
A BACKTRACKING APPROACH
FOR SOLVING PATH PUZZLES

Joshua Erlangga Sakti1, Muhammad Arzaki2∗, Gia Septiana Wulandari2

1 Undergraduate Student, Computing Laboratory, School of Computing, Telkom University, Indonesia (40257)
2 Computing Laboratory, School of Computing, Telkom University, Indonesia (40257)

Email: 1joshu.sakti@gmail.com, 2arzaki@telkomuniversity.ac.id, 2giaseptiana@telkomuniversity.ac.id
*Corresponding author

Abstract. We study algorithmic aspects of the Path puzzle—a logic puzzle created
in 2013 and confirmed NP-complete (Non-deterministic Polynomial-time-complete)
in 2020. We propose a polynomial time algorithm for verifying an arbitrary Path
puzzle solution and a backtracking-based method for finding a solution to an arbitrary
Path puzzle instance. To our knowledge, our study is the first rigorous investigation
of an imperative algorithmic approach for solving Path puzzles. We prove that the
asymptotic running time of our proposed method in solving an arbitrary Path puzzle
instance of size m× n is O(3mn). Despite this exponential upper bound, experimental
results imply that a C++ implementation of our algorithm can quickly solve 6× 6 Path
puzzle instances in less than 30 milliseconds with an average of 3.02 milliseconds for
26 test cases. We finally prove that an m × n Path puzzle instance without row and
column constraints is polynomially solvable in O(max{m,n}) time.
Keywords: asymptotic running time, backtracking, NP-complete, Path puzzles,
tractable variants

I INTRODUCTION

Path puzzle is a logic puzzle introduced by Roderick Kimball, a freelance puzzle maker,
in his 2013 book [1] and was featured in The New York Times’s wordplay blog [2]. This puzzle
is proven NP-complete (Non-deterministic Polynomial-time-complete) by Bosboom et al. in
2020 [3]. It is played on a rectangular grid of cells with two openings on the edge and constraint
numbers on some rows and columns.1 The solution to this puzzle is a line connecting the two
openings through the grid cells with each cell can only be passed once. The number of cells
passing through a specific row or column must also equal to the constraint numbers on the rows
or columns. There are some modifications to the original puzzle to increase the difficulty, such
as using a non-rectangular grid and more than two openings.

Puzzles are a form of play that can improve mood and reduce stress from everyday life,
thus mainly done as a form of recreational activity [4]. In addition, puzzles also can help
develop some skills, such as logical problem-solving. Many puzzles are related to important
computational and combinatorial problems, thus gathering the attention of scientific commu-
nities in computing and mathematics [5–8]. There have been many puzzles proven to be NP-
complete, such as Corral Puzzle (2002) [9], Country Road (2012) [10], Hashiwokakero (2009)
[11], Hiroimono (2007) [12], Juosan (2018) [13, 14], KPlumber (2004) [15], Kurotto [13, 14],
Light Up (2005) [16], Minesweeper (2000) [17], Moon-or-Sun (2022) [18], Nagareru (2022)

1See https://www.enigami.fun for details.

https://doi.org/10.14710/jfma.v0i0.18155 117 p-ISSN: 2621-6019 e-ISSN: 2621-6035

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 6 NO. 2 (NOV 2023) 

Available online at www.jfma.math.fsm.undip.ac.id

https://www.enigami.fun/_files/ugd/e33b96_3c76845fa9dd413a9f1606ce1c040b99.pdf


[18], Nonogram (1996) [19], Nurimeizu (2022) [18], Nurikabe (2003) [20, 21], Pearl Puzzle
(2002) [22], Shikaku (2013) [23], Slither Link (2000) [24], Sudoku (2003) [25], Suguru (2022)
[26], Tatamibari (2020) [27], Tilepaint (2022) [28], Yajilin (2012) [10], Yin-Yang (2021) [29],
and ZHED (2022) [30].

The NP-completeness of the Path puzzle means a polynomial time verifier algorithm exists
for verifying the Path puzzle’s solution. This also means an exponential time solver exists
to find the solution to arbitrary Path puzzles. Nevertheless, to the authors’ knowledge, no
further exploration regarding the algorithms to solve these puzzles has been discussed. Our
study is the first rigorous investigation of an imperative algorithmic approach for solving Path
puzzles. There are various approaches to solving NP-complete puzzles, such as using an integer
programming model [31, 32], SAT solver [33], and SMT solver [27]. Some studies have also
been conducted regarding the elementary technique to solve puzzles, such as an exhaustive
search approach for solving the Tatamibari puzzle [34], the prune-and-search technique for
solving Yin-Yang puzzle [35], and the backtracking approach for solving Tilepaint puzzles [36].
This paper focuses on the backtracking technique as a straightforward and elementary method
of solving a Path puzzle, thus establishing the upper bound to the time complexity of finding a
single solution to the instance. We demonstrate that the solution can be obtained in exponential
time in terms of the puzzle’s size.

We present the rest of our investigation of a backtracking approach for solving Path puzzles
and its related computational problem, divided into eight parts. Section II discusses the formal
definition of a Path instance, Path configuration, Path solution, an array representation of a Path
puzzle, and an overview of the NP-completeness of Path puzzles. Some findings on conditions
where a Path puzzle has no solution are discussed in Section III. Section IV discusses an
algorithm to verify whether a Path configuration is a Path solution in polynomial time. Our
main backtracking-based algorithm for solving an arbitrary Path instance of size m × n in
O(3mn) time is discussed in Section V. We prove that an arbitrary m × n Path puzzle whose
rows and columns constraints are undefined is polynomially solvable in Section VI. Section
VII discusses the experiments conducted related to the solver algorithm and its results. Lastly,
Section VIII gives the summary and conclusion of the paper as well as some potential future
works.

II PRELIMINARIES AND PREVIOUS INVESTIGATIONS

In this paper, we use one-based indexing for all arrays. Moreover, the i-th entry of a one-
dimensional array A is denoted by A[i], while the (i, j) entry of a two-dimensional array B is
denoted by B[i][j]. This (i, j) entry refers to the component in row i and column j of B.

2.1 Formal Definition and Data Structure Representation of Path Puzzles

Before we discuss mathematical properties and algorithms related to the Path puzzle, we
first discuss the formal definition of a Path puzzle instance, a Path puzzle configuration, and a
Path puzzle solution.

Definition 1 A Path puzzle instance (or a Path instance) of size m × n is a collection of mn
cells represented as a grid of m rows and n columns where every cell is initially empty such
that: (1) there are exactly two distinct cells (ia, ja) and (ib, jb) located at the edge of the grid

https://doi.org/10.14710/jfma.v0i0.18155 118 p-ISSN: 2621-6019 e-ISSN: 2621-6035

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 6 NO. 2 (NOV 2023) 

Available online at www.jfma.math.fsm.undip.ac.id



5 3 3 4 3 5

4

5

1

5

3

5

(a) An example of a Path puzzle instance.

5 3 3 4 3 5

4

5

1

5

3

5

(b) An example of Path puzzle solution
for the instance in Figure 1a.

d l 0 r r d
d 0 0 u 0 d
r r r u 0 d
0 0 0 0 0 d
d l l 0 d l
u 0 u l l 0

(c) Array representation of the Path puzzle
solution depicted in Figure 1b.

