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Abstract  

Purpose: Thyroid cancer is one of the common types of cancer worldwide, and Ultrasound (US) imaging is a 

modality normally used for thyroid cancer diagnostics. The American College of Radiology Thyroid Imaging 

Reporting and Data System (ACR TIRADS) has been widely adopted to identify and classify US image 

characteristics for thyroid nodules. This paper presents novel methods for detecting the characteristic descriptors 

derived from TIRADS.   

Methods: Our methods return descriptions of the nodule margin irregularity, margin smoothness, calcification as 

well as shape and echogenicity using conventional computer vision and deep learning techniques. We evaluate 

our methods using datasets of 471 US images of thyroid nodules acquired from US machines of different makes 

and labelled by multiple radiologists.  

Results: The proposed methods achieved overall accuracies of 88.00%, 93.18% and 89.13% in classifying nodule 

calcification, margin irregularity, and margin smoothness respectively. Further tests with limited data also show 

a promising overall accuracy of 90.60% for echogenicity and 100.00% for nodule shape. 

Conclusion: This study provides an automated annotation of thyroid nodule characteristics from 2D ultrasound 

images. The experimental results showed promising performance of our methods for thyroid nodule analysis. The 

automatic detection of correct characteristics not only offers supporting evidence for diagnosis, but also generates 

patient reports rapidly, thereby decreasing the workload of radiologists and enhancing productivity. 
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1. Introduction 

Thyroid cancer is one of the most lethal cancers globally [1]. The incidence rate in women is three times higher 

than that in men; in 2018 alone, one in 20 women diagnosed of cancer had thyroid cancer [1]. Different imagery 

systems have been used for diagnosis. US imaging has the advantages of being non-invasive, non-radiative and 

of low-cost. However, recognising thyroid nodule and detecting cancer characteristics from US images are 

challenging due to the demanding skills required in image acquisition and low image quality caused by speckle 

noise and artefacts. To tackle the issues and maintain consistency in clinical settings, doctors often use standard 

guidelines in describing thyroid nodules. The original TIRADS principles were first proposed in [15]. It was later 

standardized by Kwak, et al [2] as the first reporting scheme for classifying thyroid nodules to risk levels of 

malignancy using US nodule characteristic descriptors. The most recent ACR TIRADS further standardizes the 

descriptors to five categories [3]. Although radiologists have been using the guidelines to report thyroid nodules 

under different conditions, accurate diagnosis based on TIRADS remains challenging because of inter- and intra-

observer variabilities.  

Several studies have been conducted to analyse US image characteristics of thyroid nodules, but most of them 

extracted such characteristics for classifying a nodule as benign or malignant rather than accurately detecting and 

evaluating the characteristics for report generation [6, 9, 10]. In this paper, we present a comprehensive translation 

of the US TIRADS characteristics, aiming at an automated process of describing clinical findings in thyroid 

nodules. The proposed methods provide an effective, efficient, deterministic, and consistent annotation of the 

TIRADS terms to reduce subjectivity and increase precision in nodule examination and reporting. In particular, 

the paper is intended to make the following key contributions: (1) a new method for nodule irregularity detection 

by utilizing convexity, ellipticity, lobulation, and angulation features; (2) a new method for smoothness detection 

using texture features and super-pixels; (3) an optimized CNN classification model (CaNet) for calcification by 

using Bayesian Optimization; and (4) a new method that combines CaNet and super-pixels for more accurate 

calcification classification.  

The remaining part of the paper is organised as follows. Section 2 reports on the key TIRADS US characteristics 

and reviews existing methods for nodule characteristics analysis in US images. Section 3 presents the proposed 

methods for detecting margin irregularity, margin smoothness and calcification. Section 4 evaluates the methods 

through experiments on datasets collected from clinics. Section 5 further discusses possible methods for detecting 

nodule shapes and echogenicity before Section 6 summarizes the main findings and concludes the paper. 

2. Background and Related Work 

The ACR TIRADS scheme characterizes a thyroid nodule from five aspects: composition, echogenicity, shape, 

margin, and echogenic foci [3]. Each aspect contains a set of descriptive terms with associated points. Based on 

the observation, the associated points are added to a total score and then mapped to one of five ordinal bands 

(from TR1 to TR5). A benign nodule within the TR2 category can exhibit a regular oval shape, an anteroposterior 

transverse ratio (AP/T ratio) that is wider than tall, a smooth margin, anechoic properties, and the absence of 

calcification. On the other hand, a malignant nodule falling under the TR5 category may show a lobulated shape 

with an irregular margin, an AP/T ratio that is taller than wide, hypo-echogenicity, and the presence of micro-

calcification. The borderline TR4 band is further divided into 4a, 4b and 4c sub-bands. It is also the band where 
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most inter-observer variability occurs, and hence there is a greater need for nodule characteristics for correct 

decisions. Besides the ACR TIRADS, other guidelines also exist [11, 12,13], all of which indicate similar nodule 

characteristics of suspected malignancy [14]. Therefore, in practice, hospitals normally use common categories 

of thyroid nodule characteristics across the different guidelines. It must be said that a TIRADS score is still an 

observer’s subjective judgement and may lead to different diagnosis outcomes. Rigorous definitions of the terms 

and reviews of the guidelines may help reducing but not avoiding such variability. Having an automated computer-

based solution to categorize the thyroid nodules may help reducing such non-deterministic outcomes. Using the 

detected characteristics as evidence will enhance comprehensibility of the final diagnostic decisions and gain trust 

from the medical profession.    

