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Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Valladolid, Spain

Code-modulated visual evoked potentials (c-VEPs) are an innovative control signal
utilized in brain-computer interfaces (BCIs) with promising performance. Prior
studies on steady-state visual evoked potentials (SSVEPs) have indicated that
the spatial frequency of checkerboard-like stimuli influences both performance
and user experience. Spatial frequency refers to the dimensions of the individual
squares comprising the visual stimulus, quantified in cycles (i.e., number of
black-white squares pairs) per degree of visual angle. However, the specific
e�ects of this parameter on c-VEP-based BCIs remain unexplored. Therefore,
the objective of this study is to investigate the role of spatial frequency of
checkerboard-like visual stimuli in a c-VEP-based BCI. Sixteen participants
evaluated selection matrices with eight spatial frequencies: C001 (0 c/◦, 1×1
squares), C002 (0.15 c/◦, 2×2 squares), C004 (0.3 c/◦, 4×4 squares), C008 (0.6 c/◦,
8×8 squares), C016 (1.2 c/◦, 16×16 squares), C032 (2.4 c/◦, 32×32 squares), C064
(4.79 c/◦, 64×64 squares), and C128 (9.58 c/◦, 128×128 squares). These conditions
were tested in an online spelling task, which consisted of 18 trials each conducted
on a 3×3 command interface. In addition to accuracy and information transfer
rate (ITR), subjectivemeasures regarding comfort, ocular irritation, and satisfaction
were collected. Significant di�erences in performance and comfort were observed
based on di�erent stimulus spatial frequencies. Although all conditions achieved
mean accuracy over 95% after 2.1 s of trial duration, C016 stood out in terms
user experience. The proposed condition not only achieved a mean accuracy of
96.53% and 164.54 bits/min with a trial duration of 1.05s, but also was reported
to be significantly more comfortable than the traditional C001 stimulus. Since
both features are key for BCI development, higher spatial frequencies than the
classical black-to-white stimulus might be more adequate for c-VEP systems.
Hence, we assert that the spatial frequency should be carefully considered in the
development of future applications for c-VEP-based BCIs.

KEYWORDS

brain-computer interface (BCI), code-modulated visual evoked potential (c-VEP),

stimulus, spatial frequency, checkerboard, visual fatigue

Frontiers inHumanNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2023.1288438
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2023.1288438&domain=pdf&date_stamp=2023-11-10
mailto:afernandezrguez@uma.es
mailto:victor.martinez.cagigal@uva.es
https://doi.org/10.3389/fnhum.2023.1288438
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnhum.2023.1288438/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Fernández-Rodríguez et al. 10.3389/fnhum.2023.1288438

1. Introduction

A brain-computer interface (BCI) is a technology that enables
users to interact with the environment solely via their brain
signal (Wolpaw and Wolpaw, 2012). In certain diseases where
patients experience severe motor impairment, BCIs can offer a
promising solution to restore the user’s ability to engage with their
surroundings. Previous applications of this technology include
controlling devices for interaction, such as home automation
systems, wheelchairs, or virtual keyboards (Iturrate et al., 2009;
Kosmyna et al., 2016; Rezeika et al., 2018).

Among the different modalities for monitoring brain activity in
BCI systems, electroencephalography (EEG) is the most commonly
employed due to its portability, affordability, and suitable temporal
resolution (Ramadan and Vasilakos, 2017). However, decoding
user intentions from their brain activity is challenging since they
are not directly reflected in the EEG, making it necessary to
use different paradigms or tasks to detect them, i.e., control
signals. Visual evoked potentials (VEPs) have found application
as exogenous control signals in specific paradigms, as they reflect
brain responses to external visual stimuli perceived by the user.
Traditionally, steady-state VEPs (SSVEPs) have been extensively
employed to encode commands that flicker at constant frequencies,
inducing an oscillatory response in the EEG that can be used
to decode target commands in real-time (Volosyak et al., 2020).
Although SSVEP-based BCIs can achieve excellent accuracy, the
monitor’s refresh rate limits the number of commands to encode,
and decoding within certain frequency bands (e.g., beta) can be
challenging (Volosyak et al., 2011). Recently, code-modulated VEPs
(c-VEPs) have emerged as a promising control signal to address
these limitations (Bin et al., 2009; Martínez-Cagigal et al., 2021).
However, despite their potential, c-VEP-based BCIs have yet to
undergo extensive research and investigation.

BCI systems based on c-VEPs usually employ non-periodic
binary time series (i.e., codes) to modulate the visual stimuli.
This modulation is typically accomplished by associating black
flashes with 0 values, and white flashes with 1 values within the
sequence. Usually, codes with flat autocorrelation properties, such
as maximal-length sequences (m-sequences), are used to encode
commands using the circular shifting paradigm. In this paradigm,
each stimulus flickers using different time-shifted versions of the
same m-sequence (Martínez-Cagigal et al., 2021). This approach
offers a remarkable benefit on calibration: the VEP elicited
by the original m-sequence is used as the reference template,
whereas the templates for the remaining commands are derived
by temporally shifting this VEP. The real-time decoding of the
intended command is achieved by correlating the EEG response
and the calibrated templates. BCIs based on c-VEPs possess
distinct advantages over other approaches such as event-related
potential (ERP)-based BCIs, including reduced calibration time,
and superior information transfer rate (ITR) (Martínez-Cagigal
et al., 2021). Additionally, c-VEP systems exhibit comparable
accuracy and speed to SSVEP-based BCIs, while being less
susceptible to unrelated background EEG activity and typically
imposing fewer restrictions on the number of available commands.

