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In complex geological areas, the chronology of tectonic fracture formation is
pivotal for the conservation and enhancement of shale gas reservoirs. These
fractures, evolving over different geologic epochs, critically influence the
modifications in hydraulic fracturing. The review sheds light on an integrated
methodology that bridges conventional geological evaluations with experimental
diagnostics to decipher the intricate evolution of such fractures in complex
geological areas. Shale tectonic fractures, predominantly shear-induced, are
delineated into four distinct levels (I, II, III, IV) based on observational scales.
Understanding the geometric interplay across these scales provides insight into
fracture distribution. Recognizing the constraints of isolated approaches, this
study amalgamates macroscopic geological assessments, such as structural
evolution and fault analysis, with microscopic techniques, including fluid
inclusion studies, isotopic testing, rock AE experiments (U-Th)/He
thermochronology, and AFT analysis, etc. This combined approach aids in
accurately determining the tectonic fracture’s genesis and its geological time.
Future research endeavors should refine this framework, with an emphasis on
enhanced geochemical profiling of fracture fillings.

KEYWORDS

tectonic fractures, formation timing, geochemistry, low-temperature
thermochronology, fracture fillings, shale, complex structural areas

1 Introduction

Shale gas, recognized as a premier clean energy resource, has witnessed significant
advancements in the Sichuan Basin, underpinned by a constellation of geological theories
and innovative exploration and extraction methodologies (Wang et al., 2016a; Li et al., 2022;
Li, 2022; 2023). The marine shale strata within the Wufeng-Longmaxi Formation are
particularly noteworthy due to their elevated Total Organic Carbon (TOC) concentration,
pronounced stratigraphic thickness, advanced maturity, inherent brittleness, and abundant
gas content, solidifying their status as the prime locus for shale gas prospecting and
extraction (Wang et al., 2018; 2022a). A testament to nearly a decade of relentless
exploratory and developmental endeavors, successful shale gas fields have been
commissioned in locales such as Fuling, Changning, Zhaotong, Weiyuan-Rongchang,
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and Luzhou (Fan et al., 2020a; Xu et al., 2020a; He et al., 2022a; He
et al., 2022b). The marine shale sequences in the Sichuan Basin have
been subjected to myriad tectonic episodes, culminating in the
genesis of intricate fracture network systems spanning various
scales—tectonic fractures being particularly prevalent (Li J. et al.,
2022; 2023; Zhu et al., 2023). The evolution and architecture of these
fractures and faults are pivotal in shaping the efficacy of shale gas
reservoirs (Fan et al., 2020b). Serving dual roles, they act as reservoir
spaces and enhance reservoir connectivity by bridging pores and
microfractures, thereby ameliorating pore-permeability dynamics
(Hou et al., 2020; Fan et al., 2022; Zhu et al., 2023).

Additionally, the unique adsorption and storage mechanisms of
shale gas within rocks dictate that the development of these
reservoirs relies on large-scale hydraulic fracturing to achieve
industrial gas production (Hui et al., 2022). The construction of
tectonic fracture networks plays an important role in the formation
and expansion of hydraulic fractures (Wang et al., 2016b; Xia and
Lu, 2022; Huang et al., 2023; Tan et al., 2023). Over the years,
scholars have made significant progress in understanding various
aspects of shale fractures, including their development
characteristics, quantitative characterization, identification
methods, distribution patterns, controlling factors, and impact on
gas content, etc (Gale et al., 2014; Wu et al., 2019; Xu et al., 2019;
2020b; Gong et al., 2021; Meng et al., 2021; Shan et al., 2021; Tan
et al., 2021). The formation period of tectonic fractures is considered
a challenging and crucial aspect in this research field. It is generally
believed that tectonic fractures are controlled by regional or local
stress in the geological mechanical environment. Determining the
formation period reflects the evolution periods of shale gas
preservation conditions and contributes to the coupled study of
shale gas enrichment andmigration (Feng et al., 2023). Additionally,
it can indicate the formation periods of geological structures, such as
folds and faults.

