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One of the primary diseases that cause death worldwide is cancer. Cancer cells
can be intrinsically resistant or acquire resistance to therapies and drugs used for
cancer treatment through multiple mechanisms of action that favor cell survival
and proliferation, becoming one of the leading causes of treatment failure against
cancer. A promising strategy to overcome chemoresistance and radioresistance is
the co-administration of anticancer agents and natural compounds with
anticancer properties, such as the polyphenolic compound resveratrol (RSV).
RSV has been reported to be able to sensitize cancer cells to
chemotherapeutic agents and radiotherapy, promoting cancer cell death. This
review describes the reported molecular mechanisms by which RSV sensitizes
tumor cells to radiotherapy and chemotherapy treatment.
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1 Introduction

Cancer treatment and therapy have improved significantly in recent years, increasing
patients’ survival and quality of life. However, cancer remains one of the main diseases with
the highest mortality worldwide (Siegel et al., 2022). This poor prognosis in cancer patients is
partly due to the adverse effects and complications that limit the patient’s survival and
quality of life when using cancer treatments. But the main reason behind the failure of the
most used therapies, such as chemotherapy, is cancer cells’ intrinsic or acquired resistance to
the drugs. For example, cancer cells can evade the toxicity of drugs by developing resistance
to them, which prevents the patient from getting better (Longley and Johnston, 2005;
Holohan et al., 2013). On the other hand, radiotherapy is another treatment frequently used
in cancer patients. However, the acquisition of resistance of cancer cells to radiotherapy
treatment is usually common in patients with glioma, prostate cancer (PCa), and melanoma.
Making it an ineffective treatment for this type of cancer (Kma, 2013; Chang et al., 2016).

The molecular mechanisms of intrinsic or acquired resistance of cancer cells are
multifactorial; these mechanisms can range from altered expression of transport
proteins, increased ability to repair DNA damage or the ability to copy your DNA even
with mutagenesis-induced errors caused by the same targeted therapies, high tolerance to
stress conditions, defects or evasion of apoptotic processes through senescence, alterations in
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oncogene/tumor suppressor expression and reprogramming of
metabolic pathways (Rebucci and Michiels, 2013; Sarmento-
Ribeiro et al., 2019; Cocetta et al., 2021).

Therefore, chemoresistance and radioresistance are challenges
in the field of oncology that need to be further explored in order to
be avoided. That is why researchers are currently studying new
compounds that, combined with standard therapies, can improve
their effectiveness, enhance their action, and, in turn, reduce the
adverse effects of antineoplastic drugs to obtain better results in
cancer treatment. In this sense, the natural compound resveratrol
(RSV) is a good candidate for its anticancer properties, especially
when combined with other chemotherapeutic drugs. For example, it
has been reported that RSV can reduce the risk of multidrug
resistance (MDR) through multiple cellular targets involved in
carcinogenesis and chemo/radioresistance (Varoni et al., 2016;
Ferraz da Costa et al., 2020). This review describes the molecular
mechanisms by which RSV achieves its chemo- and radiosensitizing
effects in cancer.

2 Chemistry and bioavailability of
resveratrol

Many studies have demonstrated the chemopreventive effects of
natural compounds such as curcumin, silymarin, allicin, lycopene,
ellagic acid, and RSV. Furthermore, it has been reported that
combining these natural compounds with anticancer drugs
improves the anticancer activity of the drugs and reduces their
side effects (Cragg and Pezzuto, 2016; Catanzaro et al., 2018; Berretta
et al., 2020).

RSV (3,4′,5-trihydroxy-trans-stilbene) is found in many plants
and foods such as grapes, blueberries, peanuts, berries, cocoa, etc.
(Burns et al., 2002; Biesalski, 2007; Ko et al., 2017). It is a phytoalexin
produced in plants as a defense mechanism in response to pathogen
attacks (fungal or bacterial infections) or environmental stress (such
as UV irradiation, metal salts, etc.) (Dercks and Creasy, 1989;
Cocetta et al., 2021). RSV can be found in cis or trans-isomeric
forms and their glycosides, trans-piceid and cis-piceid (Ali et al.,
2010; Varoni et al., 2016; Ferraz da Costa et al., 2020). Since the
publication by Jang et al. (Jang et al., 1997), the first article on the
anticancer properties of RSV, the field of cancer research has given
great interest to this molecule. In addition, a wide variety of
beneficial biological effects of RSV have been discovered and
explored, including its antioxidant, anti-inflammatory, anticancer,
cardio- and neuroprotective activity (Park and Pezzuto, 2015;
Kuršvietienė et al., 2016). However, in vivo experimental models
have demonstrated that RSV is rapidly metabolized and eliminated,
which leads to low bioavailability of the compound. Following oral
administration, RSV is absorbed by passive diffusion or via
membrane transporters at the intestinal level and is then released
into the bloodstream, where it can be detected as an unchanged or
metabolized molecule. (Ferraz da Costa et al., 2020). Even though
75% of RSV has been shown to be absorbed orally, only 1% is
detected in the blood plasma after all metabolism (Varoni et al.,
2016; Chimento et al., 2019; Ferraz da Costa et al., 2020).

To improve the bioavailability of RSV other means of RSV
transport have begun to be used to enhance its bioavailability, such
as delivering RSV through nanocarriers like nanoparticles or using

different strategies, such as combining RSV with other compounds
(bio-enhancers) (Kucinska et al., 2014; Santos et al., 2019; De Vries
et al., 2021; Baek et al., 2023). For example, in the study of Zhang
et al., they developed a nanocarrier of RSV-loaded poly (ε-
caprolactone)-poly (ethylene glycol) nanoparticles with an
erythrocyte membrane. This system improved RSV’s poor water
solubility and helped it escape the control of immune cells,
improving its biocompatibility and tumor penetration in vivo
models. Furthermore, they demonstrated for the first time that
RSV could induce ferroptotic cell death in colorectal cancer by
initiating lipid peroxidation and suppressing the expression of
SLC7A11 and GPX4 (Zhang et al., 2022b).

Bioactive or bioenhancer compounds have also been used
(piperine, quercetin, biflavone ginkgetin) that, in combination
with RSV, improve bioavailability, solubility, absorption, and
cellular permeability (De Vries et al., 2021; Jaisamut et al., 2021;
Vesely et al., 2021).

Even in recent years, different synthetic derivatives of RSV
(methoxylated, hydroxylated and halogenated), also known as
prodrugs, have been developed to improve the bioavailability of
RSV and its biological activities (Nawaz et al., 2017; Ferraz da Costa
et al., 2020). Some examples of these are 3,5,4′-tri-O-acetyl-
resveratrol (TARES) and resveratrol 3-O-β-D-glucopyranoside
(De Vries et al., 2021).

On the other hand, some studies have reported that low daily
doses of RSV have potent chemopreventive effects in vivo (Scott
et al., 2012), which could be related to RSV conjugates or
metabolites. Like many other polyphenols, RSV is metabolized by
several enzymes, such as cytochrome P450 superfamily enzymes,
sulfotransferases, and UDP-glucuronosyltransferases, to form
conjugated (glucuronide and sulfated) metabolites. Unabsorbed
polyphenols and their conjugates reach the lower gastrointestinal
tract (cecum and colon) and interact with the intestinal microbiota.
Dihydroresveratrol (DHR), lunularin (LUN), and 3,4′-dihydroxy-
trans-stilbene are RSV metabolites derived from gut microbiota (Li
et al., 2022). Interestingly, DHR and LUN have been shown to exert
more potent antiproliferative and anti-inflammatory effects in renal
and colonic cell lines, and it is suggested that DHR and LUN may
contribute significantly to the chemopreventive properties elicited
by RSV in the kidney and colon (Li et al., 2022).

3 Resveratrol as an anticancer
compound

RSV has a wide variety of biological activities, such as
antioxidant, anti-inflammatory, antiviral, neuroprotective,
cardioprotective, immunomodulatory, and anticancer activity
(Kotecha et al., 2016; Nawaz et al., 2017; Giordo et al., 2022). A
large amount of literature reports the anticancer effects of RSV
(Behroozaghdam et al., 2022; Wu et al., 2022; Zucchi et al., 2023).

In fact, RSV exerts its antitumor effects through pleiotropic
mechanisms of action (Repossi et al., 2020). Its ability to act on
multiple targets has contributed to its usefulness as an anticancer
agent (Varoni et al., 2016); in addition, in combination with other
therapies (chemotherapeutics and radiotherapy, for example,), its
ability to sensitize tumor cells resistant to such therapies has been
demonstrated (El-Benhawy et al., 2021; Cheuk et al., 2022; Choi
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et al., 2022; Komorowska et al., 2022). Likewise, it has been seen that
RSV protects healthy cells from the adverse effects of conventional
agents (Ivanova et al., 2019). Therefore, its potential utility as an
anticancer agent is quite attractive. Some RSV targets involved in the
carcinogenesis process are exemplified in the following figure
(Figure 1).

Due to its antioxidant and antimutagenic properties, RSV
manages to prevent the onset of carcinogenesis. Likewise, it
inhibits tumor growth and promotion by interfering with
metabolic pathways such as glucose metabolism (Liu et al., 2018),
inhibiting Cyclooxygenase-COX, and reducing the proliferative
activity of cancer cells and their metastatic potential (Hu et al.,
2016b). Furthermore, as shown by Schneider et al. (Schneider et al.,
2001), RSV prevents the formation of colon tumors and reduces
small intestine tumors in ApcMin/+ mice by decreasing the
expression of genes directly involved in the progression of the
cell cycle and cell proliferation (e.g., Cyclin D1 and D2).
Moreover, RSV positively regulates genes activating immune cells
such as HLA, FasL, and FOXP3, among others (Schneider et al.,
2001; Fontenot et al., 2003; Ashrafizadeh et al., 2021).

On the other hand, several studies have shown the antitumor
capacity of RSV by interfering with different signaling pathways
such as STAT3, PI3K/Akt/mTOR,Wnt, insulin growth factor (IGF),
SIRT1/AMPK, etc. (Habibie et al., 2014). In addition, RSV has also
been reported to decrease NF-ĸB phosphorylation and acetylation,
causing deficiencies in factors involved in tumor invasion and
metastasis (I-CAM, AP-1, VEGF). The physical interaction
between NF-ĸB and SIRT1 is involved in the anticancer activity
of RSV (Buhrmann et al., 2016). SIRT1 inhibits NF-ĸB signaling by
deacetylating the p65 subunit of the NF-ĸB complex. Furthermore,

SIRT1 stimulates oxidative energy production by activating AMPK,
PPARα, and PGC-1α, inhibiting NF-ĸB signaling and suppressing
inflammation (Shao et al., 2015; He et al., 2017; Zhao et al., 2017).
Also, RSV has been shown to suppress the growth of
HCT116 colorectal cancer cells by inhibiting SIRT1-dependent
NF-ĸB, in addition to inducing apoptosis in ls174t cells through
the induction of the expression of the proapoptotic protein Bax
inhibits the anti-apoptotic protein Bcl-2 (B-cell lymphoma 2) (Chen
et al., 2009; Buhrmann et al., 2016).

