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Abstract 

Accurate and timely evaluation and assessment of emission data and its impact on environmental 

status has been a key challenge due to the conventional manual approach utilized for independently 

computing most emission parameters. To resolve this long-standing issue, we proposed an 

Artificial Intelligence (AI)-driven Decision Tree model to adequately classify Environmental 

Protection Agency (EPA) status based on multiple Emission Parameters. The model's performance 

was systematically evaluated using multiple emission parameters obtained from a two-stroke 

motorcycle dataset collected in Nigeria across various metrics such as K-S Statistics, Confusion 

Matrix, Correlation Heat Map, Decision Tree, Validation Curve, and Threshold Plot. The K-S 

Statistics plot's experimental results showed a considerable correlation between HC, CO, and the 

target variable, with values ranging from 0.75-0.80. At the same time, CO2 and O2 do not correlate 

with the target variable with values between 0.00 and 0.09. The Confusion Matrix revealed that 

the proposed model has an overall accuracy of 99.9% with 481 true positive predictions and 75 

true negative predictions, indicating the effectiveness of the proposed AI-driven model. In 

conclusion, our proposed AI-driven model can effectively classify EPA status based on multiple 

emission parameters with high accuracy, which may spur positive advancement in policy 

enhancement for proper environmental management.  

 

Keywords: Decision Tree; Artificial Intelligence; EPA Status; Air Emission Parameters; Machine 

Learning; Emission Reduction. 
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1. Introduction 

The increasing global demand for transportation has significantly increased the number of vehicles 

[1, 2]. This increase has had a negative impact on the environment, as the emissions from these 

vehicles contribute to air pollution and climate change [3, 4]. In particular, the use of motorcycles 

has grown significantly in recent years, especially in developing countries where they are often the 

preferred mode for last-mile transportation [5, 6]. As a result, it is crucial to find ways to minimize 

the environmental impact of emissions from motorcycles [5, 7, 8]. 

One approach to addressing motorcycle emissions is through the use of regulatory policies [9, 10]. 

The Environmental Protection Agency (EPA) is a government agency that sets standards for the 

emissions of vehicles [11, 12]. The EPA issues status to each motorcycle model based on its 

emissions performance, which can range from "not certified" to "certified." [13]. These EPA status 

labels can significantly impact the marketability and sales of motorcycles [14]. 

However, determining the EPA status of a motorcycle can be a complex and time-consuming 

process that could lower efficiency, as it requires considering a range of emission parameters such 

as carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx) [15]. In addition, the 

EPA updates its standards and testing procedures periodically, making it challenging to keep track 

of the latest requirements[16].  

To address these challenges, we propose the use of a decision tree model driven by artificial 

intelligence (AI) technique to adequately recognize and classify EPA status based on motorcycle 

emission parameters. Decision tree models are a popular choice for classification tasks because 

they can handle multiple input variables and provide clear explanations of the decision-making 

process [17, 18]. By using an AI-driven model to classify EPA status, we aim to improve the 

process's accuracy and efficiency and reduce or eliminate human error. We used a dataset of 

motorcycle emission test results to train and validate the model. Our objective is to achieve high 

prediction accuracy, meaning that the model should be able to accurately predict the EPA status 

of a motorcycle or similar machines based on its emission parameters. 

As with any technology, the use of artificial intelligence (AI) in regulatory decision-making carries 

with it specific ethical and societal implications that must be carefully considered [19]. In the 

context of the proposed decision tree model for classifying facilities based on emission parameters 

and determining their EPA statuses, several key ethical and societal issues merit further 

examination [20, 21]. 
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One concern to consider is the potential for the AI model to make decisions that are not transparent 

or explainable [22, 23]. While the AI-driven decision tree model is designed to make decisions 

based on a clear set of rules, it may be difficult for humans to understand the exact logic behind 

the model's predictions [24, 25]. This lack of transparency could make it challenging for regulators 

and the public to understand and accept the decisions made by the AI-driven model [26, 27]. 

From a societal perspective, the use of AI-based models in regulatory decision-making may raise 

concerns about the potential loss of jobs and the impact on employment [28, 29]. While the AI-

driven decision tree model could potentially streamline and automate the EPA classification 

process, it could also lead to the displacement of human workers who currently perform this task 

[30, 31]. It will be necessary to carefully consider the potential impacts on employment and explore 

strategies to mitigate any negative consequences [32]. 

The use of AI in regulatory decision-making, such as the proposed decision tree AI model for EPA 

classification, carries with it several ethical and societal implications that should be carefully 

considered. It will be important to address these issues to ensure this technology's responsible and 

fair implementation [31, 33]. 

To evaluate the performance of our model, we used a range of evaluation metrics, including 

accuracy, precision, and recall[34]. We also compared the performance of our model to other 

machine learning algorithms. In addition, we also examined the potential benefits and limitations 

of using AI for the classification of EPA status [28]. This includes a discussion of the ethical and 

societal implications of using AI in regulatory decision-making [35]. 

Consequently, the goal of this study is to demonstrate the effectiveness of using an AI-driven 

decision tree model for the recognition and classification of EPA status based on motorcycle 

emission parameters. The contributions of this study are threefold. 

 First, this study adds to the growing literature on mitigating the negative impact of two-stroke 

motorcycle emissions in developing countries. 

 Second, it proposes a decision tree model to classify EPA status based on motorcycle 

emission parameters. The proposed model has more prediction accuracy and is less time-

consuming compared to conventional methods. 

 Third, with a more accurate and efficient method for determining EPA status, this study 

contributes to developing more effective regulatory policies for reducing the environmental 

impact of transport emissions. 
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 The Proposed model can be deployed widely to classify similar emissions from sources other 

than motorcycles and may spur positive advancement in policy enhancement for proper 

environmental management. 

The remaining part of the paper is structured as follows. Section 2 details the study area, materials, 

methods used in this study, the modeling framework, and the limitations. Section 3 has the results 

and discussion, which also details the explicability and interpretability of the proposed decision 

tree model. Section 4 has the conclusion, which explains the contribution of this study to the field 

of artificial intelligence and environmental management. 