Various methods have been developed to determine the
formation period of tectonic fracture. These methods include
structural analysis, multi-scale fracture cutting relationships,
fracture fillings analysis, and rock AE analysis. This paper
summarizes the latest developments and the potential challenges
it may face. It provides a systematic and intuitive perspective on
fracture formation, development, and evolution in “sweet spot”
shale layers. It is expected to be a reference and guide for
research and practices on exploring shale fracturing mechanisms,
optimizing hydraulic fracturing processes, and increasing and
stabilizing shale gas production.

2 Characterization of types and
development characteristics
parameters of shale tectonic fractures

Over the years, many research efforts have yielded a
comprehensive understanding of the development characteristics
of tectonic fractures. This understanding is based on the outcrop,
core, and thin slice observation, focusing on parameters such as
fracture types, length, aperture, density, and fillings, etc. Shale
tectonic fractures are primarily dominated by shear fractures,
followed by tensile fractures (Li et al., 2019a; Li et al., 2021a). In
field outcrops, shear fractures are particularly prevalent,

characterized by straight and stable orientations, often occurring
in groups, and exhibiting prominent crosscutting relationships.
Based on the mutual relationship between shear fractures and
rock layers, they can be further classified into plane and profile
shear fractures (Figure 1A). Plane shear fractures typically form
early, primarily when the rock layers have not undergone significant
deformation (Figure 1A). These fractures have relatively flat fracture
surfaces and often intersect with the rock layers at high angles,
ranging from 45° to 75° or even vertically (75°–90°) (Figures 1B,C).
Plane shear fractures often exhibit a multi-set “X" type conjugate
relationship on the plane of the rock layer. In cross-section, they can
result in a stepped blocky exposure of the rock. In contrast, profile
shear fractures form later, typically after significant deformation of
the rock layers has occurred (Figure 1A). The fracture surfaces may
display scratch marks resulting from shear action and intersect the
rock layer at low-angle obliquities, ranging from 15° to 45°

(Figure 1D). Tensile fractures, on the other hand, are less
developed, but due to surface weathering and erosion in exposed
outcrops, their recognition can be challenging. They tend to have
unstable orientations, and are often filled with calcite (Figure 1E).

Fractures in core samples are still primarily characterized by
shear fractures, which exhibit features such as flat fracture surfaces,
long extents, and penetrating the entire core (Li et al., 2021a; Li et al.,
2021b). On one hand, shear fractures can cut across the entire core,
resulting in relatively smooth fracture surfaces after the core is split
(Figure 1F). On the other hand, in the cross-section of the core,
multiple sets of fractures can be observed intersecting each other at
certain angles (Figure 1G). Tensile fractures, in contrast, are
characterized by rough fracture surfaces, shorter extents, and
uneven apertures. They often intersect, forming a network-like
pattern, and most are partial to fully filled by calcite (Figures 1H,I).

Tectonic microfractures encompass grain-boundary fractures
(intergranular fractures) and mineral cleavage fractures
(intragranular fractures). Among them, grain-boundary fractures
primarily develop along mineral grain boundaries, exhibiting shapes
and patterns that are in harmony with the morphology of mineral
boundaries. Their orientations and dip angles are often variable, and
the fracture apertures can vary significantly (Figure 1J). Mineral
cleavage fractures, on the other hand, develop within mineral grains.
They feature straight fracture surfaces, minimal curvature, and show
no evidence of cement fillings. The grain size of the mineral particles
controls the length of these microfractures. In addition to
undergoing deformation and displacement, the mineral grains
may exhibit internal lattice dislocation or failure phenomena
(Figure 1K).

3 Determining the formation period of
shale tectonic fractures

3.1 Geological analysis

Based on the fracture orientation data measured from field
outcrops resembling the target geological formation, applying
structural geological theories to invert the ancient tectonic stress
field is essential for establishing stress-matching relationships. In
general, the intersection lines of conjugate shear fractures are
parallel to the intermediate principal stress axis σ2. The

Frontiers in Energy Research frontiersin.org02

Li 10.3389/fenrg.2023.1320366

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1320366


maximum principal stress axis σ1 and the minimum principal stress
axis σ3 are oriented along the angle bisectors of their acute and
obtuse angles, respectively (Batayneh et al., 2012). This approach
determines the maximum principal stress direction in the ancient
tectonic stress regime. Utilizing image logging data for fracture
orientation identification is currently one of the most accurate
methods, particularly in areas where oriented core samples are
unavailable. Based on the interpretation of fracture orientations
from the imaging logging in the study area, generating a rose
diagram of fracture orientations and analyzing the dominant
orientations, combined with understanding the formation
mechanisms of conjugate shear fractures, enables the accurate
determination of the sequence of fracture formation.