Although c-VEP-based BCIs are a relatively novel field of
study, there have been previous investigations into the diversity

of stimuli employed in these systems, albeit limited in number.
For instance, some studies have explored the use of different sizes,
colors, or distances between stimuli (e.g., Wei et al., 2016 or
Nezamfar et al., 2016). However, the most commonly employed

stimulus pairs are binary and monochromatic, referred to as
single flickering paradigm, alternating intermittently between two
colors (Figure 1A) (Martínez-Cagigal et al., 2021). By contrast,
some studies have employed the checkerboard (CB) pattern

instead of single flickering (e.g., Nezamfar et al., 2016, 2018;
Isaksen et al., 2017). The CB pattern involves presenting a
stimulus composed of alternating squares of different colors (e.g.,
white/black or red/green) that switch colors with each stimulus
presentation (Figure 1B). Nevertheless, despite the incorporation
of the CB pattern in previous c-VEP-based BCI studies, there is no
previous comparison between this pattern and the traditional single
flickering.

In previous c-VEP-based BCI proposals, the use of the CB
pattern has been justified by potential improvements demonstrated
compared to the standard single flickering pattern in SSVEP-based
BCIs, such as enhanced performance or reduced visual fatigue
(Waytowich et al., 2017; Ming et al., 2019). Specifically, these
studies have manipulated the spatial frequency of the stimuli,
which refers to the size of the squares within the stimulus,
measured in cycles (pairs of squares of two alternative colors)
per degree of visual angle (c/◦). However, the effect of different
spatial frequencies of the CB pattern on the performance of a
c-VEP-based BCI remains unexplored (Martínez-Cagigal et al.,
2021). Therefore, the findings from previous studies conducted in
SSVEP-based BCIs that investigated the spatial frequency of the
CB pattern will be detailed next. First, Waytowich et al. (2017)
performed a gradual analysis of this variable (nine conditions from
0 c/◦ to 19.2 c/◦) showing that the conditions with 0 c/◦ (single
flickering) and 2.4 c/◦ demonstrated the highest performance.
However, it was also observed that lower spatial frequencies
were associated with higher perceived ocular irritation by the
participants. Second, in order to improve the user experience,
Ming et al. (2019) proposed a modified version of the CB pattern
known as the black-background CB (BB-CB), where half of
the squares remained black while the others alternated between
white and black (Figure 1C). This paradigm achieved performance
similar to the single flickering condition. Third, Ming et al.
(2021) conducted a subsequent work to study the effect of spatial
frequency using the BB-CB pattern with a gradual approach (nine
conditions, from 0 c/◦ to 21.25 c/◦), similar to Waytowich et al.
(2017). This study yielded results consistent with those reported
by Waytowich et al. (2017), indicating that the recommended
condition presented a stimulus spatial frequency equal to 2.66 c/◦.
This condition showed no significant differences in performance
compared to the single flickering paradigm, but a higher user
preference and visual comfort. Finally, in a third study, Ming
et al. (2023) demonstrated that presenting small gray squares on
a static darker gray background (resembling the BB-CB paradigm
but utilizing gray colors) yielded enhanced performance and
subjective evaluation (including preference, comfort, and flicker
perception) when compared to a condition where white and
black squares alternated in the same location over a static gray
background (similar to the CB paradigm, but with separate squares
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FIGURE 1

Pairs of alternating stimuli in the (A) single flickering, (B) checkerboard (CB), and (C) black background checkerboard (BB-CB) paradigms.

and a gray background). Finally, in a third study, Ming et al.
(2023) showed improved performance and subjective evaluation
(including preference, comfort, and flicker perception) with a
condition similar to the BB-CB paradigm (light gray squares on
a dark gray background) compared to a resembling CB paradigm
condition (alternating black and white squares). Consequently,
these results could suggest that the BB-CB paradigm may be more
suitable than the CB paradigm.

It is noteworthy that both Waytowich et al. (2017) and
Ming et al. (2021) yielded similar conclusions regarding spatial
frequency for CB or BB-CB paradigms in SSVEP-based BCIs. Both
studies indicated that the highest performance among the spatial
frequencies (from 0 c/◦ to∼20 c/◦) was observed for 0 c/◦ and∼2.5
c/◦. These findings suggest that spatial frequency can influence
the performance of SSVEP-based BCIs. Furthermore, they revealed
that the subjective user experience (including comfort, visual
irritation or preference) was negatively affected when using the
single flickering condition. A usable system should not only
demonstrate good performance but also be tailored to users’
willingness to utilize it. Thus, it would be worthwhile to explore,
for the first time, how the spatial frequency of the BB-CB paradigm
[which was suggested to be even better than the standard CB
paradigm; Ming et al. (2023)] could affect performance and
subjective experience in a c-VEP-based BCI.

The aim of the present study is to explore the influence of
stimulus spatial frequency using the BB-CB paradigm to control
a c-VEP-based BCI. To accomplish this, eight different spatial
frequencies will be evaluated (from 0 c/◦ to 9.58 c/◦) in a nine-
command interface during an online spelling task. To evaluate the
impact of stimulus spatial frequency, both performance (accuracy
and ITR) and subjective user experience measures (comfort, ocular
irritation, and preference) will be analyzed.

2. Methods

2.1. Experimental BCI paradigm

To evaluate the impact of stimulus spatial frequency, the
present study has examined eight conditions (spatial frequency and
matrix size): C001 (0 c/◦ and 1×1), C002 (0.15 c/◦ and 2×2), C004
(0.3 c/◦ and 4×4), C008 (0.6 c/◦ and 8×8), C016 (1.2 c/◦ and
16×16), C032 (2.4 c/◦ and 32×32), C064 (4.79 c/◦ and 64×64),

C128 (9.58 c/◦ and 128×128) (Figure 2). The selection of distinct
spatial frequencies was based on conditions previously investigated
by Waytowich et al. (2017) and Ming et al. (2021), both applied to
SSVEP-based BCIs.