2. Materials and Methodology 

This section details the study area in Africa and how the data was collected and processed. It 

further entails a detailed report of the model development framework, the policy analysis, and the 

limitations.  

2.1 Study area and sampling locations 

The study area is Ogun State, one of Nigeria's thirty-six states in the southwest part of the nation 

[36]. It shares borders with Lagos State (the commercial nerve center of the country) and the 

Atlantic Ocean on the south, Oyo and Osun States on the north, Ondo State on the east, and the 

Republic of Benin on the west. Ogun State is home to the highest number of industries in Nigeria. 

It has the longest stretch of road connecting Lagos to other parts of the country [37, 38]. The 

sampling locations within the state are shown in (Fig. 1) [39, 40]. 
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Fig. 1. Study area and sampling locations       Souce: Author 

 

2.2 Data Collection 

Raw exhaust emissions from 1950 motorcycle taxis were sampled using a hand-held KANE 

Automotive 4-Gas Analyzer (Model 4-2). The instrument was programmed to detect and measure 

carbon dioxide (CO2), with an accuracy of ± 0.5%, volume reading at a resolution of 0.1%, at a 

range of 0-16% and over-range of 25%, oxygen (O2), with an accuracy of ± 0.1%, volume at a 

resolution of 0.01%, at a range of 0-21% and over-range of 25%), hydrocarbons, HC (with an 

accuracy of 12 ppm volume at a range of 0-5,000 ppm and an over-range of 10,000 ppm), carbon 

monoxide, CO (with an accuracy of ± 0.06%, volume at a range of 0-10% and over-range of 20%) 

and Lambda, "𝜆" (at a resolution of 0.001 and a range of 0.8-1.2), which was calculated using 

(Equation 1)[41-43]. 
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CO, CO2, and O2 are measured in percentage volume (% vol.), and HC is measured in parts per 

million volume (ppm vol.). 𝐾_"1" is the HC conversion factor expressed in parts per million 

volume equivalent of normal hexane (C6H14). The value is given as 6.0×10-4 according to Eqn. 

1. 𝐻_"𝐶𝑉" denotes the hydrogen-carbon atomic ratio of the fuel (minimal value is 1.7261), and 

𝑂_"𝐶𝑉" denotes the oxygen-carbon atomic ratio of the fuel (minimal value is 0.0176)" [38].  

Before each measurement round, the motorcycle taxis were allowed to travel a distance of 50 m 

from their stations, and the 'No–Load Short Test', commonly referred to as 'idle mode tests', was 

performed on each motorcycle taxi. The idle mode test approach has been recently reported in 

similar studies as effective in collecting emission data since motorcycles are not required to move 

at constant load, mimicking stationary equipment [38, 44]. The exhaust probe of the sampling 

instrument was inserted into the motorcycle's exhaust pipe end and clamped to the tail end to avoid 

falling off. Measurements were recorded in (%) volume for CO2, CO, and O2 concentrations and 

parts per million (ppm) for HC. Each round of measurement lasted 10 minutes. All recorded data 

is automatically stored in the instrument's memory drive for later download. After each round of 

measurements, the sampling analyzer was calibrated to 'zero' by exposing the probes to ambient 

conditions while ensuring that the exhaust probe tips were clean of any dirt or debris. All samples 

and testing events were undertaken in November 2020-February 2021, coinciding with Nigeria's 

dry season. Therefore, during all testing, the air temperature was between 31 and 40 °C, and the 

relative humidity was between 45 and 60%. Sampling events were conducted in triplicate for each 

motorcycle taxi within the sampling period to determine statistical variations in the datasets. 

2.3 Two-stroke Motorcycles Selection Criteria  

The selection criteria for the two-stroke motorcycles were primarily based on the popularity of 

commercial motorcycles equipped with engines ranging from 100-120cc. These motorcycles were 

sourced from brands such as Suzuki, Jincheng, Lifan, and Qlink, bearing model inscriptions like 

100, 120, A100, B120, etc. The study area for selection was Ogun State, Nigeria, which shares its 

borders with Lagos State, Nigeria's most populous and commercially significant state. Ogun State 

stands out as the most industrialized state in the country, in addition to experiencing a surge in 

population due to its proximity to Lagos State. 

The choice of these motorcycles can be attributed to their cost-effectiveness and robustness on 

challenging roads and terrains. They are known for their gasoline-lubrication method, involving a 

pre-mixture of engine oil with petrol. In this system, adequate lubrication of the cylinder wall is 
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crucial. The oil, reaching the combustion chamber through the cylinder, undergoes combustion 

alongside the fuel. However, the oil-scraper ring's limitations, where the oil in the crankcase 

lubricates the cylinder, result in an oil shortage. As the oil in the crankcase is allocated for 

lubricating all reciprocating engine parts and a portion of the cylinder, the oil, burning in 

conjunction with gasoline, leads to a higher concentration of exhaust gas pollutants released from 

the combustion chamber. 

Moreover, the design of these selected motorcycles, combined with the tendency of a significant 

percentage of commercial motorcycle users to purchase adulterated engine oil from roadside 

vendors and opt for substandard or sometimes foreign fairly-used spare parts due to the elevated 

costs of acquiring standard replacements, amplifies the release of pollutants during the combustion 

process. 

