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1. Abstract 

Efficient Neural Architecture Search (ENAS) is a recent development in searching 

for optimal cell structures for Convolutional Neural Network (CNN) design. It has 

been successfully used in various applications including ultrasound image 

classification for breast lesions. However, the existing ENAS approach only 

optimises cell structures rather than the whole CNN architecture nor its trainable 

hyperparameters. This paper presents a novel framework for automatic design of 

CNN architectures by combining strengths of ENAS and Bayesian Optimisation 

in two folds. Firstly, we use ENAS to search for optimal normal and reduction 

cells. Secondly, with the optimal cells and a suitable hyperparameter search space, 

we adopt Bayesian Optimisation to find the optimal depth of the network and 

optimal configuration of the trainable hyperparameters. To test the validity of the 

proposed framework, a dataset of 1,522 breast lesion ultrasound images is used 

for the searching and modelling. We then evaluate the robustness of the proposed 

approach by testing the optimized CNN model on three external datasets 

consisting of 727 benign and 506 malignant lesion images. We further compare 

the CNN model with the default ENAS-based CNN model, and then with CNN 

models based on the state-of-the-art architectures. The results (error rate of no 

more than 20.6% on internal tests and 17.3% on average of external tests) showed 

that the proposed framework generates robust and light CNN models. 
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2. Introduction 

Breast cancer is one of the most common cancer types [1]. It is the second 

deadliest cancer for woman [2]Previous studies show that early detection of breast 

cancers followed by appropriate treatment is responsible for 38% reduction in 

mortality rate from 1989 to 2018 [1]. Ultrasound (US) imaging has the benefits of 

being safe and less costly than other imaging modalities such as Magnetic 

Resonance Imaging (MRI), and hence widely used in breast cancer diagnosis. The 

clinical needs as well as technological advances in deep learning have motivated 

us to develop a new automated recognition approach for classifying breast lesions 

into benign or malignant types. 

In recent years, Computer-Aided Diagnosis (CAD) systems have been applied 

to medical image analysis including classifying ultrasound images of breast 

lesions [3]. At the same time, deep learning Convolutional Neural Network (CNN) 

has shown great success in natural image classification. Many existing CNN 

architectures such as VGG net [4] and GoogLeNet [5] were designed. Because of 

model complexity and shortage of annotated medical images, most existing 

research focuses on customising the existing CNN architectures to the medical 

images via transfer learning [3]. However, such customised CNN models are still 

inherently large and complex with an increased risk of model overfitting. Attempts 

have also been made to design CNN architectures specifically for breast lesion 

classification from US images. An architecture (CNN3) of three convolutional 

layers followed by Batch normalisation, Relu and MaxPooling was proposed [6]. 
Another architecture (CNN4) of four convolutional layers with filters of different 

sizes and numbers was also reported [7]. More recently, the Fus2Net [8] 
architecture consists of three convolutional layers followed by two consecutive 

modules each of which consists of several convolutional layers using filters of 

different sizes. Despite all the efforts already made in building and customising 

CNN architectures for breast lesion image classification via manual designs of the 

layers and hyperparameters, the need for accurate, robust, and light CNN models 

remains constant.  
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CNN architecture design involves setting many hyperparameters. Manually 

obtaining the optimal settings for them is challenging and time-consuming [9]. 
Therefore, the interest in automatic search for optimal CNN architectures is 

increasing. Several approaches, such as Generic Algorithms (GA), Reinforcement 

Learning (RL) and Bayesian Optimization (BO), have been developed [10]. 
Neural architecture search (NAS) is a RL-based framework [9], but it is 

computationally expensive because the number of architectural options to explore 

grows exponentially. Efficient Neural Architecture Search (ENAS) overcomes 

this limitation through weight sharing during the search phase [11]. In ENAS, a 

single CNN network known as Supernet with all operations within a search space 

is trained, and the generated CNNs share trained weights of the Supernet. Two 

types of search space can be used by the RNN controller within the ENAS 

framework: the macro space where the controller searches for an entire network 

or the micro space where the controller generates cells containing operations and 

connections between them. Evidence shows that the micro search space is more 

efficient [11]. 
Automatic search of CNN architectures has been attempted for medical images 

recently. A hybrid NAS framework for classifying and segmenting thyroid cancer 

from ultrasound images was proposed in [12]. ENAS with micro search space was 

adopted for breast lesion classification from US images [13]. The generalisation 

gap of ENAS models was further investigated [14]. Nevertheless, the ENAS 

approach has its own limitations. First, the number of blocks of cells is still 

determined manually through trials. Secondly, trainable hyperparameters critical 

for designing effective and efficient CNN architectures are manually set by trials. 

This paper addresses these limitations by adopting Bayesian Optimization for 

optimizing the number of blocks of ENAS cells and trainable hyperparameters. 