Each condition consisted of two BCI stages: (i) a calibration

stage to adapt the system for each user by training a customized
model, and (ii) an online stage where users actually controlled
the system. In the calibration stage, the layout presented to users

consisted of a single command encoded with the original m-
sequence (Figure 3A). In the online stage, the layout comprised
9 distinct commands, arranged within a 3×3 matrix (Figure 3B).
In this stage, users received feedback using the customized model
trained in the calibration phase. The other visual parameters

remained similar between stages. The interface’s background color
was black. Commands were gray numbers (0 in the calibration task,
and 1-9 in the online task) surrounded by a white square measuring

7×7 cm (6.7×6.7◦ at 60 cm). These numbers were overlaid with
flickering stimuli (the m-sequence) that required users’ attention.
The flickering stimuli were the same size as the white squares with

the numbers, and they also were opaque, causing the number to
become non-visible once the selection phase began. The distance
between the adjacent edges of each stimulus was 2.2 cm (2.1◦ at
60 cm) both horizontally and vertically. Each matrix’s command
flashed according to time-shifted versions of a single m-sequence.
A 63-bit m-sequence was generated by employing a linear feedback
shift register (LFSR) with the primitive polynomial x6 + x5 + 1 and
an initial state of 111110. For a more comprehensive exposition on
the methodology employed in generating the m-sequence, kindly
refer to Martínez-Cagigal et al. (2021). In order to encode the nine
distinct commands, the original m-sequence underwent a temporal
shift of θi = τ i samples, where τ = 7 and i = 0, 1, . . . , 8. A genetic
algorithm (GA) was used to minimize cross-talk between shifted
m-sequences, ensuring that commands with consecutive lags were
not placed adjacently. The pseudocode for the GA is provided in
the Supplementary material. The final arrangement of commands,
as well as the shifted versions of them-sequence for each command,
are illustrated in Figures 3C, D.

The presentation rate of the m-sequence events was set to 120
Hz (one sample of the m-sequence each 8.33 ms), resulting in each
cycle of 63 bits lasting 525 ms (8.33 ms × 63 samples). In order to
make a selection, participants were required to focus their attention
on the target for 8 complete cycles of the m-sequence (4.2s, 525 ms
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FIGURE 2

The black-background checkerboard (BB-CB) stimulus patterns with eight di�erent spatial frequencies (c/◦) and number of row and columns. All the
stimulus patterns presented were paired with a flickering monochromatic black square.

× 8 cycles). In the online stage, the other commands in the matrix
flashed simultaneously with their respective lagged versions of the
m-sequence. A 3-s pause was implemented between selections (i.e.,
trials) in both stages. During this pause in the online stage, the
selected command was highlighted in green for 1 s to provide
feedback to the user.

2.2. Data acquisition and signal processing

All aspects of BCI operation were controlled by the MEDUSA©

software ecosystem (Santamaría-Vázquez et al., 2023) running on
a PC Intel Core i7-7700 (3.6 GHz, 32 RAM). The experiment
was displayed in a monitor Keep Out XGM24F+ (144 Hz, 16:9
ratio, 52.64×29.61 cm, 23.8 in, 60.4 cm, 1920×1080 pixels)
connected via HDMI. The refresh rate of the screen was set to
120 Hz. The experimental conditions were developed in a Unity-
based application that communicates with MEDUSA© via TCP/IP
sockets to ensure exact synchronization between stimuli onsets
and EEG registering (Santamaría-Vázquez et al., 2023). EEG data
were recorded by a g.USBamp (g.Tec, Guger Technologies, Austria)
amplifier with 16 channels and a sampling rate of 256 Hz. Fifteen
active electrodes were placed at predefined locations on the EEG-
cap in accordance with the 10/10 international system: F3, Fz, F4,
C3, Cz, C4, CPz, P3, Pz, P4, PO7, PO8, Oz, I1, and I2. All channels
were referenced to the right earlobe and grounded to position AFz.

EEG signals were processed in real-time using a pipeline mainly
based on the reference processing for circular shifting (Martinez-
Cagigal et al., 2023). A pre-processing step consisting on a series
of 7-th order infinite impulse response Butterworth filters was

employed to enable real-time processing. First, a notch filter at 50
Hz was applied to remove power line interference. Then, a filter
bank consisting of three bandpass filters was used to improve the
differentiation between natural brain activity, such as alpha band
activity (associated with tiredness), and responses triggered by the
c-VEP stimuli (Gembler et al., 2020). The initial filter covered a
wide frequency range of 1–60 Hz, capturing all frequency bands.
The second filter focused on the beta and gamma frequency bands
(12–60 Hz), while the third filter specifically targeted the gamma
band (30–60 Hz) (Martinez-Cagigal et al., 2023). The upper cutoff
of 60 Hz was chosen based on the maximum frequency that can
be represented in the EEG due to the refresh rate of the monitor
(120 Hz). On the other hand, the lower cutoff of 1 Hz in the first
filter accounted for the delta and theta frequency bands, which
also contain important information related to the repetition of

the stimuli used (Martínez-Cagigal et al., 2021). After the filtering
process, canonical correlation analysis (CCA) was employed in
each trial to decode the user’s intended target command in real-time

for an online task.
During the calibration phase, the user is required to focus on

a command encoded with the original m-sequence, without any
temporal lag, for a duration of k cycles. This process yields a pre-
processed EEG signal X ∈ R

Nf ,k,Ns ,Nc , where Nf = 3 denotes the
number of filters in the bank, Ns represents the number of samples
within a cycle, and Nc indicates the number of EEG channels.
Notably, the number of samples per cycle is calculated as Ns =