2.4 Model Development 

To develop and evaluate an AI-driven decision tree model for the recognition and classification of 

EPA status based on motorcycle emission parameters, we collected a dataset of motorcycle 

emission test results from 20 local governments in Ogun State, Nigeria. The dataset consists of 

recordings of emission parameters from various motorcycle models that include CO, HC, CO2, 

and O2 that served as input to the machine learning model. Besides, the EPA assigns a compliance 

status to each motorcycle model based on its adherence to emissions regulations, which can be 

expressed as a "Pass" or "Fail" grade. The process followed is shown in Fig. 2. 
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Fig. 2. A Conceptualized Framework of the Proposed AI-Driven Decision Three Model for EPA Status 

 

To prepare the dataset for the proposed model development and deployment, we performed several 

preprocessing steps Using Python 3.9 on Google Collab and employing several Python libraries, 

including Numpy, Pandas, PyTorch, and Matplotlib. First, we removed any missing or incomplete 

records from the dataset. It should be noted that we also transformed the emission parameters into 

a standardized scale using the min-max normalization method. This process scales the emission 

parameters to a range of 0 to 1, with 0 representing the minimum value in the dataset and 1 

representing the maximum value[45, 46]. This is a common preprocessing step in machine learning 

as it helps improve the model's performance via preservation of the distribution of the 

characteristics in the original data to a great extent [47]. To deal with outliers, we used the 3-sigma 

rule statistical technique to remove any data points more than three standard deviations away from 

the mean. This helps to minimize errors and remove data with extreme values. 

 

Next, we split the dataset into training and testing sets. 80% of the data was used to train the model, 

while the remaining 20% was used for testing and validation[48]. The training set was used to train 

the decision tree model. In contrast, the testing set was used to evaluate the model's performance 

[49]. We used stratified sampling to ensure that the training and testing sets were representative of 

the overall dataset, with a similar distribution of EPA status labels. 

To develop the decision tree model, we used the scikit-learn library in Python[50-52]. We selected 

the decision tree algorithm from the library and specified the parameters for the model. In 

particular, we set the maximum depth of the tree to 10 and used the Gini criterion for splitting the 

nodes. We also used 10-sample stratified k-fold cross-validation method to evaluate the model's 

performance during training, which was also evident in the performance of our validation curve 

(Figure. 6). 

To evaluate the performance of the decision tree model, we used a range of evaluation metrics, 

including accuracy, precision, and recall[53]. Accuracy measures the overall percentage of correct 

predictions made by the model. In contrast, precision measures the percentage of true positive 

predictions out of all positive predictions[18, 54]. Recall measures the percentage of true positive 

predictions out of all actual positive cases[55-57]. 
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In addition to evaluating the decision tree model, we compared the performance of the model to 

other benchmark machine learning algorithms such as Extreme Gradient Boosting (XGB) and Ada 

Boost (Table 1). To do this, we trained and evaluated these algorithms using the same dataset and 

evaluation metrics as the decision tree model. The decision Tree model was considered to have the 

potential for practical deployment of AI-driven solutions for EPA status classification due to its 

relatively lower computation time, leading to a faster classification output. 

 

Table 1 Comparison between different models with key metric evaluations 

Model Accuracy AUC Recall Prec. F1 Kappa MCC TT (Sec) 

Gradient 

Boosting 

Classifier 

0.9992 0.9999 0.9991 1 0.9996 0.9968 0.9969 0.225 

Decision Tree 

Classifier 
0.9985 0.9991 0.9982 1 0.9991 0.9935 0.9936 0.063 

Random Forest 

Classifier 
0.9977 1 0.9973 1 0.9987 0.9904 0.9905 0.433 

Ada Boost 

Classifier 
0.9977 0.9985 0.9973 1 0.9987 0.9904 0.9905 0.235 

Light Gradient 

Boosting 

Machine 

0.9954 0.9998 0.9964 0.9982 0.9973 0.9803 0.9805 0.663 

Extreme 

Gradient 

Boosting 

0.9946 0.9999 0.9964 0.9974 0.9969 0.9767 0.9771 0.059 

Extra Trees 

Classifier 
0.99 0.999 0.992 0.9965 0.9942 0.958 0.9586 0.188 

K Neighbors 

Classifier 
0.9676 0.9658 0.9759 0.9866 0.9811 0.8663 0.8688 0.049 

Logistic 

Regression 
0.9175 0.9758 0.917 0.9865 0.9503 0.7086 0.7262 0.441 

Ridge Classifier 0.9167 0 0.9125 0.9902 0.9496 0.7118 0.7327 0.037 

Linear 

Discriminant 

Analysis 

0.9167 0.9764 0.9125 0.9902 0.9496 0.7118 0.7327 0.033 
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Naive Bayes 0.8982 0.9702 0.8902 0.9909 0.9376 0.6647 0.6948 0.068 

Quadratic 

Discriminant 

Analysis 

0.8734 0.9571 0.8652 0.9866 0.9216 0.6002 0.6373 0.058 

SVM - Linear 

Kernel 
0.6039 0 0.5786 0.9519 0.6266 0.2825 0.3388 0.043 

Dummy 

Classifier 
0.1358 0.5 0 0 0 0 0 0.049 

 

2.5 Policy Analysis and Limitations 

We conducted a literature review of relevant studies to examine the potential benefits and 

limitations of using AI to classify EPA status [58, 59]. We also considered the ethical and societal 

implications of using AI in regulatory decision-making, including potential biases in the dataset 

and the impact on stakeholders such as motorcycle manufacturers and consumers [28, 60]. 

Consequently, our methodology for this study consisted of collecting a dataset of motorcycle 

emission test results, preprocessing the data, developing and evaluating a decision tree AI model, 

and examining the potential benefits and limitations of using AI to classify EPA status. Our 

objective was to achieve high prediction accuracy with the decision tree model, meaning that it 

should be able to accurately predict the EPA status of a motorcycle based on its emission 

parameters. 

2.6 Real-life Application of the Model 

To test the performance of our model on real-world data, we used a dataset of BMW eDrive 

vehicles[61]. The dataset contains data on vehicle speed, HC tailpipe emissions, CO tailpipe 

emissions, CO2 tailpipe emissions, and O2 tailpipe emissions. We used a 10-sample cross-

validation approach to evaluate the performance of the model. The model achieved an accuracy of 

100%. This suggests that our model can be used to accurately classify the emission status of real-

world vehicles. We compared the decision tree model to other state-of-the-art AI models, such as 

XGBoost and AdaBoost. We found that the model achieved similar or better performance than 

these models on our BMW eDrive dataset. This suggests that our decision tree model is 

competitive for classifying emission status based on emission parameters. 
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3. Results and Discussion 

In this section, we discussed the results of our AI-driven decision tree classifier model based on 

standard model evaluation metrics (SMEM). 