Several studies to automatically quantify features based on the standardized TIRADS categories for classifying 

thyroid nodules have been reported [4, 5], but the work on extracting correct TIRADS features from ultrasound 

images for annotation purposes remains limited. Zulfanahri et al [6] analysed and classified the margin irregularity 

of thyroid nodule into regular or irregular class using rectangularity, convexity, and tortuosity features with an 

SVM classifier. The study reported an accuracy of 91.52% (91.80% sensitivity and 91.35% specificity) over a set 

of 165 images. Wang et al [4] automated the extraction of four thyroid nodule characteristics: composition using 

average image brightness, echogenicity pattern using relative brightness, calcification with top-hat morphological 

filter, and boundary regularity with acutance. The study used a semi-supervised fuzzy C-means ensemble (SS-

FCME) model to classify the thyroid nodules into a TIRADS score band with 70.77% overall accuracy. Nugroho 

et al [10] trained an SVM to determine the margin of a thyroid nodule using compactness, convexity, circularity, 

dispersion, aspect ratio, rectangularity, solidity and tortuosity as features, with an accuracy of 92.30% on 144 test 

images. In a later study [9], Nugroho et. al. further added the orientation feature and achieved an accuracy of 

98.00% but only on 51 test images. Although the previous two studies reported promising performances, the 

features extracted can be too excessive for the problems. Zhuang et al [7] used cystic growth rate and the variance 

of the grayscale distribution for composition, compactness for margin irregularity, and the aspect ratio for nodule 

shape. A deep learning algorithm was used to classify calcification based on ROI image, but the paper lacks 

detailed explanations. For margin smoothness, the method first locates a 10-pixel ribbon around the nodule 

boundary (inside and outside regions) via morphological dilation and erosion. Average grayscale difference (or 

mean separability), derived from the number of pixels, mean and variance of intensity in each region, was used to 

quantify margin smoothness. Weights were assigned to the derived quantities and feature scores that were then 

accumulated to the total TIRADS score. All malignant cases and 94.87% of the benign cases were classified into 

the correct TIRADS score bands. 

3. Materials and Methods 

3.1. Dataset Collection and Annotation for Nodule Characteristics Analysis 

Thyroid cancer has various subtypes. Malignant tumours have more diversity in their cellular and molecular 

structures than benign tumours. Therefore, including a larger number of malignant cases in a dataset is important 

to ensure sufficient representation of the diverse subtypes for developing accurate models. Hence we purposely 

included more malignant cases of various pathologies in this study. During the image acquisition, one radiologist 

with more than 15 years of experience manually cropped every nodule in each original image by identifying 

coordinate points on the nodule boundary. The delaminated boundaries were further validated by the second 
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radiologist with a similar amount of experience. Images with disagreed nodule boundaries were excluded from 

the final data collection. The verified nodule boundaries form polygons for the Region Of Interest (ROI). Fig.1 

shows two examples from the dataset. 

      

(a)                                                                      (b) 

Fig. 1 Example US Images with labelled ROI (red dots on nodule boundaries): (a) isoechoic/hyperechoic, wider-than-tall, 

clear, regular and no calcification, and (b) isoechoic/hyperechoic, wider-than-tall, not clear, irregular, micro calcification 

Our dataset was labelled by 3 radiologists with 10, 15 and 30 years of experience respectively. For each ROI 

identified, US image descriptors of the nodule were assigned by at least 2 radiologists following the ACR TI-

RADS guideline, one of whom is ensured to have at least 15 years of experience. When labelling the margin and 

echogenicity foci, the radiologists made modifications to align with the current clinical practices and reduce the 

observer viabilities. In particular, the classification of margin is refined into two subcategories as margin 

irregularity (irregular or regular) and margin smoothness (not-clear or clear). The echogenic foci is simplified as 

“no calcification”, “microcalcification” or “macrocalcification”. Nodules containing both micro and macro 

calcifications is classified as microcalcification as it indicates a higher risk of malignancy. In the end, a dataset of 

total 471 thyroid ultrasound images from two local hospitals in Shanghai, China was obtained and labelled. The 

dataset contains 140 benign cases and 331 malignant cases, where the pathology result of each image was 

confirmed by FNA. All the personal details of the patients were excluded. The collected dataset was randomly 

divided into three equal size patches (157 each) respectively for training, validation and testing purposes (to be 

further explained in the next section). Both agreed and disagreed labels are recorded without additional bias for 

performing multi-observer studies in the later experiment. 

3.2. Nodule Characteristics Detection Methods 

Despite some literature suggestions at possible transferring learning when analysing thyroid and breast tumours 

as they are both superficial organs [17], it may be rather difficult to adapt models from other types of organs 

directly for characteristics analysis for thyroid nodules as they share different definitions. Some characteristics 

such as calcification can be difficult to analyse for breast tumours due to the limitation of ultrasonography [20]. 

Nevertheless, some characteristics such as margins do share similarities when used for classifying cancer 

malignancy [21], but their characteristics can still vary as they are growing on different mediums with possibly 

different cell types. Therefore, we have proposed a list of novel methods for analysing thyroid characteristics with 

insights from existing literatures. 
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Margin Irregularity  

Margin irregularity is a characteristic that studies the geometric shape of the nodule margin. Fig.2 shows an 

example of a nodule with an irregular margin. Based on the nodule boundary coordinates, the algorithm derives 

the convex variance, elliptic variance, lobulation, and angulation from the ROI margin; each of them captures a 

unique feature for measuring margin irregularity and contributes to a final decision. 

