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Establishing a lightweight yet high-precision object detection algorithm is
paramount for accurately assessing workers’ helmet-wearing status in intricate
industrial settings. Helmet detection is inherently challenging due to factors like
the diminutive target size, intricate backgrounds, and the need to strike a balance
between model compactness and detection accuracy. In this paper, we propose
YOLO-LHD (You Only Look Once-Lightweight Helmet Detection), an efficient
framework built upon the YOLOv8 object detection model. The proposed
approach enhances the model’s ability to detect small targets in complex
scenes by incorporating the Coordinate attention mechanism and Focal loss
function, which introduce high-resolution features and large-scale detection
heads. Additionally, we integrate the improved Ghostv2 module into the
backbone feature extraction network to further improve the balance between
model accuracy and size. We evaluated ourmethod onMHWDdataset established
in this study and compared it with the baseline model YOLOv8n. The proposed
YOLO-LHDmodel achieved a reduction of 66.1% in model size while attaining the
best 94.3% mAP50 with only 0.86M parameters. This demonstrates the
effectiveness of the proposed approach in achieving lightweight deployment
and high-precision helmet detection.
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1 Introduction

Industries with high accident rates, including construction, electrical power
infrastructure, and coal mining, frequently face substantial casualties and economic
losses. Ensuring workers’ safety is, therefore, increasingly important. The construction
industry’s fatal accident analysis reveals that around 13.9% of fatal accidents occur due to
individuals being struck by objects Shao et al. (2019). Wearing safety helmets is a mandatory
preventive measure for anyone entering construction sites. Presently, methods for ensuring
this compliance are predominantly based on safety training, manual on-site inspections, and
monitoring surveillance videos. These methods are often limited by high costs and low
efficiency. Consequently, intelligent real-time detection of safety helmet usage presents
significant research value for enhancing worker safety.

In recent years, computer vision-based safety helmet detection methods have become
increasingly prominent in construction sites, substantially improving worker safety Zhou
et al. (2021); Li et al. (2022); Lee et al. (2023). However, traditional vision-based methods rely
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on manually designed feature extraction, such as the Histogram of
Oriented Gradient (HOG) Cao et al. (2011); Wang et al. (2009),
Hough transform Che-Yen Wen et al. (2003), and background
subtraction algorithm Dar-Shyang Lee (2005). These extracted
features are then classified to identify specific target categories
using classifiers like Support Vector Machine (SVM) Shrestha
et al. (2015) and AdaBoost Wu and Nagahashi (2014).

Traditional visual methods, which rely on manually designed
features, are often limited by their low robustness and accuracy Ott
and Everingham (2009). The advent of deep learning-based object
detection methods has led to their application in industrial
environments Yu et al., 2022, Yu et al., 2023, providing superior
results compared to traditional machine learning methods. This
includes methods such as SSD Fang et al. (2018a), Faster R-CNN
Fang et al. (2018b), YOLOWu et al. (2019). However, factors such as
lighting conditions, complex backgrounds, occlusions, and small
target sizes often result in issues like false and missed detections Yan
et al. (2020).

Deep learning-based object detection models inherently feature
complex networks, high computational resource costs, large
parameter counts, and substantial model sizes. As a result, their
deployment on embedded devices is challenging due to the extensive
parameter and computation requirements Deng et al. (2022). To
address these issues, simplified network versions, including “small”
and “tiny” versions of YOLO Redmon et al. (2016) and SSD Liu et al.
(2016), have been proposed. To lighten the model, lightweight
backbone networks like MobileNet Kurdthongmee (2020) and
ShuffleNet Cui et al. (2023) are employed. While these measures
contribute to model lightening, they often result in reduced
accuracy. Consequently, finding an equilibrium between model
size and accuracy has emerged as a pressing issue in
contemporary research.

In this study, we categorize a worker’s condition into two states:
“Helmet” and “No_Helmet”, representing whether the worker is

wearing a safety helmet or not. We aim to address the issues present
in the existing algorithms, such as a large number of network
parameters, low detection performance, and difficulties in
application deployment, by proposing a lightweight detection
algorithm, YOLO-LHD, as shown in Figure 1. This algorithm is
intended for helmet detection at construction sites, leveraging the
improved YOLOv8n object detection architecture. The main
contributions of this paper can be outlined as follows:

1) We proposed a lightweight helmet detection method with
superior average precision and minimal model size, enhancing its
suitability for deployment on mobile or embedded devices.
Specifically, we optimized the YOLOv8n network architecture by
reducing the downsampling rate of the backbone network and
eliminating deep structures detrimental to the detection of small
targets. Based on high-resolution information, we developed a new
lightweight backbone, YOLOv8_cut, which significantly reduced the
parameter count. In the feature fusion network, we introduced high-
resolution features containing shallow layer information and added
a large-scale detection head, thereby enhancing the model’s
capability to detect small targets.

2) To address the computational burden posed by high-resolution
information and enhance the model’s feature extraction capability, we
employed the improved GhostNetv2 Bottleneck to replace the existing
Bottleneck. This change streamlined model complexity and further
minimized its size.

3) To offset the accuracy loss induced by the lightweight
backbone, we integrated a downsampling convolutional module
embedded with CA (Coordinate Attention) into the feature
fusion network. Additionally, by incorporating Focal-CIOU Loss,
we enhanced the model’s performance and its detection capability
for challenging samples.

