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Background: Magnetic resonance imaging (MRI) is important for the early

detection of axial spondyloarthritis (axSpA). We developed an artificial

intelligence (AI) model for detecting sacroiliitis in patients with axSpA using MRI.

Methods: This study included MRI examinations of patients who underwent

semi-coronal MRI scans of the sacroiliac joints owing to chronic back pain with

short tau inversion recovery (STIR) sequences between January 2010 and

December 2021. Sacroiliitis was defined as a positive MRI finding according to

the ASAS classification criteria for axSpA. We developed a two-stage framework.

First, the Faster R-CNN network extracted regions of interest (ROIs) to localize

the sacroiliac joints. Maximum intensity projection (MIP) of three consecutive

slices was used to mimic the reading of two adjacent slices. Second, the VGG-19

network determined the presence of sacroiliitis in localized ROIs. We augmented

the positive dataset six-fold. The sacroiliitis classification performance was

measured using the sensitivity, specificity, and area under the receiver

operating characteristic curve (AUROC). The prediction models were evaluated

using three-round three-fold cross-validation.

Results: A total of 296 participants with 4,746 MRI slices were included in the

study. Sacroiliitis was identified in 864 MRI slices of 119 participants. The mean

sensitivity, specificity, and AUROC for the detection of sacroiliitis were 0.725

(95% CI, 0.705–0.745), 0.936 (95% CI, 0.924–0.947), and 0.830 (95%CI, 0.792–

0.868), respectively, at the image level and 0.947 (95% CI, 0.912–0.982), 0.691

(95% CI, 0.603–0.779), and 0.816 (95% CI, 0.776–0.856), respectively, at the

patient level. In the original model, without using MIP and dataset augmentation,

the mean sensitivity, specificity, and AUROC were 0.517 (95% CI, 0.493–0.780),

0.944 (95% CI, 0.933–0.955), and 0.731 (95% CI, 0.681–0.780), respectively, at

the image level and 0.806 (95% CI, 0.729–0.883), 0.617 (95% CI, 0.523–0.711),

and 0.711 (95% CI, 0.660–0.763), respectively, at the patient level. The

performance was improved by MIP techniques and data augmentation.
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Conclusion: An AI model was developed for the detection of sacroiliitis using

MRI, compatible with the ASAS criteria for axSpA, with the potential to aid MRI

application in a wider clinical setting.
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1 Introduction

Axial spondyloarthritis (axSpA) is a chronic inflammatory

disease that predominantly affects the axial skeleton, including the

sacroiliac (SI) joints (1, 2). Historically, axSpA was the result of the

recognition of the early phases of the disease, termed ankylosing

spondylitis (AS). In the era of the modified New York criteria, SI

joint damage had to be evident on plain radiographs to fulfil the

criteria for AS (3). However, magnetic resonance imaging (MRI)

can recognize inflammation of the SI joints before the development

of erosions that show radiographic changes on plain radiographs.

Therefore, MRI of the SI joints is becoming increasingly important

for early diagnosis and treatment of axSpA (4). Among the several

MRI findings observed in axSpA, subchondral bone marrow edema

(BME), which indicates active inflammation, was identified as a

finding suggest ive of sacroi l i i t is . The Assessment of

SpondyloArthritis international Society (ASAS) criterion defined

the presence of definite subchondral BME that is highly suggestive

of sacroiliitis in semi-coronal short tau inversion recovery (STIR)

sequences as “positive MRI” (5). Despite these advances, MRI

interpretation of SI joints is labor-intensive, requires the

acquisition of special skills, and shows variable results, even

among experienced specialists (6).

The range of AI applications has recently expanded. Image data

are advantageous for learning using AI because the input is

presented as objective numbers, and the amount of data is large.

Therefore, AI exhibits excellent performance in the field of picture

recognition (7). Based on these results, efforts have been made to

apply AI to various medical imaging (8, 9). In patients with axSpA,

studies have used plain radiographs as inputs for machine learning

to detect radiographic sacroiliitis (10) or the extent of radiographic

progression (11).