In another critical study, Reagan-Shaw et al. (Reagan-Shaw et al.,
2004) revealed that RSV significantly inhibits the induction of
epidermal hyperplasia, mediated by exposure to UVB radiation
through the decrease in proliferating cell nuclear antigen
(PCNA), CDK-2, -4, and -6, as well as Cyclins-D1 and D2 in
SKH-1 mouse cells. On the other hand, RSV in HaCaT cells
inhibits cell proliferation by inhibiting the PI3K/AKT/mTOR
pathway (Fabbrocini et al., 2010; Kisková and Kassayová, 2019).
Another study reported that RSV suppresses cell growth and induces
apoptosis in Colo16 squamous epidermal cancer cells (SCC) by
inactivating Wnt and its target genes (survivin, c-Myc, cyclin D1,
and VEGF). In addition, RSV increases the expression of the Wnt
signaling inhibitor (Axin2) (Liu et al., 2017).

On the other hand, the role of resveratrol as an epigenetic
regulator is very important in its anticancer activity. Let us
remember that DNA hypermethylation (catalyzed by specific
DNA methyltransferases (DMNT)) and histone deacetylation
(mediated by histone deacetylases (HDACs) are key epigenetic
mechanisms for the silencing and repression of many genes,
including those involved in cell cycle regulation, DNA repair,
inflammatory response, and apoptosis. Multiple studies have

FIGURE 1
General representation of the main pathways and molecular targets affected by RSV in cancer. The arrows refer to promotion or increase, while the
hammerhead lines refer to inhibition.
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described the ability of RSV to increase or decrease the methylation
of genes involved in tumorigenesis. For example, it has been shown
that RSV can decrease the methylation of the promoters of the
PTEN and BRCA-1 genes. Likewise, it has been seen that the
methylation of the tumor suppressor gene RASSF1A and IL-10
decreases. And RSV can also increase the methylation of oncogenes
such as AURKA, CCNB1, and HK2 (Lee et al., 2018). Additionally,
RSV has also been involved in the deacetylation of genes such as
p53 through SIRT1 (Lee et al., 2018; Rajendran et al., 2022).

Interestingly, it has also been reported that RSV modulates the
expression of some miRNAs (short non-coding RNA) and lncRNAs
(long non-coding RNA), which regulate the expression of genes
involved in the malignant phenotype of cancer (Wang et al., 2019b;
Asemi et al., 2023). For example, oncogenic miRNAs such as miR-
19, miR-21, and miR-30a-5p have significantly decreased by RSV
treatment in glioma (GBM) cells, modifying the expression of their
target genes such as p53, PTEN, STAT3, NF-ĸB, COX-2 (Cocetta
et al., 2021). On the other hand, lncRNAs have been identified as
possible targets of RSV: MEG3 and ST7OT1 in GBM cell lines,
U251 and U87, which increase with RSV treatment and induce
apoptosis and necrosis of both cell lines. The MEG3 and
ST7OT1 lncRNAs act as tumor suppressor genes. Ectopic
expression of MEG3 and ST7OT1 inhibits cell proliferation and
promotes apoptosis in human GBM cell lines (Wang et al., 2012; Liu
et al., 2015). In contrast, RSV has been reported to decrease the
expression of the lncRNA MALAT1 in colorectal and gastric cancer
cells through the Wnt/β-catenin signaling pathway (Ji et al., 2014;
Yang et al., 2018). The inhibition of MALAT1 expression by RSV is
relevant as it is involved in the progression and metastasis of various
types of cancer, including colorectal, gastric, lung, and
hepatocarcinoma (Lai et al., 2012; Gutschner et al., 2013; Ji et al.,
2014; Yang et al., 2018).

In a recent study, RSV in both its cis and trans forms was shown
to inhibit the activity of the Anoctamin1 (ANO1) channel (a
calcium-activated chloride channel, which is involved in the
proliferation, migration, and invasion of various types of cancer,
including head and neck squamous cell carcinoma, lung cancer, and
prostate cancer) (Carter et al., 2014). In addition, they showed how
RSV also decreased the expression of ANO1 protein and mRNA in
PC-3 prostate cancer cells (Jeon et al., 2023).

4 Cancer and therapies

Cells constantly struggle with external stress and damage, which
can result in mutations or severe cellular alterations if there is no
successful repair. Usually, when there is very serious damage, the cell
commits suicide to avoid further destruction and to eradicate
genetically unstable and dangerous cells. However, if the cell
death mechanism is not working properly, “malignant” cells can
begin to proliferate, ultimately resulting in a tumor (cancer)
(Zaitceva et al., 2021). Cancer remains one of the world’s leading
causes of death, generating enormous costs and burdening
humanity. The annual number of cancer cases worldwide is
projected to increase from 19.3 million in 2020 to 30.2 million in
2040 (UICC Global Cancer Control, 2023).

The main goal of cancer treatment is the elimination of
malignant cells through the induction of cell death. However,

cancer cells constitute important barriers to clinical therapies due
to their heterogeneity and plasticity. Resistance to cell death is one of
cancer’s main characteristics, allowing the uncontrolled
multiplication of cancer cells (Zaitceva et al., 2021). During the
last years, several mechanisms have been described by which cancer
cells can avoid cell death and acquire resistance to current
treatments (surgery, radiotherapy, chemotherapy, targeted
therapy, and immunotherapy). Among these are the
overexpression of antiapoptotic proteins (Bcl-2) and the
inactivation of p53 (Carneiro and El-Deiry, 2020). Oncologists
point out that classical chemotherapy and radiotherapy are
already reaching the limits of their effectiveness, so other
methods or alternatives are needed to improve their effectiveness
against cancer (Papież and Krzyściak, 2021).

In this review, we describe the signaling pathways and cellular
mechanisms that lead to the development of chemoresistance and
radioresistance in cancer cells.

Below is a table with information regarding the resistance that
some types of cancer must radio and chemotherapy. It is worth
mentioning that it is not yet known exactly which types of cancer
will be resistant or sensitive to the therapies with which they will be
treated since, as mentioned above, resistance can also be acquired
during the treatment process, and multiple factors are involved in
this. The development of resistance (tumor microenvironment,
signaling pathways, cell-cell interactions, changes or mutations at
the genetic and epigenetic level). However, this table was prepared
based on articles and studies where emphasis is placed on the most
studied specific types of cancer that tend to present or be more
resistant to a specific therapy (Table 1).

5 Signaling pathways and mechanisms
leading to chemoresistance and
radioresistance

The characteristics of cancer cells that promote resistance to
therapies, currently more described, are the following. Some cancer
cells are said to resemble stem cells, defined as cancer stem cells
(CSCs); These cells frequently change during tumor progression and
after therapeutic exposures, favoring their resistance and
progression (Basu et al., 2022). Tumors have also been shown to
harbor a population of slow-cycling cells (SCCs) that are not in the
proliferative cell cycle and are inherently refractory to antimitotic
drugs. However, they can stochastically re-enter the proliferative cell
cycle or respond to mitogenic stimuli. Like CSCs, SCCs can evade
the immune system and survive cancer treatments, thereby
influencing treatment failure, tumor recurrence, and metastasis.
Unlike CSCs, SCCs represent a population of transient cells that
haphazard go in and out of the G0/G1 phase very quickly (Basu et al.,
2022).

On the other hand, a group of cancer cells acquires the ability to
resist therapies through anastasis. Anastasis is, in a few words, the
arrest of apoptosis and the ability that cells acquire to maintain
themselves in a state of senescence after treatment. After this, they
preserve and increase their proliferative capacity, making anastasis
undesirable during cancer therapy (Zaitceva et al., 2021). Cancer
cells enter the anastasis process because some of the mitochondria of
these cells remain intact during the apoptosis process; this is by
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increasing the levels of Bcl-2/Bcl-xL, which inhibit the process of
permeabilization of the outer membrane of mitochondria (MOMP).
Allowing these mitochondria to repopulate in the cell (Peña-Blanco
and García-Sáez, 2018). A limited number of mitochondria undergo
MOMP; the amount of cytochrome c released is insufficient to
trigger apoptosis but sufficient for sublethal activation of caspase
and consequent activation of endonuclease, leading to genome
instability (Zaitceva et al., 2021).

On the other hand, polyploid giant cancer cells (PGCC) are
found in several types of cancers and have been seen to play an
important role in resistance to treatments such as radiotherapy and
chemotherapy. These cells are characterized by having multiple
nuclei or a single giant nucleus with multiple complete sets of
chromosomes. In addition, they contribute to the immortality,
invasion, and metastasis of tumors. For example, Was et al.

showed how polyploidy develops in response to various
genotoxic stresses, such as chemotherapy, radiation, hypoxia,
oxidative stress, or environmental factors such as air pollution,
ultraviolet light, or hyperthermia (Liu et al., 2022; Was et al.,
2022). The general mechanism leading to PGCC formation could
be a consequence of endoreplication, which is related to genetic or
physical disorders of mitosis, cell fusion, or cell cannibalism. An
important evolutionary feature of polyploid cancer cells is the
generation of aneuploid clones during depolyploidization, which
expands cancer cells’ genetic repertoire, allowing them further
development and expansion (Mittal et al., 2017; Liu et al., 2022;
Pienta et al., 2022; Was et al., 2022).

Chemoresistance and radioresistance mechanisms in tumor
cells can be intrinsic (cells are resistant before treatment) or
acquired (resistance develops during treatment). Below, we

TABLE 1 Mechanisms of resistance to chemo and radiotherapy in cancer.