Figure 1. Examples of Path puzzle instance, solution, and array representation of a solution.

indicating the doors (cells with opening) of the puzzle; and (2) there are constraint numbers
for a subset of rows and columns, the constraint number for row i (if any) is denoted by cri and
the constraint number for column j (if any) is denoted by ccj .

A Path puzzle is said to have a complete information if each row and column have a
constraint number. A configuration for a Path puzzle instance (or a Path configuration) of size
m × n is a grid of m rows and n columns with every cell is either empty or filled with exactly
one horizontal, vertical, or L-shaped (turning) line. A Path puzzle solution (or a Path solution)
is a configuration of a Path puzzle with exactly one non-intersecting path connecting the doors
that passes through a number of cells in each row and column equal to the constraint number.

Examples of a Path puzzle instance and its corresponding solution is given in Figure 1.
Notice that Figure 1b is obtained by adding a single non-intersecting continuous line between
the doors in cells (1, 2) and (6, 1). In addition, the number of lines in each row and column
satisfies the row and column constraints. For example, four lines occur in the sixth row, namely
in cells (6, 1), (6, 3), (6, 4), and (6, 5).

To discuss the algorithmic approach to solving Path puzzles, we introduce data structures
to represent Path puzzle instances, configurations, and solutions. An instance of a Path puzzle is
represented using several variables, namely: (1) two positive integers m and n representing the
size of the grid; (2) two pairs (ia, ja) and (ib, jb) representing the two cells with doors (located
at the edge of the grid); and (3) two arrays cr of size m and cc of size n representing the rows
and columns constraints, with the entry −1 signifying that particular row or column have no
specified constraint number.2

The entry cr[i] denotes the constraint number for row i where 1 ≤ i ≤ m. The value of
cr[i] is an integer between −1 and n (inclusive) with cr[i] = −1 if and only if the constraint
number for row i in the Path puzzle instance is not defined. In this case, the number of lines
occurring in row i is not specified. Similarly, the entry cc[j] denotes the constraint number for
column j where 1 ≤ j ≤ n. The value of cc[j] is an integer between −1 and m (inclusive)
with cc[j] = −1 if and only if the constraint number for column j in the instance of the Path
puzzle is unspecified. In this case, any number of lines can occur in column j. For example,
to represent the Path puzzle instance in Figure 1a, we define m = n = 6, (ia, ja) = (1, 2),
(ib, jb) = (6, 1), cr = [5, 3, 5, 1, 5, 4], and cc = [5, 3, 3, 4, 3, 5].

2Recall that a constraint 0 indicates such row/column cannot be traversed by the solution path.

https://doi.org/10.14710/jfma.v0i0.18155 119 p-ISSN: 2621-6019 e-ISSN: 2621-6035

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 6 NO. 2 (NOV 2023) 

Available online at www.jfma.math.fsm.undip.ac.id



A configuration grid for a Path puzzle of size m×n is represented using a two-dimensional
array of the same size whose entries are taken from the set {0, d, l, r, u} where 0 denotes
an empty cell and the characters d, l, r, and u respectively denote down, left, right, and up
which are the direction of a line within a cell. For algorithmic purposes, in this paper, the cell
corresponding to the destination door (ib, jb) in any Path puzzle configuration grid is always
filled with the character u. Notice that this u can be changed with any character other than 0.
Using this convention, the Path puzzle solution in Figure 1b is represented using the array in
Figure 1c. Here, we add spaces between two characters in the same row for clarity.

2.2 Overview of the NP-Completeness of Path Puzzles

Path puzzles were recently proven to be NP-complete by Bosboom et al. in 2020 [3]. It
is shown that Path puzzles are NP-complete even with complete information (i.e., every row
and column has a constraint number). This NP-completeness infers that checking whether a
configuration is also a Path puzzle solution to a particular Path puzzle instance can be done
easily in polynomial time—but finding a solution to this instance currently needs an exponential
number of steps in terms of the size of the puzzle. Moreover, any efficient (i.e., polynomial time)
algorithm that solves general Path puzzles can be transformed into other algorithms for solving
various NP-complete problems, thus solving the long-standing P versus NP problem.

Bosboom et al. stated that Path puzzles are closely related to 2D orthogonal discrete
tomography, i.e., a problem to construct a black-and-white image given the number of black
pixels in each row and column. An example of a discrete tomography problem is illustrated
in Figure 2. Path puzzle is essentially a 2D discrete tomography problem with possibly partial
information and Hamiltonicity constraint on the output. However, no further exploration of the
algorithms to solve these puzzles have been discussed.

4 4 2 2 1

5

3

3

0

2

4 4 2 2 1

5

3

3

0

2

Figure 2. An example of a discrete tomography problem instance (left) and one of its solutions (right).

Bosboom et al. proved that the Path puzzle is NP-complete by a chain of parsimoni-
ous reductions from the source NP-complete problem of Positive-1-in-3-SAT—a problem to
find an interpretation of a 3CNF formula ϕ with only positive literals where only one literal
for every clause of ϕ is true. Parsimonious reduction means that the number of solutions is
preserved between the source and the target instances. The reduction order is as follows. A
modification to the reduction chain by Garey and Johnson [37] is used to reduce Positive 1-
in-3-SAT problem to 3-Dimensional Matching [3, Theorem 2.2], 3-Dimensional Matching to
Numerical 4-Dimensional Matching [3, Theorem 2.3], Numerical 4-Dimensional Matching to
Numerical 3-Dimensional Matching [3, Theorem 2.4], Numerical 3-Dimensional Matching to
Length Offsets Problem [3, Theorem 3.1], and finally Length Offset Problem to Path Puzzle
Problem [3, Theorem 3.3].

https://doi.org/10.14710/jfma.v0i0.18155 120 p-ISSN: 2621-6019 e-ISSN: 2621-6035

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 6 NO. 2 (NOV 2023) 

Available online at www.jfma.math.fsm.undip.ac.id



Based on a classical result by Ryser [38] and a comprehensive investigation by Herman
and Kuba [39], an arbitrary instance of discrete tomography with complete information is
tractable, i.e., solvable in polynomial time. The instance can be verified to have a solution
through a majorization technique and then solved with a greedy algorithm. This suggests
that the factor that makes the Path puzzle NP-complete is the addition of the Hamiltonicity
constraint. This is consistent with the statement from Bosboom et al. regarding the NP-hardness
of Path puzzles with complete information.

Another puzzle that is similar to the Path puzzle is Nonogram, which was also proven to
be NP-Complete [19, 40]. Nonogram is played on a grid and requires the player to fill the cells
according to the numerical clues on the side of the grid. A solved Nonogram usually reveals
a hidden pattern. However, unlike in the Path puzzle—in Nonogram, there can be multiple
numerical clues for a single row or column. For example, a 3 1 2 clue on a row means that there
must be three consecutive filled cells, followed by one filled cell, and then two consecutive filled
cells, where every segment of filled cells is separated by at least one blank cell. An example of
a Nonogram puzzle is illustrated in Figure 3.

5 1
1

5

11

11

3

11

3

5 1
1

5

11

11

3

11

3

Figure 3. An example of a Nonogram instance (left) and its solution (right).