⌈fs ·L/fm⌉, where fs = 256 Hz denotes the sampling rate of the EEG,
L = 63 represents the length of the m-sequence, and fm = 120

Hz is the presentation rate. For each filter f in the filter bank, a
multi-channel VEP response X̂f ∈ R

Ns ,Nc is obtained by averaging
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FIGURE 3

Screenshots of the layout for both stages of the experimental paradigm: (A) calibration and (B) online. Each command represented in the figure (i.e.,
the white squares with the number in the middle) is superimposed during the selection phase by the corresponding flickering stimulus of each
experimental condition. The yellow lines and text were not displayed in the interface; they have been exclusively used in the figure to illustrate the
dimensions (cm) of the respective elements. (C) Shifted versions of the m-sequence for each command available in the online stage. (D)
Arrangement of lags for each command to minimize cross-talk between shifted m-sequences; i.e., lag = 0 denotes the original m-sequence,
assigned to command “5”. The distances between neighboring commands are illustrated for horizontal, vertical, and diagonal connections. In the
case of diagonal neighbors, the average distance from both diagonals is displayed. Additionally, the minimum and maximum distances in the layout
are indicated as solid white lines in the colorbar.

across the cycles. Subsequently, a canonical correlation analysis
(CCA) is trained to determine the linear projections Wa and Wb

thatmaximize the correlation between the projected versions of two
signals A and B, thus optimizing:

max
Wa ,Wb

W
T
aA

T
BWb

√

WT
aA

TAWa ·W
T
b
BTBWb

, (1)

where A ∈ R
kNs ,Nc represents the concatenated version of X for a

given filter, and B ∈ R
kNs ,Nc is the multi-channel VEP X̂f repeated

k times to match the dimensions. Upon training the CCA, spatial
filters Wa ∈ R

Nc ,Nc and Wb ∈ R
Nc ,Nc are obtained. However, only

the first column of Wb, denoted as ωb, is used as a spatial filter
to project the averaged response (i.e., X̂f · wb) and generate the
main template x̃f 0 ∈ R

Ns ,1. Templates for the remaining commands
x̃fi are generated by circularly shifting x̃f 0 based on the associated
temporal lag θi = τ i for each command, where τ = 7 and i =

0, 1, . . . , 8. This procedure is repeated for each filter f , resulting in
three distinct sets of templates. Additionally, the standard deviation
σA of the signal matrix A is computed for each channel. Artifacts
are identified within a given cycle if the standard deviation of that

specific epoch exceeds three times the value of σA. Only epochs that
do not exhibit artifacts in any of the channels are used for training
the model (Martinez-Cagigal et al., 2023).

During the online mode, at the conclusion of each trial, the
identical pre-processing stage is implemented to obtain the matrix
Ztest ∈ R

Nf ,kt ,Ns ,Nc , where kt represents the number of cycles in
the test trial. For each filter f , the signal is averaged across cycles
and projected using the trained spatial filter ωb, resulting in the test
response z̃f ∈ R

Ns ,1. The test response is then compared with all the
templates corresponding to filter f , yielding a vector rf comprising
the Pearson’s correlation coefficients for each command. Finally,
the correlations are averaged across the filter bank, and the selected
command corresponds to the one associated with the maximum
coefficient, i.e., y = argmaxi

1
f

∑

f rf (Martinez-Cagigal et al.,
2023).

2.3. Participants and procedure

The study has involved 16 participants (aged 29.63 ± 4.06,
11 males, 5 females) with normal or corrected-to-normal vision
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and varying experience in the use of these systems (ranging from
users with more than 5 sessions to beginners). The protocol was
approved by the local ethics committee and met the standards
of the Helsinki Declaration. The experiment was conducted in
a single session lasting approximately 75 min. Upon arrival at
the laboratory, participants were given an explanation of the task
their would carry out, signed the informed consent form, and the
necessary equipment was set up. The user performed the tasks
while comfortably seated in a distraction-free room, where only the
researcher and the participant were present.

The design used was intrasubject, also known as repeated
measures design, so all participants tested the eight different
experimental conditions that varied in the spatial frequency of
the stimuli. As it was explained in Section 2.1, each condition
consisted of both calibration and online stages. The calibration
stage comprised two runs of 15 trials each (i.e., 30 selections),
while the online task consisted of one run of 18 trials. There was
a short break between runs, and its length varied based on the
user’s preference. During the calibration task, participants were
instructed to pay attention to the single stimulus presented on
the interface. However, in the online task, stimuli were presented
with the 3×3 matrix and participants were required to select
the numbers following the row-major order (from 1 to 9) twice.
After completing the online stage, participants were required to
respond to a questionnaire to assess their subjective experience
while controlling the system. The user moved on to the next
experimental condition only after completing the questionnaires
related to the previous condition. The order of conditions was
counterbalanced, so each condition was evenly distributed among
the participants (as there were 16 participants, each condition was
used twice in each position), to mitigate any potential undesirable
effects such as learning or fatigue.