Irregularity Measure Extraction: Margin irregularity is first analysed by lobularity. Given a set of concave 

regions {𝑐1, 𝑐2, … , 𝑐𝑛} ∈ 𝒞  

𝑓𝐿(𝑐) ≔ {
 Lobular,          𝑖𝑓 𝐴𝐶 ≥ 𝑡𝐴 ∧ min(𝑤𝐶 , ℎ𝐶) ≥ 𝑡𝑙   

 Not Lobular,     𝑒𝑙𝑠𝑒                                                      
                                (1) 

where 𝐴𝐶 denotes the ratio of the area of the concave region to that of the entire nodule, 𝑤𝐶  and ℎ𝐶  denote the 

width and height of the concave region, 𝑡𝐴 and 𝑡𝑙 are the two thresholds defined for classification and determined 

empirically as 0.015 and 5 respectively.  

Angulation is also an important factor for margin irregularity. Angulation analysis focuses on the extension around 

the margin. Therefore, the algorithm examines the spikiness, roughness and distortions of the margin by using a 

set of three consecutive coordinates, {𝑝1, 𝑝2, 𝑝3}, {𝑝2, 𝑝3, 𝑝4}, … , {𝑝|𝒫|−1, 𝑝|𝒫|, 𝑝|𝒫|+1}, from the total set of ROI 

margin coordinates 𝒫  where 𝑝0 = 𝑝|𝒫| and 𝑝|𝒫|+1 = 𝑝1 . The algorithm measures the curvature  𝜅 of the 

coordinates {𝑝𝑛−1, 𝑝𝑛, 𝑝𝑛+1}. A large amount indicates a sharp change on the margin at the given coordinates [10]. 

The algorithm also calculates the angle 𝜃: 𝑝𝑛−1 → 𝑝𝑛 → 𝑝𝑛+1, where a large angle indicates a slow change and a 

small angle indicates a sharp change at the given coordinates. The 𝜅 and 𝜃 values are then combined to estimate 

the angulation using the rule 𝑓𝐴 in Eq. 2: 

𝑓𝐴(𝑝𝑛−1, 𝑝𝑛 , 𝑝𝑛+1) ≔ {
 Angular,          𝑖𝑓 𝜅 ≥ 𝑡𝜅 ∧ 𝜃 < 𝑡𝜃

 Not Angular,     𝑒𝑙𝑠𝑒                              
                                   (2) 

where 𝑡𝜅 and 𝑡𝜃 are two thresholds used for classification and determined empirically as 0.1 and 90∘ respectively.  

    

(a)   (b)       

Fig. 2 Illustration of Margin Irregularity Detection (a) Nodule ROI with coordinates (red) (b) An irregular nodule with 

lobulation (magenta) and angular (yellow) regions. 

Irregularity Classification: With the four irregularity measures determined, the margin irregularity of a nodule 

is classified using the rule in Eq. 3: 

{
Regular,        𝑖𝑓  𝜎𝑐

2 ≥ 𝑡𝐶 ∨ 𝜎𝑒
2 ≥ 𝑡𝐸 ∧ 𝑓𝐿(𝒞) + 𝑓𝐴(𝒫) = 0

                                                                   
Irregular,      𝑒𝑙𝑠𝑒                                                                           

                                  (3) 

where 

𝑓𝐿(𝒞) =  ∑ 𝟏{Lobular}[𝑓𝐿(𝑐𝑗)]
|𝒞|
𝑗=1 , 𝑓𝐴(𝒫) = ∑ 𝟏{Angular}[𝑓𝐴(𝑝𝑘−1, 𝑝𝑘 , 𝑝𝑘+1)]|𝒫|

𝑘=1  
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and 𝑡𝐶  and 𝑡𝐸  are two thresholds for classification, which are determined experimentally as 0.9 and 0.97 

respectively. 

Our irregularity method and the methods developed in [4, 6, 7, 10] both measure global irregularity of the nodule, 

but our method uses convexity and ellipticity variance, providing a more robust and accurate assessment of nodule 

irregularity without being excessive. Furthermore, our method has a new feature extraction step that incorporates 

and measures of local irregularity of margin such as lobulation and angulation. This feature extraction step has 

shown an improved sensitivity of margin irregularity demonstrating the better effectiveness of our method. 

Margin Smoothness   

Margin Smoothness represents the clarity of the nodule margin that is reflected the intensity contrast. The higher 

the contrast between regions inside the nodule boundary and the regions outside, the clearer the margin is. For 

better results, we first pre-process the US images to suppress the speckle noise and enhance the images. An 

adaptive median filter [11] is applied first for reducing the noise. This is then followed by bilateral filtering with 

Gaussian kernels [12] to enhance edges. The pre-processed image is then masked by the ROI delimitated by the 

radiologists to determine inside and outside ribbons around the nodule margin with the assistance of 

morphological operations (see Fig.3a). These ribbons are further divided into |𝑅| equal regions of 
360°

|𝑅|
 each, where 

R can be determined heuristically depending on the trade-off between precision and computation cost. In this 

study, |𝑅| is set to 36 (see Fig.3b), allowing more precise estimations of local margin smoothness.  