III CONDITIONS FOR THE NON-EXISTENCE OF PATH PUZZLE SOLUTION

In some conditions, a Path puzzle instance does not have any solution. We first discuss
a condition for the non-existence of a solution to the Path puzzle with complete information.
Recall that a Path puzzle instance has complete information if the constraint number for each
row and column is defined. The following theorem is related to the 2D Discrete Tomography
[38]. However, the proof of the pertinent theorem in [38] was omitted.

Theorem 1 Let sumR be the sum of all constraint numbers of all rows and let sumC be
the sum of all the constraint numbers of all columns in a Path puzzle instance with complete
information. If the puzzle has at least one solution, then sumR = sumC.

Proof. Suppose we consider a Path puzzle instance with complete information and has at least
one solution. According to Definition 1, when a path passes through a cell (i, j), it passes
through a cell in row i and a cell in column j. Therefore, the total number of cells across all
rows a path passes is equal to the total number of cells across all columns the path passes. We
shall prove that sumR = sumC using contradiction. Assume that sumR ̸= sumC, then either
sumR > sumC or sumR < sumC. Notice that the condition sumR > sumC implies that
the path must pass one or more cells in one or more rows that are not a part of any column,
which is impossible. The same reasoning also applies to the case if sumR < sumC.

https://doi.org/10.14710/jfma.v0i0.18155 121 p-ISSN: 2621-6019 e-ISSN: 2621-6035

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 6 NO. 2 (NOV 2023) 

Available online at www.jfma.math.fsm.undip.ac.id



Notice that our proof of Theorem 1 uses the path property instead of the general property
for 2D Discrete Tomography with complete information. In the subsequent theorem, we discuss
the non-existence of a Path puzzle solution if the instance has one of the following criteria:
(1) the doors are located in the same row and there is a row whose constraint number is 1, or
(2) the doors are located in the same column and there is a column whose constraint number is
1. In the following theorem, the puzzle instance may have incomplete information.

Theorem 2 Suppose we consider an m× n Path puzzle instance with m,n > 1. Let cri be the
constraint number of row i and ccj be the constraint number of column j. If the doors of this
instance are cells (ia, ja) and (ib, jb) such that:

1. ia = ib and there is a row p such that crp = 1, or

2. ja = jb and there is a column q such that ccq = 1,

then the instance has no solution.

Proof. Suppose we consider a Path puzzle defined over a grid of size m × n with two doors
(ia, ja) and (ib, jb). Firstly, let us assume that ia = ib = r. This condition also implies that
ja, jb ∈ {1, n} and ja ̸= jb. A solution to this puzzle must begin at (r, ja), traverse every row i
where cri > 0, and end at (r, jb). This implies that every row i with cri > 0 must be traversed
twice. This is because the path must pass through a cell (i, ca) in a row i where 1 ≤ ca ≤ n
and eventually traverse back to row r by passing through another cell (i, cb) in a row i where
1 ≤ cb ≤ n and ca ̸= cb. Thus, any row i with cri > 0 is passed twice. With that in mind, if
there is a row p such that crp = 1, then it is not possible to construct a non-intersecting path
starting at (r, ja) and ending at (r, jb).

The same reasoning also applies if the doors are (ia, c) and (ib, c) and there is a column q
where ccq = 1. Here, ia, ib ∈ {1,m} and ia ̸= ib. If the doors are located in the same column
c ∈ {1, n}, then any path connecting the doors must traverse every column j with ccj > 0 at
least twice.

The following example illustrates Theorem 2 when the doors are located in the same
column.

Example 1 Observe Figure 4. The two cells with a door are (1, 1) and (4, 1), which are in the
same column and there is a column 2 with constraint 1, colored in red. To satisfy the constraint
of columns 2, 3, and 4, the solution must pass through a cell in column 2 from column 1. Also,
the path must pass through a cell in column 2 again to reach the other cell with a door. Since
the constraint of column 2 is exactly 1, the path cannot pass through any more cells in column
2 (filled with red block) to reach column 1, thus there is no solution.

IV VERIFYING PATH PUZZLES SOLUTIONS IN POLYNOMIAL TIME

Path puzzle is proven to be NP-complete by Bosboom et al. in 2020 [3], which means
that verifying whether a Path puzzle configuration is also a Path puzzle solution can be done
in polynomial time in terms of the size of the puzzle. In this section, we discuss algorithms

https://doi.org/10.14710/jfma.v0i0.18155 122 p-ISSN: 2621-6019 e-ISSN: 2621-6035

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 6 NO. 2 (NOV 2023) 

Available online at www.jfma.math.fsm.undip.ac.id



3 1 4 2

3

1

2

4

Figure 4. An Path instance where the two cells with a door are located in the same column and one of the column
constraints is 1. The doors are located at (1, 1) and (4, 1).

for checking whether arbitrary Path puzzle configuration complies with the constraint and rules
of a Path puzzle instance. A Path puzzle configuration of size m × n is represented as a two-
dimensional array A with entries from the set {0, d, l, r, u}. The condition A[i][j] = 0 indicates
that cell (i, j) is empty. The conditions A[i][j] being d, l, r, or u correspondingly represent the
direction down, left, right, and up in cell (i, j). The two cells with doors are represented as
pairs (ia, ja) and (ib, jb). The constraint numbers of each row and column are correspondingly
represented using one-dimensional arrays cr of size m and cc or size n. The value cr[i] (resp.
cc[j]) denotes the constraint number of row i (resp. column j). Here, cr[i] and cc[j] are integers
satisfying −1 ≤ cr[i] ≤ n and −1 ≤ cc[j] ≤ m for 1 ≤ i ≤ m and 1 ≤ j ≤ n. If cr[i] = −1
(resp. cc[j] = −1), the constraint number for row i (resp. column j) is undefined.

The algorithm for verifying whether a Path puzzle configuration is also a Path puzzle
solution is divided into two parts:

1. the algorithm for verifying the connectivity between two doors, that is, the algorithm to
verify whether the cells (ia, ja) and (ib, jb) are connected by a single non-intersecting
path, and

2. the algorithm for verifying compliance of row and column constraints by checking if
cr[i] (resp. cc[j]) equals the number of non-zero entries in the row i (resp. column j) of
array A (provided that each of cr[i] and cc[j] are non-negative).

4.1 Verifying the Path Connectivity

Recall that a Path puzzle solution must be a single non-intersecting path connecting two
cells with doors denoted by (ia, ja) and (ib, jb). Suppose A is a Path puzzle configuration of
size m× n. We first create a two-dimensional array visited of the same size whose entries are
initially set to 0. This array is created to track which cells have been visited by the path given
in A. If a cell (i, j) is visited, then visited[i][j] is set to 1. We also define a Boolean variable
isV alid to store the validation result. The idea of the algorithm is as follows:

1. To check if the path in A connects two door cells (ia, ja) and (ib, jb), the algorithm verifies
that A[ia][ja] is non-zero and A[ib][jb] is marked with u (as discussed in Section 2.1).

2. To check for a non-intersecting path in A, the algorithm traverses the path and marks
visited cells in visited. If a cell (i, j) is marked as visited (visited[i][j] = 1) during the
traversal, the path is considered intersecting and thus invalid.

3. To check that there is only one connected path in the solution, the algorithm compares
the arrays A and visited to check whether there is a cell (i, j) where A[i][j] ̸= 0 and

https://doi.org/10.14710/jfma.v0i0.18155 123 p-ISSN: 2621-6019 e-ISSN: 2621-6035

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 6 NO. 2 (NOV 2023) 

Available online at www.jfma.math.fsm.undip.ac.id



visited[i][j] = 0. If such a cell exists, there is more than one contiguous path inside the
grid; thus, the configuration is not a valid solution.