2.4. Evaluation

2.4.1. Performance
To evaluate the impact of stimulus spatial frequency on

the calibration and online tasks, two parameters were utilized:
(i) accuracy (%), which measures the percentage of correctly
classified selections out of the total predicted selections; and (ii)
ITR (bits/min), which provides an objective measurement of the
system’s information rate and is calculated based on the traditional
formula presented in Wolpaw et al. (1998). The ITR takes into
account the accuracy (P), the number of commands available in the
interface (N), and the number of selections per minute (Q):

ITR = Q ·

[

log2 N + P log2 P + (1− P) log2(
1− P

N − 1
)

]

(2)

The performance measures (accuracy and ITR) in the online
tasks were examined at two levels. Firstly, for each metric, the
Friedman test was employed to explore whether there was a main
effect of the spatial frequency of the stimuli or the number of
elapsed cycles on the system’s performance. In order to assess
the main effect of spatial frequency, the average value across
the eight cycles was calculated. Likewise, to evaluate the main

effect of cycles, the average score across the eight conditions was
obtained. In cases where a significant main effect was identified,
multiple Wilcoxon signed-rank tests were conducted to determine
which specific conditions or cycles showed differences. In these
subsequent comparisons, the p-values were adjusted using the
Benjamini-Hochberg procedure to control the false discovery rate
and minimize type I errors (Benjamini and Hochberg, 1995).
Secondly, the same analysis procedure was carried out for each of
the cycles. The Friedman test was used to determine which specific
cycles showed differences among the conditions. Subsequently, in
those cycles where the Friedman test found significant differences,
multiple post-hoc Wilcoxon signed-rank tests were employed to
identify the specific conditions that differed for that particular cycle.

2.4.2. Brain responses
EEG signals were examined in order to investigate how brain

responses are affected by different spatial frequencies of the
stimuli. To achieve this, a grand average was calculated across all
participants and cycles for each condition using the calibration
data, resulting in amplitude values within the EEG signal for each
specific condition. The Oz channel was chosen for this analysis
because it has been identified as the most informative in reflecting
the primary visual cortex activity, located in the occipital lobe
(Bin et al., 2009; Wolpaw and Wolpaw, 2012). Additionally, the
Pearson product-moment correlation coefficients were calculated
to determine the interdependence between each pair of conditions
throughout the duration of the cycle.

2.4.3. Subjective items
After completing the online task for each condition,

participants were asked to rate three items on a scale from 0
to 10 (“very low” and “very high”, respectively): (i) comfort level
during interface operation, (ii) ocular irritation experienced while
controlling the interface, and (iii) level of general satisfaction.
Three ANOVAs were conducted to investigate the impact of
stimulus spatial frequency on these variables. In cases where
significant effects were identified in the ANOVA, multiple post-hoc
repeated measures t-test were conducted; the p-values were
adjusted using the Benjamini-Hochberg procedure. Additionally,
at the end of the session, participants were asked to indicate their
preferred condition. To evaluate potential significant differences
among the spatial frequencies in terms of participants’ preferences,
a binomial test was conducted for each condition to determine if it
was chosen significantly above or below the chance level.

3. Results

3.1. Performance

The average performance in the online task of all conditions
surpassed 95% accuracy within just 4 cycles (2.1 s), with even 84%
accuracy achieved in half the time (2 cycles, 1.05 s) (Figure 4).
This high accuracy achieved in such a short duration is also
reflected in the high levels of ITR. On average, all conditions yielded
ITRs above 120 bits/min with at least 84% accuracy (2 cycles).
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Condition C001 even reached an average ITR of 220 bits/min
with 80% accuracy using a single cycle (525 ms). Although the
performance of all conditions was commendable, a more in-depth
analysis was conducted to examine potential differences among the
experimental conditions (varying in stimulus spatial frequency) in
terms of accuracy and ITR. For the sake of completeness, unfolded
performance results (accuracy and ITR) for each participant and
condition are detailed in the Supplementary material.

In reference to accuracy, the Friedman test revealed a main
effect of condition [χ2

(7) = 21.384, p = 0.003,W = 0.191] and cycle
[χ2

(7) = 101.856, p < 0.001, W = 0.909]. First, despite finding a
main effect in relation to the condition factor, none of the post-

hoc comparisons (Wilcoxon signed-rank tests) between conditions
have been significant. Second, the cycle factor has shown significant
differences among all combinations of cycles (p < 0.05, with higher
performance observed in the later ones), except between cycles 5
and 6 (W+ = 10.5, p = 0.336, r = 0.034), and 7 and 8 (W+ = 2.5, p
= 1, r = 0.028). Third, it is interesting to check in which specific
cycles the accuracies differed between conditions. The Friedman
test showed significant differences between conditions in cycle 1
[χ2

(7) = 22.75, p = 0.002, W = 0.203], cycle 2 [χ2
(7) = 15.227, p

= 0.033, W = 0.136], and cycle 3 [χ2
(7) = 17.998, p = 0.012, W =

0.161]. However, according tomultiple post-hoc analyses (Wilcoxon
signed-rank tests), only the following significant differences were
found (the first of each pair provided the best result): in cycle 1,
C001 vs. C002 (W+ = 117.5, p = 0.017, r = 0.538), C064 (W+ = 120,
p = 0.017, r = 0.622) and C128 (W+ = 98, p = 0.044, r = 0.452).

Regarding ITR, the Friedman test showed a significant main
effect for both the condition [χ2

(7) = 22.959, p = 0.002,W = 0.205]
and the cycle factors [χ2

(7) = 109.396, p < 0.001, W = 0.977].
First, regarding the main effect of the condition factor, significant
differences have been found in ITR between the following pairs of
conditions (the first of each pair provided the best result): C001 vs.
C002 (W+ = 122, p = 0.027, r = 0.45) and C064 (W+ = 130, p =
0.012, r = 0.52), C016 vs. C064 (W+ = 99, p = 0.027, r = 0.403), and
C032 vs. C064 (W+ = 113, p = 0.027, r = 0.42). Second, the cycle
factor has shown significant differences among all combinations of
cycles (p< 0.05, with lower ITR observed in the later cycles), except
for cycles 1 and 2 (W+ = 88, p = 0.323,W = 0.087). Third, it should
be verified during which cycles there were differences between
the conditions. The Friedman test showed significant differences
between conditions in cycle 1 [χ2

(7) = 22.75, p = 0.002, W = 0.203],
cycle 2 [χ2

(7) = 15.227, p = 0.033, W = 0.136], and cycle 3 [χ2
(7) =

17.998, p = 0.012, W = 0.161]. However, the pairwise analyses only
revealed the significant differences in cycle 1 (the first of each pair
provided the best result): C001 vs. C002 (W+ = 118.5, p = 0.014, r
= 0.538), C064 (W+ = 120, p = 0.014, r = 0.622) and C128 (W+ =
98, p = 0.044, r = 0.452).