Determining the sequence of fractures based on the crosscutting
relationships observed between fractures in the outcrops, cores, thin
slices, and other geological materials is one of the most fundamental
and direct methods. In general, when determining the relative
timing of fracture formation, the following principles are
typically followed: If another fracture cuts a fracture, it forms
earlier; If a fracture is truncated or terminated by another
fracture, it forms later; If a fracture is not filled, it generally
formed later. However, it is important to note that determining
fracture sequences based on crosscutting relationships often
represents only a portion of multiple-stage fractures in a single
image. Comprehensive analysis is required to make accurate
judgments.

FIGURE 1
Tectonic fracture types and characteristics of the Longmaxi Formation shale in the Sichuan Basin (Zhong, 2019; Fan et al., 2020b). (A) Schematic
diagram of the formation of plane shear fractures and profile shear fractures. (B,C) Plane shear fractures in Changning area (Fan et al., 2020b); (D) Profile
shear fractures in Changning area; (E). Tensile fractures in Dingshan area; (F) DY1, 2042.45–2042.75 m, shear fracture; (G) N227, 3,576.70–3,576.80 m,
shear fracture; (H) Y101H3-8, 3,729.83–3,729.86 m, tensile fracture; (I) DY4, 3,729.38–3,729.50 m, multiple tensile fractures forming a network; (J)
DY1, grain-boundary fractures and mineral cleavage fractures; (K) DY1, tectonic fracture.
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Additionally, fault evolution and fracture development are
controlled by the same regional structural stress field in the same
geological region (Meier et al., 2015). They exhibit inheritance and
consistency in terms of their origin and characteristics. Therefore,
combining the fault characteristic can assist in analyzing the timing
of tectonic fracture development. Generally, there is good
correspondence between field outcrop analysis of similar
exposures, multi-scale fracture crosscutting relationships, imaging
log orientation analysis, and fault structural analysis.

3.2 Experimental testing analysis

In recent years, experimental testing has played a significant role
in determining the timing of fracture formation. These experiments
encompass a range of methods, including fluid inclusions, isotopes,
AE, low-temperature thermochronology, and thermal history
simulation, etc.

3.2.1 Experimental testing of fracture fillings
The minerals, such as calcite and quartz, found filling fractures

in sedimentary rocks within oil and gas basins are the products of
fluid migration, material transport, energy and substance exchange,
and fluid-rock interactions during diagenesis. They represent the
diagenetic response of these fractures to factors such as the
geochemistry of diagenetic fluids, temperature-pressure
conditions, and sources of materials at the time of their
formation. Therefore, conducting experimental tests on fracture
fillings can be utilized to analyze the timing of fracture
formation. Additionally, it can provide insights into the dynamic
evolution of temperature-pressure conditions and fluid redox
environments during the burial and uplift processes of
sedimentary strata within oil and gas basins.

3.2.1.1 Fluid inclusion testing
Fluid inclusions are portions of diagenetic or ore-forming fluids

trapped within the lattice defects or cavities of minerals during their
crystallization process. These inclusions remain sealed within the
main mineral and have boundaries with the host mineral. They
preserve geochemical information about the geological environment
during their entrapment, including pressure, temperature, salinity,
and more. Therefore, analyzing fluid inclusions can be employed to
determine the timing of fracture formation, as they serve as valuable
repositories of geological information related to the formation
period (Fall et al., 2012).