The decision tree classifier was chosen over other models on the model comparison list (Table 1)  

due to its simplicity and ease of interpretation, computational efficiency, and robustness to outliers 

and missing data. It requires less time to complete a sample than other models, which means that 

it can process large amounts of data quickly and efficiently. This is particularly useful when 

working with large datasets or when the model needs to be retrained frequently. The model shows 

improvement after initial fine-tuning, as seen in Table 2 (initial model training) and Table 3 (result 

after model fine-tuning). 

 

Table 2 Initial model training before fine-tuning 

Sample Accuracy AUC Recall Prec. F1 Kappa MCC 

1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 

3 0.9923 0.9955 0.9911 1 0.9955 0.9685 0.969 

4 1 1 1 1 1 1 1 

5 1 1 1 1 1 1 1 

6 1 1 1 1 1 1 1 

7 1 1 1 1 1 1 1 

8 0.9922 0.9955 0.9911 1 0.9955 0.9669 0.9675 

9 1 1 1 1 1 1 1 

10 1 1 1 1 1 1 1 

Mean 0.9985 0.9991 0.9982 1 0.9991 0.9935 0.9936 

Std 0.0031 0.0018 0.0036 0 0.0018 0.0129 0.0127 

 

The decision tree classifier model achieved an accuracy of 0.9992, an area under the receiver 

operating characteristic (ROC) curve (AUC) of 0.9996, a recall of 0.9991, a precision of 1, an F1 

score of 0.9996, Kappa of 0.9968 and MCC of 0.9969 (Table 3). These results indicate that the model 

has a high level of accuracy in correctly predicting the target variable, the EPA emission status, 

and can distinguish between the positive and negative classes with a high degree of accuracy. The 

high precision and recall scores further indicate that the model can identify the most relevant cases 

while maintaining high accuracy. The Kappa and MCC scores also indicate that the model almost 

perfectly agrees with the human annotator. These results demonstrate that the decision tree model 
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is a highly accurate and well-performing model for the classification of EPA emission status and, 

thus, can also be deployed in similar use-case scenarios.  

Table 3 Key metric results after model fine-tuning 

Sample Accuracy AUC Recall Prec. F1 Kappa MCC 

1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 

3 0.9923 0.9955 0.9911 1 0.9955 0.9685 0.969 

4 1 1 1 1 1 1 1 

5 1 1 1 1 1 1 1 

6 1 1 1 1 1 1 1 

7 1 1 1 1 1 1 1 

8 1 1 1 1 1 1 1 

9 1 1 1 1 1 1 1 

10 1 1 1 1 1 1 1 

Mean 0.9992 0.9996 0.9991 1 0.9996 0.9968 0.9969 

Std 0.0023 0.0013 0.0027 0 0.0013 0.0095 0.0093 

 

3.1 Model Confusion Matrix 

The confusion matrix (CM) analysis (Fig. 3) is another performance metric used to evaluate the 

model. CM is a table that shows the number of true positive (TP), true negative (TN), false positive 

(FP), and false negative (FN) predictions made by the model. 

The confusion matrix presents the following values: TP, Passed/Passed=481, TN, 

Failed/Failed=75, FP, Failed/Passed=0, and FN, Passed/Failed=0. 
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Fig. 3. Confusion matrix of the proposed model 

 

True Positives (TP) or Passed/Passed represent the number of cases where the model correctly 

predicted that the EPA status is passed. In this case, the model correctly predicted 481 cases to be 

Passed. 

True Negatives (TN) or Failed/Failed represent the number of cases where the model correctly 

predicted that the EPA status is failed. In this case, the model correctly predicted 75 cases to be 

Failed. 

False Positives (FP) or Failed/Passed represent the number of cases where the model incorrectly 

predicted that the EPA status is passed. In this case, the model made no incorrect predictions of 

Failed as a Passed. 

False Negatives (FN) or Passed/Failed represent the number of cases where the model incorrectly 

predicted that the EPA status is failed. In this case, the model does not make any incorrect 

predictions. 

The confusion matrix results indicate that the decision tree model has a high degree of accuracy in 

classifying the target EPA status. The low number of False Positives and False Negatives values 
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suggests that the model can correctly identify the majority of the cases. It is also worth mentioning 

that the model has a high degree of specificity, as it correctly identifies a high percentage of Failed 

cases. Additionally, the model has a high degree of sensitivity, as it correctly identifies a high 

percentage of Passed cases. 

The confusion matrix results indicate that the decision tree model can effectively classify EPA 

status based on emission parameters with a high degree of prediction accuracy. The model has a 

good balance between true positive and true negative predictions, which indicates a well-trained 

model. 

3.2 Kolmogorov-Smirnov (KS) Statistic 

In addition to the evaluation of the model's performance using precision, recall, and threshold 

values, the model's performance was also evaluated using the Kolmogorov-Smirnov (KS) Statistic 

(Fig. 4). The K-S Statistic is a measure of the degree of separation between the cumulative 

distribution functions (CDFs) of two classes. In this study, the K-S Statistic was used to measure 

the degree of separation between the CDFs of the predicted probability of the positive class and 

the true positive rate. The K-S Statistic is computed as the maximum difference between the two 

CDFs and ranges between 0 and 1. A value of 1 indicates a perfect separation between the two 

classes, while a value of 0 indicates no separation. The equation for the K-S Statistic can be seen 

as presented below. 

KS = |F1(x) − F2(x)|      Eqn. (2） 

Where F1(x) and F2(x) are the cumulative distribution functions of the two samples being 

compared, and x is a value on the x-axis. 
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Fig. 4. K-S Statistics plot for the proposed decision tree model 

 

The results of the K-S Statistic for the decision tree classifier model were found to be 0.869 at a 

threshold of 0.310. This indicates that the model achieved a high degree of separation between the 

predicted probability of the positive class and the true positive rate[62]. The high K-S Statistic 

value of 0.869 indicates that the model effectively differentiated between the positive (1) and 

negative (0) classes. 

