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Purpose/objectives: An artificial intelligence-based pseudo-CT from low-field

MR images is proposed and clinically evaluated to unlock the full potential of

MRI-guided adaptive radiotherapy for pelvic cancer care.

Materials and method: In collaboration with TheraPanacea (TheraPanacea, Paris,

France) a pseudo-CT AI-model was generated using end-to-end ensembled self-

supervised GANs endowed with cycle consistency using data from 350 pairs of

weakly aligned data of pelvis planning CTs and TrueFisp-(0.35T)MRIs. The image

accuracy of the generated pCT were evaluated using a retrospective cohort

involving 20 test cases coming from eight different institutions (US: 2, EU: 5, AS:

1) and different CT vendors. Reconstruction performance was assessed using the

organs at risk used for treatment. Concerning the dosimetric evaluation, twenty-

nine prostate cancer patients treated on the low field MR-Linac (ViewRay) at

Montpellier Cancer Institute were selected. Planning CTs were non-rigidly

registered to the MRIs for each patient. Treatment plans were optimized on the

planning CT with a clinical TPS fulfilling all clinical criteria and recalculated on the

warped CT (wCT) and the pCT. Three different algorithms were used: AAA,
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AcurosXB and MonteCarlo. Dose distributions were compared using the global

gamma passing rates and dose metrics.

Results: The observed average scaled (between maximum and minimum HU

values of the CT) difference between the pCT and the planning CTwas 33.20 with

significant discrepancies across organs. Femoral heads were the most reliably

reconstructed (4.51 and 4.77) while anal canal and rectum were the less precise

ones (63.08 and 53.13). Mean gamma passing rates for 1%1mm, 2%/2mm, and

3%/3mm tolerance criteria and 10% threshold were greater than 96%, 99% and

99%, respectively, regardless the algorithm used. Dose metrics analysis showed a

good agreement between the pCT and the wCT. The mean relative difference

were within 1% for the target volumes (CTV and PTV) and 2% for the OARs.

Conclusion: This study demonstrated the feasibility of generating clinically

acceptable an artificial intelligence-based pseudo CT for low field MR in pelvis

with consistent image accuracy and dosimetric results.
KEYWORDS

pseudo-CT, artificial intelligence, MRI, pelvis, cycle GAN
1 Introduction

Magnetic resonance-guided radiotherapy (MRgRT) allows plan

adaptation on the magnetic resonance imaging (MRI) of the day,

offering new perspectives in pelvic cancer treatment. Besides structure

tracking and automated beam gating, the MR-linac combination

benefits a higher soft tissue contrast and allows on-table plan

adaptation (1). Several studies have shown promising early results

and a safe dose escalation using isotoxic approaches with stereotactic

MR-guided adaptive radiation therapy (SMART) appears to improve

disease outcomes across a range of tumor sites (2, 3).

However, the MRgRT suffers from a lack of correlation between

MR intensities and electron densities (ED), requiring a planning CT

acquisition for dose calculation (4). In the daily MRgRT process, a

deformable image registration is applied to the planning CT from

the day’s MRI to propagate the ED map. A user-defined density

override is then performed to correct for daily air cavity variations.

This approach is time consuming, especially in the pelvic region

where the organ filling changes are recurrent, and penalizes the

adaptive radiotherapy workflow. Furthermore, the manual

corrections are subject to the operator interpretation, and

introduce additional dosimetric uncertainties, especially in the

presence of the magnetic field (5). The key was to substitute the

planning CT with a pseudo-CT from the MR. Historically, the main

approaches have been the bulk density assignment and the atlas-

based method (6, 7). some solutions have been already

commercialized (8, 9). With the development of artificial

intelligence, studies have focused on deep learning approaches

using multiple architectures (10). These approaches were initially

developed from diagnostic (high field) MRI data (11–14). However,

the low-field MR linac, the MRIDian (ViewRay, Inc., Oakwood
02
Village, Ohio, USA), uses a True Fast Imaging with Steady State-