Treatment Resistant types of
cancer

Resistance mechanisms References

Radiotherapy Chemotherapy whit
temozolomide

Glioblastoma cancer Unmethylated MGMT (O6-methylguanine-DNA-
methyltransferase) promoter

Mohammad et al. (2015), Gao et al.
(2022)

Overexpression of antiapoptotic proteins Bcl-2 and
Bcl-xL

Inhibitors of apoptosis (IAP), such as XIAP, cIAP1,
cIAP2, ILP2, ML-IAP, and surviving

Overexpression of lncRNA (PDIA3P1)

Chemotherapy whit temozolomide Melanoma Activating mutations of BRAF serine/threonine kinase Mohammad et al. (2015), Zhai et al.
(2020)

Overactivation of the MAPK and PI3K/AKT pathways

Overexpression of the positive regulator of Bcl-2, NF-κB

Activation of NLRP1 inflammasomes

Chemotherapy whit 5-fluorouracil Colorectal cancer Deregulation of Wnt, Notch, Hedgehog and/or TGF-β
signaling pathways involved in the proliferation and
maintenance of CSCs

Blondy et al. (2020)

Overexpression of FasL that triggers Fas-mediated
apoptosis of T cells

High expression and greater activity of some membrane
drug transporters (MDR) such as MRP8/ABCC11,
ABCC5, MRP7/ABCC10, and ABCB1

Chemotherapy whit carboplatin,
paclitaxel

Ovarian cancer Overexpression of the alpha 1 chain of collagen type I
(COL1A1)

Zhang et al. (2021b), Yang et al. (2021)

Upregulation of drug resistance protein CSAG2 by
cytoplasmic polyadenylation element binding protein 4
(CPEB4)

Chemotherapy whit paclitaxel,
doxorubicin Radiotherapy

Breast cancer Hypermethylation of the Krüppel-like factor 4 (KLF4)
promoter by DNA-methyltransferase 1 (DNMT1)

Gilreath et al. (2021), Xiang et al. (2021),
Lin et al. (2022)

P-glycoprotein protein can pump doxorubicin out of
MCF-7 cells

Overexpression of breast cancer resistance protein
(BCRP)

A hypoxic microenvironment that promotes resistance
to radiotherapy

Radiotherapy Prostate cancer Alteration of the DNA damage repair system, cell cycle
disorders, imbalance of redox homeostasis, EMT, CSC
and hypoxia in the tumor nucleus

Lyu et al. (2023)
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describe some of the most important mechanisms and signaling
pathways (Figure 2), but for a more detailed review, you can consult
the works of Fodale et al., 2011; Chang et al., 2016; Mashouri et al.,
2019; Ali et al., 2020; Zaitceva et al., 2021; Fodale et al., 2011; Chang
et al., 2016; Mashouri et al., 2019; Ali et al., 2020; Zaitceva et al.,
2021).

5.1 Reactive oxygen species (ROS) and TNF

Members of the tumor necrosis factor (TNF) superfamily are
important inducers of apoptosis, contributing to the death response
in tumor cells. However, they are also involved in developing adverse
reactions such as resistance to anticancer drugs; these effects are
mediated by the production of ROS (Garg and Aggarwal, 2002;
Blaser et al., 2016; Cruceriu et al., 2020).

The release of TNF stimulates the activation of the vascular
endothelium, release of nitric oxide, recruitment of inflammatory
cells, immunoglobulins, complement and alters the permeability of
the mitochondrial membrane, favoring the release of cytochrome C
and the subsequent activation of caspases, which, in turn, leads to
apoptosis. Furthermore, TNF signaling is directly related to the
mitochondrial electron transport mechanism and ROS production
(Chandel et al., 2001). ROS are an upstream component that activate
the process of TNF-induced apoptosis, followed by caspases,
mitogen-activated protein kinases (MAPKs), NF-κB, and
activation of the transcription factor AP-1 (Garg and Aggarwal,
2002). Oxidative stress is essential in tumor development and cancer
therapy (Gorrini et al., 2013). It has been reported that ROS can
promote oncogenic mutations and epigenetic changes in cancer
cells. These alterations lead to the loss of tumor suppressor genes,
accelerated cell metabolism, and altered cell sensitivity to anticancer
drugs (Pelicano et al., 2004; Panieri and Santoro, 2016; Priya et al.,
2017).

ROS are generated by redox-sensitive pro-survival signaling
pathways (oxidation-reduction reactions), which function as
intermediates in the transduction of various extracellular signals

(Vinod et al., 2013). However, there is a complex intracellular redox
network to protect cells against oxidative stress, where several
signaling pathways can be activated in the adaptive response of
ROS (glucose metabolism, PI3K/Akt pathway, MAPK pathway).
These signaling pathways play a critical role in protecting cancer
cells against the cytotoxic effects of antineoplastic agents, leading to
chemoresistance (Marengo et al., 2019). For example, in
chemoresistant epithelial ovarian cancer (EOC) cells, an increase
in ROS and apoptosis was observed with the combination of
Dactolisib (BEZ235) and cisplatin treatment, which also inhibited
the PI3K/Akt/mTOR signaling pathway, reversing epithelial-
mesenchymal transition (EMT) and decreasing CSC marker
expression compared to cisplatin monotherapy (Deng et al., 2019).

On the other hand, ROS-mediated genotoxic stress has been
shown to be involved in NaAsO2 -induced cell cycle arrest,
decreased stemness, and chemoresistance of prostate cancer cells
(PC-3 and DU145) (Zhang et al., 2021c).

5.2 NF-κB signaling pathway

NF-κB is activated by different molecules and signaling
pathways, and in turn, this transcription factor modulates the
expression of several genes (more than 500 genes) that
participate in inflammatory responses, cell differentiation,
adaptation to stress, apoptosis, immunity, and one of the main
effector pathways that regulate the amount of ROS that leads to cell
survival and at the same time to chemoresistance in cancer (Morgan
and Liu, 2011; Vinod et al., 2013).

Among the many diseases related to aberrant NF-κB activation,
cancer has been the main focus due to the role of NF-κB as a central
regulator of the regulation of genes involved in cell survival (Bcl-2,
Bcl-xL, inhibitors of apoptosis proteins [IAP] and superoxide
dismutase) (Garg et al., 2005) and tumor progression
(intercellular adhesion molecule 1 [ICAM1], vascular cell
adhesion molecule 1 [VCAM1], leukocyte-endothelial adhesion
molecule 1 [PECAM- 1], vascular endothelial growth factor

FIGURE 2
Representation of the main pathways, factors and proteins involved in the development of radioresistance and chemoresistance in cancer cells.
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[VEGF], hypoxia-inducible factor [HIF-1], Cyclooxygenase-2
[COX-2], inducible nitric oxide synthase [iNOS], and matrix
metalloproteinase [MMP-9]). Furthermore, NF-κB activity is
frequently elevated in many tumor types, including leukemia,
lymphoma, prostate cancer, breast cancer, colon cancer,
melanoma, and head and neck cancer (Garg et al., 2003; Dolcet
et al., 2005; Fan et al., 2013; Wu et al., 2017).

NF-κB can be aberrantly activated in cancer by
chemotherapeutic agents and ionizing radiation, response to
stress, and induced cell death, leading to treatment-induced
resistance of tumor cells (Jung and Dritschilo, 2001; Garg et al.,
2003; Sampepajung et al., 2021). In vitro and in vivo studies have
shown that NF-κB inhibits chemotherapy-induced apoptosis in
various tumor types (Bharti and Aggarwal, 2002; Sampepajung
et al., 2021). For example, the upregulation of NF-κB-inducible
genes has been shown to protect MDA MB-231 breast cancer cells
from apoptosis induced by paclitaxel and ionizing radiation
(Newton et al., 1999). Similarly, in another study, they treated
cell lines of different types of cancer [Hep-3B (liver), AGS
(gastric), SiHa (cervical), MCF7 (breast), NTUB1 (bladder), and
H460 (lung-non-small cells)] with different chemotherapy regimens
(doxorubicin, 5-fluorouracil [5-FU], cisplatin, and paclitaxel), and
found a correlation between cell survival with the level of drug-
induced NF-κB activity (Chuang et al., 2002). On the other hand, in
a study where the inhibitory subunit of NF-κB was transfected, an
increase in chemotherapeutic efficacy was observed in vitro and in
vivo models of gastrointestinal neoplasms (Cusack et al., 2000).

Another interesting study is that of Park M. et al. (Park et al.,
2016); they evaluated the role of protein tyrosine kinase 7 (PTK7) in
ESCC resistance to radiotherapy. They observed that PTK7 plays an
important role in ESCC radioresistance through activation of the
NF-ĸB pathway. In addition, these authors reported an increase in
the IAPs, XIAP, and survivin, encoded by NF-ĸB regulated genes,
which was associated with radioresistant cells but not in
radiosensitive cells; nevertheless, PTK7 knockdown
downregulated IAP expression (Park et al., 2016).

5.3 COX-2

COX-2 is an enzyme expressed primarily in response to
inflammatory disorders and cancer. It is responsible for
mediating the production of prostaglandins and is under clinical
investigation as a target for cancer therapy (Milas, 2001; Nakata
et al., 2004; Gowda et al., 2017). Over-expression and activity of
COX-2 have been associated with more aggressive tumor
phenotypes and worse prognosis in patients with breast, colon,
head, neck, lung, and pancreatic cancer (Wang et al., 2014; Li et al.,
2020). Furthermore, evidence suggests that COX-2 is involved in
multiple aspects of carcinogenesis, including tumor growth,
metastatic spread, and resistance to various therapies (Harris,
2009; Tong et al., 2018). As a result, some scientists have
investigated the usefulness of selective COX-2 inhibitors, such as
SC-236 and Celecoxib, in vitro and in vivo to test whether their
inhibition can sensitize tumor cells to make treatment more efficient
against cancer using chemotherapy and radiotherapy. For example,
SC-236 increased the response to radiotherapy in various murine
tumor models (you can put here which tumor types) and in a human

GBM xenograft in nude mice (Kishi et al., 2000; Petersen et al.,
2000). On the other hand, the combination treatment with celecoxib
and imatinib resulted in a significant decrease in cell viability and an
increase in caspase-3 enzyme activity in HT-29 colon cancer cells
(Atari-Hajipirloo et al., 2016).

In another study, celecoxib and afatinib co-treatment inhibited
the expression of COX-2 and EGFR, which led to increased
sensitization of A549 lung cancer cells to radiotherapy and
apoptosis (Zhang et al., 2021a).

5.4 Bcl-2 and p53 mutant

The development of resistance to cell death mechanisms,
specifical death by apoptosis, is one characteristic that
distinguishes tumor cells and plays an important role in
developing resistance against anticancer agents.

Bcl-2 is an anti-apoptotic protein that is overexpressed in several
solid and hematopoietic tumors, and that also exerts its influence by
improving cell survival (Kaufmann and Vaux, 2003), which
contributes to resistance to conventional treatments, including
chemotherapy and radiotherapy (Deng et al., 2000; Maji et al.,
2018). In addition, several studies have shown that Bcl-2
inhibition sensitizes tumor cells to chemotherapy and
radiotherapy. For example, transfection with the PTEN gene,
which negatively regulates Bcl-2, potentiated the effects of
radiation therapy on several prostate cancer cell lines (PC-3-Neo,
PC-3-Bcl-2, and LNCaP) (Rosser et al., 2004). Another study that
used an antisense oligonucleotide against Bcl-2 observed an increase
in apoptosis and greater chemotherapeutic efficacy in a thyroid
carcinoma cell line (Kim et al., 2003). These results and others have
highlighted Bcl-2 as a potential target for chemosensitization and
radiosensitization (Belka and Budach, 2002; Gutiérrez-Puente et al.,
2002). For example, in the study carried out by Lu L et al. (Lu et al.,
2018), in the MB-468 radioresistant breast cancer cell line, they
observed low levels of ROS and higher levels of STAT3 and Bcl-2
proteins; on the other hand, when they added Niclosamide, a potent
STAT3 inhibitor, radioresistance was overcome by inhibiting
STAT3 and Bcl-2 and inducing ROS (Lu et al., 2018).

