
+ 2P ′2

1−P4 +∆X′⊺Σ−1∆X′, (B.2)

The first term in this equation, that is the evolution of the noise properties of the state

encoded in Σ̃, is given by

Tr
[(
Σ̃

−1
Σ̃

′)2
]

2
(
1+P2

) = 2sinh2 s
(γcosh2s−γ−1)(2γcosh2s−2γ−1)

(B.3)

×{[
(1+2γ)cosh2s−2γ

]
(∂αaηR)2 +2η2(1+γ+cosh2s−γcosh4s)(∂αAθR)2} .

The second term corresponding to the evolution of the purity with αA takes the following

form

2P ′2

1−P4 = (1−2η)2 sinh2 s
γ(1+γ−γcosh2s)(2γcosh2s+2γ−1)

(∂αAηR)2 , (B.4)

where γ= η(η−1). Finally, the third term is given by

∆X′⊺ Σ̃−1
∆X′ = κ1(κ2 +κ3)

τ2(κ4 +κ5 +κ6)
, (B.5)
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where

κ1 =(
∣∣β∣∣aLΓ)2(r2 −1)2 ,

κ2 =(a2 −1)(r2 −1)τ+τ(a2 + r2 −2ar cosφ)cosh2s ,

κ3 =sinh2s
{[

a2r2(r2 +4)+a2]cosχ+a3r
[
ar cos

(
2φ−χ)−2(r2 +1)cos

(
φ−χ)]

−2a(r3 + r)cos
(
χ+φ)+ r2 cos

(
χ+2φ

)}
,

κ4 =a4 (
r4 −2r2 +2

)+2
(
a2 −1

)
(a2 + r2 −2ar cosφ)

(
r2 −1

)
cosh(2s) ,

κ5 =2ar
[
ar cos2φ−2

(
a2 + r2)cosφ

]
,

κ6 =−2a2(r4 −4r2 +1)+2r4 −2r2 +1 ,

τ=1+a2r2 −2ar cosφ .

We now seek to identify the parameter combinations that maximize the QFI. Due to

the complex nature of the above equations which contain eight parameters, we resorted

to Mathematica’s standard numerical maximization algorithm [252]. The only constraint

placed on the parameter space was limiting a ≤ 0.99, which contemplates all relevant

experimental situations. The numerical algorithm converges and identifies the global

maximum QFI as being obtained on-resonance and at critical coupling, analogous to

the coherent state probe. Under these circumstances, the QFI reduces to Eq. (4.11)

in Chapter 4, namely

QS =
(∣∣β∣∣2 +sinh2 s

) L2Γ2 B
1− e−αT L . (B.6)

For a coherent state probe, only the third term ∆X′⊺ Σ̃−1
∆X′ in Eq. (4.7) contributes.

By setting {s,χ}→ 0 in Eq. (B.5), we readily obtain the corresponding QFI

QC = ∣∣β∣∣2L2Γ2
(
1− r2)2 a2(

1−2ar cosφ+a2r2
)2 . (B.7)

This expression can be conveniently rewritten in terms of the buildup factor B given in

Eq. (4.3), yielding Eq. (4.8) in Chapter 4, i.e. QC = (∣∣β∣∣LΓB eαT L/2)2. At critical coupling

(r = a) and on resonance (φ= 2πm), QC is maximum and reduces to
∣∣β∣∣2L2Γ2a2(a2−1)−2.
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Rewriting the latter in terms of the buildup factor B yields Eq. (4.9) in Chapter 4, that is

QC
∣∣
r=a,φ=2πm = ∣∣β∣∣2 L2Γ2 B

1− e−αT L . (B.8)

Replacing ∂αA by ∂nA when computing the quantities in Eq. (4.7), an analogous proce-

dure can be followed to derive the QFI in estimating the analyte refractive index nA

given in Eq. (4.10) in Chapter 4.
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