4) We conducted experiments on the MHWD (Merged Helmet
Wearing Detection dataset) dataset and implemented different module
improvement measures, thereby validating the effectiveness of our

FIGURE 1
Overall flowchart of YOLO-LHD framework.

Frontiers in Built Environment frontiersin.org02

Hu and Ren 10.3389/fbuil.2023.1288445

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2023.1288445


improved method. Comparative experiments with mainstream
advanced algorithms demonstrated that YOLO-LHD excels in terms
of model accuracy and detection efficacy.

The remainder of this paper is organized as follows. Section 2
provides a review of pertinent research in the realms of lightweight
object detection and safety helmet detection. Section 3 elaborates on
our proposed safety helmet detection model, detailing the network
architecture, the enhanced modules, and the Loss function. Section 4
presents the experimental results, comparing our methodology to
other state-of-the-art detection algorithms, and examines the factors
influencing the performance of the detectionmodel. Lastly, Section 5
recaps the contributions of this study.

2 Related work

To deliver a comprehensive understanding of the safety
helmet algorithm proposed herein, this section offers a thorough
review of existing algorithms for lightweight object detection and
safety helmet detection.

2.1 Lightweight object detection method

In convolutional neural network-based deep learning algorithms,
developing an adequately deep network can enhance its performance.
However, this introduces significant computational costs. MobileNet
Howard et al. (2017) curtails computational overhead via depth-wise
separable convolutions. MobileNetv2 Sandler et al. (2018) introduces
inverted residual blocks (IRBs) to mitigate information loss from non-
linear transformations. MobileNetv3 Howard et al. (2019) further
refines and simplifies the network structure while integrating the SE
attention mechanism, thus improving accuracy and reducing latency.
ShuffleNet Zhang et al. (2018) organizes the channels of feature maps
and conducts channel shuffling through depth-wise separable
convolutions. ShuffleNetv2 Ma et al. (2018) adds a 1 ×
1 convolution layer before global average pooling to mix features.
FasterNet Chen et al. (2023) proposes Partial Conv, applying regular
convolutions to a portion of input channels while leaving the remaining
channels intact. With a partial ratio = 1/4, the floating-point operations
(FLOPs) are only 1/16 of regular convolutions, effectively diminishing
memory access while preserving feature extraction efficacy. GhostNet
Han et al. (2020) generates features Y via 1 × 1 convolutions, applies
depth-wise separable convolutions on Y to generate features, and
eventually concatenates these two features. GhostNetv2 Tang et al.
(2022) introduces a novel DFC attention mechanism on the basis of
Ghostnetv1 to improve the feature extraction ability of the model for
spatial information.

Recently, Vision Transformer (ViT)-based models such as
MobileFormer Chen et al. (2022), EfficientFormer Li et al. (2022c)
and EfficientViT Liu et al. (2023) have gained traction in the field.
Despite their unique advantages, it is crucial to highlight that these ViTs
do not always surpass traditional CNNs when considering metrics like
parameter count and computational complexity. Given the swift
advancements in lightweight Transformer networks, there’s a
sustained effort from researchers to enhance both their efficiency
and performance metrics. With these considerations in mind, our
decision to enhance the YOLOv8 backbone with the improved

C2fGhostv2 was made after careful evaluation, focusing on both the
lightweight of the architecture and its detection efficacy.

2.2 Safety helmet wearing detection

Safety helmet detection refers to the process of employing
computer vision techniques to ascertain whether individuals in
areas like construction sites are wearing safety helmets. This task
is pivotal for ensuring the safety of construction workers during their
duties. In recent years, with advancements in deep learning and
computer vision technologies, safety helmet detection based on deep
learning has gained increasing popularity.

Currently, safety helmet detection primarily involves two methods:
traditional image processing techniques and deep learning-based
approaches. Traditional image processing methods utilize techniques
such as color segmentation and morphological operations for safety
helmet recognition. Che-Yen Wen et al. (2003) enhanced the Hough
transform for safety helmet detection. Li et al. (2018) used head
positioning, HSV transformation, adaptive thresholding, and other
image processing techniques to detect safety helmets. Nevertheless,
these methods require manual setting of specific thresholds and rules
and impose stringent requirements for lighting, background, and
adaptability to complex scenes.

Deep learning-based methods are widely used for safety helmet
detection. They involve building deep neural networks that input
images for feature extraction, target localization and classification,
and output conclusions about whether safety helmets are being
worn. Popular deep learning methods include SSD Liu et al. (2016),
Faster R-CNN Ren et al. (2015), YOLO Redmon et al. (2016);
Redmon and Farhadi 2017, Redmon and Farhadi 2018, among
others. These methods, based on Convolutional Neural Networks
(CNN) and object detection algorithms, allow for precise and rapid
detection of safety helmets, with relatively lower requirements for
image lighting and background. Wu et al. (2019) improved the
YOLOv3 algorithm for effective safety helmet detection. Zhou et al.
(2021) used the YOLOv5 model for safety helmet detection,
demonstrating the effectiveness of helmet detection based on
YOLOv5. Tai et al. (2023) improved the YOLOv5 algorithm
using attention mechanisms and dynamic anchor boxes,
enhancing the detection accuracy and speed for occluded targets.