Bayesian Optimization, as an efficient method for optimizing noisy and expensive 

functions, provides a better approach than other optimizers to model uncertainty 

and allow exploration and exploitation to be automatically balanced during the 

search [10]. The paper therefore proposes a novel automatic “end-to-end” CNN 

design framework by combining ENAS cells with Bayesian Optimisation search. 

To evaluate this framework, the optimised classification model is tested on images 

captured by US machines of different makes and from different medical centres 

in different countries. A further comparison is made between our model and state-

of-the-art models based on hand-crafted architectures.  
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3. Materials and Methods 

3.1. Data Collection and Preparation 

In this study, five datasets of US images of breast lesions were used. Four were 

collected by our sponsor from three hospitals in Shanghai China including Pudong 

New Area People’s Hospital, No.6 Hospital and No.10 Hospital after ethical 

approvals by the hospitals. The ground-truth for each image (benignity or 

malignancy) is based on pathology reports. Experienced radiologists from the 

hospitals manually cropped the region of interest (RoI) for each US image in every 

dataset. A RoI bounding box image was generated and used as the input image. 

The fifth is a public domain dataset (BUSI) collected from a hospital in Egypt 

with associated class labels and cropped lesion areas [15]. All images were 

captured using US machines of different makes (Siemens, Toshiba, GE, Philips 

and LOGIQ E9). This research was granted ethics approval by the Research and 

Ethics Committees of University of Buckingham. The datasets are split into two 

collections: 

1) Modelling Dataset: Two of the four datasets from two of the three hospitals 

in China respectively containing 1,102 images (726 benign and 376 

malignant) and 420 images (278 benign and 142 malignant) were merged 

into a dataset of 1,522 images. This set is used for developing ENAS-B.  

2) External Test Sets: The BUSI dataset (External A) consists of 565 images 

(355 benign and 210 malignant). The other two datasets (External B and 

External C) from two of the three hospitals in China respectively consist of 

500 images (300 benign and 200 malignant) and 168 images (72 benign and 

96 malignant). The three datasets were separately used for testing purposes. 

Figure 1 shows some examples of US images from the datasets.  

A new dataset of ultrasound images of breast lesions just became available 

[16]. It consists of 109 images of benign and 123 images of malignant lesions all 

of which have been confirmed by histopathologic results including fine needle 

aspiration, core needle, or open biopsies. After removing the images with 

artefacts, 207 images (95 benign and 112 malignant) were used as another external 

test set (External D). 
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Figure 1:Samples of RoI images for modelling and external test sets 

3.2. Bayesian Optimisation for ENAS-based Architecture Design 

The proposed framework is shown in Figure 2. It consists of three main phases. 

Phase I is a general preparation of US images including RoI (i.e. the lesion region) 

cropping, image resizing, and increasing the number of training examples. Phase 

II is intended to obtain an optimized backbone deep CNN (DCNN) architecture 

and a set of optimized trainable hyperparameters. Phase III finally uses the 

optimized architecture and hyperparameters to train a classification model. 

 
Figure 2:The proposed framework for automatic CNN model designs for breast lesion classification 

from US images 
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3.2.1. Image Preparation 

The RoI image of lesion was cropped from the whole US image for accurate 

recognition. A free-hand cropping tool reported in [17] was used by the 

radiologists to identify, collect and store the coordinates of the pixel points on the 

border of a lesion. A rectangular bounding box was then generated for each lesion 

by fitting the border points into a minimum area rectangle. The tumour 

microenvironment (TME) is the cellular environment in which a tumour exists, 

and it includes various components such as immune cells, blood vessels, 

fibroblasts, and extracellular matrix [18]. The TME plays a crucial role in cancer 

progression and can have a significant impact on disease management and 

diagnosis [19]. Therefore, the accurate assessment of the tumour 

microenvironment (TME) within breast cancer plays a pivotal role in disease 

management when utilizing ultrasound images. Selecting RoI is a crucial factor in 

the development of machine learning models for breast cancer classification from 

ultrasound images [20]. Furthermore, integrating information about the TME into 

these models by RoI margin enhances model performance [21].  

Furthermore, using a small margin of background around the lesion can 

provide contextual and spatial information that can aid in the lesion classification 

task and mitigate the effects of image cropping. Based on the work in  [17], 

[22]margin of 8% of the lesion width and height was then added for the final 

cropped RoI image. To satisfy the training requirements of our proposed 

framework, the cropped RoI images were resized to 100×100 pixels.  

Searching and training a complex DCNN also requires large datasets. One way 

to meet the requirement is to enlarge the training set through data augmentation. 

Two augmentation methods reported in [17] were adopted. The geometric 

methods use both image mirroring and rotation (90, 180 and 270 degrees), and the 

singular value decomposition (SVD) method respectively takes 45%, 35% and 

25% ratios of the selected top singular values. The methods generated seven 

additional images from one RoI image.  