3.2. Brain responses

In Figure 5A, the grand-averaged VEPs of the participants for
each condition at channel Oz can be observed during a cycle
duration (525 ms). First of all, it is interesting to note that
despite using the same m-sequence for all conditions, there are
conditions whose EEG signal was notably different (e.g., C016

and C128), while other conditions exhibit a similar EEG signal
pattern (e.g., C016 and C032). The individual VEP responses
for all participants are depicted in the Supplementary material,
revealing a remarkable resemblance across conditions among the
participants, which expose the exogenous nature of the c-VEP
responses. To facilitate the exploration of similarities between
conditions, a correlation analysis was conducted on different pairs
of conditions (Figure 5B). The results indicated that conditions
with adjacent spatial frequencies (e.g., C002–C004, C004–C008,
C008–C016, C016–C032) tended to exhibit stronger correlations.
However, C128 showed a higher correlation with conditions that
had lower spatial frequencies (C001, C002 and C004). These
findings may suggest that the similarity in VEPs could also indicate
a similarity in how users perceive stimuli from different conditions.

3.3. Subjective items

Figure 6 shows the average scores given by users for comfort,
ocular irritation, and satisfaction items for each condition. To
verify if spatial frequency had an effect on these variables, three
one-way repeated measures ANOVA tests were conducted for
each of these variables. Regarding comfort, the analysis showed a
significant main effect of the condition factor [F(3.55,53.19) = 2.838;
p = 0.039, η2p = 0.159]. Therefore, it can be stated that the stimulus
spatial frequency has influenced the comfort of the system during
its control. Specifically, the conditions that exhibited significant
differences in the multiple comparisons were as follows (the first
of each pair provided the highest comfort level): C016 vs. C001
(p = 0.043, d = 0.831) and C002 (p = 0.019, d = 1.065), as well as
C008 vs. C002 (p = 0.043, d = 0.854). On the contrary, no significant
differences were found in the ANOVAs regarding ocular irritation
[F(3.32,49.8) = 1.598; p = 0.198, η2p = 0.096] or satisfaction [F(3.39,50.81)
= 1.055; p = 0.382, η2p = 0.066]. Therefore, these results suggest
that neither ocular irritation nor satisfaction were significantly
influenced by the stimulus spatial frequency. Finally, none of the
binomial tests conducted for each condition showed any of them
being selected significantly above or below the chance threshold.

4. Discussion

4.1. General discussion and related
literature

The results of this study seem to indicate that stimulus spatial
frequency has a clear effect on the performance (accuracy and ITR)
of the c-VEP-based BCI, as well as on the users’ comfort during its
control. Indeed, based on the variables studied, two experimental
conditions could be highlighted: C001 (0 c/◦) and C016 (1.2 c/◦).
However, the choice of one condition or another will depend on
the specific characteristics and needs of the system being controlled.
C001 achieved high accuracy with just one cycle, but was later
surpassed by C016 (although not significantly). Besides, users rated
C001 as significantly less comfortable than C008 and C016. The
comfort variable is also relevant since these systems are sometimes
intended for everyday use by patients for long periods. Secondly,
although there were no significant differences in ocular irritation
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FIGURE 4

Performance results (mean ± standard error) for each of the experimental conditions as a function of time (s) and the number of cycles elapsed in
the online task for the variables accuracy (left) and information transfer rate (ITR, right). Because there were nine commands available in the
interface, the theoretical accuracy level was equal to 1/9 (i.e., 11.11%).

FIGURE 5

(A) Grand-averaged visual evoked potentials (VEPs) of all users to the eight di�erent spatial frequency conditions. These VEPs were extracted from
calibration epochs over the Oz channel. (B) Pearson product-moment correlation coe�cient r between the depicted VEPs among all di�erent
conditions.

or satisfaction, C001 also presented the most unfavorable scores
for both variables. Furthermore, it also appears clear that C002,
C064 and C128 yielded poorer performance and worse subjective
ratings for comfort, particularly in the case of C002. Therefore,
these conditions (C002, C064 and C128) do not seem to be themost
recommended based on the results obtained by the present study.

Next, we will proceed to compare the performances obtained in
this study against the two previous studies that evaluated stimulus
spatial frequency using an SSVEP-based BCI (Waytowich et al.,

2017; Ming et al., 2021) (Table 1). On one hand, Waytowich et al.
(2017) highlighted two conditions as the most suitable: 0 c/◦ and
2.4 c/◦. The 0 c/◦ condition maintained a consistent accuracy of
97.7% from 3.5 s to 6s. In contrast, the 2.4 c/◦ condition reached
its peak accuracy of 85.1% at 2.5 s and exhibited a gradual decline
until the end of the 6-second period. Notably, the 2.4 c/◦ condition
demonstrated the highest ITR among all conditions, achieving 45.3
bits/min at 1.5s, while the peak ITR for the 0 c/◦ condition was 35.7
bits/min at 2s. On the other hand, Ming et al. (2021) assessed the
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FIGURE 6

Results obtained in the subjective questionnaires (mean ± standard error) regarding comfort, ocular irritation, and satisfaction, as well as the
histogram related to the number of participants who selected each spatial frequency stimulus as their preferred one. For the variables comfort,
ocular irritation, and satisfaction, The presence of significant di�erences between conditions (p < 0.05) has been denoted with an asterisk. False
discovery rate was corrected using the Benjamini-Hochberg procedure for multiple comparisons.