On the other hand, the tumor suppressor protein p53 is a key
factor in inducing cell cycle arrest, DNA repair, and apoptosis in
response to cellular stress. Unfortunately, it is known that in
approximately more than 50% of cancerous tumors, p53 is
mutated (Levine, 1997). Consequently, there is increased survival
and proliferation of cancer cells. In addition, there is evidence
suggesting that inactivation of the p53 wild-type protein results
in increased chemo-resistance to several chemotherapeutic drugs,
including doxorubicin, cisplatin, 5-fluorouracil (5-FU), and
etoposide (Ferraz da Costa et al., 2012).

Moreover, the mutant p53 gain of function can induce
chemoresistance, increasing drug efflux and metabolism, survival
promotion, apoptosis inhibition, upregulation of DNA repair,
autophagy suppression, microenvironmental resistance elevation, and
the induction of cancer stem cells (He et al., 2017). However, recently, a
subset of cancer cells, regardless of their p53 status, exhibited resistance
to chemotherapy through the p21 protein. p21 is a transcriptional target
of p53 that is induced uponDNAdamage and acts to arrest the cell cycle
by inhibiting cyclin-dependent kinases (CDKs) (Ashraf et al., 2019).
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Hsu et al. Investigate the proliferation-senescence decision in
response to chemotherapy and elucidate how early p21 dynamics
predict and shape cell fate. They concluded that cells with high or
low levels of p21 during doxorubicin treatment are destined to
become senescent, while those with an intermediate amount of
p21 proliferate after drug washout (Ashraf et al., 2019; Hsu et al.,
2019). This data is undoubtedly important for stimulating
senescence in the context of cancer therapies.

5.5 Survivin

Survivin is part of the mammalian IAP family, and its main
function is to inhibit the apoptosis pathway by blocking the
activation of caspases 3, 8, and 9 (Salvesen and Duckett, 2002).
Both in vitro and in vivo experiments have shown cancer-inducing
properties of surviving (Bao et al., 2002), as well as overexpression in
various types of cancer and absence in most normal tissues (Altieri,
2003). Survivin expression has been shown to increase in VEGF-
stimulated vascular endothelial cells (O’Connor et al., 2000; Mesri
et al., 2001; Tran et al., 2002). In addition, high levels of surviving
expression have been associated with a high rate of tumor
recurrence, poor overall patient survival, and high tumor
resistance to chemotherapy and radiotherapy in several cancers,
including lung, breast, colon, stomach, esophagus, pancreas, liver,
uterus, and ovary cancer among others (Altieri, 2003). Nestal de
Moraes et al. (Nestal de Moraes et al., 2015) demonstrated that the
transcription factor FOXM1 upregulates the expression of the anti-
apoptotic genes XIAP and Survivin, which contributes to the
development of drug resistance and is associated with poor
clinical outcomes in breast cancer patients (Nestal de Moraes
et al., 2015).

In contrast, survivin inhibition has been reported to sensitize
breast cancer cells to paclitaxel, etoposide, doxorubicin, and cisplatin
(O’Connor et al., 2000; Wall et al., 2003; Mita et al., 2008; Lyu et al.,
2018; Minaiyan et al., 2021); furthermore, survivin inhibition in
combination with radiotherapy resulted in a significant decrease in
lung cancer cells survival (Lu et al., 2004).

5.6 Multidrug resistance (MDR) proteins or
carrier proteins

Since the antitumor agent must reach the cancer cell in an adequate
concentration to exert its effect, drug uptake or release alterations could
also be responsible for the acquisition of chemoresistance (Huang and
Sadée, 2006). Transport proteins, also called ATP-dependent multidrug
transporters (ABCs), associated with chemoresistance are multidrug
resistance proteins (MDR1; P-glycoprotein [P-gp]; MRP1; ABCB1;
ABCC1) (Leonard et al., 2003; Crouthamel et al., 2006; Pérez-
Gutiérrez et al., 2007), the multidrug resistance-associated protein
(MRP1) (Hong et al., 2019), the protein related to lung resistance
(LRP) (Schneider et al., 2001; Wang, 2011) and breast cancer resistance
protein (BRCP) (Fu et al., 2020). MDR proteins are ATP-binding
proteins that regulate P-gp, which are responsible for removing drugs
from cells using ATP hydrolysis (Yang et al., 2014).

Many drugs, including daunorubicin (DRN), imatinib, nilotinib,
taxol, and doxorubicin, among others, can be expelled from cancer

cells that overexpress P-gp and multidrug resistance-associated
protein 1 (MRP1) transporter (Gottesman et al., 2002; Kosztyu
et al., 2014). For example, in one study, high expression and activity
of MRP1 were observed in primary cultures of glioblastoma
multiforme biopsies (Quezada et al., 2011). Also, in PC3 and
DU145 human prostate cancer cell lines, increased expression of
MRP1 in prostate cancer cells is related to resistance to
chemotherapy. Similarly, the blockade of MRP1 function by
leukotriene receptor antagonists (MK-571 and zafirlukast) led to
an intracellular accumulation of the MRP1 substrate and increased
sensitivity to cytotoxic drugs (van Brussel and Mickisch, 2003). This
result was consistent with the study where they used an NF-ĸB
inhibitor to inhibit MDR protein expression, leading to increased
apoptosis in prostate cancer cells (Flynn et al., 2003).

On the other hand, elevated levels of ABCB1 have also been
shown to be associated with paclitaxel resistance in human
osteosarcoma (OS) cell lines, which developed cross-resistance
with other ABCB1 substrates, such as doxorubicin, docetaxel, and
vincristine (Yang et al., 2014). In addition, the involvement of
ABCB1 overexpression in doxorubicin resistance in human OS
cells was demonstrated by downregulation or abrogation of
ABCB1 expression, which resulted in the restoration of
doxorubicin sensitivity (Fanelli et al., 2016; Liu et al., 2016; Serra
et al., 2021).

Moreover, the study by Ranibar S et al. (Ranjbar et al., 2019)
used compounds derived from 5-oxo-hexahydroquinoline that they
named D6, D5, and D3 (which have 3-chlorophenyl, 2,3-
dichlorophenyl and 4-chlorophenyl substituents in the
C4 position of the 5-oxo-hexahydroquinoline core) these
compounds inhibit P-gp, MRP1, and BCRP, respectively; causing
a reversal of drug resistance (Doxorubicin, mitoxantrone) at
concentrations of 1–10 μM, in human uterine sarcoma cells
(MES-SA) sensitive and resistant to drugs with P-gp overexpression.

5.7 AKT signaling pathway

Protein kinase B (PKB or Akt) is a downstream effector of PI3K
and has been described as a mediator of anti-apoptotic signaling in
cancer cells. In addition, Akt overexpression has been shown to
promote cell cycle progression and tumorigenesis (Zhan and Han,
2004). Akt may contribute to chemoresistance and radioresistance:
for example, over-expression of Akt1 has been reported to result in
increased resistance of lung cancer cells (describe which cell lines)
against a panel of various chemotherapeutic agents (doxorubicin,
cisplatin, and mitoxantrone) (Hövelmann et al., 2004).
Accumulating evidence to date has suggested that the PI3K/Akt
pathway may also be an essential contributor to radioresistance
(Zhan and Han, 2004). In this regard, Akt activation in bile duct
cancer cells has been shown to be associated with radioresistance,
which was demonstrated through indirect inhibition of Akt
activation with a PI3K inhibitor (LY294002) (Tanno et al., 2004).

On the other hand, in a recent study, the PI3k/Akt/mTOR
pathway was associated with the increase and activation of PDK1,
which is associated with radioresistance, motility, and invasiveness
of hepatocellular carcinoma. Furthermore, it was observed that
pharmacological inhibition of PDK1 in Huh7 cells mediated by
BX795 synergistically enhances the radiosensitivity of these cells,
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increases the apoptotic Bax/Bcl-2 ratio, and abolishes oncogenicity
and clonogenicity (Bamodu et al., 2020).

Another study showed that the inactivation of AKT signaling
inhibited tumorigenesis and radioresistance mediated by CPNE1 in
triple-negative breast cancer cells. Knockdown of CPNE1 also
inhibited tumor growth and promoted cell apoptosis in vivo in
mouse xenografts (Shao et al., 2020).

In addition, the participation of the PI3K/AKT/mTOR pathway
in chemoresistance has also been reported. For example, in the study
by Qiu C et al. (Qiu et al., 2020), they show that MNAT1, a cyclin-
dependent kinase-activating kinase (CAK) complex, contributes to
OS cell resistance to cisplatin via the PI3K/AKT/mTOR. MNAT1 is
highly expressed in various types of cancer and is involved in the
molecular pathogenesis of cancer and drug resistance (Qiu et al.,
2020).

5.8 STAT3

STAT3 is amember of the STAT family of transcription factors that
are activated by tyrosine phosphorylation through signaling mediated
by receptors such as epidermal growth factor receptor (EGFR), platelet-
derived growth factor (PDGF), and cytokines such as interleukin-6 (IL-
6) (Akira, 2000; Levy and Darnell, 2002). It is established that IL-6 is
produced in an autocrine or paracrine manner and plays an essential
role in the malignant progression of various types of cancer, including
multiple myeloma (MM), by regulating the growth and survival of
tumor cells. The presence of IL-6 leads to constitutive activation of
STAT3, resulting in the expression of high levels of the anti-apoptotic
protein Bcl-xL (Catlett-Falcone et al., 1999; Bharti et al., 2004).
Therefore, STAT3 has various biological functions, including
regulation of cell growth, apoptosis, and cell differentiation.
STAT3 has also been shown to be permanently active in various
human cancers and is required for tumor cell proliferation
(Bromberg, 2001). Furthermore, it has been reported that
STAT3 can mediate chemoresistance, and its inhibition can sensitize
cells to apoptosis. For example, in the study by Bharti et al. (Bharti et al.,
2004), inhibition of STAT3 contributed to decreased survival of
multiple melanoma cells and sensitized pancreatic cancer cells to
apoptosis (Greten et al., 2002). Blockade of STAT3 using various
techniques sensitized breast cancer cells (MDA-MB435) to apoptosis
induced by taxol and adriamycin (doxorubicin) chemotherapy (Real
et al., 2002). Other studies also show that STAT3 inhibition increases
radiosensitivity in different tumors such as hepatocellular carcinoma,
squamous cell carcinoma of the head and neck, gastric cancer,
pancreatic cancer, etc., (Adachi et al., 2012; Bu et al., 2013; Huang
et al., 2014; 2016; Lee et al., 2019; You et al., 2019; Wang et al., 2020b).