Fluid inclusion temperature measurement is currently the most
widely used non-destructive analysis method. Saltwater inclusions
coexisting with oil and gas inclusions of different ages often have
uniform temperatures, which can approximate the formation
temperature of the reservoir at the time of inclusion trapping.
Freeze-thaw analysis (freezing point depression) can be used to
determine the original geological fluid type and salinity data
preserved within these inclusions. Using the measured
temperatures and referencing established fluid freezing point-
salinity relationships, initial dissolution temperatures, and fluid
type data, one can roughly infer the salinity and fluid type stored
within the fluid inclusions. This information reflects different
periods of fracture formation (Chen and Liu, 2021). However, it

is important to note that there are limitations in this application,
such as the difficulty in observing phase changes in some fluid
inclusions during testing and the limited applicability range of
empirical formulas for salinity-freezing point relationships.

3.2.1.2 Carbon and oxygen isotope testing
Fractures and faults in sedimentary rocks are crucial pathways

for fluid movement in oil and gas basins. Under burial conditions,
the formation of fractures allows underground saturated aquifer
water to enter them first and flow along the fracture surfaces,
resulting in the precipitation of mineral crystals on these
surfaces. Different diagenetic environments and properties of
diagenetic fluids during geological evolution lead to noticeable
differences in the precipitated crystals’ carbon and oxygen stable
isotope values. After identifying the stages and sequences of
fractures within rock cores and assigning them to different
periods, carbon and oxygen isotope experiments can be
conducted on the corresponding fracture fillings to determine the
distribution range of isotope values (Zhang et al., 2016; Kontakiotis
et al., 2020; 2021). Combining this data with oxygen isotope
thermometry and burial history analysis allows for determining
the timing of fracture formation.

3.2.2 Rock acoustic emission experiment analysis
AE phenomena occur during the process of material stress and

deformation. The essence of rocks’ AE phenomenon is derived from
the expansion of internal micro-defects. Each time rocks are
subjected to stress, their internal micro-fracture system, known as
Griffith Microfracture, adapts to the magnitude and direction of the
applied stress (Becker et al., 2014; Cai, 2020; Wang et al., 2022b).
When rocks are subjected to stress below the threshold stress
required to propagate pre-existing fractures or defects, there will
be no further fracture development, and thus, no acoustic emission
occurs. However, when the applied stress reaches or exceeds the
threshold, the pre-existing fractures or defects will extend further,
resulting in AE phenomena, known as the Kaiser effect. At this
point, the stress value represents the paleo stress conditions during
the previous fracture extension. Analyzing the number of Kaiser
effect points on the AE response curve makes it possible to infer the
stress-induced fracture periods and the paleo stress field strength
that the rocks have experienced. In recent years, this method has
been widely applied in studying fracture evolution history, fracture
staging and correlation, and determining the stress field strength.

3.2.3 Low-temperature thermochronology
analysis

In recent years, low-temperature thermochronology has been an
important branch and cutting-edge field of geological dating
research. It mainly involves two dating techniques: AFT and
(U-Th)/He dating. The target minerals for this technique are
primarily apatite, zircon, and titanite, with the first two being the
most common. In sedimentary basins, the depth at which organic
matter generates hydrocarbons corresponds to the partial annealing
temperature zones of AFT and AHe systems. These systems exhibit a
clear consistency, and a specific functional relationship (annealing
sensitivity) exists between the length and density of mineral tracks
and the sample’s history of uplift, erosion, and thermal events (Deng
et al., 2016). Therefore, low-temperature thermochronology can
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effectively quantify a basin’s thermal history and the uplift and
erosion processes. Based on low-temperature thermochronology
measurements, it is possible to determine the sequence of
tectonic movements and geological time, which can assist in
identifying the timing of tectonic fracture formation.

The fission track dating method is based on the spontaneous
fission of 238U in minerals and the resulting radiation damage to the
host mineral. It involves analyzing the isotope ages that develop in
minerals based on the spontaneous track density and the 238U
content. Unlike conventional organic geochemical analysis
methods, fission track dating can effectively record
paleotemperatures and the time spent at these temperatures
during the geological evolution of a geological body. It can
provide insights into the paleotemperature evolution process at
depths of 3–5 km near the Earth’s surface. (U-Th)/He dating, on
the other hand, relies on the production of He through the decay of
radioactive elements. In minerals, particularly apatite, the He
primarily comes from the decay of 238U, 235U, and 232Th.