online performance of the condition that appeared to offer the best
results following those obtained in the offline stage, characterized
by a spatial frequency of 2.13 c/◦. This condition showcased an
excellent accuracy of 99.1% and an ITR of 124 bits/min (1.5 s).
Finally, in our case, our peak ITR was achieved for C001 in cycle 1
(221.02 bits/min), with an average accuracy of 79.86% (1 cycle, 525
ms). However, despite showing a high ITR, there may be systems
where errors incur a high cost, so it is advisable to sacrifice some
ITR to increase the accuracy of the system. In that case, C016 could
be highlighted as it reached an ITR of 164.54 bits/min with 96.53%
accuracy (2 cycles, 1.05 s), or a more conservative option with
99.31% accuracy and 118.49 bits/min (3 cycles, 1.575 s). Therefore,
the proposed system has demonstrated an adequate performance
that is comparable to that observed inMing et al. (2021), and higher
to that observed in Waytowich et al. (2017).

The findings regarding performance and spatial frequency
in the present study are also consistent with previous research
conducted using an SSVEP-based BCI. In the works of Waytowich
et al. (2017) and Ming et al. (2021), the highest performances
(accuracy and/or ITR) were achieved with 0 c/◦ and ∼2.3 c/◦. In
our case, the results exhibited a notable degree of similarity, with
the exception being that our most favorable conditions were C001
(0 c/◦), and C016 (1.2 c/◦) instead of C032 (2.4 c/◦), which exhibit
the spatial frequency closest to ∼2.3 c/◦. It is worth noting that
our layout was similar to the one used by Ming et al. (2021):
nine commands arranged in a square 3×3 matrix, with stimuli of
an equivalent size (7×7◦ in theirs, 6.7×6.7◦ in ours) and spacing
between commands as well (1.4◦ in theirs, 2.1◦ in ours). Hence,
the difference in optimal spatial frequency may be due to specific
properties of the SSVEP and c-VEP signals. It would be highly
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TABLE 1 Performance comparison with previous SSVEP-based studies.

References Spatial frequency (c/◦) Accuracy (%) Time (s) ITR (bits/min)

Waytowich et al. (2017) 0 97.7 3.5 ∼32a

2.4 ∼78a 1.5 45.3

Ming et al. (2021) 2.13 99.1 1.5 124

Present study

0 (named C001) 79.86 0.525 221.02

1.2 (named C016) 96.53 1.05 164.54

2.4 (named C032)b 96.88 1.575 118.49

aThe results of these metrics were obtained approximately from the figures reported in the articles since the exact values were not reported.
bResults from C032 are depicted to offer a fair comparison with respect to the spatial frequency proposed by the previous SSVEP-based studies.

recommended for future research to delve into the reasons behind
these differences among signal types. Such investigation would
enable the development of more precise proposals in the future,
supported by a solid theoretical foundation.

The analyses related to the brain responses have shown
interesting results that could provide insights for new proposals
related to the characteristics of visual stimuli in c-VEP-based BCIs.
Firstly, although the used m-sequence for stimuli presentation
is the same for all conditions, the associated VEPs for each of
them have exhibited notable differences. These variations might
account for the disparities in performance and user comfort
observed across different conditions. Furthermore, in relation to
each condition, the averaged calibration epochs have shown little
deviation across trials and participants. This pattern reflects a
strong exogenous response that presents a high inter-trial and
inter-subject robustness of the templates. Several previous studies
have tried to model c-VEP responses as a linear superposition
of the reactions to individual events or flashes, e.g., to reduce
calibration time (Thielen et al., 2021), propose processing pipelines
(Nagel and Spüler, 2019), or handcraft optimal codes (Yasinzai and
Ider, 2020). The observed dissimilarity in brain responses among
different conditions suggests that spatial frequency also plays an
important role in the elicitation of such responses. Consequently,
the incorporation of additional stimulus-derived parameters into
this c-VEP modeling could potentially constitute a promising
avenue for future research endeavors. Secondly, Figure 5B also
showed that conditions with similar spatial frequencies had higher
EEG signal amplitude correlation (from C002 to C064, adjacent
correlations were r ≥ 0.65). This suggests that similar visual
stimuli lead to similar EEG patterns. However, C128 exhibited a
higher correlation with conditions characterized by lower spatial
frequencies. This could indicate that if the spatial frequency is
too high, the small squares cease to be perceived individually
but rather as a whole (similar to C001, which has the highest
correlation). In this respect, the global perception of the small
white-and-black squares would be perceived as a general shade
of gray. This could have resulted in the stimuli of C128 being
perceived with lower luminosity contrast (gray compared to white,
on a black background). This is in line with the previous scientific
literature that claims that the primary visual cortex is more
responsive to high-contrast stimuli (Wandell et al., 2007). As a
consequence, stimuli with lower contrast, such as gray/black vs.
white/black, can result in a reduced signal-to-noise ratio (SNR)

and, therefore, decreased classification accuracy (Ladouce et al.,
2022). To summarize, the VEP of both conditions (C001 and C128)
exhibits a correlation of r = 0.62, indicating perceptual similarity
in the pattern. However, the luminosity contrast may have an
impact on SNR, also affecting the accuracy. While the influence of
spatial frequency on VEPs in reaction to identical m-sequences has
been evidenced, it is our belief that the relationship between brain
responses and performance is still not clear and should be studied
further in the future to uncover the mechanisms at play.