Free Precession (TrueFISP) sequence for data acquisition (15). This

sequence has a limited field of view and a lower signal-to-noise

ratio, posing new challenges. To date, few results have been

published on the generation of pseudo-CT from 0.35T MRI for

the pelvic region (16–18). This study proposes and clinically

evaluates an artificial intelligence-based pseudo-CT to overcome

these challenges and unlock the full potential of MRgRT for pelvic

cancer care.
2 Materials and methods

2.1 Deep learning workflow

In collaboration with TheraPanacea (TheraPanacea, Paris,

France), a pseudo-CT AI model was generated using end-to-end

ensembled self-supervised GANs endowed with cycle consistency

using data from 350 pairs of weakly aligned data from pelvic

planning CTs and TrueFisp (0.35T) MRIs. The first GANs were

introduced by Goodfellow et al. to train generative models in an

adversarial manner (19). These neural network training methods

led to the introduction of conditional GANs (20) for image

translation of paired images, where one input is translated into a

different but perfectly paired one. Due to the limited availability of

paired images in practice, Zhu et al. (21) introduced a CycleGAN

that simultaneously learns two generators in a cyclic manner. This

CycleGAN architecture opens up the possibility of translating one

image into another even if the images are weakly paired, i.e. there

are no voxel-to-voxel correspondences. We therefore exploit this

potential to build a dataset of MRI, CT pairs.
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The training procedure is shown in Figure 1. A two-step process

was used, meaning that the cycle GANs that generate the synthetic

CTs are trained twice. The first training is performed between the

350 pairs of weakly aligned data from the pelvic planning CTs and

the TrueFisp (0.35T) MRIs. After this first step, the MR images used

for training are converted to CT scans and aligned with the input

CT scans based on deformable registration. The result of this

registration is a new dataset of MR-CT pairs, where the pairs are

much better aligned. Finally, a new cycle GAN is trained on this

new dataset. This is the second training phase of our

training procedure.

The training procedure is done first by gathering a curated

dataset and then training the cycle GAN, usually for about two

weeks of time, to ensure that during the training procedure, the

GAN reaches an equilibrium, where the discriminator and the

generator are on par.

The developed AI model is then used for the generation of

pseudo-CTs from TrueFisp images of the MR-Linac on 4 Nvidia gtx

2080ti GPUS in parallel. The training time was 131h with a

maximum GPU usage of 18721MB.
2.2 Image accuracy

A retrospective cohort of 20 test cases from eight different

institutions (US: 2, EU: 5, AS: 1) and different CT manufacturers

was used to evaluate the image accuracy of the generated pCT. The

planning CTs were non-rigidly registered to the MRIs for each

patient. These were termed warped CTs (wCT). Pseudo-CT images

were compared with wCT images to assess reconstruction

performance. A Hounsfield unit comparison was performed with

the organs at risk used for treatment.
2.3 Dosimetric evaluation

Twenty-nine prostate cancer patients treated on the low-field

MR linac (ViewRay) at the Montpellier Cancer Institute were

selected. All patients underwent computed tomography (CT)-

based simulation (Optima CT580 RT, General Electric

Healthcare, Waukesha, WI). CT images were acquired with a slice

thickness of 2.5 mm. The CT acquisition was followed by the MR

simulation. The time interval between the two simulations was
Frontiers in Oncology 03
reduced as much as possible to avoid anatomical changes. The MR

acquisition consisted of a true fast imaging with steady-state

precession (TrueFISP) sequence performed with the same patient

positioning setup. Acquisition parameters were 173 s, a resolution

of 0.15 cm and a FOV of 50*45*43 cm.

Planning CTs were non-rigidly registered to the MRIs for each

patient. Treatment plans were optimized on the planning CT with a

clinical TPS fulfilling all clinical criteria and recalculated on the

wCT and the pCT. Three different algorithms were used: AAA,

AcurosXB and MonteCarlo. AAA and AXB dose calculations were

performed with Eclipse TPS (version 15.6, Varian, Medical Systems,

Palo Alto, CA, USA) and a volumetric modulated arc therapy

(VMAT) geometry using a dose calculation grid size of 0.25cm.

The MonteCarlo algorithm was used with Viewray TPS (version

5.4.1.34) considering the magnetic field presence, step-and-shoot

intensity modulated radiation therapy (IMRT) beams and a dose

calculation grid size of 0.3cm.