The algorithm checks the path in configuration A by traversing it cell-by-cell, starting from
(ia, ja). At each visited cell (ic, jc), the algorithm checks the direction specified in A[ic][jc] and
moves to the next cell accordingly. For example, if A[ic][jc] = d, then the subsequent cell is
(ic+1, jc) provided that the latter cell is within the m×n grid. To verify whether any subsequent
cell during the traversal is within the m× n grid, we use the function ISVALIDCELL(x, y) that
returns true if and only if 1 ≤ x ≤ m and 1 ≤ y ≤ n holds. The traversal is performed
until the path reaches the destination cell (ib, jb) or there is no more valid path. The steps are
summarized in Algorithm 1.

The time complexity of Algorithm 1 be determined from line 1 and the loops in lines 7-
20 and 25-33. Line 1 initializes an array of zeros of size m × n, thus it runs in O(mn). The
maximum number of iterations for lines 7-20 equals the number of all cells in the grid. Thus the
upper bound for the running time of these lines is O(mn). The doubly nested loop in lines 25-
33 runs m times for the outer loop and n times for the inner loop, and thus it runs in O(mn).
In conclusion, the upper bound for the running time of Algorithm 1 is O(mn) + O(mn) +
O(mn) = O(mn).

4.2 Verifying the Compliance of Rows and Columns Constraints

A Path puzzle solution must pass through a number of cells in each row and column, as
specified by the constraint number. To verify this, the algorithm first creates copies of cr and
cc and stores them respectively in crc and ccc. The algorithm also creates a Boolean variable
isV alid to store the validation status, similar to that of Algorithm 1. The algorithm then iterates
through all entries in A and for every A[i][j] that is non-zero, we decrement the value of crc[i]
and ccc[j] simultaneously. Next, the algorithm checks the entries in arrays crc and ccc and if
the number of cells traversed by the path matches the constraint number, then all entries in
both arrays should be 0, except for rows or columns without a constraint number in incomplete
Path instances. We identify this by checking the values in cr and cc for those specific rows and
columns. The steps of this algorithm are expounded in Algorithm 2.

The time complexity of Algorithm 2 can be analyzed as follows. Line 1 initializes two
arrays crc and ccc respectively with the value cr and cc. These arrays are respectively of length
m and n, and thus these initialization correspondingly take O(m) and O(n) time. The doubly-
nested loop in lines 3-9 runs m times for the outer loop and n times for the inner loop. Hence
the iteration in lines 3-9 takes O(mn) time. The two loops in lines 11-16 and 17-22 take at
most O(m) and O(n) times, respectively. As a result, assuming that m,n ≥ 1, the upper bound
for the running time of Algorithm 2 is O(m) +O(n) +O(mn) +O(m) +O(n) = O(mn).

4.3 Main Verification Algorithm and Analysis

Suppose we are given a Path configuration represented in a two-dimensional array A. To
check whether the Path configuration is also a Path solution, we use both Algorithms 1 and
Algorithm 2 to verify all rules needed for a Path solution. If both functions return true, then the
given Path configuration is a solution. Otherwise, the configuration is not a solution.

The time complexity of this verification algorithm can be determined from the time com-

https://doi.org/10.14710/jfma.v0i0.18155 124 p-ISSN: 2621-6019 e-ISSN: 2621-6035

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 6 NO. 2 (NOV 2023) 

Available online at www.jfma.math.fsm.undip.ac.id



Algorithm 1 ISCONNECTED(A, (ia, ja), (ib, jb)) checks if a Path puzzle configuration A of size
m× n satisfies the puzzle’s connectivity rule for cells with doors (ia, ja) and (ib, jb).

Require: An m × n two dimensional array A denoting a Path configuration where A[i][j] ∈
{0, d, l, r, u} and distinct pairs (ia, ja) and (ib, jb) where 1 ≤ ia, ib ≤ m and 1 ≤ ja, jb ≤ n.

Ensure: The function returns true if the configuration A satisfies the puzzle’s connectivity rule
and false otherwise.

1: create a two dimensional array visited with all entries set to 0
2: isV alid← true ▷ status for configuration validity
3: if A[ia][ja] = 0 or A[ib][jb] ̸= u then
4: isV alid← false ▷ the cells with doors are not connected by a path
5: else
6: (ic, jc)← (ia, ja) ▷ (ic, jc) denotes the current visited cell in the traversal
7: while (ic, jc) ̸= (ib, jb) and visited[ic][jc] ̸= 1 do
8: visited[ic][jc]← 1
9: if A[ic][jc] = l and ISVALIDCELL(ic, jc − 1) then

10: (ic, jc)← (ic, jc − 1) ▷ move to the left of the current cell
11: else if A[ic][jc] = r and ISVALIDCELL(ic, jc + 1) then
12: (ic, jc)← (ic, jc + 1) ▷ move to the right of the current cell
13: else if A[ic][jc] = u and ISVALIDCELL(ic − 1, jc) then
14: (ic, jc)← (ic − 1, jc) ▷ move to the top of the current cell
15: else if A[ic][jc] = d and ISVALIDCELL(ic + 1, jc) then
16: (ic, jc)← (ic + 1, jc) ▷ move to the bottom of the current cell
17: else
18: isV alid← false
19: end if
20: end while
21: if (ic, jc) = (ib, jb) then
22: visited[ic][jc]← 1
23: end if
24: i← 1; j ← 1
25: while i ≤ m and isV alid do
26: while j ≤ n and isV alid do
27: if A[i][j] ̸= 0 and visited[i][j] = 0 then
28: isV alid← false ▷ there are more than one path in the grid
29: end if
30: j ← j + 1
31: end while
32: i← i+ 1
33: end while
34: end if
35: return isV alid

plexity of both Algorithm 1 and Algorithm 2. Since each of these algorithms runs in O(mn)
time, the overall running time complexity of the verification algorithm is O(mn). In other
words, we show that verifying whether a Path configuration is also a Path solution can be done

https://doi.org/10.14710/jfma.v0i0.18155 125 p-ISSN: 2621-6019 e-ISSN: 2621-6035

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 6 NO. 2 (NOV 2023) 

Available online at www.jfma.math.fsm.undip.ac.id



Algorithm 2 COMPLYCONSTRAINT(A, cr, cc) checks whether a Path configuration of size
m× n satisfies the constraint number of each row and column.
Require: A two dimensional array A of size m × n where each cell contains either d, l, r, u,

or 0, array cr of size m of integers between −1 and n (inclusive), and array cc of size n of
integers between −1 and m (inclusive).

Ensure: The function returns true if the configuration A satisfies the constraint numbers in cr
and cc; otherwise, the function returns false.

1: initialize crc and ccc with the value from cr and cc, respectively
2: isV alid← true ▷ status for configuration validity
3: for i← 1 to m do
4: for j ← 1 to n do
5: if A[i][j] ̸= 0 then ▷ cell (i, j) is filled
6: crc[i]← crc[i]− 1; ccc[j]← ccc[j]− 1 ▷ decrement crc[i] and ccc[j]
7: end if
8: end for
9: end for

10: i← 1; j ← 1
11: while i ≤ m and isV alid do
12: if crc[i] ̸= 0 and cr[i] ̸= −1 then
13: isV alid← false ▷ row i violates constraint number cr[i]
14: end if
15: i← i+ 1
16: end while
17: while j ≤ n and isV alid do
18: if ccc[j] ̸= 0 and cc[j] ̸= −1 then
19: isV alid← false ▷ column j violates constraint number cc[j]
20: end if
21: j ← j + 1
22: end while
23: return isV alid

in polynomial time in terms of the puzzle’s size.