Deep learning is a subtype of AI that uses many hidden layers

for nonlinear process and extraction of important features. Deep

learning has previously been applied to various MRI data (12–14)

including that of musculoskeletal system (15, 16). Therefore, the use

of deep learning to detect sacroiliitis on the MRI of patients with

axSpA appears promising. The Faster Region-based Convolutional

Neural Network (R-CNN) (17) and Visual Geometry Group (VGG)

network (18) are types of deep learning that have shown high

performance in image classification tasks, owing to their
02
computational efficacy (19) and higher performance than

traditional methods (19–22).

In this study, we used Faster R-CNN and VGG-19 to detect

sacroiliitis according to the ASAS definition of positive MRI in

patients with axSpA.
2 Materials and methods

2.1 Study sample

This retrospectisve study was conducted at the Samsung

Medical Center, a tertiary referral hospital in Seoul, South Korea.

We included patients who (1) visited the rheumatology clinic

because of chronic back pain (> 3 months), (2) underwent semi-

coronal MRI scans of the SI joints with STIR sequences between

January 2010 and December 2021, and (3) were older than 18 years.

We excluded cases in which the inflammation of the SI joint could

not be evaluated because of artifacts, such as in patients who

underwent total hip replacement, and patients with inconclusive

clinical diagnoses. The STIR sequences of the SI joints were

obtained using four 3.0-T MRI scanners from two companies:

Ingenia, Ingenia CX, and Achieva from Phillips Healthcare and

Skyra from Siemens Healthineers for 47, 26, 80, and 143

patients, respectively.
2.2 Data labeling

Sacroiliitis was identified independently by a rheumatologist

(SL) and radiologist (JHL) using the definition of MRI sacroiliitis

according to the ASAS classification criteria for axSpA. Active

inflammatory lesions of the SI joint associated with

spondyloarthritis on MRI were defined as the presence of BME

visualized as hyperintensity in at least two consecutive slices or in at

least two locations within a single slice, according to the ASAS

criteria (5). The raters were blinded to the clinical data.

Discrepancies in interpretation were resolved by a consensus. In

addition, we extracted the bilateral SI joints by drawing bounding

boxes to reduce the noise of unnecessary information when

evaluating sacroiliitis. These ROIs were independently outlined by

a rheumatologist (SL) and a radiologist (MCJ).
frontiersin.org
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2.3 Model training

The pipeline for the proposed automatic sacroiliitis

classification method is shown in Figure 1. First, all MR images

were normalized, and the ROIs of the SI joints were extracted from

the entire MRI. The presence of sacroiliitis was determined on

individual MRI slices of localized SI joint ROIs.
2.4 Image pre-processing and sacroiliac
joints localization

MRI shows a large intensity variation between different patients,

as well as different slices within one patient (Supplementary

Figure 1). Thus, we applied adaptive histogram equalization (23)

to three-dimensional volume MRI of each patient to normalize the

MRI for each patient. The regions other than SI joints can affect the

diagnosis of sacroiliitis and interfere in the extraction of important

features for the diagnosis of sacroiliitis (24). Thus, a deep

convolutional neural network was used to efficiently localize the

SI joints and automatically extract the ROIs. First, Faster R-CNN

with ResNet-50 (25) was used to extract the ROIs of the SI joints

using the entire MRI (Supplementary Figure 2A). Second, the ROIs

extracted by the network were cropped and resized to a resolution

of 128 × 256 for use as inputs to the classification network

(Supplementary Figure 2B). One ROI each was extracted from the

left and right sides of the SI joint.
2.5 Image post-processing and
sacroiliitis classification

The classification network determined the presence of

sacroiliitis based on the brightness distribution of pixels in the

localized ROIs and contextual information based on the positional

relationships between consecutive slices. MIP (26) was applied to

three consecutive slices to mimic the process of comparing two

adjacent slices before identifying the inflammatory lesion. In

addition, the class imbalance between the positive and negative

labels causes the network to become overfit for the majority class

(negative labels). To overcome this problem, we utilized data

augmentation techniques, including blurring, adjusting contrast,

adding noise, rotating, and sharpening of positive labels. Because
Frontiers in Immunology 03
acquiring a large number of MRI scans for the diagnosis of

sacroiliitis is difficult, we used transfer learning (27) to effectively

train the network. As shown in Figure 1, the pre-trained VGG-19

was applied as a classification network using post-processed

localized ROIs as inputs. The architecture of VGG-19 used in this

study is illustrated in Supplementary Figure 3. More details are

provided in the supplemental methods.
2.6 Comparing prediction results
with ground truth of sacroiliitis and
clinical diagnosis

Through each one-round cross-validation, each individual

obtained a prediction result once. Because we performed a three-

round cross-validation, each individual in this study had three

prediction results. We repeated the prediction thrice to robustly

compare the prediction performance by randomly dividing the

training and validation groups thrice during cross-validation,

which was not intended to confirm individual prediction results.