Smoothness Measure Extraction: To measure margin smoothness, we first represent each region of the inner 

and outer ribbon with a two-dimensional vector composed by the averages and variances of the pixel intensities 

within the region. The difference between each pair of inner and outer regions is measured using Euclidean 

distance, where higher difference implies a clearer margin. It is noted that the proposed measure can only represent 

a general smoothness over a whole region due to its statistical nature. It can be a drawback especially when 

analysing small lesions. To overcome this drawback, we derive another measure that examines intensity profiles 

across the inner and outer ribbons at a 2o interval within each region, focusing on changes in fine details. Since 

such an intensity profile can be sensitive to noises, we have further processed the ultrasound image into 

superpixels using the SLIC algorithm [13]. Each profile is considered distinct if the difference between the highest 

and lowest superpixel readings is greater than 𝑡𝜆 (defined empirically as 20); otherwise, indistinct (see Fig.3c). 

The region outputs and intensity profile outputs per region are used to derive the final distinctiveness for that 

region (see Fig.3d). 

       

                    (a)                                           (b)                     (c)               (d) 

Fig. 3 Illustration of Margin Smoothness Detection. (a) Nodule ROI with outer (blue) / original (red) / inner (green) ribbons, 

(b) global detection results (distinct (green) / indistinct (red)), (c) local detection results (distinct (green) / indistinct (red)), 

(d) final smoothness prediction (distinct (green) / indistinct (red)) 
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Smoothness Classification: The algorithm fuses the decision for the region analysis (𝑅𝐷), Fig 3b, and the 

decision for the signal analysis of intensity profiles (𝑆𝐷), Fig. 3c, in classifying the margin smoothness for each 

region. Each region’s smoothness, 𝑆𝑀𝑟,  is classified as clear or not clear using Equ. 4. 

𝑆𝑀𝑟 =  {
Clear,        𝑖𝑓   𝑅𝐷𝑟 = 𝐷𝑖𝑠𝑖𝑛𝑐𝑡 ∧ 𝑆𝐷𝑟 ≥  𝑡𝑝             

                                                                   
Not Clear,      𝑒𝑙𝑠𝑒                                                                           

                                  (4) 

where, 𝑟 is a region between 1 .. |R|, 𝑆𝐷𝑟 =  
∑ 𝐼𝑃𝐷𝑖

|𝑆|
𝑖=1

|𝑆|
, 𝐼𝑃𝐷 (𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑃𝑟𝑜𝑓𝑖𝑙𝑒 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛) is the decision for each 

intensity profile within the region 𝑟, |𝑆| is the number of intensity profiles in region 𝑟 and 𝑡𝑝 is the intensity profile 

classification threshold experimentally as 80%. The overall margin smoothness of a nodule is classified using 

Equ. 5.   

𝑆𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠, 𝑆𝑀 =  {
Clear,     𝑖𝑓  

∑ 𝑆𝑀𝑟
|𝑅|
𝑟=1

|𝑅|
≥ 𝑡𝑆                     

                                                                   
Not Clear,      𝑒𝑙𝑠𝑒

                                  (5) 

where, 𝑡𝑠 is the classification threshold determined experimentally as 75%. 

Both our margin smoothness prediction method and the approach proposed by [7] use a ribbon (inner and outer) 

around the nodule boundary and the mean difference in intensity to predict the margin smoothness. However, our 

method includes additional features in the form of local texture descriptors that capture local intensity variation. 

These additional features have shown to the improved performance and robustness of the margin smoothness 

prediction. 

Calcification   

Calcification in US image is defined as a small and bright fleck in the image reflecting calcium growth on or 

inside the nodule. Identifying calcifications is known to be challenging due to their variant size, shape and 

brightness. Certain types of benign characteristics such as the colloids can be easily confused with calcifications 

in US images. To meet the challenge, we develop a two-stage process where possible candidates for calcification 

are first detected, and then classified into different classes.  

Candidate Detection: For detecting candidates, we adopt the algorithm in [16] that uses a superpixel-based weak 

detector to propose calcification candidates based on brightness and variance features. Although the algorithm 

identifies calcification candidates well, it produces many false positive candidates. To overcome this limitation, 

we propose the following deep learning solution. 
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Calcification Identification: A Deep Convolutional 

Neural Network (DCNN) model, known as CaNet, is 

designed and optimised to validate whether the candidates 

are actual calcifications. Automatic architecture search 

often involves training one neural network to optimise the 

architecture of another neural network. The proposed 

method performs two consecutive tasks: first, searching for 

an optimal CNN architecture and hyperparameters using 

Bayesian Optimization tailored for calcification US 

images; second, training the CNN model to classify 

calcification images. For both tasks, 5-fold stratified cross 

validation was applied with one fold used for architecture 

optimization and all 5-folds for modelling and evaluating 

the optimal architecture.  

The initial backbone architecture of CaNet consists of an Input Layer (IL), Convolution Block (CB), Max-Pooling 

Layer (PL) with stride 2×2, Average Pooling Layer (GAP), Fully Connected Layer (FCL), Softmax Layer (SL), 

and Classification Output Layer (COL) for two classes (calcification or none-calcification). The CB consists of 

three layers in the following order: 3×3 Convolutional Layer (CL) with stride 1, Batch Normalization Layer 

(BNL), and Relu Layer (RL). The IL is set to the size of 32×32×1 to accommodate the small size of the 

calcification ROI proposed by the weak detector. The hyperparameters were carefully set as follows: initial 

learning rate to 10−4; optimizer as stochastic gradient descent with momentum; epoch number to 4000; and batch 

Size to 128. With the architecture defined, the number of CB, the structure of the CB (i.e. the number of filters in 

the CL) and the type of the PL were determined by the Bayesian Optimization (BO) algorithm [18]. The objective 

function is defined as the classification error rate. A surrogate model is constructed using the Gaussian Process 

model, and expected improvement is used as the acquisition function. 30 iterations were performed to search for 

the optimal parameters. To reduce the likelihood of model overfitting, we also used the BO algorithm to search 

for optimal L2 regularization value between 10−10 to 10−2. 