V SOLVING PATH PUZZLES USING BACKTRACKING APPROACH

This section discusses an algorithm for solving arbitrary Path puzzles of size m × n. To
find a solution, we generate some possible Path configurations and verify which configuration
is also a solution. The function takes two pairs (ia, ja) and (ib, jb), which are the two door cells,
and two arrays cr of size m and cc of size n which respectively store the constraint numbers of
the rows and columns. The function also takes a pair (ic, jc), which represents the current cell
position during the traversal. The function then returns a solution to the instance if it exists.

The solver initially creates a two-dimensional array A of size m × n for storing the grid
state. All entries of array A are originally set to 0, indicating an empty grid. Before solving the
puzzle, we check whether the instance complies with the conditions described in Theorem 1
and Theorem 2. If the instance complies with both conditions, the solver calls Algorithm 3 to

https://doi.org/10.14710/jfma.v0i0.18155 126 p-ISSN: 2621-6019 e-ISSN: 2621-6035

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 6 NO. 2 (NOV 2023) 

Available online at www.jfma.math.fsm.undip.ac.id



start traversing and constructing the configuration from cell (ia, ja).

Algorithm 3 uses a backtracking method to construct the configuration, which is an opti-
mization of the exhaustive search method. Backtracking adds pruning to candidates that do not
lead to a solution. Therefore, the number of configurations that need to be verified decreases.
Initially, the algorithm creates some variables to be used in the traversal as follows:

1. arrays mx = [1, 0, 0,−1] and my = [0,−1, 1, 0] to store the possible movement for each
cell (i, j), namely, (i+ 1, j), (i, j − 1), (i, j + 1), and (i− 1, j);

2. an array dir = [d, l, r, u] to store the possible directions for the path where dir[i] cor-
responds to the pair (mx[i],my[i]), namely d corresponds to (1, 0), l corresponds to
(0,−1), r corresponds to (0, 1), and u corresponds to (−1, 0);

3. a pair (iadj, jadj) to store the cell adjacent to cell (i, j).

In addition, the algorithm also calls some procedures and functions as follows:

1. ISVALIDCELL(iadj, jadj) is a function for checking whether cell a (iadj, jadj) is inside the
puzzle grid (i.e., 1 ≤ iadj ≤ m and 1 ≤ jadj ≤ n).

2. DECREMENTENTRY(ic, jc) and INCREMENTENTRY(ic, jc) are respectively procedures
to decrement and increment the value of cr[ic] and cc[jc] during the traversal if the current
value is not −1, i.e., the row or column has a constraint number.

3. ISCONSTRAINTVALID(cr, cc) is a function to check whether every entry in cr and cc is
either −1 or 0 after the traversal is completed. It uses the same principle as Algorithm 2
(particularly the steps in lines 10-22), namely, every entry that corresponds to a row or a
column that has a constraint number should be 0 after the traversal.

The algorithm first calls DECREMENTENTRY(ic, jc), indicating that the current cell is
traversed. Next, the algorithm checks for the terminating condition, which is when the current
cell is the exit cell ((ic, jc) = (ib, jb)). If the current cell is the second door cell, then the
algorithm calls ISCONSTRAINTVALID(cr, cc) to check if the configuration is a solution. If this
function returns true, then the algorithm marks the cell with u (as discussed in Section 2.1),
outputs the solution array A, and it terminates.

If the current cell is not the second door cell, the algorithm begins the traversal to the
next cell by first trying all possible orthogonally adjacent cells and then setting it to a pair
(iadj, jadj). The algorithm checks whether the cell (iadj, jadj) is within the grid using the function
ISVALIDCELL(iadj, jadj), checks whether A[iadj][jadj] = 0 to ensure that the traversal to the
cell does not create an intersection, and checks whether both cr[iadj] and cc[jadj] are nonzero to
ensure that the traversal complies with the numerical constraints. If all conditions are true, then
the algorithm maps an entry in dir to A[ic][jc] and assigns (iadj, jadj) to the current cell (ic, jc).

An example of traversal visualization is illustrated in Figure 5 as a state space tree. Here
we consider Path puzzle instance of size 3× 3 whose doors are located at (2, 1) and (3, 2) with
numerical constraints cr = [3, 2, 2] and cc = [2, 2, 3]. All nodes in the tree represent the search
space of the traversal, where each child node is the possible next state of the parent node. Each

https://doi.org/10.14710/jfma.v0i0.18155 127 p-ISSN: 2621-6019 e-ISSN: 2621-6035

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 6 NO. 2 (NOV 2023) 

Available online at www.jfma.math.fsm.undip.ac.id



Algorithm 3 TRAVERSECELL(A, (ia, ja), (ib, jb), (ic, jc), cr, cc) traverses the cell
(ic, jc) in a configuration array A, and then backtracks if necessary. The invocation
TRAVERSECELL(A, (ia, ja), (ib, jb), (ia, ja), cr, cc) starts the algorithm.

Require: A two-dimensional array A of size m × n, each cell contains either d, l, r, u, or 0;
pairs (ia, ja), (ib, jb), and (ic, jc) where 1 ≤ ia, ib, ic ≤ m, 1 ≤ ja, jb, jc ≤ n ((ia, ja) and
(ib, jb) are the doors); and arrays cr of size m and cc of size n respectively denoting the
row and column constraints of the puzzles.

Ensure: The procedure outputs a solution to the puzzle if it exists or traverses to another
possible cell.

1: mx← [1, 0, 0,−1]; my ← [0,−1, 1, 0]; dir ← [d, l, r, u]
2: DECREMENTENTRY(ic, jc)
3: if (ic, jc) = (ib, jb) then
4: if ISCONSTRAINTVALID(cr, cc) then
5: A[ic][jc]← u ▷ as defined in Section 2.1
6: output(A), terminate the algorithm ▷ A is a solution, algorithm terminates
7: end if
8: else
9: for i← 1 to 4 do

10: (iadj, jadj)← (ic +mx[i], jc +my[i]) ▷ generating four possible adjacent cells
11: if ISVALIDCELL(iadj, jadj ) and A[iadj]][jadj] = 0 and cr[iadj], cc[jadj] ̸= 0 then
12: A[ic][jc]← dir[i]
13: TRAVERSECELL(A, (ia, ja), (ib, jb), (iadj, jadj), cr, cc))
14: ▷ moves to cell (iadj, jadj)
15: A[ic][jc]← 0 ▷ backtracks from (iadj, jadj)
16: end if
17: end for
18: end if
19: INCREMENTENTRY(ic, jc) ▷ backtracks from (ic, jc)
20: if (ic, jc) = (ia, ja) then
21: output(“no solution”) ▷ backtracking from start cell (ia, ja) means no solution
22: end if

leaf node is marked with either a ✓or a to indicate that the leaf is either a valid or invalid
solution, respectively. A solution is invalid because either the path cannot move to another
adjacent cell or the path reaches the second door cell but does not comply with the numerical
constraints.