3.2.2. Automatic Search and Optimization 

Phase II of our framework consists of three stages as shown in Figure 2. At 

Stage 1, the ENAS method is used to search for the optimal internal structures of 

normal and reduction cells. At Stage 2, the optimized cells are stacked in a process 

controlled by the Bayesian Optimization algorithm, creating a sequential layer 

structure of the cells for the whole network. At Stage 3, Bayesian Optimization is 

again employed to optimize trainable hyperparameters within the optimized 

network structure, creating the final optimized DCNN architecture for modelling. 
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Optimal Cells Search Using ENAS. The ENAS micro approach consists of two 

stages [11]. The first stage searches for an optimal pair of Normal (N) and 

Reduction (R) cells in a pre-defined architecture (i.e. Supernet) based on 

validation accuracy. The Supernet consists of a 3×3 standard convolution layer 

named stem conv and 7 cells (1N, 1R, 1N, 1R, 3N). The default search operations 

of ENAS [11] were provided to the ENAS controller. We set the mini batch size 

to 8 and all other hyperparameters as ENAS default [10]. The RNN controller is 

trained for 150 epochs and each epoch generated 10 pairs of N and R cells. In the 

searching stage, the Modelling Dataset (see Section 3.1) was used under a single 

split policy (see Section 4). Figure 3 shows the searched optimal cell structures 

from ENAS based on the modelling dataset. 

 
Figure 3:Example of optimal cell structure (Normal and Reduction cells) generated from our data set 

ENAS-B. The proposed ENAS-B search involves three key elements: a backbone 

architecture, a search space and a search strategy. First, we define a CNN 

backbone architecture with optimisable structural hyperparameters and their 

search spaces. Second, we perform automatic architecture search (the first 

optimisation stage) using Bayesian optimisation to identify the optimal number of 

normal cells (or the depth of the architecture) that results in a new architecture 

called ENAS-B-1. Finally, we use ENAS-B-1 as a backbone architecture, define 

optimisable training hyperparameters and their search space, and perform 

automatic architecture search using Bayesian optimisation to optimize training 

hyperparameters. This second optimisation stage results in ENAS-B. It is worth 
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noting that the first and the second stages use the same Bayesian optimisation 

algorithm but with different inputs.     

Backbone Architecture. We define the backbone architecture (𝐵𝐴) as follows. 

A stem convolution layer, i.e. a convolutional layer with 108 filters of size 3×3 

stride 1 followed by ReLU and batch normalisation, is included immediately after 

the input layer. The architecture then contains several blocks. Each block consists 

of one or more normal cells and one reduction cell. The output of the final layer 

(final normal cell) is followed by Global Average Pooling (GAP) for reducing the 

feature map dimensionality. The final layer consists of two nodes for the two 

classes followed by SoftMax for classification. Since the reduction cells are used 

as a pooling layer to reduce the feature map size by half, to control the output size, 

the backbone architecture in this study has two reduction cells determined by the 

input image size and the intention to avoid input vanishing. Figure 4 shows the 

proposed backbone architecture. 

 
Figure 4: Backbone architecture (BA) for Bayesian optimization search 

Structural Hyperparameter Search Space. The structural search by Bayesian 

Optimization aims at utilizing the optimized normal and reduction cells within the 

backbone architecture (𝐵𝐴). In fact, Bayesian Optimiser searches for the optimal 

number of normal cells in each of three blocks (Block 1 (𝑑1), Block 2 (𝑑2), Block 

3 (𝑑3)) in Figure 4.  Thus, the structural search space is the number of normal cells 

per block 𝑑𝑖. The search range for 𝑑𝑖 is therefore defined as Min=1, Max= 5 and 

step=1. Given this setting, the deepest architecture may have 15 normal and 2 

reduction cells, while the shallowest architecture 3 normal and 2 reduction cells. 

The full details of the Bayesian Optimization algorithm are presented in the 

following Search Strategy section. 

Trainable Hyperparameters Search Space. A suitable search space of trainable 

hyperparameters is needed as the input for Bayesian optimizer to build the optimal 

CNN architecture. In this paper, the search space (𝐿𝑟 , 𝑂𝑝𝑧, 𝐿𝑓 , 𝑊𝑖, 𝐷𝑟𝑝, 𝐿𝑛, 𝐿2𝑟) is 

composed by Learning rate 𝐿𝑟, Optimization 𝑂𝑝𝑧, Loss function 𝐿𝑓, Weight 

Initialization 𝑊𝑖, Dropout Rate 𝐷𝑟𝑝, Layer Normalization 𝐿𝑛, and regularization 
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𝐿2𝑟. Based on the literature [12] and our knowledge in deep learning architecture 

design, the following values and ranges of hyperparameters for the search space 

are carefully defined: 𝐿𝑟: [0.00001, 0.001]; 𝑂𝑝𝑧: (Adam, SGD, RMSprop); 

[12]𝐿𝑓: (Sparse Categorical Cross-Entropy (SCCE), Binary Cross-Entropy 

(BCE)); 𝑊𝑖: (He normal, Glorat normal); 𝐷𝑟𝑝: [0%, 90%]; 𝐿𝑛: (Batch 

Normalization, Group normalization (4)); and 𝐿2𝑟: [0.00001, 0.001]. 