The dose distributions of the pseudo-CT and the distorted CT

were compared using global gamma passing rates and dose metrics.

Gamma analysis was performed using the 3%/3mm, 2%/2mm, 1%/

1mm criterion and thresholds of 40% and 10%. For DVH

parameters, reference structures were rigidly propagated from

MRI to wCT and pCT. Dose metrics for the target volumes (CTV

and PTV) were defined according to ICRU 83 recommendations

(22). For OAR, D1%, D25% and D50% were evaluated for rectum

and bladder.

3 Results

Figure 2 shows an example of a pseudo-CT generated by the AI-

based tool and compares the Hounsfield units with the

corresponding warped CT. The time for running the sCT

generation was 25s ± 4s. The HU comparison for each organ

between the pseudo-CT and the warped CT is detailed in the

Table 1. The observed average scaled (between the maximum and

minimumHU values of the CT) difference between the pCT and the

warped CT was 33.20 with significant discrepancies between organs.

Femoral heads were reconstructed most reliably (4.51 & 4.77), while

gastrointestinal organs were less accurate: 63.08, 53.13 and 51.48 for

the anal canal, rectum and sigmoid, respectively.

The mean global gamma analysis with three tolerance criteria

(3%3mm, 2%2mm, 1%1mm) and two dose thresholds (10% and

40%) showed a good agreement between the dose distribution
FIGURE 1

Flowchart of the training procedure.
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FIGURE 2

Example of Hounsfield unit comparison between the warped CT (left) and the pseudo-CT (right).
TABLE 1 Comparison of mean HU between pseudo-CT and warped CT for each organ.

Organ/Reconstruction Error Mean (de scaled diff min (%)) Means (warped CT) Means (pseudo CT)

Anal canal 63.08 39.56 58.44

Bladder 20.62 16.94 32.06

Left femoral head 4.51 263.35 278.65

Penile bulb 47.62 38.67 50.58

Prostate 36.8 37.57 56.14

Rectum 53.13 -0.33 29.44

Right femoral head 4.77 256.1 280.1

Seminal vesicle 31.47 27.53 47.53

Sigmoid 51.48 -14.28 -1.53

Total 33.20 85.30 104.08
F
rontiers in Oncology
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TABLE 2 Comparison of the gamma passing rates for AAA, AXB and EMC algorithms using 3%3mm, 2%2mm and 1%1mm criterion with 10% and 40%
dose thresholds.

Threshold 10% Threshold 40%

3%3mm 2%2mm 1%1mm 3%3mm 2%2mm 1%1mm

AAA 99,88 ± 0,11 99,57 ± 0,32 99,04 ± 0,64 99,99 ± 0,03 99,86 ± 0,39 98,99 ± 2,78

AXB 99,86 ± 0,13 99,29 ± 0,48 96,57 ± 2,35 99,88 ± 0,20 98,56 ± 1,59 89,65 ± 8,17

eMC 99,99 ± 0,02 99,93 ± 0,13 96,87 ± 4,27 99,99 ± 0,02 99,69 ± 0,50 90,64 ± 11,01
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calculated on the pseudo-CT and the warped CT (Table 2). The

minimum mean values were obtained with the AXB algorithm and

40% threshold: 99.88 ± 0.20%, 98.56 ± 1.59% and, 89.65 ± 8.17% for

3%3mm, 2%2mm, and 1%1mm criterion, respectively.

Figures 3 and 4 show the relative dose difference for the PTV

and the organs at risk between plans calculated using the pseudo-

CT and the warped CT using the AAA, AXB and eMC algorithms.

The median relative dose differences for the PTV were lower than

0.5% for each dose metric (D98%, D95%, D50%, and D2%) and

algorithm. The maximum reported value was 2.60% for D98% using

the AXB algorithm, equivalent to 2.03Gy. Figure 5 shows the patient

data with this largest relative dose difference.