If the traversal to (iadj, jadj) does not lead to a valid solution, the algorithm backtracks
by resetting A[iadj][jadj] back to 0 to try the next possible adjacent cell. If the same condition
happens to every adjacent cell, then the algorithm backtracks from the current cell (ic, jc) by
calling INCREMENTENTRY(ic, jc). When the algorithm gets to a point where it backtracks from
the starting cell (ia, ja), then the algorithm outputs “no solution”, signifying that the puzzle
instance has no solution. The invocation TRAVERSECELL(A, (ia, ja), (ib, jb), (ia, ja), cr, cc) is
used to find a solution to a Path instance represented in a two-dimensional array A with two
doors (ia, ja) and (ib, jb) with numerical constraints cr and cc. The asymptotic upper bound for
the solver algorithm is discussed in Theorem 3.

https://doi.org/10.14710/jfma.v0i0.18155 128 p-ISSN: 2621-6019 e-ISSN: 2621-6035

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 6 NO. 2 (NOV 2023) 

Available online at www.jfma.math.fsm.undip.ac.id



2 2 3

2

2

3

2 2 3

2

2

3

2 2 3

2

2

3

2 2 3

2

2

3

2 2 3

2

2

3

2 2 3

2

2

3

2 2 3

2

2

3

2 2 3

2

2

3

2 2 3

2

2

3

2 2 3

2

2

3

2 2 3

2

2

3

2 2 3

2

2

3

2 2 3

2

2

3

2 2 3

2

2

3

2 2 3

2

2

3

✓

Figure 5. Simplified visualization of the traversal in Algorithm 3 for a 3× 3 Path instance. Here, the doors are
located at (2, 1) and (3, 2). The numerical constraints are cr = [3, 2, 2] and cc = [2, 2, 3].

https://doi.org/10.14710/jfma.v0i0.18155 129 p-ISSN: 2621-6019 e-ISSN: 2621-6035

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 6 NO. 2 (NOV 2023) 

Available online at www.jfma.math.fsm.undip.ac.id



Theorem 3 The asymptotic upper bound for the running time of Algorithm 3 in solving an
arbitrary instance of a Path puzzle of size m× n is O(3mn).

Proof. The algorithm traversal can be represented as a state space tree, with a maximum of
three potential subsequent states for every state at every tree level. This is because the three
potential next states correspond to the possible directions of every cell, excluding the previously
visited adjacent cell. This implies that there are at most 3i states in level i of the tree. Since there
are at most mn levels of the tree, i.e., the path visits all cells in the grid, the maximum number
of states to be considered is bounded by

∑mn
k=0 3

i = (3mn+1 − 1)/2, which is O(3mn).

VI TRACTABLE VARIANTS OF PATH PUZZLES

Suppose we are given an NP-complete problem X . Since currently the fastest known
algorithm to solve X takes exponential time, it is natural to ask whether there exists a variant or
a sub-problem of X that can be solved in polynomial time. This tractable variant or sub-problem
might be obtained by reducing the dimension or the constraint of problem X . For example, the
general Boolean satisfiability problem is NP-complete, but if the formulas can be expressed
as 2-CNF, the problem becomes solvable in linear time [41]. The general Nonogram puzzle is
NP-complete, but the problem becomes tractable if every row and column in the instance has
at most one block of connected cells [42]. Determining the existence of the maximum clique
in an arbitrary graph is NP-hard, but it is tractable if the graph is planar [43]. Moreover, both
minimum vertex cover and maximum independent set problems are NP-hard in general graphs,
but these problems are tractable in bipartite graphs [43]. Finally, although the general Yin-Yang
puzzle is NP-complete [29], the m × n Yin-Yang puzzles are tractable if either m or n is less
than 3 [35].

This section considers a variant of the Path puzzle of size m× n without row and column
constraints. Formally, if cri and ccj respectively signify the constraint for row i and column j
of a puzzle, then cri = ccj = −1 for each 1 ≤ i ≤ m and 1 ≤ j ≤ n. If we consider two doors
at (ia, ja) and (ib, jb), then we have at least one path connecting them. Moreover, this path can
be constructed in O(max{m,n}) time as described in the following theorem.

Theorem 4 Any m× n Path puzzle instance without constraint numbers for all of its rows and
columns can be solved in O(max{m,n}) time.

Proof. Notice that a Path puzzle instance without constraint numbers implies that any Path
puzzle configuration is a solution as long as it is a single line connecting the two door cells
(ia, ja) and (ib, jb). Thus, if (ia, ja) ̸= (ib, jb) the solution always exists. We can construct a
solution with an algorithm that consists of two independent iterations. The first iteration con-
structs the horizontal path segment from (ia, ja) to (ia, jb), while the second iteration constructs
the vertical path segment from (ia, jb) to (ib, jb). Since 1 ≤ ia, ib ≤ m and 1 ≤ ja, jb ≤ n,
the first and the second iteration runs in O(n) and O(m) time, respectively. Since the loops run
independently, the overall time complexity of the algorithm is O(max{m,n}).

Theorem 4 implies that eliminating all rows and columns constraints from Path puzzle
instances removes the NP-hardness of the puzzle.

https://doi.org/10.14710/jfma.v0i0.18155 130 p-ISSN: 2621-6019 e-ISSN: 2621-6035

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 6 NO. 2 (NOV 2023) 

Available online at www.jfma.math.fsm.undip.ac.id



VII COMPUTATIONAL EXPERIMENTS AND RESULTS

This section discusses the experiments conducted to test the running time of the proposed
algorithm. The experiments were run on a 64-bit Windows 11 system using C++ programming
language. The reason for the usage of C++ is that it is relatively faster when compared to
other popular programming languages [44]. The system uses g++ compiler version 6.3.0 and
is equipped with AMD Ryzen 5 3550H @ 2.1GHz with 16GB of RAM. The source codes, test
cases, and relevant documentation are provided for interested readers at https://github.
com/joshuagatizz/path-puzzles-backtracking-solver.

In the experiment, Algorithm 3 was tested against 26 test cases where the solutions corre-
spond to one of the standard English alphabets as described in [45]. Each test case considers a
6 × 6 grid with complete or incomplete information and only has one solution. The algorithm
was run three times for each test case to determine its corresponding average running time. For
some test cases, the implementation of our algorithm successfully solved the puzzle quickly—
in about 10−9 seconds. We do not compare the performance of our algorithm to other approaches
because, to our knowledge, our study is the first rigorous investigation of an imperative algo-
rithmic approach for solving Path puzzles.

The test cases with the fastest running time correspond to the puzzle representing the letter
“B”, “L”, “P”, “S”, “U”,“V”, “Y”, and “Z” with an average running time of ≈ 10−9 s. On the
other hand, the test case corresponding to the letter “M” is the slowest with an average running
time of 27.34 milliseconds. The overall average running time for solving the 26 test cases is
3.02 milliseconds.

VIII CONCLUSIONS AND FUTURE WORKS

We discussed an algorithm for solving an arbitrary Path puzzle instance with complete
or incomplete information using backtracking. In Theorem 3, we prove that the upper bound
for the proposed algorithm to solve an instance of Path puzzle of size m × n is O(3mn). We
also discuss a variant of Path puzzles that can be solved in polynomial time in Theorem 4.
Specifically, we prove that every m × n Path puzzle instance with no numerical constraints
for all rows and columns can be solved in O(max{m,n}) time. Nevertheless, we believe that
finding another special case of tractable Path puzzle variants would be interesting future work.