4 Discussion

4.1 Comprehensive determination of the
fracture formation period

As previously mentioned, there are generally three methods for
studying the formation period of tectonic fractures. However,
individual methods for determining the fracture formation period
have their limitations. Therefore, a comprehensive method for
determining the fracture formation period based on macroscopic
geological analysis and experimental testing has been established (Li
et al., 2020; Li et al., 2021a; Hu et al., 2023).

1) Quantitative characterization of fracture parameters: The
study begins with the quantitative characterization of
fundamental parameters associated with the development of
fractures at various scales. This quantification is achieved
through a combination of methods, including seismic
interpretation, field outcrop investigations, core observations, thin
slices, scanning electron microscopy, and CT scanning, etc.
Geometric quantitative relationships for characteristic parameters
of tectonic fractures at different scales (I-II-III-IV) are established.
2) Integration of macroscopic and microscopic analyses: Following
this, a fusion of macroscopic geological analysis is undertaken,
which encompasses tectonic evolution analysis, the evaluation of
fault and fold structures, and the examination of matching and
crosscutting relationships among multi-scale fracture orientations.
This macroscopic analysis is complemented by microscopic
experimental techniques, including fluid inclusion and carbon-
oxygen isotope testing of fracture fillings, rock AE experiments,
(U-Th)/He low-temperature thermochronology, and AFT analysis,
etc. 3) Cross-Verification and comprehensive determination:
Through the combination of these diverse methods, the study
cross-verifies and comprehensively determines the formation
periods and geological times of fractures formed under multi-
stage tectonic stress conditions. This integrative approach
overcomes the limitations of individual techniques, providing a
more holistic understanding of the timing of tectonic fracture
formation.

Figure 2 provides a good example of a comprehensive method
for determining the formation periods of tectonic fractures of
Dingshan area in Sichuan Basin. Tectonic fractures (faults) are
the result of stress and can generally be divided into four stages,
which we define as four different scales (I, II, III, IV) ranging from
micro to macro. The matching and crosscutting relationships of
multi-scale fracture orientations indicate the presence of two
formation periods. The AE experiments reveal five periods, after
removing the influence of current stress, it can be determined as four
periods. In addition, the Indosinian movement in the study area is
mainly characterized by ascending and descending movements, with
almost no fracture formation. Therefore, the AE experiment can be
determined as third stage periods (Xie et al., 2019a; 2019b). The fluid
inclusion homogenization temperatures show three periods, and the
carbon and oxygen isotope tests indicate three periods. By
combining the analysis of tectonic evolution and thermal history,
we ultimately determined three formation periods for tectonic
fractures in this area (Figure 2).

4.2 Geological significance of the formation
periods of shale tectonic fractures

The degree of fracture development is a crucial factor in the
quality of shale gas reservoirs. Well-developed fractures can improve
porosity and permeability by providing pathways for gas migration
and storage near them in shale gas reservoirs that are not disrupted.
The timing of tectonic fracture formation is of great significance for
preserving and enriching shale gas. It forms the basis for analyzing
the timing and evolution of shale gas accumulation (Li et al., 2019a;
Li et al., 2019b).

Shale gas reservoir preservation is an intricate interplay of
geological processes and is independent of the structural
morphology. The post-formation dynamics of shale gas,
particularly the timing and magnitude of subsequent structural
uplifts, play a pivotal role in determining the reservoir’s integrity
and gas content. Intricately linked to this is the timing of shale
tectonic fracture formation. The interrelation between the
emergence of these fractures and the extent of structural uplift
underscores the notion that fracture formation timing profoundly
influences gas content (Ma et al., 2022; Wood, 2022). Delving into
the historical geology of China’s southern marine shale regions, two
distinct phases emerge: an early phase dominated by continuous
burial and a later phase characterized by consistent uplift (Li et al.,
2019a; Wang et al., 2020). The extended deep burial in the initial
phase acted as a catalyst for shale gas genesis. Contrarily, the
subsequent structural evolution dictated the intensity and scope
of shale gas migration. A notable consequence of stratigraphic uplift
is the cessation of the hydrocarbon generation process within source
rocks. Thus, the moment of this uplift is a key determinant in
gauging potential gas losses from the reservoir. To elucidate,
precocious uplifts would mean an extended exposure of shale gas
reservoirs to late-stage geological alterations, culminating in a more
intricate fracture network. This nuanced understanding of the
temporal dynamics of uplift and burial offers invaluable insights
for exploration strategies and reservoir management.