However, to compare the ground truth and prediction results, we

defined a prediction as positive when a patient was unanimously

predicted to have sacroiliitis by all three predictions. We then

compared the prediction results with the ground truth used for

the labeling and diagnosis of axSpA by a rheumatologist based on a

combination of clinical factors. We defined the patients who were

clinically diagnosed with axSpA as ‘axSpA’ group, and the patients

who were not diagnosed with axSpA as ‘nonspecific back

pain’ group.
2.7 Statistical analyses

To evaluate the sacroiliitis classification performance, we

compared the proposed method (Method C) with sacroiliitis

classification results without augmentation and MIP (Method A)

and sacroiliitis classification results using augmentation but without

MIP (Method B). Sensitivity, specificity, and AUROC were used to

determine the performances of classification algorithms. The

intersection over union (IoU) was used to measure the gap

between the ground truth and the predicted results of ROIs. The

performances were obtained by averaging nine performances from

three-round three-fold cross-validation. When assessing the
FIGURE 1

Artificial intelligence framework to detect sacroiliitis in accordance with the assessment of spondyloArthritis international society criteria for axial
spondyloarthritis.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1278247
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lee et al. 10.3389/fimmu.2023.1278247
performance of the AI model using the test dataset, we refrained

from employing data augmentation and instead made predictions

using the trained model with real MRI images. This approach was

chosen to evaluate performance under actual conditions, without

the use of simulated input images. More details are provided in

the eMethods.

Statistical analyses of the clinical variables were performed

using R version 4.1.3 (28). The interobserver reliability of positive

sacroiliitis on MRI was determined using Cohen’s kappa coefficient

(29). The chi-square test was performed to compare the prediction

results of the individual patients with the ground truth and the

clinical diagnosis of axSpA. All p-values were two-sided, and a p-

value less than 0.05 was considered statistically significant.
3 Results

3.1 Characteristics of participants

A total of 296 participants with 4,746 MRI slices were included

in this study (Supplementary Figure 4). A total of 167 participants

had axSpA and 129 had nonspecific back pain. Sacroiliitis

consistent with axSpA, as defined by the ASAS classification

criteria, was identified in 119 participants (Supplementary

Table 1). The clinical characteristics of the participants who

underwent MRI are presented in Table 1. The participants were

36.8 years old on average and predominantly male (174/296,

58.8%). Among the participants with axSpA, 96 (57.5%) fulfilled

the modified New York radiographic criteria for AS, and 153

(91.6%) were human leukocyte antigen B27 positive (153/167,

91.6%). The mean C-reactive protein level in patients with axSpA

was 1.37 mg/dl.
3.2 Interobserver reliability of sacroiliitis
in MRI

The raters reached substantial agreement. The Cohen’s Kappa

coefficient was 0.876 (95% CI: 0.771–0.981) for the identification of

sacroiliitis compatible with the ASAS definition between the two

readers (SL and JHL).
3.3 Localization of SI joints

First, the SI joints were localized using AI (Supplementary

Figure 5). The average IoUs of the predicted results were 74.23%

and 74.37% for the right and left SI joints, respectively

(Supplementary Table 2). The predicted ROIs covered most SI

joints, even in relatively poorly predicted cases (Supplementary

Figure 5B). Therefore, we concluded that the AI that predicted the

SI joint had sufficient performance for further analysis.
Frontiers in Immunology 04
3.4 Detection of sacroiliitis compatible
with the ASAS definition using
artificial intelligence