Concerning the organs at risk, the median relative dose

difference were less than 0.5%, regardless the dose metrics and

algorithms assessed. However, outliers were more frequent,

especially for the rectum. The maximal difference was 8.76% for

D50% using the AXB algorithm, corresponding to 2.67Gy. Figure 5

shows the patient data with this largest relative dose difference.
Frontiers in Oncology 05
4 Discussion

A 3D cycle GAN model for pseudo-CT generation from low-

field pelvic MRI was presented in this study. The strengths of this

work were the multi-centric factor, which integrates several CT

vendors with different image characteristics, and the large number

of patients used in the training model, which ensures reliable

pseudo-CT generation. Furthermore, the cycle GAN architecture

does not require paired images. This is essential for pelvic

localization, where anatomical variations are common.

Regarding the qualitative evaluation, the results obtained in this

study are satisfying, showing a good agreement between the pseudo-

CT and the warped CT. However, the presence of fiducial markers,

as shown in Figure 5, severely penalizes reconstruction due to

implicit error propagation associated with the “convolutional”

nature of deep learning. The presence of air bubbles visible on the

CT (sigmoid and rectum) is also a problem, as these elements are

barely perceptible on the MR and are therefore difficult to predict by
FIGURE 3

Boxplots of the relative dose difference of the D98 D50 and D2 for the PTV using different calculation algorithms AAA (purple) AXB (grey) and
eMC (pink).
FIGURE 4

Boxplots of the relative dose difference of the D1% D25% and D50% for the bladder and the rectum using different calculation algorithms AAA
(purple) AXB.
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the generator. To limit these deviations, Cusumano et al. excluded

some patients from their neural network training due to artefacts

(artificial implants) or differences in air pocket locations between

CT andMR images (17), while Maspero et al. trained their model by

enforcing air consistency (13).

This work demonstrated that AI-driven pseudo-CT generation

from low-field MRI was clinically accurate for the pelvic region. The

dosimetric evaluation showed median dose differences within 0.5%

and gamma pass rates greater than 99% (for 3%3mm and 2%2mm

criteria) regardless of the algorithm used, thus meeting the clinical

acceptance criteria (23). The previous studies for pelvic cancer using

low fieldMRI and different deep learning based methods (17, 18) (24)

published comparable results. Cusumano et al. (17) and Hsu et al.

(18) developed conditional Generative Adversarial Networks and

showed dose differences of less than 1% and gamma pass rates in a

similar range. Nousiainen et al. (24) evaluated another pCT

generation algorithm using a convolutional neural network based

on HighRes3DNet for the abdominal region (including pelvic

cancer). They reported an equivalent relative dose difference. With

the exception of the outliers, the largest differences were obtained

using the Monte Carlo algorithm with the presence of the magnetic

field, which is known to have a significant dosimetric impact at the

air-tissue interfaces due to inaccurate local electron density mapping

(25). In addition to dosimetric accuracy, the quality of pseudo-CT for

pre-treatment verification of patient position should be assessed for

full clinical implementation of an MR-only pathway (26).

The main limitation of this study was the selection of a “ground

truth” image to assess the quality of the pCTs generated from MRI.

We chose a non-rigid registration of the planning CT which was

defined as the reference CT. However, the delay between the MRI

acquisitions and the planning CT leads to anatomical variations

(organ filling, air cavity variations) and deviations between the two

images. Therefore, as shown in Figure 5, outliers may occur due to a

“wrong” reference CT compared to the MR data and not due to an

inappropriate pCT. Then, in the MR-only objective, the positioning

performance of sCT should be evaluated to facilitate the clinical

integration of sCT for treatment planning and verification of patient

positioning as in other studies (8) (27).

Finally, with the emergence of a variety of sCT generators using

different deep learning-based methods, the implementation of a

quality assurance process is essential to ensure the safe and reliable

integration of deep learning into clinical workflow, ultimately
Frontiers in Oncology 06
improving the overall efficiency of MRI-guided radiotherapy by

generating synthetic CT volumes from MRI data.

5 Conclusion

This retrospective multi-center study has demonstrated the

potential of a fully low-field MR-based treatment planning

workflow. This artificial intelligence-based tool can be considered

clinically acceptable, while reducing imaging dose and registration

issues, as it can be used in few seconds to generate a pseudo CT

image, bypassing the need for a planning CT. In future work, the

accuracy of the use of this pCT tool for MRgRT treatment of other

anatomical regions will be investigated.
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