Building upon the aforementioned studies, this paper proposes a
lightweight safety helmet detection method based on an improved
YOLOv8 to address the shortcomings of existing detection
algorithms, such as large model size, low detection accuracy, and
high false positive rates.

3 Methods

In this section, we provide a comprehensive description of both
the baseline YOLOv8 model and our improved YOLO-LHD model.

3.1 YOLOv8 network model

You Only Look Once (YOLO) is the first one-stage object
detector proposed by Redmon et al. (2016) at CVPR 2016.
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YOLO divides the input image into a predefined number of grids
and predicts a certain number of bounding boxes and their
corresponding class probabilities for each grid. Each bounding
box outputs four coordinate values and an objectness score,
exhibiting high real-time performance and strong background
discrimination capability. Subsequent versions of YOLO Redmon
and Farhadi 2017, Redmon and Farhadi 2018; Bochkovskiy et al.,
2020; Jocher 2020; Li C. et al., 2022; Wang et al., 2023 have
continuously improved both detection accuracy and speed.
Among them, YOLOv8, the latest version of the YOLO series
object detection algorithm proposed by Jocher et al. (2023) in
2023, is a state-of-the-art, single-stage object detection algorithm.
Building upon previous versions of YOLO, YOLOv8 further
enhances performance by incorporating a lightweight network
architecture.

The model architecture of YOLOv8 consists of three main
structures: Backbone, Neck, and Head. The YOLOv8 algorithm
includes different scaling factors, namely, N/S/M/L/X versions,
with decreasing speed and increasing accuracy. The backbone
network and the Neck component of YOLOv8 have undergone a
redesign of the C3 module. The new C2f module connects multiple
feature maps and leverages convolutional operations to fuse them,
resulting in a richer gradient flow. The C2f module efficiently
maintains computational efficiency while enhancing the
expressive power of feature representation, thereby contributing
to improved network performance.

For the Neck component, YOLOv8 employs the widely used
PANet structure found in the YOLO series for feature fusion. PANet
combines bottom-up and top-down approaches, effectively
extracting multi-scale information. This facilitates the fusion of
information across different feature layers, enabling the detector
to better adapt to objects of varying sizes and shapes and improving
localization accuracy. Moreover, YOLOv8 eliminates the 1 ×
1 convolution before upsampling in the Neck component,
reducing computational overhead.

In the Head component, YOLOv8 separates the classification
and detection heads and removes the objectness branch. The model
transitions from an Anchor-based approach to an Anchor-Free one,
permitting dense prediction directly on the entire image without the
necessity for predefined candidate boxes. It also enables the model to
adapt to objects of different sizes and background conditions.
YOLOv8 employs BCE Loss for Classification Loss, while the
regression loss includes Distribution Focal Loss (DFL Loss) and
CIOU Loss.

As the most recent version of the YOLO model,
YOLOv8 presents the best performance on target detection tasks.
However, its size remains relatively large for lightweight devices. In
this paper, we implement corresponding improvements based on
the YOLOv8n model to enhance safety helmet detection
performance and create a lightweight network model.

3.2 The proposed YOLO-LHD algorithm

Our proposed YOLO-LHD safety helmet detection algorithm’s
overall architecture and implementation details are shown in
Figure 2. The main components involved include the backbone
network constructed with the C2fGhostv2 module, the network

structure that reduces downsampling ratio and introduces high-
resolution features, and the Regression loss that incorporates
Focal Loss.

The improved C2fGhostv2 serves as the backbone of YOLO-
LHD to extract features and outputs feature maps with resolutions of
160 × 160, 80 × 80, and 40 × 40 to the feature fusion network.
Compared with the original YOLOv8 architecture, YOLO-LHD
removes the feature map with a resolution of 20 × 20 and
introduces higher-resolution features. After fusion with high-level
features and combined with the CA attention mechanism and Focal-
CIOU Loss, it further enhances the model’s detection performance
for small-sized targets. The specific details of these three
components will be introduced in the following sections.

3.2.1 Optimize the network structure of YOLOv8n
In the feature extraction network of YOLO, the resolution of the

feature maps decreases from the lower layers to the higher layers,
while the depth increases. The feature maps output by the low-level
modules usually have larger spatial dimensions and contain complex
and more detailed features. In the context of small object detection,
as the depth of the network increases, the feature information of
small objects can be lost due to pixel aggregation, and a deep
network structure is not conducive to small object detection.
Based on this, we have optimized the network architecture of
YOLOv8 in this paper.

We use a shallower network for feature extraction, by
eliminating the deepest convolution and C2f module from the
standard YOLOv8 backbone. Our approach introduces a low-
level feature map with a resolution of 160 × 160 into the feature
fusion stage, which shares the feature information of small targets
more effectively. Subsequently, We add a detection head with a
resolution of 160 × 160, removing the original 20 × 20 detection
head. This inclusion of lower-level information on small targets
effectively diminishes the false negative rate for small target
detection.

The high-resolution feature fusion neck network expands the
resolution of the feature map from 40 × 40 to 160 × 160 through two
linear interpolations, extending the network width and feature
resolution, generating a feature map that contains richer spatial
position information and semantic information and is more suitable
for detecting small objects. According to the aspect ratio distribution
of labels in the dataset shown in Figure 3, we find that the size ratio of
the targets is mainly distributed within 20%, most of which are
medium and small targets. Through the aforementioned
enhancement measures, we ultimately arrive at a novel model
architecture, YOLOv8n_cut, as shown in Figure 4.