5.9 EGFR signaling pathway

EGFR is a transmembrane glycoprotein with intrinsic tyrosine
kinase activity. By binding with EGF, it regulates a signaling cascade
that, in turn, regulates cell growth and proliferation. Similarly, it
activates molecular pathways involved in various cellular processes,
such as cell differentiation, survival, and transformation (Yarden and
Sliwkowski, 2001). EGFR overexpression has been related to more
aggressive tumor phenotypes, poor patient prognosis, and lack of

response to antitumor therapies (Wang, 2017). For example, increased
EGFR expression is associated with increased tumor chemoresistance
and radioresistance in tumors, including squamous cell carcinoma,
ovarian adenocarcinoma, hepatocarcinoma, glioblastoma, and
adenosquamous carcinoma of the cervix (Akimoto et al., 1999;
Milas et al., 2000; Nasu et al., 2001; Wang et al., 2020a). On the
other hand, various investigators have also reported increased
sensitization of tumor cells to radiotherapy through EGFR
inhibition in head and neck squamous cell carcinoma (SCC),
human colon cancer (GEO), colon cancer, ovarian (OVCAR-3),
glioblastoma multiple (Huang et al., 1999; Bianco et al., 2000;
Huang and Harari, 2000; Wang et al., 2020a).

Further studies have confirmed that the EGFR/PI3K signaling
pathway plays an important role in tumor chemoresistance (Zhang
et al., 2019b). showed that p53 sensitized cisplatin-chemoresistant
NSCLC (Non-small cell lung cancer) by suppressing the EGFR/PI3K
signaling pathway. Similarly, when miR-7 inhibited the EGFR/PI3K
signaling pathway, adriamycin sensitivity in breast cancer (MCF-
10 and MCF-7/ADR) increased (Huang et al., 2019).

5.10 Glutathione/glutathione S transferase
system

It has also been reported that chemoresistance may be mediated
by the glutathione/glutathione S transferase (GSH/GST) system (Zhu
et al., 2006). An essential function of GSH is the detoxification of
xenobiotics and some endogenous compounds, maintaining
intracellular redox balance. These substances are electrophilic and
form conjugates with GSH, either spontaneously or enzymatically, in
reactions catalyzed by GSH-GSTs (Traverso et al., 2013). Several
studies have shown a relationship between the resistance of tumor
cells to chemotherapy drugs and an increase in the expression of GSH,
GST, and GPx (Chao et al., 1992; Buser et al., 1997).

In contrast, low levels of GSH, GST, and GPx have been found to
be associated with favorable clinical features and a good prognosis.
In contrast, high GSH and GST activity levels were associated with
more aggressive or more advanced disease in tissue samples from
women with breast cancer (Buser et al., 1997). In fact, cancer cell
lines containing low levels of GSH are much more sensitive to
ionizing radiation than cells that overexpress GSH (Meister, 1991).

Increased GSH is an important factor contributing to drug
resistance by binding or reacting with drugs, interacting with ROS,
preventing protein or DNA damage, or participating in DNA repair
processes. For example, GSH depletion and GGT inhibition in
melanoma cells significantly increased cytotoxicity through oxidative
stress (Benlloch et al., 2005). In addition, cells that overexpress GGT
have been shown to be more resistant to hydrogen peroxide and to
drugs such as doxorubicin (Hochwald et al., 1997), cisplatin (Godwin
et al., 1992), and 5-fluorouracil (McLellan and Wolf, 1999).

5.11 DNA repair

Direct or indirect alterations in DNA are the basis of the
mechanism of action of many drugs used in cancer therapy.
Therefore, increased DNA repair activity compromises the
damage induced by chemotherapeutic agents, resulting in
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chemoresistance (Sakthivel and Hariharan, 2017). Tumor cells have
obtained a great capacity to repair damaged DNA through multiple
pathways, such as mismatch repair (MMR), base excision repair
(BER), nucleotide excision repair (NER), repair by non-homologous
end joining (NHEJ), homologous recombination (HR) repair among
others. For example, the BER repair pathway is involved in colon
cancer resistance to temozolomide chemotherapy (Liu et al., 1999).
The “excision repair cross-complement protein 1” (ERCC1), which
belongs to the NER repair pathway, has also been reported to be
associated with chemoresistance to platinum-based anticancer
agents of various tumors, including cancer lung, colon, and
breast cancer (Youn et al., 2004).

On the other hand, the Werner syndrome protein (WRN), a
DNA helicase vital for the regulation/activation of NHEJ and HR
repair, as well as the maintenance of DNA telomere stability, is
found to be overexpressed in glioblastoma multiforme cancer cells
and is also associated with increased resistance to chemotherapeutic
agents, especially cisplatin (Lee et al., 2016). It has also been reported
that the ectopic expression of the HOTAIR protein (antisense RNA
of the HOX transcript), an important regulator of the transcription
factor NF-ĸB, is associated with a more significant DNA damage
response to cisplatin treatment and also a greater chemoresistance in
ovarian cancer cells (IGROV, OVSAHO, OVMUNA, SKOV3,
A2780, HEYC2, A2780-CR5, and OV90) (Özeş et al., 2016).
Otherwise, it has been reported that BRCA1, another important
protein in homologous recombination repair, activates NF-ĸB in
response to topoisomerase inhibitor drugs such as etoposide or
camptothecin; NF-ĸB, for its part, transcriptionally activates anti-
apoptotic proteins such as Bcl-2 and XIAP (X-linked inhibitor of
apoptosis), thus causing chemoresistance (Harte et al., 2014).

5.12 Proteasomal pathway

The proteasome participates in the degradation of marked
proteins that are no longer necessary for the cell or proteins that
have suffered some damage or modification by ubiquitination. It
also modulates the levels of proapoptotic, antiapoptotic, growth
regulatory and stress response factors. Alterations in this proteolytic
system are associated with various pathologies, including cancer.
Inhibition of proteasome activity results in the upregulation of
proapoptotic factors, such as p53, Bax, and Noxa, while reducing
the levels of antiapoptotic proteins, such as Bcl-2 and IAP family
proteins (McConkey and Zhu, 2008; Vinod et al., 2013).

Proteasome inhibitors have been shown to promote apoptosis in
various types of cancer and induce sensitivity to combination
chemotherapeutic agents. For example, bortezomib, an inhibitor
of the proteasomal pathway, plays an important role in combination
chemotherapy with lenalidomide and thalidomide in MM by
stimulating the immune system, inhibiting angiogenesis, and
sensitizing cancer cells, thereby overcoming chemoresistance
(Orlowski, 2004; Vinod et al., 2013; Piechotta et al., 2019).

5.13 Hypoxia

Hypoxia is a common feature of all solid neoplasms (Rankin
and Giaccia, 2016; Chouaib et al., 2017; Najafi et al., 2020); cellular

responses to hypoxia are usually regulated by the family of factors
hypoxia-inducible factor (HIF) transcriptions (Harris, 2002; Keith
and Simon, 2007). HIF is a protein complex formed by a
heterodimer consisting of an HIFα subunit and a HIFβ subunit
(Li et al., 2009). Under normoxic conditions, the Von Hippel-
Lindau tumor suppressor gene product ubiquitinates HIFα and
degrades it at the proteasomal pathway, but in hypoxia, the
interaction between HIFα and VHL is abolished. As a result,
HIFα is stabilized, dimerizes with HIFβ, and then binds to
hypoxia-responsive elements in the promoters of hypoxia-
regulated genes (Li et al., 2009). The HIF dimer activates gene
transcription that modulates cell survival, proliferation,
metabolism, and angiogenesis (Harris, 2002; Li et al., 2009;
Schwab et al., 2012). Hypoxia is related to a poor prognosis
(van den Beucken et al., 2014; Carnero and Lleonart, 2016; Qin
et al., 2017); Hypoxia during tumorigenesis can develop by two
mechanisms: chronic or acute hypoxia. Chronic hypoxia occurs
due to the high proliferation of cancer cells; therefore, they are
constantly expelled from the blood vessels. In contrast, acute
hypoxia is caused by a temporary cessation of blood flow due
to poor tumor vasculature (Brown and Wilson, 2004). Regardless
of the mechanism, tumor hypoxia has been widely documented as
contributing to resistance to all anticancer therapies, including
chemotherapy and radiotherapy (Brown and Wilson, 2004; Mitani
et al., 2014; Jeong et al., 2019; Najafi et al., 2020).

Indeed, silencing or inhibition of HIF-1 increases radiation
sensitivity in various tumor models. For example, HIF-1
knockdown in human hepatoma cells inhibits proliferation,
induces apoptosis, and promotes radiosensitivity in chemically
induced hypoxia (Yang et al., 2011; Wang et al., 2019a). In
prostate cancer cell lines, the knockdown of HIF-1 by siRNAs
induces apoptosis and cell cycle arrest at the G2/M transition,
resulting in radiosensitization (Huang et al., 2012, 201). In
xenograft tumors with FaDu (Hypopharyngeal carcinoma) and
ME180 (Squamous cell carcinoma) cell lines, blockade of the
HIF1 response during transient hypoxic stress increases hypoxia,
reduces lactate levels, and improves response to high doses of single
fraction radiation (Leung et al., 2017; Wang et al., 2019a). In
laryngeal carcinoma, the inhibition of HIF-1α and glucose
transporter-1 (GLUT1) expression increases radiosensitivity and
promotes apoptosis and necrosis (Shen et al., 2017; Wang et al.,
2019a).

Many HIF-1-inducible genes, such as VEGF, Glut-1, MDR,
IAP3, and Bcl-2, directly or indirectly mediate chemoresistance
(Liu et al., 2008; Doktorova et al., 2015). In various types of
tumors, such as hepatocellular carcinoma, neuroblastoma, and
lung cancer, HIF-1α inhibition re-sensitizes cells to drug
treatment; therefore, it is considered a valid target to reduce drug
resistance induced by reverse hypoxia (Liu et al., 2008; Sullivan et al.,
2008; Huang et al., 2010; Hartwich et al., 2013; Doktorova et al.,
2015).

6 Resveratrol as a radiosensitizing
agent

Radiation therapy (XRT) is a cancer treatment that uses high
doses of radiation to kill cancer cells. It has been widely used in
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breast cancer (Moon et al., 2009), prostate cancer (Zietman et al.,
2010), carcinoma lung (Machida et al., 2003), medulloblastoma or
glioblastoma (Habrand and De Crevoisier, 2001), melanoma
(Ivanov et al., 2007), etc.

Ionizing radiation (IR) promotes its effects by inducing DNA
damage and activating DNA damage-induced signaling pathways
(Kma, 2013). These pathways result in cell cycle arrest or induction
of cell death by apoptosis, necrosis, autophagy, or mitotic
catastrophe, depending on the total dose (Wang et al., 2006;
Suit et al., 2007; Kma, 2013). However, the efficacy of XRT is
limited by the radioresistance exhibited by cancer cells (Leone
et al., 2008; Ruan et al., 2009; Yang et al., 2012). For instance,
prostate cancer is highly resistant to IR (Crook et al., 1995; Hagan
et al., 2000). The doses of XRT that are usually used in the
treatment of prostate adenocarcinoma are up to 70 Gy and have
shown biochemical failure rates of 30% or more, which leads to the
need to increase the dose of XRT, which, in turn, results in
impotence, rectal and bladder toxicity (Zietman et al., 2010).
Likewise, it has been reported that the increase in radiation
dose leads to the incidence of skin toxicity in patients
undergoing XRT (Weiss and Landauer, 2003). These effects add
to some of the side effects of XRT, such as pituitary hormone
dysfunction, behavioral problems, and reduced neurogenesis
(Baskar et al., 2012; Michaelidesová et al., 2019), which
consequently shows diminished therapeutic outcome and poor
quality of life for survivors.