On average, the final AI model (Method C) for the detection of

sacroiliitis compatible with the ASAS definition of axSpA showed a

sensitivity of 0.725 (95% CI, 0.705–0.745), specificity of 0.936 (95%

CI, 0.924–0.947), and AUROC of 0.830 (95% CI, 0.792–0.868) in

individual MRI slices, and a sensitivity of 0.947 (95% CI, 0.912–

0.982), specificity of 0.691 (95% CI, 0.603–0.779), and AUROC of

0.816 (95% CI, 0.776–0.856) in individual participants after three-

round three-fold cross-validation compared with the reference

standard by two raters (Table 2). The performance of sacroiliitis

detection improved gradually from deep learning directly on the

raw image (Method A) by implementing augmentation (Method B)

and further by performing both augmentation and MIP (Method

C). The confusion matrices for the detection of sacroiliitis per image

and subject are shown in Figure 2 and Supplementary Figure 6.
3.5 Comparing prediction results with
the ground truth of sacroiliitis and
clinical diagnosis

We compared the prediction results with the ground truth of

sacroiliitis and the clinical diagnosis of axSpA (Supplementary

Table 3). A total of 21 false-positive cases occurred in the

prediction by the unanimous decision of the predictive value of

the three rounds. Of the 21 false-positive cases, 10 occurred in

patients who were not clinically diagnosed with axSpA and 11 in

patients who were clinically diagnosed with axSpA. A total of 53

patients existed who did not meet the ASAS criteria for “positive

MRI” but were clinically diagnosed with axSpA, and the model

generated in this study showed that significantly more false

positives occurred in patients with clinically diagnosed axSpA

than in those without (p=0.033, Supplementary Table 4). On the

other hand, because patients with negative clinical diagnoses of

axSpA had only positive sacroiliitis in five patients, we could not

find additive information comparing false-negative cases with

clinical diagnoses.

Figure 3 shows examples of gradient-weighted class activation

mapping (Grad-CAM) used to visualize the models’ decisions and

highlight the regions relevant to model predictions. In these

examples, the place of BME matched with higher activations of

Grad-CAM in method C, better than method A or B.
4 Discussion

We generated AI models to detect sacroiliitis according to the

ASAS definition of positive MRI in patients with axSpA. We used the

Faster R-CNN and VGG-19 algorithms, and the performance was
frontiersin.org
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improved by MIP techniques and data augmentation. The AUROCs

were above 0.8 on an individual slice basis and on a per-patient basis.

MRI has recently gained importance in the diagnosis of axSpA

and the assessment of disease activity because it can detect

inflammation in patients with axSpA before structural changes are

observed on plain radiographs. However, MRI findings of sacroiliitis

in the ASAS criteria may have false positives (30) or false negatives

(31). Therefore, MRI readings for sacroiliitis require a specialist with

experience in MRI readings of musculoskeletal diseases.

This study included all MRI scans to evaluate the SI joint that

were performed over a 12-year period in the rheumatology

department for chronic back pain. This allowed the inclusion of a

diverse patient population, including patients with nonspecific back

pain and axSpA. An AI model was created and evaluated using MRI

scans from four different machines of two different companies.

Therefore, this study had the advantage of including all MRI scans

performed to evaluate sacroiliitis in real-world clinical practice,
Frontiers in Immunology 05
allowing us to evaluate the model in the same context as patients

encountered in a real-world clinical practice.

Notably, increasing the positive dataset through augmentation

and training with MIP to include data from the anterior and

posterior image slices improved the performance of the AI model.

When collecting data to determine the presence of sacroiliitis, a

small number of image slices contained actual inflammatory

lesions, even in patients with positive axSpA MRI findings.

Because patients without sacroiliitis must also be included in the

training, the negative dataset will always outnumber the positive

dataset for learning about active inflammatory sacroiliitis. In this

case, augmentation increased the number of positive datasets. In

addition, because the definition of positive MRI in the ASAS criteria

for axSpA includes cases in which a single BME is observed in two

or more consecutive image slices, to implement this, we used MIP to

consider the anterior and posterior slices together in training.

Because we confirmed that the augmentation and MIP techniques
TABLE 1 Baseline characteristics of patients.