The reconstructed YOLOv8_cut, through targeted
improvements to the backbone network, feature enhancement
network, and detection head, reduces the number of parameters
of the network from the original 3.1M–0.96M, thus preserving more
feature detail information while facilitating model deployment.
Eventually, compared to the baseline network, it retains more
detail features and semantic features, improving the model’s
detection accuracy.

In the feature fusion network, this paper introduces the CA
attention mechanism Hou et al. (2021) into the downsampling
convolution to compensate for the feature extraction loss caused
by the reduction in the number of downsampling times. Drawing on
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the ideas of Zhang et al. (2023), we embed the CA attention
mechanism into the downsampling convolution module of
YOLO-LHD’s feature fusion network to get CAConv, that is,
convolution operation based on attention. Embedding the CA
attention mechanism module into the feature fusion network
pays more attention to the helmet target of interest, effectively
reduces the impact of the complex background, and improves the
detection ability of small targets. The structure of the CAConv
module is shown in Figure 5.

The primary principle of the CA mechanism is as follows: First,
the input feature is globally average pooled separately across the
width (W) and height (H) dimensions. Subsequently, the features
mapped to W and H directions are merged, stacking the width and
height features. This is followed by feature processing via
convolution, normalization, and activation functions. The process
is then divided into H and W parallel stages. After adjusting the
number of channels, the attention weights are acquired using a
sigmoid function. Finally, these weights are multiplied with the
original features, yielding the final feature set imbued with attention
weights.

This paper embeds CA attention into the downsampling
convolution module, that is, a 3 × 3 convolution layer is
introduced at the end of CA attention. This attention-based
convolution operation replaces the original standard
downsampling convolution module. Compared with directly
adding the attention module in the network, the attention-based
convolution operation reduces the storage and transmission steps of
the intermediate feature map, which helps to improve the
performance and representation ability of the model.

3.2.2 Improvement of the backbone network
Incorporating high-resolution features aids in extracting

detailed information from the target objects. However, it also
escalates computational complexity and memory usage as the
network processes higher resolution feature maps, necessitating
more convolution operations to achieve higher-resolution
outputs. To enhance feature extraction capabilities and lighten
the model concurrently, this study introduces an improved

FIGURE 2
The architecture and network specifics of YOLO-LHD.

FIGURE 3
The distribution of ground-truth dimensions.
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GhostNetv2 Bottleneck to replace the existing Bottleneck, thereby
bolstering the network model’s feature extraction capacity, reducing
model complexity, and minimizing model size. The specific process
schematic is shown in Figure 6. We optimized the YOLOv8n model,
adapting it to complex construction site scenarios, and achieved a
more lightweight YOLO-LHD model that boasts high-precision
detection accuracy.

In an effort to both lighten the YOLOv8n_cut network model
and enhance its feature extraction capabilities, the backbone
network was initially modified by integrating the module C2f
from the original YOLOv8n_cut backbone with the improved
GhostNetv2 Bottleneck to augment model performance.
GhostNet is a lightweight feature extraction model consisting of
two stacked Ghost Modules. The primary principle of a Ghost
Module is as follows: initially, a 1 × 1 convolution extracts
preliminary features from the input features X ∈ RH×W×C. Then,
a depthwise separable convolution applies a linear transformation to
the preliminary features, enriching the information in the feature
map. Finally, these two feature components are concatenated. The
main computation process of the GhostModule is as follows:

Y′ � XpF1×1 (1)
Y″ � Y′pFdp (2)

Y � Concat Y′, Y″[ ]( ) (3)
In the equation, p represents convolution operation, F1 × 1

signifies a 1 × 1 standard convolution, and Y′ ∈ RH×W×Cout′

FIGURE 4
Reconstructed YOLOv8_cut network.

FIGURE 5
The structure of the coordinate attention mechanism.
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denotes the output preliminary features. Subsequently, a depthwise
convolution is applied to Y′, further extracting features and
generating s features denoted as Y″. Ultimately, Y′ and Y″ are
concatenated to generate the final output features Y ∈ RH×W×Cout ,
where Y possesses the same number of output channels as a standard
convolution. The floating-point operations in the GhostModule
operation are merely 1

s of the standard convolution.
In the linear transformation process within the GhostModule,

this is realized through Fdp (depthwise convolution). While

DWConv is extensively used in constructing low-FLOPs neural
networks, its simple replacement with regular convolution could
lead to a significant decrease in accuracy. InMobileNet Howard et al.
(2017), an approach to compensate for the decline in accuracy is
adopted by expanding the network width. Chen et al. (2023)
proposed partial convolution (PConv), the feature maps are
highly similar in different channels. To minimize computational
redundancy, a regular convolution is applied to part of the input
feature’s channels, leaving the remaining channels unchanged,

FIGURE 6
Schematic representations of the improved C2fGhostv2 and GhostNet: (A) GhostNetv1 Bottleneck, (B) the original YOLOv8 BottleNeck, (C) DFC
Attention, (D) GhostNetv2 Bottleneck, (E) the improved C2fGhostNetv2.

FIGURE 7
The improved GhostModule structure and the calculation schematic diagram of Partial Convolution (PConv): (A) GhostModule, (B) Imporved
GhostModule, (C) Deepthwise Convolution (DWConv), (D) Partial Convolution (PConv).
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treating either the first or the last contiguous channels as
representatives for feature computation.