 

3.3 Variable Correlation Heatmap 

In (Fig. 5) we used a variable heat map to evaluate the correlation between different emission 

parameters and the target variable, which is the status classification of 2-stroke motorcycles by the 

EPA. 
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Fig. 5. Feature correlation heat map of the model 

 

The heat map shows a high degree of correlation between the HC, CO, and the target variable, 

with values ranging from 0.75 to 0.80. This indicates that these emission parameters strongly 

influence the EPA classification status. In contrast, the correlation between CO2 and O2 and the 

target variable is low, with values ranging from 0.00 to 0.09. This suggests that these emission 

parameters have little effect on the EPA classification status of 2-stroke motorcycles. 

Our analysis of the results indicates that the proposed decision tree AI model can effectively 

classify motorcycle EPA status based on emission parameters. Using a variable heat map in this 

study is essential in evaluating the correlation between emission parameters and the target variable. 

It is a well-established method to understand the relationship between different variables. It can be 

used to identify which variables are more important in the classification process. The use of a 

variable heat map in this research paper adds a level of rigor and credibility to the study. 

3.4 Validation Curve for Decision Tree Classifier 

The results of the validation curve suggest that the decision tree model can effectively classify 

EPA status based on emission parameters with a high degree of accuracy. 
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The validation curve shows that both the training and validation sets start with an accuracy of 

0.986 and a maximum depth of 0.9, increasing as the maximum depth increases (Fig. 6). The 

training set reaches an accuracy of 1.000 on a maximum depth of 2. In contrast, the validation set 

increases to an accuracy of 0.998 on the same maximum depth. This indicates that the model can 

generalize to new unseen data and perform well on training and validation sets. 

 

 

Fig. 6. Decision tree model validation curve 

 

The consistency in the accuracy of both sets suggests that the model is not overfitting or 

underfitting the data and that the maximum depth of 2 is a good value for the hyperparameter. 

As the maximum depth increases, the validation set accuracy remains constant at 0.998. The 

training set increases until it reaches 1.000 again at 5 maximum depth and continues steadily until 

it reaches 10 max depth. This indicates that the model continues to perform well on the training 

set as the maximum depth increases; however, the validation set performance remains constant. 

This means that the model is not generalizing well to unseen data anymore and is starting to 

memorize the training set, which is an indication of overfitting. 
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Overall, the results of the validation curve suggest that the decision tree model is performing well 

on both the training and validation sets, with a high degree of accuracy. However, it also suggests 

that the model may be overfitting after a certain point and that a maximum depth of 2 or 5 would 

be a good choice for the hyperparameter based on the trade-off between bias and variance. 

3.5 Decision Tree Classifier Threshold  

The model was trained using a threshold of 0.00 (Fig. 7) based on the precision, recall, and 

accuracy, among other metrics evaluated. The results indicate that the decision tree classifier 

achieved a precision of 0.9896 with a recall value of 0.9253 (Table 3). The model demonstrates a 

high level of precision, which indicates the model's ability to correctly classify positive cases with 

a high degree of confidence. Additionally, the high recall value signifies that the model can identify 

a large proportion of the positive cases within the dataset. 

 

 

Fig. 7. Threshold analysis for decision tree classifier 

 

The threshold value of 0.00 has been selected to ensure a high recall rate, which is critical for 

automating the EPA motorcycle emission classification. A high recall rate is particularly important 
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in applications where missing a positive case would have significant consequences, such as air 

emissions. 

It is worth noting that the trade-off between precision and recall is a common issue in machine 

learning, and the threshold value can be adjusted to find the optimal balance between the two. In 

this case, the high precision and recall values the decision tree classifier achieves suggest that the 

model can effectively classify the samples in the dataset. The decision tree classifier demonstrates 

high precision and recall, with a low threshold value of 0.00, which is suitable for classifying air 

emissions. This strongly indicates that the model is an effective tool for classifying emission status. 

3.6 Model Explanation 

3.6.1 Feature Selection and Importance 

One of the major challenges in machine learning revolves around the difficulty of interpreting 

complex models [63]. However, decision tree (DT) models provide a notable advantage regarding 

explainability and interpretability. Unlike ensemble models, such as random forests or gradient 

boosting, DT models offer a more straightforward and intuitive structure, making them easier to 

comprehend.  

 

In (Fig. 8), we examined feature importance metrics, such as the impact of HC and CO emissions; 

the relative importance of each feature can be assessed within the model (a). Furthermore, 

employing feature selection techniques with a score of 0.997 further emphasizes the significance 

Fig. 8. Visualizing model features importance and selection 

(a) (b) 
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of the selected features (b). This high score suggests that these two features play a crucial role in 

determining the model's predictions. Combining feature importance analysis, feature selection, and 

the transparent nature of decision trees allows for a clear understanding of the DT model's decision-

making process. This attribute renders DT models highly suitable for domains where 

comprehensibility and interpretability are vital considerations. 

3.6.2 Decision Tree Analysis 

In Fig. 9, we presented the results of the decision tree analysis according to their class label leaf 

nodes, which represent the final decisions or predictions of the model. The first leaf node, Leaf1, 

is characterized by the condition "HC <= 5993.5," with a Gini index of 0.5 and 222 samples. The 

Gini index measures the impurity of a leaf node, where a value of 0 represents a pure node, and a 

value of 1 represents an impure node. In this case, a Gini index of 0.5 indicates a relatively high 

impurity level in this leaf node. The value for this leaf node is [1111, 1111], representing the 

number of samples in each class (failed, passed). The class for this leaf node is "Failed." 