Finally, the results regarding subjective measures will be
discussed, contextualizing them whenever possible with previous
studies on spatial frequency. Firstly, in terms of comfort,
similar results to Ming et al. (2021) were obtained, where the
C001 condition showed the lowest score, presenting significant
differences compared to C008 and C016. It would be interesting
for future studies to investigate the underlying reasons for these
differences, such as ease of attention focus, size of the illuminated
area, system performance, etc. Secondly, both Waytowich et al.
(2017) and Ming et al. (2021) demonstrated that visual irritation
and flickering perception, respectively, were more bothersome in
the 0 c/◦ condition. Although not significant, our results have
shown a trend toward increased ocular irritation for C001, the
condition with the highest contrast luminosity. In the BB-CB-
based conditions (C002–C128), the stimulus was only illuminated
on 50% of the surface with squares of different sizes. Hence,
this trend regarding ocular irritation was consistent with previous
literature (Gembler et al., 2020; Ladouce et al., 2022; Martinez-
Cagigal et al., 2023), and it could be attributed to an increased
activation of the LMS (luminance) postreceptoral pathway (Gentile
and Aguirre, 2020). Consequently, this effect may contribute to
the lower comfort levels observed for C001, and it should be
considered for situations in which a user has to control the
application for an extended period of time. Thirdly, regarding the
absence of significant differences in satisfaction, it is possible that
all conditions achieved similar high scores as a result of utilizing
8 cycles, which led to a ceiling effect where all conditions nearly
reached 100% accuracy. However, a different number of cycles may
alter the satisfaction measure. For instance, if only 1 cycle had been
used, the satisfaction results might have favored C001 due to: (i)
its better performance with that number of cycles; or (ii) because
the test duration of each condition was too short to induce ocular
irritation. Finally, concerning the preferred condition, the analyses
did not reveal anything statistically significant; however, it is worth
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mentioning that 25% of the participants chose C016, which aligns
with the positive results observed in the other subjective variables,
as well as the performance.

4.2. Limitations and future studies

Our findings reveal that the performance and user experience
were indeed impacted by the stimuli spatial frequency in
controlling a c-VEP-based BCI. Nevertheless, certain aspects
warrant careful consideration and could be further explored in
future studies. First, eight experimental conditions were tested,
so each condition was controlled for a relatively short period of
time (approximately 7 min per condition, including calibration
and online stages), possibly deviating from the everyday use
experienced by users relying on these systems. Fatigue-related
effects such as ocular irritation may not be observable until the
application is used for an extended period. Thus, a future research
line could be focused on investigating the preferred conditions
and conduct a more exhaustive and protracted usability analysis.
Second, it would be relevant to verify the obtained results among
users who represent the target population for these interfaces,
such as individuals affected by conditions like amyotrophic lateral
sclerosis, whose cognitive or visual abilities may differ from those
of the sample used in the present study (McFarland, 2020). Also,
these individuals would want to control practical applications (e.g.,
a speller or a home automation system). Thus, the proposed system
should be adjusted for such applications. For example, in the
present study, the commands to be selected (i.e., numbers from
1 to 9) were only shown before the trial began. In a continuous
control system, those commands would never be displayed, and
therefore, the interface would need to be adapted. Third, the used
system consistently employed a fixed number of cycles, whereas it is
possible that adequate system control could be achieved with fewer
cycles (e.g., C016 achieved an average accuracy of 99.31% with
only 3 cycles, 1.575 s). Therefore, future proposals could consider
incorporating the use of dynamic stopping methods to improve
system efficiency (Thielen et al., 2021). Fourth, it may be important
to explore how the stimulus spatial frequency relates to other
visual variables. For example, it could be interesting to explore
the effect of spatial frequency under different color combinations
instead of black/white (Nezamfar et al., 2016), the use of real-world
backgrounds to interact with environmental elements (Riechmann
et al., 2016), or the effect of stimuli with lower luminosity to
reduce visual fatigue (Ming et al., 2023). It is also crucial to
note that, in the BB-CB paradigm, manipulating the stimulus
spatial frequency, while keeping the size constant, also modifies
the number of white squares appearing over the black background.
Hence, investigating the potential interaction effect between spatial
frequency and overall stimulus size (e.g., smaller sizes may benefit
from a higher spatial frequency than larger sizes) would be
also interesting.

5. Conclusions

To our knowledge, this is the first work that has evaluated the
effect of stimulus spatial frequency on a cVEP-based BCI speller.
Our results determined that stimulus spatial frequency presented a

significant impact on performance and user comfort. Specifically,
two conditions utilized in the study should be highlighted: C001
(0 c/◦) and C016 (1.2 c/◦). On one hand, C001 stood out with
a high ITR (221.02 bits/min) at very short selection times (525
ms), but with an accuracy (79.86%) that might be insufficient
depending on the type of application to be controlled. On the other
hand, C016 excelled in terms of comfort, being significantly more
comfortable than C001. Additionally, C016 achieved a remarkable
mean accuracy of 96.53% and 164.54 bits/min with a trial duration
of 1.05s. However, it is worth noting that starting from 4 cycles
onwards (2.1 s), all conditions achieved an accuracy above 95%.
Therefore, the choice of spatial frequency will depend on the
application’s characteristics and user requirements (e.g., the need
for high accuracy, selection time, or session duration).

BCIs based on c-VEPs are innovative systems that have shown
promising performance, but there is still much to explore regarding
the visual parameters that influence system usability. Therefore, the
findings obtained in this study can provide valuable insights for the
design of upcoming c-VEP-based BCIs. Additionally, our results
concerning stimulus spatial frequency have raised new research
questions for future investigations. In conclusion, this study has
demonstrated that stimulus spatial frequency has a significant
impact on the performance of the c-VEP-based BCI, the comfort
experienced by users during control, and their brain responses.
These findings have important implications for the visual design
that should be considered in future proposals for c-VEP-based
BCIs.
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