The calculation diagram of PConv is shown in Figure 7, with the
partial ratio r � 1

4, the floating-point operations (FLOPs) count of
PConv is only 1

16 of a regular convolution. On the device, compared
to DWConv, it presents a higher floating-point operations per
second (FLOPS), exhibiting superior performance.

GhostNetv2 is a lightweight network architecture proposed Tang
et al. (2022) at NeurIPS 2022. Building upon the original GhostNet
model, they introduced a Decoupled Fully Connected (DFC) attention
mechanism that enhances the model’s representational capacity by
further capturing long-distance spatial information. The primary
structure of DFC, as depicted in Figure 6C, undergoes the following
computation process: Firstly, to reduce additional computational cost,
average pooling is used in the first step of DFC implementation to halve
the feature size. Next, 1 × 1 convolution generates features, which are
then aggregated in the horizontal and vertical directions over a long
range of pixels via depthwise separable convolution with a kernel size of
1 × kH and 1 × kW. After superposition, a global receptive field is
achieved. Bilinear interpolation is used for upsampling, returning to the
original dimensions. The features generated by the Ghost Module are
then element-wise multiplied to achieve more information-rich
features. The overall structure is shown in Figure 6D.

In the GhostNetv2Bottleneck of GhostNetv2, the DFC module
and Ghost Module process input features in parallel. Then, the
multiplied features serve as the input to the second Ghost Module,
finally producing the output features. GhostNetv2Bottleneck
captures the long-term dependencies between pixels at different
spatial positions, thus enhancing the model’s expressiveness. In this
study, to further improve the model’s feature extraction capability
while keeping the network model lightweight, we utilize Partial
Convolution (PConv) to replace DWConv in the Ghost Module of
the GhostNetv2Bottleneck to complete Cheap Operation for linear
transformation, as shown in Figure 7B. Subsequent experiments
confirm the effectiveness of PConv in improving model accuracy.

The improved GhostNetv2Bottleneck achieves a better balance
in model size, the number of model parameters, and FLOPs after
replacing the original C2f Bottleneck. In the YOLOv8 backbone
network, the output of the C2f module does not change the size of
feature map, and the convolution stride of the original C2f
Bottleneck is consistently 1. Correspondingly, the stride of the
GhostNetv2Bottleneck used in this study is also 1.

3.2.3 Improvement of the loss function
In YOLOv8, the regression loss is composed of Distribution

Focal Loss (DFL) and CIOU loss. CIOU loss was proposed by Zheng
et al. (2020) based on geometric factors in bounding box regression,
i.e., overlapping area, center point distance, and aspect ratio. It
achieved better convergence speed and performance. Given a
predicted box B and a real box Bgt, the definition of CIOU Loss
is as follows:

LCIoU � 1 − IOU + ρ2 b, bgt( )
c2

+ υ2

1 − IOU( ) + υ
(4)

where IOU represents the intersection over union of the predicted
box and the real box, b and bgt respectively represent the center
points of the predicted box B and real box Bgt, ρ(·) � ‖b − bgt‖2
represents the Euclidean distance, c is the diagonal length of the

smallest enclosing rectangle of the predicted and real boxes, and

υ � 4
π2(arc tan wgt

hgt
− arc tan w

h)
2
represents the difference in aspect

ratio between the predicted box and the real box.
The idea of Focal-EIOU loss function Zhang et al. (2022) is

introduced into CIOU loss to compensate for the overall gradient
becoming smaller when the loss value tends to zero due to
multiplication, setting a higher gradient where the error rate is high
and paying more attention to the identification of difficult samples. To
reduce the influence of low-quality samples on model performance, by
using IOU to reweight CIOU loss. The definition of Focal-CIOU Loss is
as follows, where γ is the adjustment parameter of the Focal loss:

LFocal−CIOU � IOUγLCIOU (5)
Figure 8 shows the performance of the YOLO-LHD model, where

we use Focal-CIOU loss in place of the original CIOU loss. The figure
demonstrates that the Focal-CIOU loss achieves better performance, as
well as the performance of several other loss functions.

4 Experimental results

In this section, we evaluate our proposed YOLO-LHD on the
MHWD dataset, discussing and contrasting the details of our
improvements. First, we introduce the helmet detection dataset
established for this study, along with our experimental
environment and model evaluation metrics. After analyzing the
experimental results, we provide evidence of the effectiveness of our
improvements, including ablation studies and comparison
experiments, and compare with other advanced object detection
algorithms to demonstrate the detection performance.

4.1 Experimental datasets

In this paper, the dataset consists of two parts: safety helmet
wearing detect dataset (SHWD) and Hard Hat Dataset (HHD). The

FIGURE 8
The regression error and distribution curves during training with
different loss functions.
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first part comprises 7,581 publicly available images from the SHWD
dataset, containing the class labels “hat” and “person”. The second
part consists of 5,000 images from the Kaggle platform, which
includes the class labels “helmet”, “person”, and “head”.

In the original SHWD dataset, the ratio of images showing safety
helmet wearing to not wearing is 1:12, making the categories
extremely unbalanced. Therefore, we modified and enhanced the
SHWD dataset to create the dataset used in this paper. We combined
the SHWD and HHD datasets, unifying the category labels to
“Helmet” and “No_Helmet”. Ultimately resulting in our final
dataset, which we refer to as the ‘MHWD’ (Merged Helmet
Wearing Detection dataset). The MHWD is made publicly
available at https://drive.google.com/file/d/1GbiDTSdeKEB-
BxuH4G54gtX-gDfC_uSF/view?usp=drive_link.