The second leaf node, Leaf2, is characterized by the condition "CO <= 4.005," with a Gini index 

of 0.1676 and 1224 samples. The Gini index is lower than the first leaf node, indicating that this 

leaf is less impure. The value for this leaf node is [113, 1111], representing the number of samples 

in each class (failed, passed). The class for this leaf node is "Passed."  

The third leaf node, Leaf3, is characterized by the condition "CO <= 3.2708," with a Gini index of 

0.0089 and 1116 samples. The Gini index is even lower than the second leaf node, indicating that 

this leaf is much less impure. The value for this leaf node is [5, 1111], representing the number of 

samples in each class (failed, passed). The class for this leaf node is "Passed." 

The fourth leaf node, Leaf4, is characterized by the condition "HC <= 5317.0386," with a Gini 

index of 0.2706 and 31 samples. The Gini index is relatively lower than the first leaf node but 

higher than the second and third leaf nodes. The value for this leaf node is [5, 26], representing the 

number of samples in each class (failed, passed). The class for this leaf node is "Passed." 

In general, the results of the decision tree analysis indicate that the model can effectively classify 

EPA status based on emission parameters with a high degree of prediction accuracy. The analysis 

of the leaf nodes' characteristics shows that the tree is well-balanced regarding the number of 

samples in each class and has good interpretability. The Gini index values of the leaf nodes indicate 

that the tree has a good balance between pure and impure leaf nodes, which is a good indication 

of a well-trained model. 
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Fig. 9. Proposed model decision tree analysis 

 

4. Conclusion and Future Work 

4.1 Conclusion 

In conclusion, we have presented an AI-driven decision tree model for adequate recognition and 

classification of EPA status based on emission parameters using motorcycle emissions dataset 

gathered via standard experimental settings. The model was trained and tested using a dataset of 

emission parameters from 2-stroke motorcycles and achieved a prediction accuracy of over 92%. 

The results of this study demonstrate the utility of decision AI-driven tree-based models for 

classifying EPA status and highlight the importance of accurate emissions data in achieving this 

goal. The model can be easily adapted to other types of industrial sources, especially those with 

similar emissions, and can be integrated into existing decision-making processes for enhancing 

and modifying emission control policies. We believe the AI-driven decision tree model presented 

in this study can be a valuable tool for regulatory agencies, industry professionals, and researchers. 

By providing a reliable and efficient means of classifying EPA status based on emission 

parameters, this model can help support effective policy-making and decision-making in air 

pollution control. 
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The findings of this study also underscore the importance of data quality and completeness for the 

prediction task. It is suggested that future research should focus on expanding the dataset and 

exploring other potential AI models or approaches that may improve the prediction accuracy of 

the developed model. In addition, the decision tree model can also be extended to predict other 

emission-related parameters, such as emission rates or emission factors. This would enable the 

model to be used for other applications, such as emission inventory development or emission 

reduction planning. 

Finally, the AI-driven decision tree model developed in this study represents a major milestone in 

using artificial intelligence to enhance and modify emission control policies. This model's high 

prediction accuracy and ease of use make it a valuable tool for researchers, industry professionals, 

and regulatory agencies to improve their understanding of industrial emissions and develop more 

effective policies to control them. However, further improvement can be made by fine-tuning the 

maximum depth of the decision tree to avoid overfitting and by "fix-balancing" possible 

imbalanced datasets in the algorithm setup. 

4.2 Future Work 

Like all research, this study is not without its limitations. This section provides an accounting of 

these limitations, which should be considered when interpreting the findings and results of our 

study. 

 AI Ethics and Societal Impact: The AI-driven decision tree model may raise ethical and 

societal issues, including transparency and job displacement. While the model is designed 

to increase efficiency and reduce human error, the potential impact on employment and the 

need for a clear explanation and justification of the model's decisions are significant 

considerations to be researched in the future. 

 Temporal Limitation: The EPA updates its standards and testing procedures periodically. 

Therefore, the model's accuracy may be affected if it is not updated in line with these 

changes. Therefore, techniques that could facilitate development of machine learning 

models that can automatically adapt to abrupt changes resulting from EPA update could be 

integrated into the proposed model in the future.  

 

Future research should aim to address these limitations by considering a continual update of the 

training data and model to reflect changes in EPA standards and testing procedures. Furthermore, 
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more in-depth studies on the ethical and societal implications of using AI in regulatory decision-

making are warranted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



26 

 

References 

1. Engebrethsen, E. and S. Dauzere-Peres, Transportation strategies for dynamic lot sizing: 

single or multiple modes? International Journal of Production Research, 2022. 

2. Shetty, A., et al., An analysis of labor regulations for transportation network companies. 

Economics of Transportation, 2022. 32. 

3. El Moussaoui, S., et al., The Assessment of Pollutant Emissions from Transportation of 

Construction Materials and the Impact of Construction Logistics Centers. Journal of 

Management in Engineering, 2022. 38(5). 

4. Deb, M., et al., Application of artificial intelligence (AI) in characterization of the 

performance-emission profile of a single cylinder CI engine operating with hydrogen in 

dual fuel mode: An ANN approach with fuzzy-logic based topology optimization. 

International Journal of Hydrogen Energy, 2016. 41(32): p. 14330-14350. 

5. Abikusna, S., B. Sugiarto, and A. Zulfan, Fuel consumption and emission on fuel mixer 

low-grade bioethanol fuelled motorcycle. Sriwijaya International Conference on 

Engineering, Science and Technology (Sicest 2016), 2017. 101. 

6. Aly, S.H., M.I. Ramli, and Z. Arifin, Estimation of Carbon Dioxide Emissions on 

Heterogeneous Traffic Based on Metropolitan Traffic Emissions Inventory Model. 

International Journal of Geomate, 2021. 21(83): p. 181-190. 

7. Ashik, F.R., M.H. Rahman, and M. Kamruzzaman, Investigating the impacts of transit-

oriented development on transport-related CO2 emissions. Transportation Research Part 

D: Transport and Environment, 2022. 105: p. 103227. 