CaNet architecture and model were optimized and trained on a specifically collected dataset of 405 images, where 

the locations of all calcifications are pinpointed by a radiologist with 15 years of experience. Calcifications in the 

training set were augmented using mirroring and Singular Value Decomposition (SVD) method [17] with 3 

compression ratios (25%, 35% and 45%), finally resulting in 888 calcification candidates and 1723 none-

calcification candidates at a ratio of roughly 1:2. The first fold was used to find the optimal CaNet network and 

Fig 4 shows the details of the optimal architecture with the optimised L2 value of 5.1540e-4 . For the second task, 

CaNet achieved 81.5% overall accuracy over 5-fold cross-validation, 89.1% specificity (no calcification) and 80% 

sensitivity (calcification). CaNet model with the highest combined sensitivity and specificity was selected and 

used in the later stages of identifying micro and macro calcification.  

Micro/Macro Calcification Identification: Using the CaNet model, we obtain a set of confirmed candidates. 

However, it is important to highlight that many confirmed candidates are very small in size due to the nature of 

the weak detector used. These small candidates represent macrocalcification only partially rather than its entirety. 

Fig. 4 Optimal CNN architecture for calcification 

classification. 
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So, a region growing method is applied to restore the candidates to their appropriate sizes and shapes. In particular, 

the region growing method uses an iterative flood flow algorithm in comparing the mean brightness of the grown 

region with its eight neighbours, using the highest brightness value within the candidate as the seed and expanding 

the region by including new neighbours until they differ significantly from the mean calculated. This naïve region 

growing method may easily suffer from contrast variations in ultrasound images, occasionally resulting in region 

overgrowth. Therefore, the growing is counterbalanced using the Speeded-Up Robust Features (SURF) [19]. In 

our implementation, we have limited the growing region within the areas of 10 strongest SURF descriptors 

detected, which not only prevents overgrowing calcification regions, but also helps reducing false-positive 

calcifications. After each detected candidate has been restored to its appropriate size and shape, we extract several 

features for discriminating micro and macro calcifications. Nodule size, which can be measured by the pixel areas 

𝑆𝑐, is an obvious descriptor to distinguish micro from macro calcifications. Some macrocalcifications appear in a 

line or pseudo-linear shape, which can be captured using circularity 𝑜𝐶 . Finally, macrocalcifications often cast 

acoustic shadows below them. To capture such shadows, we crop the areas immediately above and below the 

candidate and use the difference between the average brightness of the two areas as the shadow feature ∆𝐶.   

Finally, the grown candidates are classified into micro or macro calcification using the rule in Eq. 6: 

{

 Macro,    if  𝑆𝐶  > 𝑡𝐴1                           

 Macro,    if  𝑆𝐶 > 𝑡𝐴2 ⋀ 𝑜𝐶 > 𝑡𝑜           
Macro,    if  ∆𝐶  > 𝑡∆                           

Micro,     else                                     

                          (6) 

where 𝑡𝐴1, 𝑡𝐴2, 𝑡𝐶𝑖𝑟  and 𝑡∆ are four thresholds for identifying macrocalcifications, which are empirically decided 

as 200, 95, 0.78 and 50 respectively. Fig. 5I demonstrated the effect of each stage of the proposed calcification 

detection method when analysing a thyroid nodule with both micro and macro calcifications.   

     

 (a)                               (b)       (c)          (d)               (e)  

Fig. 5 I Illustration of Calcification Detection. (a) ROI image; (b) calcification candidates proposed by the weak detector; (c) 

calcification candidates validated by the CaNet; (d) calcification candidates after growing; (e) classification outcome; red: 

microcalcification, yellow: macro calcification. 
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      (a)                                            (b)                (c)                             (d)   

Fig. 5 II Comparison between Different Calcification Detection Methods.  (a) ROI image with calcifications pinpointed by 

experienced radiologist; (b) top-hat based method [20]; (c) superpixel based method [16]; (d) our proposed method; red: 

microcalcification, yellow: macrocalcification. 

Comparing to the existing methods in the literature, our proposed method strikes a balance between the detected 

two types of calcification, false alarms and missed cases through the three stage detection process. As shown by 

examples in Fig.5 II, the morphology-based method [20] is over sensitive, severely suffering from false positive 

detections whereas the superpixel-based method [16] tends to be under sensitive, failing to detect calcifications in 

some images.  

4. Experiment Results  

This section presents the experiment results for evaluating the effectiveness of the various methods proposed in 

Section 3. All experiments were conducted on an Intel Xeon workstation with CPU@2.90GHz, 16GB RAM, 

NVIDIA RTX A2000 GPU, and running MATLAB R2020b 64-bits version. With the three patches of images, 

we used the training patch as the main reference for developing the proposed methods. We then use the validation 

patch to validate the robustness of the proposed methods and fine-tune the algorithm parameters and the relevant 

thresholds. For the special characteristic that involves training classification models, such as calcification, to fully 

utilize the data, we merged the training and validation patches in a 10-fold cross-validation process for model 

training, evaluation and then selection.  
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Our experiment consists of two tests. In Test 1, we evaluated the proposed methods against the labels given by 

one radiologist with 15 years of experience. In Test 2, we evaluated the methods against the labels given by the 

first radiologist and then confirmed and agreed by another radiologist with similar years of experience. The test 

results are presented in Table 1. 