We also conducted computational experiments to measure the running time of the proposed
algorithm against 26 Path instances of size 6 × 6 as described in [45]. The experimental
results imply that the algorithm is capable of quickly solving the test cases, with an average
of 3.02 milliseconds and some test cases have a recorded running time on the order of 10−9

seconds. However, one should notice that the size of the puzzle instances in [45] is relatively
small. Nonetheless, one interesting exploration is regarding a more efficient solver algorithm,
possibly by using related properties to find the solution to a discrete tomography problem,
such as the majorization technique from Ryser’s paper [38]. In addition, since Path puzzles are
NP-complete, we believe exploring and comparing a backtracking solver and a SAT-based (or
SMT-based) solver would be an interesting topic. Another interesting exploration is regarding
an algorithm to find all solutions to a Path instance of size m× n.

https://doi.org/10.14710/jfma.v0i0.18155 131 p-ISSN: 2621-6019 e-ISSN: 2621-6035

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 6 NO. 2 (NOV 2023) 

Available online at www.jfma.math.fsm.undip.ac.id

https://github.com/joshuagatizz/path-puzzles-backtracking-solver
https://github.com/joshuagatizz/path-puzzles-backtracking-solver


REFERENCES

[1] R. Kimball, Path Puzzles. Enigami Puzzles & Games, 2013. [Online]. Available:
https://books.google.co.id/books?id=tDhaswEACAAJ

[2] New York Times Wordplay, “Roderick kimball’s path puzzles,” https://archive.nytimes.
com/wordplay.blogs.nytimes.com/2014/07/28/path-2/, Oct. 2022, accessed: 2022-11-14.

[3] J. Bosboom, E. D. Demaine, M. L. Demaine, A. Hesterberg, R. Kimball, and
J. Kopinsky, “Path puzzles: Discrete tomography with a path constraint is hard,”
Graphs and Combinatorics, vol. 36, no. 2, pp. 251–267, 2020. [Online]. Available:
https://link.springer.com/content/pdf/10.1007/s00373-019-02092-5.pdf

[4] S. Kim, “What is a puzzle,” in Game Design Workshop: A Playcentric Approach to
Creating Innovative Games, 2008, pp. 35–39.

[5] E. D. Demaine, “Playing games with algorithms: Algorithmic combinatorial game
theory,” in International Symposium on Mathematical Foundations of Computer Science.
Springer, 2001, pp. 18–33.

[6] G. Kendall, A. Parkes, and K. Spoerer, “A survey of NP-complete puzzles,” ICGA
Journal, vol. 31, no. 1, pp. 13–34, 2008.

[7] R. A. Hearn and E. D. Demaine, Games, puzzles, and computation. CRC Press, 2009.

[8] R. Uehara, “Computational complexity of puzzles and related topics,” Interdisciplinary
Information Sciences, pp. 1–22, 2023.

[9] E. Friedman, “Corral puzzles are NP-complete,” Unpublished manuscript, August, 2002.
[Online]. Available: https://erich-friedman.github.io/papers/corral.pdf

[10] A. Ishibashi, Y. Sato, and S. Iwata, “NP-completeness of two pencil puzzles: Yajilin and
Country Road,” Utilitas Mathematica, vol. 88, pp. 237–246, 2012.

[11] D. Andersson, “Hashiwokakero is NP-complete,” Information Processing Letters, vol.
109, no. 19, pp. 1145–1146, 2009.

[12] D. Andersson, “Hiroimono is NP-complete,” in International Conference on Fun with
Algorithms. Springer, 2007, pp. 30–39.

[13] C. Iwamoto and T. Ibusuki, “Kurotto and Juosan are NP-complete,” in The 21st Japan
Conference on Discrete and Computational Geometry, Graphs, and Games (JCDCG3
2018), 2018, pp. 46–48. [Online]. Available: https://link.springer.com/chapter/10.1007/
978-3-030-90048-9 14

[14] C. Iwamoto and T. Ibusuki, “Polynomial-time reductions from 3SAT to Kurotto and
Juosan puzzles,” IEICE Transactions on Information and Systems, vol. 103, no. 3, pp.
500–505, 2020. [Online]. Available: https://www.jstage.jst.go.jp/article/transinf/E103.D/
3/E103.D 2019FCP0004/ pdf

[15] D. Král, V. Majerech, J. Sgalla, T. Tichý, and G. Woegingerd, “It is tough to be a plumber,”
Theoretical computer science, vol. 313, pp. 473–484, 2004.

https://doi.org/10.14710/jfma.v0i0.18155 132 p-ISSN: 2621-6019 e-ISSN: 2621-6035

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 6 NO. 2 (NOV 2023) 

Available online at www.jfma.math.fsm.undip.ac.id

https://books.google.co.id/books?id=tDhaswEACAAJ
https://archive.nytimes.com/wordplay.blogs.nytimes.com/2014/07/28/path-2/
https://archive.nytimes.com/wordplay.blogs.nytimes.com/2014/07/28/path-2/
https://link.springer.com/content/pdf/10.1007/s00373-019-02092-5.pdf
https://erich-friedman.github.io/papers/corral.pdf
https://link.springer.com/chapter/10.1007/978-3-030-90048-9_14
https://link.springer.com/chapter/10.1007/978-3-030-90048-9_14
https://www.jstage.jst.go.jp/article/transinf/E103.D/3/E103.D_2019FCP0004/_pdf
https://www.jstage.jst.go.jp/article/transinf/E103.D/3/E103.D_2019FCP0004/_pdf


[16] B. McPhail, “Light Up is NP-complete,” Unpublished manuscript, 2005.

[17] R. Kaye, “Minesweeper is NP-complete,” Mathematical Intelligencer, vol. 22, no. 2, pp.
9–15, 2000.

[18] C. Iwamoto and T. Ide, “Moon-or-Sun, Nagareru, and Nurimeizu are NP-complete,”
IEICE Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, p. 2021DMP0006, 2022. [Online]. Available: https://www.jstage.jst.go.jp/
article/transfun/advpub/0/advpub 2021DMP0006/ article/-char/ja/

[19] N. Ueda and T. Nagao, “NP-completeness results for Nonogram via parsimonious
reductions,” Department of Computer Science, Tokyo Institute of Technology, Tech. Rep.,
1996.

[20] B. P. McPhail, “Complexity of puzzles: NP-Completeness results for Nurikabe and
Minesweeper,” Ph.D. dissertation, Reed College, 2003.

[21] M. Holzer, A. Klein, and M. Kutrib, “On the NP-completeness of the Nurikabe pencil
puzzle and variants thereof,” in Proceedings of the 3rd International Conference on FUN
with Algorithms. Citeseer, 2004, pp. 77–89.

[22] E. Friedman, “Pearl puzzles are NP-complete,” Unpublished manuscript, August, 2002.
[Online]. Available: https://erich-friedman.github.io/papers/pearl.pdf

[23] Y. Takenaga, S. Aoyagi, S. Iwata, and T. Kasai, “Shikaku and Ripple Effect are NP-
complete,” Congressus Numerantium, vol. 216, pp. 119–127, 2013.