4.2 Experiment configuration and evaluation
metrics

To validate the effectiveness of the proposed YOLO-LHD safety
helmet detection model, all experiments in this study were
conducted using the PyTorch 1.12.1 framework on a Windows
10 Professional 64-bit system with an NVIDIA RTX 3080 GPU and
CUDA 11.3 environment. The model construction, training, and
validation were performed under these settings.

During training, the following operations were applied to the
training images: Mosaic data augmentation, adaptive padding,
and scaling to 640 × 640. The training was performed for
300 epochs, with a batch size of 8. The initial learning rate
was set to 0.01, the momentum parameter to 0.937, and the
weight decay parameter to 0.0005. Regarding loss adjustments,
the box loss gain was fixed at 7.5, the class loss gain at 0.5, and the
DFL loss gain at 1.5, and the SGD optimizer was used for loss
optimization. The dataset was divided into training, validation,
and testing sets in an 8:1:1 ratio. The label distribution of the
divided dataset is shown in Table 1. The table encompasses the
number of labels about the wearing of safety helmets and the
corresponding number of images.

The algorithm’s recognition speed and detection capability
were evaluated in this study. The recognition speed was
determined by measuring the inference time (in milliseconds)
of the model on test images. The detection capability was assessed
using precision, recall, and mean Average Precision (mAP).
Lower inference times indicate faster network detection,
precision represents the ratio of correctly detected boxes to
predicted boxes and measures the accuracy of the network’s
predictions. Recall represents the ratio of correctly detected
boxes to the actual annotated boxes and measures the
network’s ability to detect the labeled boxes. mAP is the

average precision across all classes and serves as an indicator
of the network’s overall recognition capability. In this study,
predicted bounding boxes with an Intersection over Union (IoU)
greater than 50% with the annotated boxes were considered as
correctly predicted results.

We utilize the parameters count (Params) and computational
complexity, quantified in GFLOPs (Giga Floating-Point
Operations), as metrics for assessing the computational costs of
the models. For a thorough evaluation, we incorporated COCO
metrics, giving insights into performance across various IoU
thresholds and object sizes: AP50−95, AP50, AP75, APsmall,
APmedium, and APlarge. Figure 9 showcases the training
mAP50 and loss curves of both YOLOv8n and YOLO-LHD
models. Notably, the model’s mAP50 stabilizes around the 150-
epoch mark, indicating progressive convergence as the iteration
count rises. Figure 10 presents the confusion matrices for our model
on the validation and testing sets. Our model demonstrates a strong
capability in distinguishing between positive and negative cases.
Moreover, the confusion matrix also indicates that the model has a
relatively low rate of misclassifying the background, emphasizing its
robustness in distinguishing safety helmets in varied scenarios.

4.3 Comparative experiment of improved
backbone network

To validate the effectiveness of the improved backbone network
structure in reducingmodel parameters and improvingmodel accuracy,
training and validation of six different lightweight backbone networks
were conducted under the same experimental environment. The
backbone network of the YOLOv8n model was replaced by
MobileNetv3, ShuffleNetv2, FasterNet, GhostNetv2, EfficientViT_
M0, EfficientformerV2_S0 and C2fGhostv2 networks. The improved
models were compared in the experiments, and the experimental results
are shown in Table 2.

The experimental results show that compared to the smaller
computational cost of the ShuffleNetv2 and GhostNetv2 backbones,
mAP50 increased by 4% under slightly increased computational
overhead, and achieved higher detection accuracy than the pre-
improved GhostNetv2 and other ViT-based lightweight backbones
under smaller computational costs. The scheme in this paper surpasses
other models in mAP50 and mAP50-95, demonstrating its advantage
in extracting effective features and overall performance superior to the
other six mainstream lightweight backbone networks.

4.4 Comparative experiment of different loss
functions

We validated the performance of the improved Focal-CIOU
Loss in the YOLO-LHD model and conducted comparison
experiments with the original CIOU Loss and four other
different loss functions. Under the same experimental
environment, the Focal-CIOU Loss in this paper achieves the
best performance. Compared with the original CIOU Loss, the
accuracy has improved by nearly 1%, which proves the
effectiveness of Focal-CIOU Loss. The experimental results are
shown in Table 3.

TABLE 1 Information on MHWD dataset.

Datasets Helmet No_Helmet Images

Training 22,871 13,656 7,065

Validation 2,435 1,363 785

Testing 2,707 1,571 873
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4.5 Performance of different attention
mechanisms

To validate the accuracy improvement ability of our
introduced downsampling convolution module based on CA
attention mechanism, we introduced different attention
mechanisms into the downsampling convolution module, such
as SE (Hu et al., 2018), CBAM (Woo et al., 2018), CAM (Woo et al.,
2018), and also directly added CA attention in the feature fusion
network. Comparative experiments were conducted under the
same experimental environment. Our improvement achieved a
higher model Recall and average accuracy while maintaining
relatively unchanged computational complexity and parameter

count. In terms of Recall, the CAConv module reached 88.7%,
and in mAP50, CAConv reached 94.3%, showing balanced
performance in terms of accuracy. This proves the effectiveness
and superiority of the CAConv module. The experimental results
are shown in Table 4.