All patients
(n=296)

axSpA
(n=167)

Nonspecific chronic back pain (n=129) p-value

Age, mean (SD), years 36.78 (12.45) 35.78 (12.63) 38.07 (12.14) 0.117

Male sex (%) 174 (58.8) 104 (62.3) 70 (54.3) 0.204

Duration of backpain, mean (SD), months 38.07 (51.57) 46.58 (59.13) 26.45 (36.12) 0.002

Inflammatory back pain (%) 183 (61.8) 127 (76.0) 56 (43.4) <0.001

Peripheral arthritis (%) 68 (23.0) 45 (26.9) 23 (17.8) 0.087

Enthesitis (%) 32 (10.8) 21 (12.6) 11 (8.5) 0.356

Dactylitis (%) 3 (1.0) 2 (1.2) 1 (0.8) >0.999

IBD (%) 6 (2.0) 3 (1.8) 3 (2.3) >0.999

Uveitis (%) 49 (16.6) 36 (21.6) 13 (10.1) 0.013

Psoriasis (%) 6 (2.0) 1 (0.6) 5 (3.9) 0.117

HLA-B27 positivity (%, n=288) 205 (69.3) 153 (91.6) 52 (40.3) <0.001

Negative 83 (28.0) 9 (5.4) 74 (57.4)

Positive 205 (69.3) 153 (91.6) 52 (40.3)

Unknown 8 (2.7) 5 (3.0) 3 (2.3)

ESR, mean (SD), mm/h 25.63 (29.06) 33.37 (33.68) 15.78 (17.53) <0.001

CRP, mean (SD), mg/dL 0.92 (2.03) 1.37 (2.44) 0.34 (1.08) <0.001

ASAS axSpA criteria (%) 161 (96.4)

Non-radiographic axSpA (%) 71 (42.5)

NSAIDs (%) 136 (81.4)

Sulfasalazine (%) 51 (30.5)

Other csDMARDs (%)a 5 (3.0)

Biologics (%) 12 (7.2)

Any kind of treatment for axSpA (%) 140 (83.8)
fro
IBD, inflammatory bowel disease; HLA-B27, human leukocyte antigen B27; ESR, erythrocyte sedimentation rate; CRP, C-reactive protein; ASAS, Assessment of SpondyloArthritis international
Society; axSpA, axial spondyloarthritis; NSAIDs, nonsteroidal anti-inflammatory drugs; csDMARDs, conventional synthetic disease-modifying antirheumatic drugs.
acsDMARDs except sulfasalazine.
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applied with a theoretical background improved the performance of

the AI model, we expect that the same process will improve the

performance of AI models with different structures in the future.

Several studies have examined active inflammation in SI joints

using machine learning (10, 24, 32). Previous studies had

comparable performance in predicting active inflammatory

lesions in SI joints, and the definition of active inflammation was

based on positive MRI findings compatible with the ASAS criteria

for axSpA, as in the present study. However, no study has compared

predicted results with the clinical diagnosis of axSpA.

The inclusion of MRI in radiographic diagnosis in the ASAS

criteria has greatly improved the early diagnosis of axSpA.

However, with only active inflammation included in the criteria,

concerns exist about false positives and false negatives. As already

known, BME can be observed on MRI as a false positive in osteitis

condensans ilii or athletes with high physical activity (30, 33, 34),

and in chronic disease, active inflammation may not be observed

and may be reported as a false negative (31). In this study, patients

without active inflammation based on the ASAS criteria for

axSpA, but with a positive AI prediction, were significantly

more likely to be clinically diagnosed with axSpA. Although the

exact factors that contributed to this could not be analyzed in this

study, probably, factors other than active inflammation were

trained together and contributed to the prediction of clinical

axSpA. Therefore, in addition to active inflammation, other

factors around the SI joint might contribute to the diagnosis of

axSpA in our AI model.
TABLE 2 Performances of artificial intelligence models for the detection
of sacroiliitis compatible with the assessment of spondyloArthritis
international society definition.

Performances by individual MRI slices

Sensitivity
(95% CI)

Specificity
(95% CI)

AUROC
(95% CI)

Method
Aa 0.517 (0.493–0.780) 0.944 (0.933–0.955)

0.731 (0.681–
0.780)

Method
Bb

0.563 (0.538–0.587) 0.933 (0.920–0.945)
0.747 (0.699–
0.796)

Method
Cc 0.725 (0.705–0.745) 0.936 (0.924–0.947)

0.830 (0.792–
0.868)

Performances by each patient

Sensitivity Specificity AUROC

Method
Aa 0.806 (0.729–0.883) 0.617 (0.523–0.711)

0.711 (0.660–
0.763)

Method
Bb

0.859 (0.792–0.926) 0.589 (0.494–0.684)
0.722 (0.671–
0.774)

Method
Cc 0.947 (0.912–0.982) 0.691 (0.603–0.779)