Therefore, researchers have focused on finding drugs or
compounds that function as effective radiosensitizers, reducing
the radiation dose-response threshold for cancer cells with
minimal side effects in normal cells (Kma, 2013).

In this context, it has been reported that RSV has
radioprotective effects; thanks to its antioxidant properties, this
compound acts as a scavenger of free radicals or ROS. In addition,
it has been reported that it reduces inflammation by inhibiting IL-8
expression and blocking NF-κB activation (Benitez et al., 2009; Oh
et al., 2009). The radioprotective effects of RSV in vivo were
possibly first demonstrated in the study by Carsten et al.
(Carsten et al., 2008), where it was shown that RSV in
combination with IR resulted in a reduction in the frequency of
total chromosomal aberrations in mouse bone marrow cells,
compared to untreated, RSV-only treated groups hear. In this
case, mice were administered RSV at a dose of 100 mg/kg body
weight per day, started 2 days before whole body irradiation with
3 Gy (at a dose rate of 1.18 Gy)/min., and analyzed 1 and 30 days
after irradiation. It was evident from this observation that RSV
possesses a potential radioprotective property (Carsten et al., 2008;
Kma, 2013).

On the other hand, several studies have shown that using RSV in
combination with radiotherapy increases therapeutic efficacy
against cancer (Fang et al., 2012; 2013; Komorowska et al., 2022).
The following table exemplifies some studies that have seen the
radiosensitizing effect of RSV and the mechanisms involved in it
(Table 2).

In addition to the mechanisms mentioned above, it has been
reported that RSV can induce senescence, apoptosis, autophagy, and
inhibition of DNA repair, as well as the ability to kill cancer stem
cells more efficiently, leading to radiosensitization of cancer cells
(Figure 3) (Luo et al., 2013; Wang et al., 2015).

7 Chemosensitization of tumor cells by
resveratrol

Chemosensitization is based on using a drug or compound that
enhances the activity of another by influencing one or more
resistance mechanisms, making it a valuable strategy to overcome
the chemoresistance developed by cancer cells. In addition, it
dramatically reduces the adverse effects that occur due to the
toxicity of high doses of drugs used in cancer treatment.

In vitro and in vivo studies show that RSV can reverse
chemoresistance in tumor cells by modulating apoptosis and
downregulation of drug transporters and proteins involved in
cancer progression (Figure 3) (Lee et al., 2016).

7.1 Paclitaxel and resveratrol

Paclitaxel is one of the drugs used in chemotherapy to treat
different types of cancer, including ovarian, breast, and lung
lymphoma, among others. Some side effects after treatment with
paclitaxel are anemia, bruising, bleeding, nausea, diarrhea, tingling
in the hands and feet, tiredness, hair loss, muscle pain, etc. (Weaver,
2014).

The primary mechanism behind RSV chemosensitization to
paclitaxel chemotherapy is the downregulation of Bcl-2 and
MDR1/P-gp family members. It has been suggested that RSV-
mediated inhibition of the ERK1/2 and AP-1 pathways leads to
decreased Bcl-xL in non-Hodgkin’s lymphoma and MM cell lines
(Cusack et al., 2000; Jazirehi and Bonavida, 2004).

In another study, when RSV was administered prior to paclitaxel
treatment in lung cancer cell lines (A549, EBC-1, Lu65), a significant
improvement in the antiproliferative potential of paclitaxel was
observed. Furthermore, RSV also caused cell cycle arrest in the
G1 and G1/S phases of the cell cycle by inducing the expression of
the CDK inhibitors p21/WAF1/CIP1 and p27/KIP1, allowing the
dose of paclitaxel required to kill tumor cells to be reduced (Shankar
et al., 2007).

Downregulation of survivin is another mechanism by which
RSV enhances proliferation-inhibitory effects through S-phase cell
cycle arrest and increased apoptosis in neuroblastoma cells treated
with paclitaxel, in addition to other drugs such as doxorubicin,
cytarabine, taxol, actinomycin, and methotrexate (Fulda and
Debatin, 2004). RSV has also been reported to decrease survivin
expression in a dose-dependent manner in a multidrug-resistant
human non-small cell lung cancer cell line (SPC-A-1/CDDP).
Similarly, in a more recent study, RSV was found to increase the
sensitivity of renal cells (Caki-1) resistant to paclitaxel by
suppressing survivin expression (Min et al., 2019).

Another study demonstrated the synergistic interaction of RSV
and paclitaxel in inducing apoptosis in the DBTRG glioblastoma cell
line. In this work, they observed that the combination with RSV
increases apoptosis markers such as mitochondrial membrane
depolarization, ROS levels, and caspase 3 activity in DBTRG
cells, compared to treatment with paclitaxel alone. The
synergistic effect seems to be mediated by the stimulation and
activation of the TRPM2 channel sensitive to mitochondrial
oxidative stress, which allows Ca2+ to enter cancer cells,
contributing to their death (Öztürk et al., 2019; Cocetta et al., 2021).
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7.2 Doxorubicin/adriamycin/
hydroxydaunorubicin and resveratrol

Doxorubicin (adriamycin or hydroxydaunorubicin) is a drug
(anthracycline-type antibiotic) with antitumor activity produced
by Streptococcus peucetius var. caesius; used to treat different types
of cancer, such as leukemia, lymphoma, neuroblastoma, sarcoma,
Wilms tumor, lung, breast, stomach, ovary, thyroid, and bladder
cancer. It can intercalate with DNA, inhibiting DNA and RNA
synthesis. It induces a cell cycle arrest during the S phase
(Rivankar, 2014). In several studies it has been seen that RSV
can sensitize DOX-resistant cancer cells, such as those shown
below.

Fenig et al.; found that RSV treatment decreases
MRP1 expression in AML cells resistant to doxorubicin.
Furthermore, when RSV was administered, the expression of
MRP1 decreased, while the cellular uptake of DOX in resistant
cells increased. Based on these observations, the authors concluded
that RSV might facilitate cellular DOX uptake through the
downregulation of MRP1 and that RSV may help to overcome
DOX resistance or sensitize AML cells resistant to doxorubicin
(Fenig et al., 2004; Gupta et al., 2011). Likewise, RSV
chemosensitization to DOX is mediated by inhibition of MDR1/
P-gp and Bcl-2 in ovarian cancer cells (OVCAR-3) (Rezk et al.,
2006), acute myeloid leukemia (AML-2) (Kweon et al., 2010) and
oral squamous cell carcinoma (KBv200) (Quan et al., 2008).

Also, RSV has been shown to increase the chemosensitivity of
tumor cells by arresting the cells at different stages of the cell cycle.
For example, in DOX-chemoresistant B16 melanoma cells, RSV
increased DOX-induced cytotoxicity and decreased cyclin
D1 expression. In addition, DOX treatment combined with RSV
was associated with an increased cell cycle arrest in the G1/S phase
(Gatouillat et al., 2010).

On the other hand, in breast cancer cells (MCF-7/adr) and
MDA-MB-231 resistant to DOX, it has been reported that the
combination of DOX with RSV inhibits cell growth, promotes
apoptosis, and suppresses cell migration (Cocetta et al., 2021).
The effect of RSV is linked to the modulation between
SIRT1 and β-catenin; RSV was shown to be able to increase
SIRT1 (deacetylase) levels and decrease β-catenin expression by
ubiquitination, which reversed chemoresistance (Jin et al., 2019).
Further experiments showed that RSV treatment significantly
increased cellular accumulation of DOX by decreasing the
expression levels of the ATP-binding cassette (ABC) transporter
genes, MDR1 and MRP1 in MCF-7/adr and MDA-MB-231 cells., as
well as in a xenograft model (in vivo) revealing that RSV and DOX
treatment in combination significantly inhibits tumor volume
(Breast cancer) by 60%, compared to the control group (Kim
et al., 2014).

Furthermore, in the study by (Mitani et al., 2014), they
investigated the effect of RSV on hypoxia-induced doxorubicin
resistance in MCF-7 cells. They were observing how RSV and its

TABLE 2 Radiosensitizing effect of RSV in cancer cells.

Type of cancer Doses Results References

Glioblastoma (GBM) - derived
radioresistant tumor- GBM-CD133 cells

Radiation doses of 2, 4, 6, 8,
and 10 Gy

Radiosensitization was induced through STAT3 inhibition and
increased apoptosis

Yang et al. (2012)

With RSV (100 µM)

U87 GBM cells Radiation dose of 5 Gy The combined treatment demonstrated a significant increase in the
arrest of cancer cells in the S phase after irradiation, compared to RSV or
radiation alone

Leone et al. (2008)

With RSV (20 µM)

U87 GBM cells Radiation dose of 2 Gy RSV inhibited HIF-1α, in addition to decreased colony formation and
increase DNA damage in GBM cells. And in combination with IUdR
there is increased radiosensitization

Khoei et al. (2016)

With RSV (20 µM)

And Iododeoxyuridine
(IUdR) (1 µM)

Breast cancer cells (MCF-7) Radiation dose of 4 Gy RSV + IR combination treatment has been shown to trigger a cascade of
events leading to suppressing p53 and p53 signal transduction genes by
NF-κB inhibition, ultimately leading to cell death

Aravindan et al.
(2013)

With RSV (100 µM)

Prostate cancer cells (PCa, PC3, and 22RV1) Radiation dose of 2 Gy RSV can reverse radioresistance by inhibiting Akt phosphorylation,
inducing the expression of antiproliferative molecules (p53, p21cip1,
and p27kip1), increasing IR-induced expression of markers of DNA
damage (γH2Ax) and apoptosis (caspase 3)

Rashid et al. (2011)

With RSV (5 µM)

C6 (C3031)- GBM
Rats inoculated with C6 cells for 2 weeks

Radiation dose of 5 Gy RSV enhanced radiation modulation of inflammation, cell cycle, and
apoptosis. In addition, DNA damage was attenuated, and cell arrest was
induced in the G0/G1 phase of GBM rats, accompanied by changes in
the expression of proteins related to the ATM-AKT-STAT3 pathway

Qian et al. (2022)

With RSV (40 mg/kg)

Radioresistant prostate cancer cells (PC-3) Radiation dose of 2, 4, 6, 8 Gy RSV has a radiosensitizing effect by reducing the expression of cancer
stem cell markers and affecting EMT markers

El-Benhawy et al.
(2021)

With RSV (35, 70, 140 µM)

Lung adenocarcinoma cells (A549) Radiation dose of 6 Gy RSV combined with irradiation treatment decreased the expression of
STIM1 and Orai1. RSV sensitizes A549 cells and significantly enhances
the effect of irradiation damage

Lele et al. (2021)

With RSV 10–200 µM)
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derivative 3,5-dihydroxy-4′-methoxy-trans-stilbene, reverse
hypoxia-induced doxorubicin resistance at a concentration of
10 μM through the decrease in HIF protein expression -1α and
HIF-1 activity activated by hypoxia. Similarly, RSV inhibited the
expression of CBR1 induced by hypoxia at the mRNA and protein
levels (Mitani et al., 2014).