Post-uplift weathering and erosion decrease overlying strata
pressure, upsetting the reservoir’s formation-pore pressure
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balance. This shift can lead to the opening of deep underground
fractures (Li et al., 2019c; Oliveira et al., 2021; Yuan et al., 2021).
Reduced temperature and pressure increase rock brittleness, making
them prone to complex fractures under tectonic compression.
Consequently, areas with significant strata uplift have enhanced
fracture development and increased shale gas dissipation. In
contrast, regions with minimal uplift exhibit limited fractures,

preserving the shale gas reservoir’s overpressure (Li et al., 2019b).
Tectonic fractures from different periods vary in orientation due to
distinct tectonic stresses. The angle between fracture direction and
the current maximum principal stress influences gas content. Large
angles keep fractures mostly closed, preventing gas escape, while
smaller angles or parallel alignments create open pathways for gas
migration.

FIGURE 2
A comprehensive method for determining the formation periods of tectonic fractures in shale (Data sourced from Xie et al., 2019a; 2019b; Zhong,
2019; Xie, 2020).
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5 Conclusion and prospection

Shale tectonic fractures play a crucial role in the preservation
and enrichment of shale gas, with fractures from different formation
periods carrying distinct geological implications. Based on
bibliometrics, this paper reviews the research techniques and
methods associated with the formation periods of shale tectonic
fractures. It establishes a comprehensive discrimination method for
determining the formation period of these fractures, leading to the
following conclusions and prospects.

(1) Tectonic fractures are the most important type of fractures in
organic-rich shale, with predominant shear fractures. In field
outcrops, they can be further divided into plane and profile
shear fractures. Under microscopic examination, they mainly
consist of grain-boundary fractures (intergranular fractures)
and mineral joint fractures (intramineral fractures).
Depending on the precision of observation, tectonic fractures
can be categorized into four scales ranging frommicro to macro,
and establishing geometric quantitative relationships for I-II-
III-IV level multi-scale fracture characteristics is of great
significance for evaluating the distribution patterns of fractures.

(2) The analysis methods for determining the formation periods of
tectonic fractures in shale primarily include field outcrop
observations, core examinations, thin slice analysis, filling
material analysis, and AE methods. However, each method
has its own advantages and limitations when assessing the
timing of fracture formation. Establishing a comprehensive
determination approach based on macro-geological analysis
and experimental testing often yields better results and is
currently a mainstream method for studying the timing of
tectonic fracture formation.

(3) The fracture formation period is paramount for preserving,
enriching, and adjusting shale gas reservoirs. The formation of
tectonic fractures often corresponds to tectonic uplift. Moderate
uplift can promote the opening of I-II level fractures, improving
the reservoir space and facilitating the desorption of adsorbed
gas. However, excessive uplift can induce the formation and
opening of III-IV level fractures, leading to shale gas loss and
reducing the gas content of shale reservoirs. Additionally, the
differences in fracture orientation at different periods, matching
with the present maximum principal stress, can also impact the
gas content of shale formations.

(4) Tectonic fractures are the smallest-scale features resulting from
tectonic movements. Therefore, a comprehensive determination
of the fracture formation period must rely on regional tectonic
evolution as the fundamental constraint. Structural analysis
plays a pivotal role in establishing when fractures form. This
can be achieved through various methods, including field
exposures, detailed seismic interpretation, low-temperature

thermochronology, and the analysis of thermal evolution
history (burial history and hydrocarbon generation history).
These analyses help accurately assess the tectonic evolution
history of the study area and determine the magnitude and
direction of tectonic stress.
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