Search Strategy: The Bayesian Optimisation is conducted in two sequential 

stages. Given 𝐵𝐴 and our definition of the structural search space, Bayesian 

Optimiser first searches for the optimal number of N cells in each block. The 

Bayesian Optimisation algorithm consists of six steps. Step 1, a hyperparameter 

setting 𝑆𝑠 is defined as one set of possible values of optimisable structural 

hyperparameters (𝑑1, 𝑑2, 𝑑3). Therefore, it is defined as 𝑆𝑠 = {𝑆𝑠1, … , 𝑆𝑠𝑖, … , 𝑆𝑠𝑗} 

where 𝑆𝑠𝑖 is the value of the optimizable parameter 𝑖 in the hyperparameter setting 

𝑆𝑠 and 𝑗 is number of hyperparameters that are being optimised (𝑗 = 3 in the first 

search stage). Step 2, we define an objective function 𝑓(𝑆𝑠) as the validation 

accuracy (the model accuracy on the test set when modelling the backbone 

architecture with hyperparameter setting 𝑆𝑠) that is maximised at each iteration. 

Step 3, Bayesian optimiser randomly selects 𝑡 number of hyperparameter settings 

known as the initial seed points that the Bayesian optimiser examines before 

starting the search process. We set  𝑡 = 3 as illustrated in our experiment. Using 

three initial hyperparameter settings, Bayesian optimiser models the backbone 

architecture to calculate the objective function 𝑓(𝑆𝑠). In step 4, Bayesian 

optimiser builds the surrogate model 𝐺(𝑆𝑠) which is based on Gaussian Process 

Regression. Given the initialisation of the 𝐺(𝑆𝑠), Bayesian optimiser uses 

Expected Improvement as acquisition function to select the next hyperparameter 

setting in Step 5. Where the next hyperparameter setting 𝑓(𝑆𝑠𝑖) with the highest 

expected improvement over the current best observed setting of the objective 

function is selected using the Expected Improvement as follow: 

𝐴𝑞(𝑆𝑠) = 𝐸(𝑚𝑎𝑥(𝐺(𝑆𝑠) − 𝑓′(𝑆𝑠), 0) 

where 𝑓′(𝑆𝑠) is the best observed point of the objective function and 𝐺(𝑆𝑠) is the 

posterior distribution of the surrogate model. At each iteration, the 

hyperparameter setting 𝑆𝑠 that maximises the 𝐴𝑞(𝑆𝑠) is selected as the next setting 

for evaluation. The surrogate model is updated with the newly evaluated 

hyperparameter setting after each iteration. The search process is repeated for 30 

iterations. The number of iterations were defined empirically in this study. Finally, 
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in Step 6, the architecture that provides the highest classification accuracy from 

Bayesian Optimisation search was selected and named as ENAS-B-1. Figure 5 

shows ENAS-B-1 architecture. 

In the second stage of the optimisation, given the architecture of ENAS-B-1 as 

a backbone and our definition of the trainable search space, the Bayesian 

Optimiser algorithm searches for the optimal trainable hyperparameter setting. In 

particular, the same steps 1 to 6 are used, but 𝑆𝑠 = (𝐿𝑟 , 𝑂𝑝𝑧, 𝐿𝑓 , 𝑊𝑖, 𝐷𝑟𝑝, 𝐿𝑛, 𝐿2𝑟) 

and 𝑗 = 7. This stage of the search results in an optimal CNN architecture ENAS-

B. Section 4 will provide the details on the optimized trainable hyperparameters. 

 

 
Figure 5: Fixed Backbone Architecture (ENAS-B-1) for trainable Hyperparameters Search stage  

An interesting alternative of the two-stage search as described earlier is a 

combined search strategy where optimal combinations of the number of normal 

cells and the trainable hyperparameters are searched using the Bayesian 

Optimiser. We further explore this alternative search strategy and compare the 

searched architecture with ENAS-B. Further details of the architecture obtained 

will be shown in Section 4. 

3.3. Experiment Setups 

Experiments have been conducted to find the optimal CNN architectures and 

evaluate the classification performance of ENAS-B models. All experiments were 

run on a station with Intel Xeon(R) W-2102 CPU@2.90GHz with 16.0GB RAM. 