4.6 Ablation experiments

We validated the effectiveness of the proposed model through
ablation experiments, analyzing the impact of the improved
modules on the overall model by gradually adding each
improvement to the original YOLOv8n model. The

FIGURE 9
Training loss and mAP50 curves: (A) YOLOv8n, (B) proposed YOLO-LHD.

FIGURE 10
Confusion matrix for YOLO-LHD on validation and testing sets: (A) validation set, (B) testing set.
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performance of the YOLO-LHD model was evaluated, as shown
in Table 5. ✓ indicates the use of that method. Reducing the
downsampling rate significantly reduces the number of model
parameters but increases the computational load. The use of
C2fGhostv2 can reduce the computational overhead, but it also
reduces accuracy. By introducing CAConv and Focal Loss, our
proposed method reduced the size of the original YOLOv8n
model by 66.1% and decreased the number of model
parameters by 71.1%, achieving an average accuracy of 94.3%.
While maintaining high accuracy, our method effectively reduces
the size and parameter count of the original YOLOv8 model,
showing a good lightweight effect.

4.7 Comparative experiment with different
object detection algorithms

To verify the effectiveness of our algorithm, we conducted
training and verification of mainstream algorithms under the
same experimental environment and compared them with
YOLO-LHD. As shown in Table 6, the comparison algorithms
include SSD300 Liu et al. (2016), Faster-RCNN Ren et al. (2015),
EfficientNet Tan and Le (2019), YOLOv3-tiny Redmon and Farhadi
(2018), YOLOv5n Jocher (2020), YOLOv5s Jocher (2020), YOLOX-
tiny Ge et al. (2021), YOLOv6n Li et al. (2022a), YOLOv7n Wang
et al. (2023), and Rtmdet-tiny Lyu et al. (2022). Among them, SSD,

TABLE 2 The performance comparison experiment results of improved backbone network.

Model Model size (MB) Params (M) GFLOPs mAP50 (%) mAP50-95 (%)

YOLOv8n 6.2 3.01 8.2 93.3 58.4

+ MobileNetv3 Howard et al. (2019) 5.0 2.35 5.8 91.2 55.9

+ ShuffleNetv2 Ma et al. (2018) 3.6 1.86 5.7 89.4 54.3

+ FasterNet Chen et al. (2023) 4.7 2.25 6.7 93.1 57.8

+ EfficientViT-M0 Liu et al. (2023) 8.7 4.01 9.5 93.1 57.9

+ EfficientformerV2-S0 Li et al. (2022c) 39.5 5.11 11.7 91.2 57.1

+ GhostNetv2 Tang et al. (2022) 3.3 1.42 10.2 91.0 57.0

+ C2fGhostv2 (ours) 5.3 2.55 6.9 93.4 58.1

The bold values indicates the best results of each column.

TABLE 3 The performance comparison experiment results of different loss functions.

Loss function Precision (%) Recall (%) mAP50 (%) mAP50-95 (%)

CIOU Zheng et al. (2020) 92.3 87.6 93.4 58.1

SIOU Gevorgyan (2022) 91.4 87.1 93.3 58.2

DIOU Zheng et al. (2020) 91.8 87.9 93.5 58.0

GIOU Rezatofighi et al. (2019) 91.4 88.8 93.5 57.8

EIOU Zhang et al. (2022) 91.1 88.0 93.5 58.2

Focal-EIOU Zhang et al. (2022) 92.1 85.3 92.3 58.0

Focal-CIOU(ours) 92.4 88.8 94.3 58.6

The bold values indicates the best results of each column.

TABLE 4 The performance comparison experiment results of downsampling convolution modules combined with different attention mechanism.

Attention module Params (M) GFLOPs Precision (%) Recall (%) mAP50 (%) mAP50-95 (%)

Baseline 0.86 9.8 92.3 87.6 93.4 58.1

+ SEConv 0.85 9.7 92.8 86.3 93.3 58.4

+ CAMConv 0.87 9.8 91.4 87.7 93.5 58.3

+ CBAMConv 0.87 9.8 90.6 85.6 90.8 56.5

+ Coordinate Attention 0.86 9.7 93.0 87.1 93.6 58.8

+ CAConv(ours) 0.87 9.8 92.8 88.7 94.3 58.7

The bold values indicates the best results of each column.
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Faster-RCNN, EfficientNet were conducted under the
MMDetection Chen et al. (2019) framework, YOLOX-tiny,
Rtmdet-tiny were conducted under the MMYOLO Contributors
(2022) framework.

The results show that the number of parameters of our
model is only 0.86M, which is far lower than other models,
requiring smaller model storage. Our model’s accuracy reached
the best 94.3%, and the inference speed was 10.4 m. Although it
was not the fastest, it showed higher efficiency compared to
other models with similar or higher accuracy. With fewer
parameters, although the inference delay has increased
slightly, the overall goal of a lightweight helmet detection
model has been achieved. It balances computational cost and
detection accuracy well.

We compared our method with others based on the COCO
metrics. As shown in Table 7, our YOLO-LHD achieved the best
performance in both AP50 and APsmall. Although our method may
not be the top performer in some metrics, overall, it is on par with

the best methods and demonstrates outstanding results, especially in
detecting small-sized objects.