0.816 (0.776–
0.856)
AUROC, area under the receiver operating characteristic curve.
aArtificial intelligence model for the detection of sacroiliitis without augmentation and
maximum intensity projection.
bArtificial intelligence model for the detection of sacroiliitis using augmentation without
maximum intensity projection.
cArtificial intelligence model for the detection of sacroiliitis using both augmentation and
maximum intensity projection.
B

A

FIGURE 2

Confusion matrices of the first-round cross-validation using the proposed method (Method C) for detecting sacroiliitis (A) for individual MRI slices;
(B) for each subject.
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A few types of chronic inflammatory lesions have also been

described as specific MRI findings of axSpA. Sclerosis, erosion, fat

deposition, and ankylosis are typical of axSpA (5), and these

findings are significantly less common in athletes or postpartum

conditions which may show BME similar to axSpA (34, 35).

However, quantitative criteria for the classification of axSpA for

chronic inflammatory lesions have not yet been established and are

not included in the ASAS criteria for the definition of positive MRI.

Furthermore, T1-weighted images are required for evaluation in

addition to the STIR sequences used in this study. For this reason,

this analysis was not performed in this study, but it is expected that

chronic inflammatory lesions will play a role in improving

prediction performance.

In contrast, previous research suggested an association between

the presence of non-inflammatory spine abnormalities and BME,

fulfilling the ASAS definition of MRI sacroiliitis in patients with

definite mechanical chronic back pain (36). Based on this, it is

expected that by considering non-inflammatory bony abnormalities
Frontiers in Immunology 07
together, we may achieve a better differentiation of sacroiliitis

caused by mechanical issues. Additionally, we believe that

including images of the spine, another major site commonly

affected by axSpA, would be advantageous for the predictive

model. However, because accurate labeling is required for the

creation of a prediction model, we still need to evaluate the

clinical utility of non-inflammatory lesions and spine images for

the diagnosis of axSpA applying them to a prediction model for

sacroiliitis. Our study had several limitations. First, because no true

ground truth existed for the presence of axSpA sacroiliitis, the

consensus of multiple experts was used as the ground truth. The

diagnosis uncertainty introduces noise into the dataset and affects

the performance of the model. However, we assumed that the

ground truth was of good quality because the two experts agreed

substantially, with high interobserver reliability. Second, this study

was designed to detect active inflammation; therefore, it could not

distinguish between BME caused by other factors, such as physical

activity or childbirth. These changes might be difficult to distinguish
FIGURE 3

Examples of gradient-weighted class activation mapping (Grad-CAM) for the classification model from two different patients. The place of bone
marrow edema matched with higher activations of Grad-CAM in method C, better than method A or B.
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from axSpA based on imaging findings alone. Third, the AI model

could not be evaluated using MRI scans from different institutes.

Therefore, generalizing these results to MRI images is difficult using

new scanners and protocols. However, because the study was

trained and tested using images acquired from four different MRI

machines over a 12-year period, we believe that it can be applied to

MRI images captured in new environments. Fourth, one of the

conditions for positive MRI to qualify for the ASAS criteria, finding

at least two independent BME in a single slice, was not included in

the model generation. The ASAS criteria mention two conditions

regarding the amount of signal required to determine a positive

MRI: if there is only one signal, it should be present in at least two

slices (5). If there is more than one signal in a single slice, one slice

may be sufficient. The MIP method was introduced for training

when a single signal was identified in at least two consecutive slices;

however, the method for identifying the existence of more than two

independent signals in one slice was not implemented separately

when creating the model. Although we did not provide information

regarding the presence of two independent signals, we believe that

additional post-processing may not be required because all the

information is already in a single given, and previous studies have

also achieved successful results without the information needed to

detect distinct BMEs in a single slice (10, 32). Fifth, we did not test

the AI model in practical applications. Although we believe that the

AI model significantly reduces inter-observer variability and is

useful for identifying sacroiliitis in a practice setting without a

musculoskeletal imaging specialist, our study was not tested in a

real-world setting. Further research is required to demonstrate the

usefulness of the AI model in real-world practice.

In conclusion, an AI model was developed for the detection of

sacroiliitis on MRI, compatible with the ASAS criteria for axSpA,

with the potential to aid MRI applications in a wider clinical setting.
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