Table 1 Performance Summary of the Propose Methods in Tests 1 and 2. 

Nodule 

Characteristic 

Descriptors 

Descriptor 

Subtypes 

Test 1 Test 2 

No. of  

Cases 

Test 

Accuracy 

No. of  

Agreed Cases 

Test  

Accuracy 
 

Margin 

Irregularity 

Irregular 96 93.8% 89 94.4%  

Regular 61 88.5% 43 90.7%  

Overall (2 Classes) 157 91.7% 132 93.2%  

Margin 

Smoothness 

Not Clear 139 89.9% 125 90.4%  

Clear 18 61.1% 13 77.2%  

Overall (2 Classes) 157 86.6% 138 89.1%  

Calcification 

No Calcification 83 94.0% 74 98.7%  

Calcification 
Micro 

74 
61 

83.8% 
70.5% 

66 
42 

89.4% 
71.4%  

Macro 13 69.2% 9 77.8%  

Overall (2|3 Classes) 157 157 89.2% 82.8% 140 125 94.3% 88.0%  

The table shows our algorithms achieved overall accuracy well above 80% for all three nodule characteristics. 

The methods perform better on the agreed cases by multiple radiologists than cases labelled by a single radiologist. 

In general, the algorithms perform better on characteristics that are clearly defined than those where there is more 

room for different interpretations. For instance, high levels of accuracy are achieved for Margin Irregularity 

whereas the algorithms’ performances on margin smoothness and calcification are relatively lower. 

At subtype level, the algorithm performances vary substantially due to uneven distributions of the subtypes 

particularly for those characteristics with a greater degree of subjectivity. The difficulty faced by the algorithm 

development  is which radiologist’s labels should be based on as the ground truth. The difficulty is more severe 

when the number of cases of a subtype is small. Margin characteristics are also known for their subjective nature, 

where we found that radiologists agree more on irregular (89 of 96, 92.71%) and unclear cases (125 of 139, 

89.93%) than on regular (43 of 61, 70.49%) and clear cases (13 of 18, 72.22%). This is because boundaries of 

malignant nodules tend to have more distinctive appearances than those of benign nodules, and hence radiologists 

often have differences when classifying boundaries of “benign-looking” nodules. Despite these subjective factors, 

the proposed methods still achieved good performance on the margin characteristics.  

The test results on calcification show that our calcification method achieved good overall accuracy, but better 

performance on none-calcification than calcification at subtype level. This performance bias is understandable as 

none-calcification cases appear more frequently in clinics. The results also show that inter-observer variability is 

quite substantial for calcification; the radiologists agree more in calcification and none-calcification (140 of 157, 

89.17%) than in micro and macro calcifications (51 of 74, 68.92%). It is worth noting that radiologists often use 

the measurement scale marked on the side of US image as an aid when classifying micro and macrocalcifications 

whereas the algorithms have not made such a reference.  
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We have also compared our proposed CNN model against other novel CNN models adapted for calcification 

detection. In particular, we tuned two poweful CNNs, VggNet19 and ResNet101, using transfer learning approach 

for calcification image classification. The architectures of VggNet19 and ResNet101 were adapted by replacing 

and fine-tuning the last fully connected layer and the softmax layer of each network. The last fully connected layer 

was also replaced by a new fully connected layer for two classes (calcification, no calcification). For a systematic 

and fair comparison, we set the network parameters for both models as follows: 20 epochs, initial learn rate = 

0.0001, and mini-batch size = 4. The other parameters were set as default values of each networks. The results in 

Table 2 show that our proposed CaNet model achieved better specificity. Although CaNet model has lower 

sensitivity than the other two models, it is worth mentioning that our CaNet achieved less biased results when 

classifying micro and macro calcifications. It is also worth noting that both transfer learning models had a required 

input size of 224×224x3, which did not fit most of the calcification candidates due to their small sizes. To resolve 

the issue, the candidates were resized using bicubic interpolation. However, it is a known fact that up-samplings 

may easily cause overfitting and fuzziness in the model trained. We believe that this explaines why our proposed 

model has achieved better and less biased results as it fits better to the small input size. 

Table 2: Comparison of Using Different CNN Models for Calcification Detection. 

Calcification Labels VGGNet-19 ResNet-101 CaNet 

No Calcification 83.1% 80.7% 94.0% 

Calcification 
Micro 

85.1% 
75.4% 

85.1% 
70.5% 

83.8% 
70.5% 

Macro 53.8% 61.5% 69.2% 

Overall 84.1% 77.7% 82.8% 75.2% 89.2% 82.8% 

 

5. Discussions 

Our tests in the experiment section have shown promising results from our proposed method. In this section, we 

will discuss several issues concerning optimization of our models and algorithms, including the optimised 

thresholds, other TIRADS characteristics and constructing robust models. 

Threshold Tuning 

The proposed methods for margin and calcification use several thresholds. To determine the best configurations 

empirically, we conducted a gradient descent-based search on the validation set. The search aims to maximise the 

overall validation accuracy while maintaining a balance between the sub-class accuracies. Fig 6 – 8 illustrate how 

threshold setting may affect modelling performance.  
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Fig. 6 Performance of different thresholds used in margin irregularity analysis. 