The detection effects of some typical complex backgrounds and
poor lighting conditions are shown in Figure 11. It can be seen that
our model performs well on small-size targets, obscured targets,
and targets under poor lighting conditions. The model has high
accuracy and does not produce false and missed detections. The
experimental results demonstrate the practical significance of our
YOLO-LHD model for helmet-wearing detection.

5 Conclusion

In this study, we propose a lightweight safety helmet detection
model called YOLO-LHD. To enhance the model’s detection and
feature extraction capabilities for small objects, we decrease the
downsampling rate of the backbone network and introduce high-
resolution feature maps and the CA attention mechanism in the

TABLE 5 The ablation experimental results of YOLO-LHD model.

Model Cut Ghostv2 CAConv Focal-CIOU Model size (MB) Params (M) GFLOPs mAP50 (%)

YOLOv8n 6.2 3.01 8.9 93.3

M1 ✓ 2.2 0.96 10.5 93.8

M2 ✓ ✓ 2.0 0.87 9.8 93.4

M3 ✓ ✓ 2.2 0.97 10.6 94.0

M4 ✓ ✓ 2.2 0.96 10.5 93.4

M5 ✓ ✓ ✓ 2.0 0.86 9.8 93.6

Ours ✓ ✓ ✓ ✓ 2.1 0.87 9.7 94.3

The bold values indicates the best results of each column.

TABLE 6 The performance comparison of different algorithms.

Model Backbone Params (M) GFLOPs COCOAPtest50−95(%) mAP50 (%) Infer/ms

SSD300 VGG16 23.88 30.47 42.6 — 11.7

Faster-RCNN ResNet50 41.35 69.53 47.8 — 21.9

EfficientNet EfficientNet-b3 18.36 39.33 49.9 — 34.9

YOLOv3-tiny Darknet53 8.67 13.0 46.5 86.2 3.4

YOLOv5n CSPDarknet53 1.76 4.1 51.3 90.7 8.2

YOLOv5s CSPDarknet53 7.03 16.0 54.1 92.5 9.8

YOLOX-tiny DarkNet53 5.03 7.57 52.0 — 11.9

YOLOv6n EffifienRep 4.63 11.34 53.9 — 10.1

YOLOv7n ELAN + MP 6.02 13.2 51.7 92.4 7.2

Rtmdet-tiny CSPNeXt 4.87 8.02 51.0 — 18.0

YOLOv8s CSPDarknet53 11.12 28.4 53.4 94.1 10.7

YOLOv8n CSPDarknet53 3.01 8.2 52.3 93.3 9.7

YOLO-LHD (ours) CSPDarknet53-G 0.86 9.7 54.0 94.3 10.4

The bold values indicates the best results of each column.
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TABLE 7 The performance comparison of different algorithms with COCO metrics.

Model APtest50−95(%) APtest50 (%) APtest75 (%) APtestsmall(%) APtestmedium(%) APtestlarge(%)

SSD300 42.6 74.8 44.4 32.4 56.1 39.6

Faster-RCNN 47.8 82.2 51.1 41.1 58.6 42.2

EfficientNet 49.9 83.0 54.3 42.9 60.2 44.4

YOLOv3-tiny 46.5 85.7 45.2 37.4 54.9 53.2

YOLOv5n 51.3 91.4 54.8 43.4 59.9 62.0

YOLOv5s 54.1 92.3 57.7 45.4 61.4 62.8

YOLOX-tiny 52.0 86.1 56.9 43.2 60.8 41.8

YOLOv6n 53.9 90.2 58.8 41.8 63.3 73.7

YOLOv7n 51.7 92.5 50.4 42.2 59.6 61.5

Rtmdet-tiny 51.0 84.9 56.6 44.2 61.5 43.9

YOLOv8s 53.4 92.3 56.0 44.7 60.7 61.4

YOLOv8n 52.3 91.7 54.6 43.8 60.2 58.3

YOLO-LHD (ours) 54.0 92.8 54.4 46.1 60.7 61.4

The bold values indicates the best results of each column.

FIGURE 11
The results of helmet detection by different algorithms.
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feature enhancement network, and add a large-scale detection head,
thereby improving the detection performance of the model.
Subsequently, we improve the C2f Bottleneck module by
incorporating the GhostNetv2 Bottleneck module fused with PConv
as the backbone network of YOLO-LHD, aiming to reduce the model’s
parameter and computational complexity. Finally, we introduce Focal
Loss into the CIOU Loss and optimize the object detectionmodel using
Focal-CIOU Loss, thus improving themodel’s accuracy and robustness.

On the dataset used in this study, our YOLO-LHD safety helmet
detectionmodel has only 0.86M parameters and amodel size of 2.1MB,
achieving a mAP50 of 94.3%. While reaching the optimal detection
accuracy, it also exhibits characteristics friendly to practical deployment.
Through validation of actual detection results and comparisons with
other existing algorithms, we demonstrated that the YOLO-LHDmodel
possesses superior performance and practical application value in the
domain of construction site safety helmet detection. Moving forward,
we plan to explore additional avenues, such as further improving the
model’s noise robustness, collectingmore real scene data to improve the
generalization ability of the model, investigating real-time
implementation possibilities, and extending its applicability to other
domains. These potential directions will contribute to the continued
advancement of safety helmet detection systems, making them even
more effective and versatile in complex industrial environments.
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