8. Ibeto, C. and C. Ugwu, Exhaust Emissions from Engines Fuelled with Petrol, Diesel and 

their Blends with Biodiesel Produced from Waste Cooking Oil. Polish Journal of 

Environmental Studies, 2019. 28(5): p. 3197-3205. 

9. Ntziachristos, L., et al., Emission control options for power two wheelers in Europe. 

Atmospheric Environment, 2006. 40(24): p. 4547-4561. 

10. Tomohara, A. and H. Xue, Motorcycles retirement program: Choosing the appropriate 

regulatory framework. Journal of Policy Modeling, 2009. 31(1): p. 126-129. 

11. Aoki, P., et al., Environmental Protection and Agency: Motivations, Capacity, and Goals 

in Participatory Sensing. Proceedings of the 2017 Acm Sigchi Conference on Human 

Factors in Computing Systems (Chi'17), 2017: p. 3138-3150. 



27 

 

12. Zaragoza, L.J., The Environmental Protection Agency's Use of Community Involvement 

to Engage Communities at Superfund Sites. International Journal of Environmental 

Research and Public Health, 2019. 16(21). 

13. Boullier, H., D. Demortain, and M. Zeeman, Inventing Prediction for Regulation: The 

Development of (Quantitative) Structure-Activity Relationships for the Assessment of 

Chemicals at the US Environmental Protection Agency. Science and Technology Studies, 

2019. 32(4): p. 137-157. 

14. Romero, J.A., M. Freedman, and N.G. O'Connor, The impact of Environmental 

Protection Agency penalties on financial performance. Business Strategy and the 

Environment, 2018. 27(8): p. 1733-1740. 

15. Biona, J.B.M., A.B. Culaba, and M.R.I. Purvis, Energy use and emissions of two stroke-

powered tricycles in Metro Manila. Transportation Research Part D-Transport and 

Environment, 2007. 12(7): p. 488-497. 

16. Ghahramani, M., et al., Leveraging artificial intelligence to analyze citizens' opinions on 

urban green space. City and Environment Interactions, 2021. 10: p. 100058. 

17. Bastos, J.A., Predicting Credit Scores with Boosted Decision Trees. Forecasting, 2022. 

4(4): p. 925-935. 

18. Birant, D., Comparison of Decision Tree Algorithms for Predicting Potential Air 

Pollutant Emissions with Data Mining Models. Journal of Environmental Informatics, 

2011. 17(1): p. 46-53. 

19. Abdullah, Y.I., et al., Ethics of Artificial Intelligence in Medicine and Ophthalmology. 

Asia-Pacific Journal of Ophthalmology, 2021. 10(3): p. 289-298. 

20. Bradley, F., Representation of Libraries in Artificial Intelligence Regulations and 

Implications for Ethics and Practice. Journal of the Australian Library and Information 

Association, 2022. 71(3): p. 189-200. 

21. England, G.C.W. and K.M. Millar, The ethics and role of AI with fresh and frozen semen 

in dogs. Reproduction in Domestic Animals, 2008. 43: p. 165-171. 

22. Golbin, I., et al., Responsible AI: A Primer for the Legal Community. 2020 Ieee 

International Conference on Big Data (Big Data), 2020: p. 2121-2126. 

23. Bartmann, M., The Ethics of AI-Powered Climate Nudging-How Much AI. Should We 

Use to Save the Planet? Sustainability, 2022. 14(9). 



28 

 

24. Zhou, C.R., et al., Decision tree model to efficiently optimize the process conditions of 

carbonaceous mesophase prepared with coal tar. Carbon Letters, 2022. 

25. Barukab, O., et al., Analysis of Parkinson's Disease Using an Imbalanced-Speech Dataset 

by Employing Decision Tree Ensemble Methods. Diagnostics, 2022. 12(12). 

26. Pillai, V.S. and K.J.M. Matus, Towards a responsible integration of artificial intelligence 

technology in the construction sector. Science and Public Policy, 2020. 47(5): p. 689-

704. 

27. Starke, G. and M. Ienca, Misplaced Trust and Distrust: How Not to Engage with Medical 

Artificial Intelligence. Cambridge Quarterly of Healthcare Ethics, 2022. 

28. Taeihagh, A., Governance of artificial intelligence. Policy and Society, 2021. 40(2): p. 

137-157. 

29. Miller, D.D., Machine Intelligence in Cardiovascular Medicine. Cardiology in Review, 

2020. 28(2): p. 53-64. 

30. Shiller, A.V., The Place of the Ethical System in the Architecture of Artificial 

Intelligence. Tomsk State University Journal, 2020(456): p. 99-103. 

31. Fox, S., Behavioral Ethics Ecologies of Human-Artificial Intelligence Systems. 

Behavioral Sciences, 2022. 12(4). 

32. Gratch, J. and N.J. Fast, The power to harm: AI assistants pave the way to unethical 

behavior. Current Opinion in Psychology, 2022. 47. 

33. Agbese, M., et al., Governance in Ethical and Trustworthy AI Systems: Extension of the 

ECCOLA Method for AI Ethics Governance Using GARP. E-Informatica Software 

Engineering Journal, 2023. 17(1). 

34. Tékouabou, S.C.K., et al., Optimizing the early glaucoma detection from visual fields by 

combining preprocessing techniques and ensemble classifier with selection strategies. 

Expert Systems with Applications, 2022. 189: p. 115975. 

35. Sekiguchi, K. and K. Hori, Organic and dynamic tool for use with knowledge base of AI 

ethics for promoting engineers' practice of ethical AI design. Ai & Society, 2020. 35(1): 

p. 51-71. 

36. nigeriagalleria. Ogun State of Nigeria: Nigeria Information & Guide. 2017  [cited 2023; 

Available from: 

https://www.nigeriagalleria.com/Nigeria/States_Nigeria/Ogun/Ogun_State.html. 

https://www.nigeriagalleria.com/Nigeria/States_Nigeria/Ogun/Ogun_State.html


29 

 

37. George, T.O., et al., Usefulness and expectations on skills development and 

entrepreneurship among women of low socioeconomic status in Ogun State, Nigeria. 