 

 

 

Fig. 7 Performance of different thresholds used in margin smoothness analysis  

 

 

Fig. 8 Performance of different thresholds used in calcification analysis.  

We also found that the size of a nodule in an image may affect radiologist’s decisions when classifying margin 

characteristics. Lobulations in large nodules for example may appear less severe than the same kind of lobulations 

in smaller nodules. Therefore, we have further altered some thresholds according to the size of the nodule for 

better robustness. In particular for margin irregularity, we set 𝑡𝐴 = 0.01, 𝑡𝑙 = 2, 𝑡𝜅 = 0.2 for nodules with a 

minimum resolution less than 50 pixels, and set 𝑡𝜅= 0.15 for nodules with a minimum resolution between 50 and 

100 pixels. On contrast, margin smoothness is less affected by nodule size because the characteristic relates to 
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textures around the margin. Most features used in the proposed methods expect larger nodules for statistical 

reliability of the extracted information. In reality, there are nodules of very small sizes. Therefore, instead of using 

the thresholds universally defined, we set |𝑅| = 12, 𝑡𝜆 = 15, and 𝑡𝑆 = 80 for nodules with a minimum resolution 

that less than 100 pixels, and |𝑅| = 24 for nodules with a minimum resolution between 100 and 250 pixels. 

Table 3 Performance Summary of Test 1 based on Cancer Type and Nodule Size. 

Test 1 Benign Malignant Size<150 pxl Size≥150 pxl 

Margin Irregularity 86.0% 93.9% 92.2% 91.0% 

Margin Smoothness 81.4% 88.6% 88.9% 83.6% 

Calcification 69.8% 87.7% 83.3% 82.1% 

As presented in table 3, we found that the proposed methods tend to perform better for malignant nodules than 

benign ones. The performance bias may be partially caused by the unbalanced training dataset, which can be 

improved by enrolling or augmenting more benign cases. We also have relatively poor accuracy for calcification 

on benign nodules. It is worth noting that calcification is often associated with malignancy and rarely appears in 

benign nodules. Also, fibrosis in benign tumours can be easily confused with microcalcifications. Further research 

is needed to better understand such rare and confusing cases for developing better solutions. Additionally, the 

experiment results also show that the margin irregularity measure performs well and is robust across different 

nodule sizes because our method has considered both global and local margin irregularities. Margin smoothness 

also performs well but is slightly better towards small nodules. We believe the performance deterioration for large 

nodules is due to the excessive space covered by each region, indicating that it may be appropriate to increase the 

value of |𝑅| when analysing large nodules. 

Shape and Echogenicity Analysis 

Besides margin and calcification, the TIRADS guidelines also define other US characteristics such as shape and 

echogenicity. Shape describes the orientation of the nodule growing. To provide a complete automated solution, 

we proposed a simple shape classification algorithm consisting of three steps. First, a polygon shape (or bounding 

box) is constructed based on the set of coordinates on the ROI boundary. An exhaustive search is then conducted 

horizontally and vertically within the polygon to locate the maximum width 𝑤𝑚𝑎𝑥  and the maximum height ℎ𝑚𝑎𝑥. 

The nodule is then classified as “taller-than-wide” if ℎ𝑚𝑎𝑥 ≥ 𝑤𝑚𝑎𝑥; otherwise, “wider-than-tall”. Using the test 

set images, this simple algorithm achieved high accuracy of 98% over cases labelled by the single radiologist and 

100% for the agreed cases by two radiologists.  

Another important US characteristic is echogenicity which is reflected by the pixel intensity values in the nodule 

region of the image. We proposed a simple algorithm to identify the echogenicity type by comparing the 

intranodular intensity with that of the surrounding areas. The algorithm first divides the areas around the nodule 

into sub-bands (or small regions) and studies the mean and variance on their intensities. Sub-bands that being over 

dark/bright/inconsistent are consider as non-gland area and being excluded from consideration. The median of the 

remaining ones is then used as the isoechoic reference and the other echogenicity types are determined accordingly 

using a set of dependent thresholds. At the end, we compare the percentage of the echogenicities contained and 

chose the most dominant one as the final echogenicity class. Fig. 9 shows some example echos within a nodule.  
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(a)                               (b)       (c)  

Fig. 9 Illustration of Echogenicity Detection: (a) Original ROI; (b) valid reference regions detected, marked in red; (c) 

echogenicity classification result (purple: very-hypoechoic; yellow: hypoechoic; pink: isoechoic). 

The test results also show that our proposed algorithm achieved an overall accuracy of 87.7% against one 

radiologist labels, and a higher overall accuracy of 90.6% when it was tested against the agreed cases by two 

radiologists. However, since some rare subtypes such as hyperechoic and very-hypoechoic are extremely difficult 

to obtain from clinical practice, the test set was too small in the current data collection. Further evaluations are 

needed to test the reliability of our proposed methods for echogenicity. 

Ablation Study 

We used 100 randomly selected images and conducted two small scale ablation analyses on margin-smoothness 

and margin-irregularity to evaluate the contribution of individual features and their combinations to the overall 

performances of the methods. The test results are shown in Tables 4 and 5.  

Table 4: Ablation Study for Margin Smoothness. 

Labels for Smoothness  Region Analysis Only 
Signal Analysis 

Only  

Region & Signal 

Features 

Clear 37.5% 62.5% 75.0% 

Not Clear 97.6% 82.1% 86.9% 

Overall 88.0% 79.0% 85.0% 

 

Table 5: Ablation Study for Margin Irregularity. 