[24] Y. Takayuki, “On the NP-completeness of the Slither Link puzzle,” IPSJ SIGNotes
ALgorithms, 2000.

[25] T. Yato and T. Seta, “Complexity and completeness of finding another solution
and its application to puzzles,” IEICE transactions on fundamentals of electronics,
communications and computer sciences, vol. 86, no. 5, pp. 1052–1060, 2003.

[26] L. Robert, D. Miyahara, P. Lafourcade, L. Libralesso, and T. Mizuki, “Physical
zero-knowledge proof and NP-completeness proof of Suguru puzzle,” Information and
Computation, vol. 285, p. 104858, 2022. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0890540121001905

[27] A. Adler, J. Bosboom, E. D. Demaine, M. L. Demaine, Q. C. Liu, and J. Lynch,
“Tatamibari is NP-Complete,” in 10th International Conference on Fun with Algorithms
(FUN 2021), ser. Leibniz International Proceedings in Informatics (LIPIcs), M. Farach-
Colton, G. Prencipe, and R. Uehara, Eds., vol. 157. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2020, pp. 1:1–1:24. [Online]. Available:
https://drops.dagstuhl.de/opus/volltexte/2020/12762

[28] C. Iwamoto and T. Ide, “Five Cells and Tilepaint are NP-Complete,” IEICE Transcations
on Information and Systems, vol. 105, no. 3, pp. 508–516, 2022. [Online]. Available:
https://www.jstage.jst.go.jp/article/transinf/E105.D/3/E105.D 2021FCP0001/ pdf

https://doi.org/10.14710/jfma.v0i0.18155 133 p-ISSN: 2621-6019 e-ISSN: 2621-6035

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 6 NO. 2 (NOV 2023) 

Available online at www.jfma.math.fsm.undip.ac.id

https://www.jstage.jst.go.jp/article/transfun/advpub/0/advpub_2021DMP0006/_article/-char/ja/
https://www.jstage.jst.go.jp/article/transfun/advpub/0/advpub_2021DMP0006/_article/-char/ja/
https://erich-friedman.github.io/papers/pearl.pdf
https://www.sciencedirect.com/science/article/pii/S0890540121001905
https://www.sciencedirect.com/science/article/pii/S0890540121001905
https://drops.dagstuhl.de/opus/volltexte/2020/12762
https://www.jstage.jst.go.jp/article/transinf/E105.D/3/E105.D_2021FCP0001/_pdf


[29] E. D. Demaine, J. Lynch, M. Rudoy, and Y. Uno, “Yin-Yang Puzzles are NP-complete,”
in 33rd Canadian Conference on Computational Geometry (CCCG) 2021, 2021.

[30] S. Saha and E. D. Demaine, “ZHED is NP-complete,” in Proceedings of the 34th
Canadian Conference on Computational Geometry (CCCG 2022), 2022. [Online].
Available: https://erikdemaine.org/papers/Zhed CCCG2022/paper.pdf

[31] E. D. Demaine, Y. Okamoto, R. Uehara, and Y. Uno, “Computational complexity and
an integer programming model of Shakashaka,” IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, vol. 97, no. 6, pp. 1213–1219,
2014.

[32] A. Bartlett, T. P. Chartier, A. N. Langville, and T. D. Rankin, “An integer programming
model for the Sudoku problem,” Journal of Online Mathematics and its Applications,
vol. 8, no. 1, 2008.

[33] C. Bright, J. Gerhard, I. Kotsireas, and V. Ganesh, “Effective problem solving using SAT
solvers,” in Maple Conference. Springer, 2019, pp. 205–219.

[34] E. C. Reinhard, M. Arzaki, and G. S. Wulandari, “Solving Tatamibari Puzzle Using
Exhaustive Search Approach,” Indonesia Journal on Computing (Indo-JC), vol. 7, no. 3,
pp. 53–80, 2022.

[35] M. I. Putra, M. Arzaki, and G. S. Wulandari, “Solving Yin-Yang Puzzles Using
Exhaustive Search and Prune-and-Search Algorithms,” (IJCSAM) International Journal
of Computing Science and Applied Mathematics, vol. 8, no. 2, pp. 52–65, 2022.

[36] V. A. Fridolin, M. Arzaki, and G. S. Wulandari, “Elementary Search-based Algorithms
for Solving Tilepaint Puzzles,” Indonesia Journal on Computing (Indo-JC), vol. 8, no. 2,
pp. 36–64, 2023.

[37] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness. WH Freeman & Co., 1979.

[38] H. Ryser, “Combinatorial properties of matrices of zeros and ones,” Canadian Journal of
Mathematics, vol. 9, pp. 371–377, 1957.

[39] G. T. Herman and A. Kuba, Discrete tomography: Foundations, algorithms, and
applications. Springer Science & Business Media, 2012.

[40] H. J. Hoogeboom, W. A. Kosters, J. N. van Rijn, and J. K. Vis, “Acyclic constraint logic
and games,” ICGA Journal, vol. 37, no. 1, pp. 3–16, 2014.

[41] B. Aspvall, M. F. Plass, and R. E. Tarjan, “A linear-time algorithm for testing the truth
of certain quantified boolean formulas,” Information processing letters, vol. 8, no. 3, pp.
121–123, 1979.

[42] S. Brunetti and A. Daurat, “An algorithm reconstructing convex lattice sets,”
Theoretical Computer Science, vol. 304, no. 1, pp. 35–57, 2003. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0304397503000501

https://doi.org/10.14710/jfma.v0i0.18155 134 p-ISSN: 2621-6019 e-ISSN: 2621-6035

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 6 NO. 2 (NOV 2023) 

Available online at www.jfma.math.fsm.undip.ac.id

https://erikdemaine.org/papers/Zhed_CCCG2022/paper.pdf
https://www.sciencedirect.com/science/article/pii/S0304397503000501


[43] J. I. Gunawan, “Understanding Unsolvable Problem,” Olympiad in Informatics, vol. 10,
pp. 87–98, 2016.

[44] L. Prechelt, “An empirical comparison of seven programming languages,” Computer,
vol. 33, no. 10, pp. 23–29, 2000.

[45] E. D. Demaine, “Path Puzzles Font,” https://github.com/edemaine/font-pathpuzzles, Oct.
2022, accessed: 2022-10-11.

https://doi.org/10.14710/jfma.v0i0.18155 135 p-ISSN: 2621-6019 e-ISSN: 2621-6035

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 6 NO. 2 (NOV 2023) 

Available online at www.jfma.math.fsm.undip.ac.id

https://github.com/edemaine/font-pathpuzzles

	INTRODUCTION
	PRELIMINARIES AND PREVIOUS INVESTIGATIONS
	Formal Definition and Data Structure Representation of Path Puzzles
	Overview of the NP-Completeness of Path Puzzles

	CONDITIONS FOR THE NON-EXISTENCE OF PATH PUZZLE SOLUTION
	VERIFYING PATH PUZZLES SOLUTIONS IN POLYNOMIAL TIME
	Verifying the Path Connectivity
	Verifying the Compliance of Rows and Columns Constraints
	Main Verification Algorithm and Analysis

	SOLVING PATH PUZZLES USING BACKTRACKING APPROACH
	TRACTABLE VARIANTS OF PATH PUZZLES
	COMPUTATIONAL EXPERIMENTS AND RESULTS
	CONCLUSIONS AND FUTURE WORKS