The Modelling Dataset (Section 3.1) was used for searching for the optimal cells 

in ENAS, searching for the optimal number of normal cells and trainable 

hyperparameters using Bayesian Optimisation, and finally training the ENAS-B 

model from scratch. A 5-fold stratified cross validation protocol was followed. At 

each iteration, the modelling data was split into 20% for testing (Internal test) and 

80% for training. The training part was further split into 10% for validation and 

90% for training. One split out of the five was used for the optimization (Section 
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3.2.2). To determine the classification error rates, all 5 folds were used. The 

imbalance ratio between benignity and malignancy (1.92:1) was upheld in the 

modelling and searching stages based on the findings in [14]. All images were 

pre-processed, and the training set enlarged using the pre-processing and data 

augmentation methods as described in 3.2.1. 

Optimising ENAS-B Architecture: After ENAS generates the optimal cells, the 

Bayesian optimisation algorithm searched for 30 networks each of which was 

trained from scratch on the Modelling dataset with 50 epochs during the search. 

The primary criterion for selecting the optimal among the generated architectures 

is the validation accuracy, but the architecture complexity in terms of the number 

of weight parameters within the model is also considered. As a result, the optimal 

architecture has the block configuration of (1N, 1R, 1N, 1R, 1N) as depicted in 

Figure 5. Then, the search for trainable hyperparameters of the architecture is 

conducted under the following setting. The number of trials (sample model) is 30. 

Each model is trained on the unbalanced dataset for 50 epochs with batch size 8. 

The maximum batch size was constrained by the available computational power 

and the number of epochs was determined experimentally. The final ENAS-B 

architecture has the following hyperparameters: Learning Rate = 0.0001; 

Optimization function = SGD; Loss function = SCCE; Weight initialization = He 

Normal; Dropout rate = 0.3; Normalization Layer = Group Normalization; and L2 

Regularization = 0.00036. 

For the optimized architecture using the combined search strategy (ENAS-B 

Combined), the number of trial network models is set to 40. Each model is trained 

on the unbalanced dataset for 50 epochs with batch size 8. The final optimal 

architecture has the block configuration of <5N, 1R, 1N, 1R, 4N> with Learning 

Rate = 0.0001; Optimization function = Adam; Loss function = BCE; Weight 

initialization = He Normal; Dropout rate = 0; Normalization Layer = Batch 

Normalization; and L2 Regularization = 0.00042.  

Model performance is measured by Sensitivity, Specificity, Accuracy and F1-

score. Sensitivity refers to the proportion of known malignant test examples being 

classified as malignant, whereas Specificity refers to the proportion of known 

benign test examples being classified as benign. Accuracy refers to the proportion 

of correctly predicted test examples out of the total, and F1-score is the harmonic 

mean of Accuracy and Sensitivity.  

 



12 

4. Results 

Breast Lesion Classification. The optimized ENAS-B is then trained from 

scratch on the unbalance dataset. All the data augmentation methods as mentioned 

are used to expand the training set. The number of epochs for training the EBAS-

B models is set to 50. Figure 6 shows the loss-accuracy of ENAS-B training and 

validation.  

Comparison with State-of-Art Purposely Built CNNs. We first compared 

ENAS-B with three existing state-of-art networks manually designed specifically 

for classifying breast lesions in US images, i.e. CNN3 [6], CNN4 [7], and Fus2Net 

[8]. Each CNN was trained and tested on the Modelling Dataset under the same 

cross validation protocol with the same folds as used for ENAS-B. As shown in 

Table 1, ENAS-B model outperforms all three network models by a large margin 

with higher overall accuracy of 4.5%, 18.8% and 13.3% respectively. ENAS-B 

also outperforms CNN3, CNN4 and Fus2Net by at least 6.6% when tested on the 

external sets A, B and C. With the new dataset (External D) [16], the results show 

that ENAS-B still achieved the highest overall accuracy of 67.4% (specificity 

45.3% and sensitivity 89.5%) while CNN3, CNN4 and Fus2Net achieved overall 

accuracies of 61.5% (specificity 87.4% and sensitivity 35.7%), 53.7.5% 

(specificity 56.4% and sensitivity 50.9%), and 60.5% (specificity: 40% and 

sensitivity: 81.1%) respectively. 
 

 
Figure 6: Training and Validation loss-accuracy of ENAS-B model 

The classification performance of the ENAS-B models is presented in Table 1. 

With a 5-fold cross validation, ENAS-B achieved an average overall accuracy of 

79.4% (88.2% specificity and 70.5% sensitivity). Further, we tested all 5 ENAS-
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B models on the four external datasets (External A, B, C and D). ENAS-B 

generalizes well on the unseen data and achieved average accuracies (average of 

5 models) of 80.4%, 89.7%, 78.0%, 67.4% on External A, B, C and D respectively. 
Table 1: ENAS-B Performance and Comparison against Other State-of-the-art Breast Lesion CNNs 

Models Test Sets Specificity   Sensitivity ACC F1 # Parameters 

CNN3 

[6] 