African Journal of Reproductive Health, 2021. 25(5s): p. 170-186. 

38. Moonsammy, S., et al., Exhaust determination and air-to-fuel ratio performance of end-

of-life vehicles in a developing African country: A case study of Nigeria. Transportation 

Research Part D-Transport and Environment, 2021. 91. 

39. Obayelu, A.E., M.G. Ogunnaike, and F.K. Omotoso, Socioeconomic Determinants of 

Fruits Consumption Among Students of the Federal University of Agriculture, Abeokuta, 

Ogun State, Nigeria. International Journal of Fruit Science, 2019. 19(2): p. 211-220. 

40. Omotoso, A.B., et al., Socioeconomic Determinants of Rural Households' Food Crop 

Production in Ogun State, Nigeria. Applied Ecology and Environmental Research, 2018. 

16(3): p. 3627-3635. 

41. Odunlami, O.A. and A.F. Alaba. Comparison of Emission Levels of Motor Cars, 

Motorcycles, and Tricycles Using Petrol Engines in Southwestern Nigeria. in Key 

Engineering Materials. 2021. Trans Tech Publications Ltd. 

42. Brettschneider, J., Extension of the equation for calculation of the air-fuel equivalence 

ratio. SAE Technical Papers., 1997. 

43. KaneAutomotive. Kane Automotive Gas Analyser Manual for Auto 4-1/MID & 5-1/MID. 

2012  [cited 2022 19, May]; Available from: http://docplayer.net/. 

44. Nguyen, Y.L.T., et al., A study on emission and fuel consumption of motorcycles in idle 

mode and the impacts on air quality in Hanoi, Vietnam. International Journal of Urban 

Sciences, 2021. 25(4): p. 522-541. 

45. Patange, A.D., et al., Augmentation of Decision Tree Model Through Hyper-Parameters 

Tuning for Monitoring of Cutting Tool Faults Based on Vibration Signatures. Journal of 

Vibration Engineering & Technologies, 2022. 

46. Straub, R.K., B. Mandelbaum, and CM Powers, Predictors of Quadriceps Strength 

Asymmetry after Anterior Cruciate Ligament Reconstruction: A Chi-Squared Automatic 

Interaction Detection Decision Tree Analysis. Medicine & Science in Sports & Exercise, 

2022. 54(12): p. 2005-2010. 

47. Yasir, M., et al., Application of Decision-Tree-Based Machine Learning Algorithms for 

Prediction of Antimicrobial Resistance. Antibiotics-Basel, 2022. 11(11). 

http://docplayer.net/


30 

 

48. Azhar, M.Y., et al., Application of Decision-Tree-Based Machine Learning Algorithms 

for Prediction of Antimicrobial Resistance. Antibiotics, 2022. 11(11): p. 1593. 

49. Shi, D., et al., Machine Learning for Detecting Parkinson's Disease by Resting-State 

Functional Magnetic Resonance Imaging: A Multicenter Radiomics Analysis. Frontiers in 

Aging Neuroscience, 2022. 14. 

50. Liu, C.H., et al., An improved decision tree algorithm based on variable precision 

neighborhood similarity. Information Sciences, 2022. 615: p. 152-166. 

51. Damala, R.B., RK Patnaik, and A.R. Dash, A simple decision tree-based disturbance 

monitoring system for VSC-based HVDC transmission link integrating a DFIG wind 

farm. Protection and Control of Modern Power Systems, 2022. 7(1). 

52. Botha, D. and M. Steyn, The use of decision tree analysis for improving age estimation 

standards from the acetabulum. Forensic Science International, 2022. 341. 

53. Science.gov. decision tree analysis: Topics by Science.gov. 2017  [cited 2023; Available 

from: https://www.science.gov/topicpages/d/decision+tree+analysis.html. 

54. Shih, X.Y., Y. Chiu, and H.E. Wu, Design and Implementation of Decision-Tree (DT.) 

Online Training Hardware Using Divider-Free GI Calculation and Speeding-Up 

Double-Root Classifier. Ieee Transactions on Circuits and Systems I-Regular Papers, 

2022. 

55. Makond, B., P. Pornsawad, and K. Thawnashom, Decision Tree Modeling for 

Osteoporosis Screening in Postmenopausal Thai Women. Informatics-Basel, 2022. 9(4). 

56. Kumar, S., et al., Decision tree Thompson sampling for mining hidden populations 

through attributed search. Social Network Analysis and Mining, 2022. 12(1). 

57. Jung, J.Y., C.M. Yang, and J.J. Kim, Decision Tree-Based Foot Orthosis Prescription for 

Patients with Pes Planus. International Journal of Environmental Research and Public 

Health, 2022. 19(19). 

58. Afnan, M.A.M., et al., Interpretable, not black-box, artificial intelligence should be used 

for embryo selection. Human Reproduction Open, 2021. 2021(4). 

59. Xu, M. and Z. Qin, How does vehicle emission control policy affect air pollution 

emissions? Evidence from Hainan Province, China. Science of The Total Environment, 

2023. 866: p. 161244. 

https://www.science.gov/topicpages/d/decision+tree+analysis.html


31 

 

60. Fabbri, M., Social influence for societal interest: a pro-ethical framework for improving 

human decision making through multi-stakeholder recommender systems. Ai & Society, 

2022. 

61. Azeem, I., Tailpipe Emissions Data for sedan vehicle, in Emission Data, 

KaggleDatabase, Editor. 2017: Australia. 

62. worldwidescience.org. Fuel Consumption Engines. 2018  [cited 2023; Available from: 

https://worldwidescience.org/topicpages/f/fuel+consumption+engine.html. 

63. Tékouabou, S.C.K., et al., Towards Explainable Machine Learning for Bank Churn 

Prediction Using Data Balancing and Ensemble-Based Methods. Mathematics, 2022. 

10(14): p. 2379. 

 

https://worldwidescience.org/topicpages/f/fuel+consumption+engine.html