The combination of DOX and RSV also increases Bax gene
expression in HCT116 colon cancer cell lines; furthermore, RSV
enhances intracellular DOX uptake by blocking P-gp activity,
thereby sensitizing colorectal cancer cells to DOX (Khaleel et al., 2016).

Also, it has been reported that the acquisition of DOX resistance
in SGC7901 gastric cancer cells may be due to EMT induced by
aberrant activation of Akt, giving cancer cells the ability to
overexpress genes related to DOX chemoresistance. This cellular
model showed that RSV reverses DOX resistance by suppressing
EMT by inhibiting the PI3K/Akt signaling pathway, activating
caspase-3-dependent apoptosis. In addition, RSV induced cell
cycle arrest by increasing PTEN expression in addition to
suppressing cell invasion and N-cadherin expression (Xu et al.,
2017).

On the other hand, RSV-inducing chemosensitivity in breast
cancer cells (MCF-7) resistant to adriamycin or DOX has also been
shown to be dependent on miR-122-5p inhibition. Moreover,
inhibition of miR-122-5p showed a significant effect on the

regulation of critical anti-apoptotic proteins such as Bcl-2 and
cyclin-dependent kinases (CDK2, CDK4, and CDK6) in breast
cancer cells (MCF-7) in response to RSV (Zhang et al., 2019a).

In a recent study, Moreira et al. demonstrated that RSV increases
the expression of the SIRT1 gene in LoVo cells (derived from
metastatic colon adenocarcinoma nodules). SIRT1 negatively
regulates the expression of survivin, a major inhibitor of
apoptosis and which, as seen earlier in this review, is involved in
the resistance of cancer cells to chemotherapeutic therapies. They
demonstrated that increased expression of the SIRT1 gene
contributed to overcoming resistance to apoptosis in DOX-
resistant LoVo colon cancer cells (Moreira et al., 2022). In the
study by Xiong Le et al., they prepared nanoparticles with sustained
release capacity and targeted IL-13Rα2 to improve its bioavailability
from the RSV. These nanoparticles were inserted into an ATC/
anaplastic thyroid cancer mouse model, demonstrating that RSV
effectively inhibits ATC growth in vivo. And that it can overcome the
resistance to DOX and Docetaxel in this model (Xiong et al., 2021).

7.3 Temozolomide (TMZ) and resveratrol

Temozolomide is a chemotherapy drug that mostly treats brain
tumors (GBM, medulloblastomas, neuroblastomas, and sarcomas).

FIGURE 3
Mechanisms by which RSV contributes to chemosensitization and radiosensitization of cancer cells. The arrows refer to activation, while the
hammerhead lines refer to inhibition.
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Temozolomide comes in capsules and can be used alone or in
combination with XRT. It is an alkylating cytostatic agent that, when
is activated, forms free radicals capable of causing DNA degradation
and even single and double-strand DNA breaks that induce cell cycle
arrest in G2/M, which eventually leads to cell apoptosis (Yan et al.,
2016). The increase in resistance to TMZ is one of the main reasons
for the failure of glioblastoma treatment (Perazzoli et al., 2015; Lee,
2016).

RSV has been shown to enhance the therapeutic efficacy of TMZ
in several ways. One proposed mechanism is the reduction of
autophagy mediated by an increase in ROS, favoring apoptosis.
In the glioblastoma multiforme (GBM) cell line SHG44, TMZ, in
combination with RSV, markedly increased the production of ROS,
which served as a signal for the activation of AMP-activated protein
kinase (AMPK). Subsequently, activated AMPK inhibited mTOR
signaling and decreased levels of the anti-apoptotic protein Bcl-2,
contributing to the additive antiproliferative effects of combined
TMZ and RSV treatment. These results were also confirmed in vivo
mouse models (GBM orthotopic xenograft), where the combination
of TMZ and RSV treatment induced a reduction in tumor volume
and tumor proliferation, which was associated with decreased
expression of Ki −67, a proliferation index marker (Yuan et al.,
2012). Other studies indicate that GBM-initiating cells (GIC), which
display stem cell properties, are involved in tumor resistance to
TMZ, and RSV has been shown to enhance GIC sensitivity to TMZ
by activating the pATM/pATR/p53 pathway and promoting cancer
cell apoptosis. In addition, this work demonstrated that RSV
inactivated p-STAT3, promoting the differentiation of
glioblastoma-initiating cells (Li et al., 2016). RSV has recently
been seen to sensitize glioma cell lines with strong resistance to
TMZ through the inhibition of Wnt2 and β-catenin and increased
expression of GSK-3β (Yang et al., 2019).

7.4 Cisplatin and resveratrol

Cisplatin or CDDP (alkylating agent) is a drug widely used in
cancer that inhibits DNA synthesis by producing crosslinks within
DNA chains known as adducts; its cytotoxic activity is produced by
binding to all DNA bases, with a preference for guanine and
adenosine bases. It is widely used to treat testicular, ovarian,
bladder, head and neck, esophageal, small cell and non-small cell
lung, breast, cervical, stomach, prostate, Hodgkin and non-Hodgkin
lymphoma, neuroblastomas, sarcomas, MM, melanoma and
mesothelioma (Galanski, 2006).

In addition to the high cytotoxicity of cisplatin, the main
limitation of the clinical utility of this drug against cancer is the
high incidence of chemoresistance (Galluzzi et al., 2012). Below are
some studies where RSV sensitizes and improves the effectiveness of
treatment with cisplatin.

RSV and cisplatin together show more effective inhibition of
non-small lung cancer cell (NSCLC) proliferation and induction of
apoptosis than cisplatin treatment alone (Cocetta et al., 2021). In
fact, in the study by Ma L et al. (Ma et al., 2015), it was shown that
the combination of cisplatin and RSV dramatically improved the
efficacy of cisplatin in depolarizing the mitochondrial membrane
potential, increasing the release of cytochrome C, as well as
decreasing Bcl-2 expression and increased Bax protein in

cisplatin-resistant H838 and H520 non-small lung cancer cells,
resulting in increased inhibition of proliferation and induction of
apoptosis (Ma et al., 2015). Synergistic effects of RSV in combination
with cisplatin have also been shown in A549 lung carcinoma cells.
The results show that the combination favors autophagy by
lessening autophagosome accumulation, AKT phosphorylation,
and LC3-II protein levels (Hu et al., 2016a).

The impact of combined RSV and cisplatin treatment has also
been tested in hepatocarcinoma cells; Liu and others 2018 showed
that RSV-induced chemosensitivity to cisplatin is associated with an
imbalance in redox homeostasis that favors DNA damage and
apoptosis. The data indicate that RSV can inhibit glutamine
metabolism of resistant human hepatocarcinoma cell lines (C3A
and SMCC7721), increasing the toxic effect of chemotherapy but not
on normal liver cells (Liu et al., 2018; Cocetta et al., 2021).

Another interesting study is that of Weiguo (Zhao et al., 2010),
who analyzed the efficacy of RSV with non-small cell lung cancer
cells or NSCLC (SPC-A-1/CDDP) resistant to multiple drugs
(Paclitaxel, taxol, gefitinib, cisplatin, etc.). Cells were treated with
RSV at a concentration of 25, 50, or 100 μM in vitro studies, and
tumors were induced in nude mice implanted with SPC-A-1/CDDP
cells and fed a special diet containing included RSV at a dose of
1 g/kg/day or 3 g/kg/day. In this work, they evaluated cell
proliferation, apoptosis, the distribution of cell cycle phases, the
IC50 values of cisplatin, gefitinib, and paclitaxel, the volume of the
implanted tumor, and the expression of survivin inmice treated with
RSV compared to the control. RSV significantly inhibited the
proliferation of NSCLC cells, induced apoptosis, arrested the cell
cycle between G0-G1 and S phases or in the G2/M phase, and
decreased IC50 values of chemotherapeutic drugs (cisplatin,
gefitinib, and paclitaxel) (Gupta et al., 2011). Furthermore, RSV
showed antitumor effects in mice, affecting tumor proliferation in a
dose- and time-dependent manner; similarly, survivin expression in
SPC-A-1/CDDP cells decreased after RSV treatment (Zhao et al.,
2010).

7.5 Oxaliplatin and resveratrol

Oxaliplatin or OXA (bifunctional alkylating agent) is a type of
platinum chemotherapy that binds covalently to DNA and forms
platinum-DNA adducts to inhibit DNA replication and
transcription (Kelland, 2007). The intrastrand crosslinks formed
by OXA can block DNA replication and transcription
(Woynarowski et al., 2000). OXA is used to treat colorectal
cancer and, in some cases, throat cancer (esophagus) (Kelland,
2007). However, the development of resistance to OXA in vitro
and in vivo in colon cancer has been reported (Hsu et al., 2018).

Kaminski et al. (Kaminski et al., 2014) investigated the effect of
RSV on the antitumor activity of oxaliplatin in the resistant colon
cancer cell line Caco-2 and its possible involvement in the
inflammatory response. The results showed that the combined
treatment synergistically inhibits cell growth and induces
apoptosis with caspase-3 activation, PARP cleavage, and
mitochondrial membrane depolarization (Cocetta et al., 2021). In
addition, primary macrophages derived from human monocytes
were seeded and differentiated to add later supernatants of tumor
cells (Caco-2) treated with RSV/OXA and the co-cultures were
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maintained for 24 h, noting how the co-treatment prevents the
immunosuppression of the co-cultured macrophages, making them
potentially tumoricidal (Kaminski et al., 2014).

In addition, RSV prevents OXA-induced neuronal damage and
peripheral neuropathic pain (CIPNP), which is a common and
devastating side effect of cancer therapy. Avoiding the

TABLE 3 Chemo-sensitizing effects of resveratrol.

Treatment Type of cancer Effects References

Adriamycin + Resveratrol and quercetin
Polymeric micelles (nanostructures)
Pluronics®

Resistant ovarian cancer xenograft
models

They reduce cardiotoxicity induced by adriamycin and, at
the same time, act as chemosensitizers

Fatease et al. (2019)

Cisplatin + Resveratrol Breast cancer Cisplatin-resistant
MDA-MB-231 (cisR)

It improved chemosensitivity by inhibiting IL-6 production
and STAT3 activation and reversing macrophage
polarization

Cheuk et al. (2022)

Gemcitabine + Resveratrol Pancreatic cancer: MiaPaCa-2 and
Panc-1 And KPC mouse model

RSV inhibited lipid synthesis through SREBP1. This
decreased the sphere-forming ability and suppressed the
expression of CSC markers

Zhou et al. (2019)

Temozolomide + Resveratrol Glioblastoma: A172 and
LN428 cells

RSV negatively regulated STAT3, inhibited cell proliferation
and migration, and induced apoptosis, accompanied by
elevated levels of its negative regulators: PIAS3, SHP1,
SHP2, and SOCS3. Combined therapy reversed the TMZ
resistance of LN428 cells, which could be related to the
decreased levels of O6-methylguanine-DNA
methyltransferase (MGMT) and STAT3

Wu et al. (2023)

Cisplatin + Resveratrol Breast cancer Cisplatin-resistant
MCF-7

RSV decreases cisplatin resistance and induces serine 20
(S20) phosphorylation on p53. Activate p53 target genes
such as PUMA and Bax, restoring apoptosis. Bcl-2
decreased, and Bax protein increased

Hernandez-Valencia
et al. (2018)

FIGURE 4
Factors regulated by RSV that lead to cancer chemo and radiosensitization. The arrows refer to promotion or increase, while the hammerhead lines
refer to inhibition.
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upregulation of NFκB, TNFα, ATF3, and c-fos, increasing the
expression of Nrf2, NQO-1, HO-1, and the redox-sensitive
deacetylase SIRT1 (Recalde et al., 2020).