Internal 88.7 ±6 61.1 ±13 74.9 ±5 66.0 ±8 

619,202 

External A 78.8 ±4 68.1 ±12 73.5 ±4 66.2 ±7 

External B 78.9 ±11 86.4 ±7 82.6 ±3 79.4 ±3 

External C 73.6 ±10 71.0 ±12 72.3 ±1 73.9 ±5 

External D 87.4 ±6 35.7 ±15 61.5 ±5 46.9 ±14 

CNN4 

[7] 

Internal 91.3 ±13 29.9 ±34 60.6 ±11 30.8 ±26 

628,418 

External A 88.2 ±11 39.8 ±33 64.0 ±11 40.9 ±28 

External B 89.3 ±18 39.4 ±34 64.4 ±9 42.8 ±25 

External C 79.7 ±29 36.9 ±31 58.3 ±6 41.4 ±25 

External D 56.4 ±45 50.9 ±44 53.7 ±6 41.7 ±31 

Fus2Net 

[8] 

Internal 83.0 ±15 49.2 ±38 66.1 ±12 44.0 ±29 

889,714 

External A 63.1 ±34 56.2 ±40 59.7 ±10 46.5 ±28 

External B 84.9 ±14 64.3 ±42 74.6 ±15 59.1 ±33 

External C 68.9 ±27 52.7 ±41 60.8 ±9 48.1 ±35 

External D 40.0 ±19 81.1 ±22 60.5 ±5 68.3 ±11 

ENAS17 

[11] 

Internal 86.4 ±1.1 81.1 ±3.4 83.8±1.4 78.2 ±1.7 

3,927,636 

External A 90.0 ±2.8 63.0 ±3.5 76.5±0.5 70.0 ±1 

External B 84.9 ±4.3 89.3 ±3.4 87.1±1.4 84.3 ±1.7 

External C 74.4 ±4 73.8 ±4.7 74.1±1.7 76.4 ±2.4 

External D 55.2 ±9 81.9 ±6 68.6 ±2 74.8 ±1 

ENAS-B 

Internal 88.2 ±2 70.5 ±4 79.4 ±1 73.0 ±2 

1,053,398 

External A 88.8 ±4 72.0 ±8 80.4 ±2 75.2 ±2 

External B 84.3 ±4 95.0 ±3 89.7 ±1 87.0 ±1 

External C 75.6 ±8 80.4 ±3 78.0 ±3 81.0 ±1 

External D 45.3 ±19 89.5 ±6 67.4 ±6 76.0 ±2 

We then compared ENAS-B with the original ENAS [11]. Based on our earlier 

findings as reported in [13], we chose ENAS17 for the comparison. Using the 

optimal cells as shown in Figure 3, ENAS17 architecture consists of 15 Normal 

cells (N) and two Reduction cells (R) in a configuration of (5N, R, 5N, R, 5N) and 

trained on the Modelling dataset under the same 5-fold cross validation protocol. 
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Although the ENAS17 models achieved higher accuracy in internal test, ENAS-B 

generalized better and achieved higher overall accuracy than ENAS17 on the 

external datasets except External D where ENAS17 has a marginally better overall 

accuracy. On the other hand, the number of weight parameters of ENAS-B is about 

3.73 times fewer than that of ENAS17.  

The performance of ENAS-B demonstrates the effectiveness of our approach 

in optimising the number of layers and trainable hyperparameters for accurate and 

robust networks. To confirm whether the differences in the model accuracies on 

external datasets are statistically significant, a paired sample t-test upon the 

ENAS-B model and each of CNN3, CNN4 and Fus2net were separately 

conducted, and the t-statistics and p-values were calculated. The p-values for 

ENAS-B vs CNN3, ENAS-B vs CNN4 and ENAS-B vs Fus2Net are respectively 

0.000487, 0.001484 and 0.016456, all well below the general threshold of p = 

0.05. Therefore, the ENAS-B model significantly outperforms the other manually 

designed CNN models.  

 

Figure 7: Presents ROC curve and AUC score of ENAS-B, CNN3, CNN4 and Fus2Net on External_A 

and External_B. 

To further explore the predictive power of ENAS-B on external datasets, the 

Receiver Operating Characteristic (ROC) curves and Area Under the Curve 

(AUC) were calculated on the External datasets A and B because both datasets 

have more than 500 images collected from two different sources (see Section 3.1). 

For calculating the ROC curve different thresholds were used between 0 to 10. 

Figure 7 shows the ROC curves and AUC scores of ENAS-B (0.89 on External A 

and 0.96 on External B). AUC score in general demonstrates how well a classifier 
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can discriminate between classes. The AUC scores have demonstrated that the 

capability of ENAS-B in distinguishing malignant lesions is better than CNN3, 

CNN4 and Fus2Net on both External A and B respectively. Moreover, we 

calculated the Delong test for ENAS-B against CNN3, CNN4 and Fus2Net on 

both External A and B. The DeLong value of ENAS-B vs CNN3, ENAS-B vs 

CNN4 and ENAS-B vs Fus2Net are respectively 0.3, 2.4 and 1.2 on External A, 

and 2.9, 4.9 and 3.4 on External-B. The DeLong test values all greater than zero 

indicate that ENAS-B different from those purposely designed CNN models [23]  

The larger the DeLong test statistic is, the stronger the evidence supporting the 

difference in AUC values between the two models. Since the DeLong test statistics 

of ENAS-B against the other models are mostly greater than 1, it implies that the 

ENAS-B model has a significantly higher AUC compared to the other models. 