Irregularity 

Labels 

Stage One  Stage One and Stage Two 

Convex 

Variance 

Elliptic 

Variance 

Conv. Var +  

Local 

Ellip. Var. + 

Local 
All Features 

Irregular  15.7% 96.1% 88.2% 96.1% 92.2% 

Regular 100.0% 49.0% 89.8% 46.9% 89.8% 

Overall 57%. 73% 89% 72% 91% 

 

The margin-irregularity analysis revealed that between the stage one features elliptic variance (73%) contributes 

more to the prediction than convex variance (57%). The result also indicates the bias of the features towards 

different subclasses. However, adding the local features (lobulation and angulation), convex variance performed 

17% better than elliptic variance with local features. The evaluation of the combined feature showed an 

improvement in the performance, with a performance increase of 2% compared to the highest-performing 

individual feature. Therefore, the features complement each other and enhance the method’s performances. 

The margin-smoothness results showed that Signal Analysis had a higher contribution compared to Region 

Analysis. The analysis also demonstrated that the combination of Region and Intensity improved the model's 

robustness compared to the individual features, suggesting that the two features complement each other.  
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To analyse the essence of each step of our proposed three-stage calcification detection method, we have performed 

an ablation study using the 157 images from test 1. Test results showed that the weak detector, CaNet and SURF 

filter had a 16% impact on average when identifying calcifications. The weak detector was mostly affecting 

calcifications detections. In comparison, both CaNet and SURF filters were mostly improving false detections. 

The region-growing method did not contribute much when identifying calcifications but improved the macro 

calcification classifications significantly (see Table 6). 

Table 6: Ablation Study for Calcification. 

Calcification Labels Weak Detector* CaNet SURF Filter Region Growing All 

No Calcification 89.2% 51.8% 53.0% 94.0% 94.0% 

Calcification 
Micro 

51.4% 
44.3% 

97.3% 
93.4% 

97.3% 
93.4% 

82.4% 
75.4% 

83.8% 
70.5% 

Macro 0.0% 23.1% 23.1% 15.4% 69.2% 

Overall 71.3% 65.0% 73.3% 65.6% 73.9% 66.2% 88.5% 80.3% 89.2% 82.8% 

*The weak detector was replaced by the top-hat detector for the ablation study 

Margin Smoothness Sensitivity Analysis to the Precision of the Region of Interest (ROI)  

Whilst we are unable to apply other margin smoothness methods to our dataset due to the differing objectives 

between the studies as mentioned in Section 2, we have conducted an analysis about the sensitivity of our method 

when the delineated RoI does not precisely align with the lesion boundary. We purposely introduced various 

degrees of misalignment by applying random shifts to the initial RoI. The process begins with determining the 

ribbon width for each lesion (refer to Margin Smoothness section for the ribbon’s definition) with a defined shift 

range of ±20%. For each lesion, a random shift value is chosen from the predetermined range. This process is 

repeated ten times on the 100 randomly selected images, and the performances are presented in Table 7.  

Table 7: Sensitivity Analysis of Margin Smoothness method to the precision of the delineated region of interest (ROI) i.e., the 

performances when the region of interest does not precisely align with the boundary of the lesion. 

Iteration 0 1 2 3 4 5 6 7 8 9 10 

Clear 75.00 56.25 56.25 56.25 68.75 56.25 56.25 68.75 50.00 62.50 68.75 

Not Clear 86.90 94.05 90.48 89.29 94.05 90.48 90.48 92.86 91.67 95.24 89.29 

Overall 85.00 88.00 85.00 84.00 90.00 85.00 85.00 89.00 85.00 90.00 86.00 

 

Table 7 highlights 10-iteration performances of the ROI precision analysis. Iteration 0 shows the performance 

with the original delineated ROI, while iterations 1-10 show the performances after applying the random shifts to 

the ROI. The overall performance indicates the method is not over sensitive to variations in ROI precision i.e., 

the performance is relatively stable even with imprecise ROI. The performance has a standard deviation of 2.25. 

This conclusion is consistent with “Not Clear” performance which also has a standard deviation of 2.50. However, 

the “Clear” performances indicate high variability with a standard deviation of 7.82. This variability is attributed 

to the smaller sample size of “Clear” cases, where any misclassification will significantly impact the performance.  
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6. Conclusion 

In this paper, we presented several methods for detecting US image characteristics of thyroid nodule for margin 

irregularity, margin smoothness, and calcification. The proposed method for margin classification have exploited 

new geometrical and texture features effectively. Our novel three-stage approach for calcification identification 

utilizes super-pixels and a convolutional neural network optimized for this purpose. Finally, a simple method for 

nodule shape and an initial algorithm for echogenicity using the thyroid gland as the main reference have been 

described. Our methods have shown good performances in identifying the US image characteristics of thyroid 

nodules with overall accuracies from 82.8% to 98.1% when tested on US images collected from two hospitals and 

labelled by multiple experienced radiologists. Encouraged by the results, we will continue improving our 

algorithms for thyroid characteristics analysis and expand our work to estimating TIRADS scores for the nodule 

and identify level of malignancy. Furthermore, we plan to adapt the methods for identifying characteristics for 

other kinds of lesions such as breast lesions and lymphoma. Finally, we will compare the performance accuracies 

of our methods with nodule contour extracted from automatic segmentation. 
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