7.6 5-Fluorouracil (5-FU) and resveratrol

5-FU is a drug that inhibits the activity of thymidylate
synthetase, the enzyme responsible for producing Thymidine,
acting as an antimetabolite, inducing cell cycle arrest, and
promoting apoptosis (Longley et al., 2003). 5-FU has shown the
most significant impact in treating colorectal cancer (CRC),
although it has also been used in treating breast, stomach,
pancreas, and certain types of skin cancer (Gu et al., 2019).
Despite its great advantages, the clinical application of 5-FU is
limited due to the development of resistance of cancer cells. In fact,
there is increasing evidence showing that cancer stem cells (CSC)
present in the tumor microenvironment (TME) are the main ones
responsible for resistance to 5-FU (Yang et al., 2015; Das et al., 2020).

Several works have shown the efficacy of RSV in potentiating the
cytotoxic effect of 5-FU (Moutabian et al., 2022). A study conducted in
colorectal cancer cells (HCT116 and DLD1) showed that the combined
treatment increases cell cycle arrest and decreases the proliferation and
migration of colorectal cancer cells by inhibiting the PI3K/Akt signaling
pathway. Likewise, RSV showed anti-inflammatory effects by inhibiting
pSTAT3 and NFκB proteins (Chung et al., 2018). The combination of
RSV and 5-FU also inhibits the proliferation and migration of
B16 murine melanoma cells by decreasing the levels of AMPK,
COX-2, VASP, and VEGF, compared to the compounds alone (RSV
and 5-FU) (Lee et al., 2015). In addition, Buhrmann and others
2018 demonstrated that RSV could reduce TNF-β-induced survival
andmigration of resistant HCT116 colorectal cancer cells by promoting
5-FU sensitization (Buhrmann et al., 2018).

Recently, Brockmueller et al. demonstrated in tumor
microenvironments of 5-FU-resistant HCT-116 and HCT-116R
colorectal cancer (CRC) cells with 3D alginate and monolayer
cultures how RSV increased the sensitivity of CRC cells to 5-FU
by reducing vitality, migration, proliferation, angiogenesis, invasion,
and epithelial-mesenchymal transition (Brockmueller et al., 2023).

7.7 Gemcitabine and resveratrol

Gemcitabine (2′, 2′-difluoro 2′-deoxycytidine) is a drug that
induces cancer cell death by inhibiting ribonucleotide reductase, an
enzyme necessary for the synthesis of deoxyribonucleotides, in
addition to inhibiting DNA polymerase. Gemcitabine inhibits
DNA synthesis; the cells cannot divide properly and die.
Gemcitabine is used to treat different types of cancer, including
carcinoma of the bladder, pancreas, oral squamous cell carcinoma,
non-small cell lung, ovary, and breast (Mini et al., 2006).

Similarly, it has been shown that cytochrome p450 1b1 (Cyp1b1)
is overexpressed in many neoplasms and plays an important role in
developing resistance to chemotherapy. Interestingly, RSV has been
reported to downregulate Cyp1b1, thereby increasing apoptosis
induced by antimetabolites such as 5-FU and gemcitabine in
gemcitabine-chemoresistant cholangiocarcinoma (Mz-ChA-1,
HuCC-T1, CCLP1, and SG231) tumor models. Mitomycin C and

5-FU, although the precise mechanism of RSV-mediated
chemosensitization associated with Cyp1b1 inhibition is
unknown (Frampton et al., 2010). However, it has been shown in
an orthotopic mouse model of human pancreatic cancer that RSV
enhanced the antitumor activity of gemcitabine, and this was
associated with decreased expression of Bcl-2, Bcl-xL, COX-2,
cyclin D1, MMP-9 and VEGF (Harikumar et al., 2010).

7.8 Docetaxel and resveratrol

Docetaxel is an antineoplastic drug that stabilizes microtubules,
inhibiting their polymerization, which causes cell death by
interruption of mitosis. Docetaxel is used to treat different types of
cancer, including breast cancer, prostate, non-small cell lung cancer
(NSCLC), stomach, ovary, bladder, soft tissue sarcoma, melanoma,
and head and neck cancer (Rodríguez Carranza, 2015). Docetaxel
resistance in breast cancer cells (SK-BR-3,MCF7,MDA-MB-231, and
T47D) is associated with HER2 expression.

HER-2 is a receptor of the epidermal growth factor family
involved in cell growth and development. In addition, it
promotes the recruitment of several proteins, which lead to the
activation of signal transduction cascades such as: the PI3K/AKT/
mTOR and RAF/MEK/ERK pathways. Overexpression of this
receptor contributes to the progression and survival of breast
cancer (Fink and Chipuk, 2013; Li and Li, 2013; Cocetta et al.,
2021). Interestingly, RSV treatment inhibits HER-2 activation
through docetaxel-induced blockade of MAPK and Akt signaling,
as well as survival signaling pathways activated by HER-2,
enhancing the sensitization of breast cancer cells (SK-BR-3 and
MDA-MB-231) to docetaxel (Vinod et al., 2015).

In a recent study, EGF-conjugated hybrid lipid polymer
nanoparticles (LPN) were fabricated to co-deliver docetaxel (DTX)
and RSV in non-small cell lung cancer (NSCLC). In vitro and in vivo
studies demonstrated that EGF DTX/RSV LPNs have significant
synergistic effects, the best tumor inhibition capacity, and the
lowest systemic toxicity. These results suggest that EGF DTX/RSV
LPNsmay be a promising strategy for treating and chemosensitization
NSCLC (Song et al., 2018). Similarly, Zhang et al. designed PEGylated
nanoliposomes to co-deliver Docetaxel and RSV in Balb/c nude mice
bearing prostate cancer (PC3), demonstrating the efficiency of the
treatment as a whole (Zhang et al., 2022a). Other recent studies of RSV
as a chemo-sensitizer are summarized in Table 3.

In the following figure, you can visualize in a more general way
the events that RSV regulates to carry out the chemo and
radiosensitization of cancer cells (Figure 4).

8 Conclusion

The acquisition of chemoresistance and radioresistance remains
one of the main problems in the treatment of cancer patients. The
fact that tumor cells develop multiple resistance mechanisms and
that more than one mechanism can operate simultaneously
complicates the success of anticancer treatments such as
chemotherapy and radiotherapy.

In this review, we talk about the molecular mechanisms that lead
to chemo- and radioresistance by cancer cells, and in addition, we try
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to concisely describe how RSV, in conjunction with treatments
(radiotherapy and chemotherapy), manages to sensitize cancer cells,
making them less resistant and favoring the effectiveness of the
treatments. In addition, this article also summarizes the general
effects of RSV treatment on cancer in an easy way to understand and
shows the most recent studies that have addressed the issue of
chemo- and radiosensitization of cancer cells by RSV. The RSV has
the ability to modify and affect many molecular mechanisms that
cause sensitization of cancer cells. Some of the most important
mechanisms involved in sensitization we find transmembrane
transport (decrease in drug transport proteins), regulation of the
cell cycle (arrest of the cycle in the G1/S phases), decreased cell
proliferation, activation of different types of cell death (apoptosis,
necrosis, autophagy), inhibition of transcriptional factors such as
NF-kB, blockage of DNA repair, reduction of inflammation due to
the inhibition of COX-2, reduces the formation of CSCs by
inhibiting oncogenic genes and onco-miRNAs, inhibition of
epithelial-mesenchymal transition, activation of tumor suppressor
genes, among others.

Based on everything analyzed and studied in this review, we
conclude that RSV is undoubtedly an excellent candidate to be used
as a complementary treatment to chemotherapy and radiotherapy
since all the mechanisms and cellular targets that RSV regulates
clearly favor the sensitization of cancer cells to these medications.
This would improve the success rate of the treatments and
undoubtedly improve the patients’ quality of life by reducing the
treatment period.

9 Prospects

By looking at the signaling pathways and mechanisms that are
affected or mediated by RSV in a tumor environment, we believe
that RSV may be an ideal candidate as a complementary treatment
to chemotherapy and radiotherapy. Although, there is a problem
with the clinical use of RSV, and we are talking about its
bioavailability. Many researchers have taken on the task of
ending this barrier to use RSV more appropriately and efficiently.
Today, many research works, such as those addressed in Sharifi-
Rad’s article (Sharifi-Rad et al., 2021), show how targeted molecular
therapy, specifically nanotechnology, shows to be a useful tool in
improving the bioavailability of RSV.

Studies have even been carried out where co-encapsulation of
RSV with other drugs, such as those used in chemotherapy, is
proposed as in the works (Song et al., 2018; Zhang et al., 2022a)
where they encapsulated RSV and DOX in nanoparticles of lactic-co-
glycolic acid (PLGA) and hybrid lipid polymer (LPN) nanoparticles.
This coencapsulation not only improved the half-life of DOX and
RSV but also increased the concentrations of both molecules within
the tumor, reducing the toxicity of DOX in healthy tissue and
increasing the efficacy of DOX in overcoming the resistance of
cancer cells (Cocetta et al., 2021). Therefore, these results suggest
that nanoformulations protect and improve RSV’s stability and
bioavailability, ensuring greater treatment efficiency. In addition, in
conjunction with other drugs and therapies, it could even evade the
resistance of cancer cells. However, further studies in vivo are needed
to optimize nanocarrier and lipocarrier delivery systems.

Interestingly, new RSV analogues have also been reported to
have increased bioavailability and have also been shown to possess
anti-cancer properties (Ferraz da Costa et al., 2020). However, more
studies are needed to understand its action and mechanisms of
chemosensitization and radiosensitization.

9.1 Resource identification initiative

To take part in the Resource Identification Initiative, please use
the corresponding catalog number and RRID in your current
manuscript. For more information about the project and for
steps on how to search for an RRID, please click here.

9.2 Life science identifiers

Life Science Identifiers (LSIDs) for ZOOBANK registered names
or nomenclatural acts should be listed in the manuscript before the
keywords with the following format:

urn:lsid:<Authority>:<Namespace>:<ObjectID>[:<Version>].
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