Although, the DeLong value of 0.3 for ENAS-B vs CNN3 on External-A is less 

than 1 and closer to zero, the p-value for ENAS-B vs CNN3 is 0.000487. All the 

results indicate that ENAS-B has a significantly better performance than the other 

purposely designed CNN models.  

Comparison with State-of-the-art Generic CNNs. It is also interesting to know 

how ENAS-B models compare with known CNN architectures originally designed 

for ImageNet. We selected some well-known architectures (VGG16[4], ResNet50 

[24], InceptionV3 [25], MobileNet V2 [26], DenseNet [27], EfficientNetB0 [28], 

NasNet Mobile [29] and XceptionNet [30]) and then customized them for breast 

lesion recognition from US images. Both training the architectures from scratch 

and training them with transfer learning (TL) have been attempted. The number 

of epochs was set to 50 for the former, and 25 for the latter. The batch size was set 

as 16 for all the models in both situations. For fairness of the comparison, all the 

network models were trained on the Modelling Dataset under the same setting as 

for the ENAS-B models. Table 2 shows that ENAS-B achieved the highest overall 

accuracy on the internal tests except XceptionNet TL (with a small margin), and 

the highest average overall accuracy on the external tests. 

Comparison with ENAS-B Combined. We further compare ENAS-B with 

ENAS-B Combined. Figure 8 summarizes the performance of the 12-layer ENAS-

B Combined models on the internal test data and three external test datasets 

(without External D). Although the ENAS-B Combined models still perform 

better than all other purposely built CNNs, the performance is worse than that of 

ENAS-B for both internal and external tests. 
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Table 2: Comparison results of state-of-the-art and ENAS-B to classify US images of breast lesions (SP: 

Specificity; ST: Sensitivity; ACC: Overall Accuracy; F1: F1-Score): internal average vs external average 

Network 

Models 

Test 

sets 

CNN models from scratch CNN models with TL 

SP   ST ACC F1 SP   ST ACC F1 

VGG16 
Internal 100 0 50 N/A 100 0 50 N/A 

External 100 0 50 N/A 100 0 50 N/A 

Resnet50 
Internal 74.5 50.4 62.5 57.4 87.1 48 67.6 54.5 

External 65.4 57.6 61.5 60.1 80.2 52.9 66.6 57.6 

InceptionV3 
Internal 84.2 48.9 66.6 53.6 94.7 32.2 63.4 40.2 

External 76.3 60.7 68.5 63.0 90.2 47.4 68.8 55.6 

MobileNet 

V2 

Internal 19.9 80.2 50 41 77.9 77.5 77.7 72.2 

External 20.0 80.1 50.0 49.3 67.4 87.7 77.6 78.1 

DenseNet 
Internal 83.5 52.4 68 58 94.2 42.8 68.5 51.1 

External 80.6 67.9 74.2 70.7 87.1 50.0 68.5 53.4 

EfficientNet

B0 

Internal 82.9 58.4 70.7 63.1 87.3 65.5 76.4 68.3 

External 73.5 68.9 71.2 69.8 80.6 78.9 79.7 77.6 

NasNetMobi

le 

Internal 50.2 91.1 70.7 64.9 73.3 36.9 55.1 24.7 

External 34.1 95.9 65.0 69.9 70.1 37.7 53.9 27.2 

XceptionNet 
Internal 88.3 57.3 72.8 63.7 87.3 73.8 80.6 74.4 

External 82.3 67.4 74.9 71.2 77.5 84.8 81.2 79.8 

ENAS-B 
Internal 88.2 70.5 79.4 73 - - - - 

External 82.9 82.5 82.7 81.1 - - - - 

 

Figure 8: Performance of ENAS-B-Combined search on internal and external test sets 
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ENAS-B for Thyroid Cancer Classification. A pilot study was conducted by 

searching for an optimal ENAS-B architecture using breast lesion US images, and 

then train an ENAS-B model for thyroid nodule classification in two different 

scenarios using the same data augmentation methods to enlarge the training sets 

under a 5-fold cross validation evaluation framework. In the first scenario, a 

balance dataset of 500 ultrasound images (250 Benign and 250 Malignant) was 

used with the result showing that the ENAS-B architecture achieved the average 

overall accuracy of 73.6% (specificity: 54% and sensitivity: 93.2%) in classifying 

thyroid nodules. In the second scenario, following our approach of using 

unbalance classes, the ENAS-B models were trained on an unbalanced thyroid 

dataset (480 Benign and 250 Malignant) with ratio (1.92:1) with the results 

showing that the ENAS-B models achieved the average overall accuracy of 67.9% 

(specificity: 67.8% and sensitivity: 68%). In both scenarios, the specificity is close 

to random guess whereas sensitivity has substantial lifts. However, the potentials 

of transfer learning aspects of ENAS-B still require further research. 

 

5. Discussions 

The comparisons have revealed several advantages of ENAS-B over the 

existing approaches. First, the ENAS-B models outperform all exiting handcrafted 

networks purposely built for breast lesion classification from US images (Table 

1). Second, the ENAS-B models in general maintain a smaller difference between 

sensitivity and specificity with more balanced performance on both classes 

(Tables 1 and 2). Furthermore, the ENAS-B models have much smaller number 

of weight parameters in comparison with ENAS17 (Table 1) and other known 

generic architectures as reported in the literature. Although the purposely build 

networks tend to be slimer, they underperform on bother internal and external tests 

(Table 1). ENAS-B also has its own limitations. Like all automatic search 

methods, ENAS-B requires resources to conduct searching and then training. It is 

worth noting that our two-stage approach for optimization has already reduced the 

demand on resources comparing to the combined search. Due to resource 

constraint, ENAS-B purposely controls the sizes of the search space by defining a 

backbone architecture framework, which might influence the best optimal 

outcomes. 

The results of the comparison between the two search strategies (two-stage vs 

combined) show that the two-stage ENAS-B outperforms ENAS-B Combined by 

a margin of 3% on overall accuracy in the internal tests and nearly 5.5% better 

average sensitivity in the external tests while the average specificity remains 
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marginally the same (Table 1 and Figure 8). Although the ENAS-B search 

principle is consistent with the ENAS’s two-step principle [11], such finding is 

still surprising because a combined search space offers more hyperparameter 

combinations and hence should increase the possibility for finding the global 

optimum. It is possible that reaching an optimal CNN may require more iterations 

and hence prolong the overall time for searching. 

Radiomics refers to the high-throughput analysis of quantitative image features 

for improving diagnostic accuracy in a clinical decision support system[31]  For 

the rigor of studies and clinical relevance, a radiomics quality score (RQS) system 

was recently introduced in a landmark article. Although this paper is not a direct 

clinic-based study, it is desirable to evaluate the quality aspect of our study using 

the RQS score. After discarding 6 key components irrelevant to our study (key 

elements 4, 6, 7 11, 14 and 15), our study scored 16 out of 23 points on the 

remaining 10 key components. Although we have no direct control over the image 

acquisition and collection due to the data collection protocol agreed with the 

sponsor, US images from scanners of different makes and models were purposely 

collected and all lesions were cropped by experienced radiologists from their 

medical centres (see Section 3.1). Our deep learning approach follows an end-to-

end workflow instead of examining each stage of image processing separately. 

The embedded convolutional operators optimally placed in a CNN architecture 

extract features at different levels of data abstraction. The ENAS reduction cells 

and the GAP layer are used for feature reduction. The performance of ENAS-B 

has been evaluated through internal and external tests, and various discrimination 

and calibration statistics have been used (Section 4). Although not all of our 

datasets are publicly accessible, one external test dataset (BUSI) is available from 

open sources. The ENAS methods for cell search are based on python codes in 

[32] and the Bayesian Optimization adapts the program codes in KerasTuner [33]. 

The radiomics analysis has also revealed the need for bringing our study closer to 

clinical practice. We therefore plan to conduct prospective tests in a clinical 

setting at the next phase of our investigation. 

 

6. Conclusion and Future Work 

This paper presented a novel framework for automatically searching CNN 

architectures for breast lesion classification from US images. We combined ENAS 

cell search with Bayesian Optimisation of network layers and trainable 
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hyperparameters. The proposed framework yields efficient, shallow and robust 

CNN models that outperformed the state-of-the-art CNN models developed for 

the same purpose. The results show that cell structures, network depth and 

trainable hyperparameters are all important parameters to be optimised. Another 

finding is the importance of the search strategy. Evidence has shown that the two-

stage approach (ENAS-B) allows the Bayesian optimiser to narrow the search and 

provide a robust CNN model. In the future, we plan to expand the search space by 

including other hyperparameters such as the number of filters, RoI margin size 

and the connectivity between cells. In addition, we plan to automatically optimize 

the depth and trainable hyper-parameters of existing CNNs such as ResNets, 

GoogleNet and MobileNet by using their blocks as the search spaces. We will 

further compare the classification accuracies of the ENAS-B model with expert 

radiologists on datasets from different sources. Finally, we plan to evaluate the 

performance of ENAS-B with pre-processed images to ensure that they have 

consistent characteristics. 
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