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The cut flower industry has a global reach as flowers are often produced in

countries around the equator and transported by plane or ship (reefer) mostly to

the global north. Vase-life issues are often regarded as linked to only postharvest

conditions while cultivation factors are just as important. Here, we review the

main causes for quality reduction in cut flowers with the emphasis on the

importance of preharvest conditions. Cut flower quality is characterised by a

wide range of features, such as flower number, size, shape, colour (patterns),

fragrance, uniformity of blooming, leaf and stem colour, plant shape and

developmental stage, and absence of pests and diseases. Postharvest

performance involves improving and preserving most of these characteristics

for as long as possible. The main causes for cut flower quality loss are reduced

water balance or carbohydrate availability, senescence and pest and diseases.

Although there is a clear role for genotype, cultivation conditions are just as

important to improve vase life. The role of growth conditions has been shown to

be essential; irrigation, air humidity, and light quantity and quality can be used to

increase quality. For example, xylem architecture is affected by the irrigation

scheme, and the relative humidity in the greenhouse affects stomatal function.

Both features determine the water balance of the flowering stem. Light quality

and period drives photosynthesis, which is directly responsible for accumulation

of carbohydrates. The carbohydrate status is important for respiration, and many

senescence related processes. High carbohydrates can lead to sugar loss into the

vase water, leading to bacterial growth and potential xylem blockage. Finally,

inferior hygiene during cultivation and temperature and humidity control during

postharvest can lead to pathogen contamination. At the end of the review, we

will discuss the future outlook focussing on new phenotyping tools necessary to

quantify the complex interactions between cultivation factors and postharvest

performance of cut flowers.

KEYWORDS

vase life, ornamental crops, pathogens, water balance, stomata, xylem architecture,
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Introduction

Vase life of cut flowers is the time flowers have a good

appearance. Vase life depends on genotype, preharvest and

postharvest conditions. End of vase life can be determined by

discolouration of flowers, yellowing of leaves, wilting of leaves or

flowers, bending of stems, abscission of flower-(petals) or leaves,

presence of pathogens, turbid vase water, inflorescence blackening,

drooping of the flower head, and often a combination of these

processes (van Meeteren, 1992; van Doorn and Cruz, 2000).

Although breeding has led to a spectacular variety in phenotypes,

improving postharvest keeping quality is still a challenge. This is

because harvesting leads to dramatic changes in environment;

especially when plant products such as cut flowers, are

transported and/or stored. Temperature, light, CO2 level, air

velocity and humidity change considerably, influencing

photosynthesis, respiration, and transpiration.

The carbohydrate level of cut-flowers can be strongly influenced

by cultivar, growth practices and postharvest treatments (Zieslin

et al., 1975; Rajapakse and Kelly, 1995; Eason et al., 1997; Han, 2003;

Kazuo et al., 2005; van Geest et al., 2017). A negative carbohydrate

balance may lead to carbohydrate starvation, which may lead to

induction of senescence. Hormone levels have a striking effect on

flower longevity and senescence; important hormones such as

ethylene, gibberellins, auxins, and abscisic acid have been

implicated in flower longevity and keeping quality (Reid and

Jiang, 2012). For example, ethylene can lead to flower senescence

and leaf abscission, in climacteric species such as carnations and

rose. Harvest is the onset of potential water loss and a reduction of

water content in cut flowers (Halevy and Mayak, 1979; van Doorn,

1996). This occurs through continued transpiration through

stomata: openings between two guard cells that control gas

exchange between inner and outer environment of the plant. To

prevent water loss, stomata have to close, triggered by

environmental conditions (Fanourakis et al., 2013b). Pathogen

pressure can shorten vase-life greatly, by negatively affecting the

water balance, e.g., by bacteria in vase water (van Doorn, 1996). In

addition, various phytopathogenic fungi, amongst others, Botrytis

cinerea is an ever-present disaster risk that creates leaf spots, blight

in leaves, stems, and flowers, sepal yellowing, and peduncle bending

(Bika et al., 2021).

This mini review aims to provide an overview of the effects of

cultivation factors on the (postharvest) quality of cut flowers. Better

understanding of these effects will be useful to grow higher quality

cut flowers and speed up the selection of new genotypes with

improved quality characteristics. The aim of this mini review is

not to describe cut flower quality issues in detail as many other

reviews have described these in great detail and are referenced in the

text where relevant.
Water balance

In cut flowers, the negative effects of water loss through

transpiration are large when water uptake is limited. When a

flower is cut, the water content of the flowering stem is at risk:
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water uptake through xylem is obstructed whereas evaporation

through stomata may continue (Fanourakis et al., 2013b;

Schouten et al., 2018a). Water content is an important factor for

vase life of cut flowers. The water content is commonly measured by

following the fresh weight over time, as well as the water uptake and

transpiration of water (van Meeteren et al., 1999). Although end of

vase life is not only dependent on water content, end of vase life is

often correlated to the point where fresh weight drops below a

certain threshold of the initial fresh weight (van Meeteren, 1992;

van Meeteren et al., 1999). Genotype and environment during

preharvest and postharvest are both important. The effect of

preharvest factors such as harvest date, and cultivation conditions

determine water balance between uptake and transpiration (Halevy

and Mayak, 1979; Torre and Fjeld, 2001; van Meeteren et al., 2005).

Water transport occurs through the xylem: a water transport

network of long, dead, tracheary cells that facilitates mostly

transpiration but also is important maintaining the water content

in the stem. It consists of vessels and tracheid, both interconnected

through perforations in their common walls. The interconnection is

achieved through pit pores; thinner portions of the cell wall that

allow fluids movement. The rate of water transport, the hydraulic

conductance (Kh), is proportional to the radius of the vessel

(Zimmermann, 1983; van Doorn, 1996; van Doorn, 2012).

Because water transport is facilitated by the xylem, blockage and

resistance to water flow, can lead to a negative water balance and

subsequent wilting (Aarts, 1957; Halevy and Mayak, 1979; Halevy

andMayak, 1981). Blockage occurs through microbial growth in the

vase water, the occurrence of air emboli, or a wound response.

Microbial growth in the vase water causes xylem blockage

limiting water uptake leading to premature wilting: addition of

bacteria into vase water shortened vase life (van Doorn, 1996;

Schouten et al., 2018b). Vase water bacteria likely originate from

the hairy surface of the stem, and take advantage of carbohydrates

that leak from wounded surfaces induced by harvesting and

postharvest removal of leaves and thorns (Woltering, 1987; Put,

1990). Xylem architecture determines bacterial colonization as

bacteria cannot pass the pit pores. Therefore, vessel length is a

limiting factor. In rose, bacteria did not travel further than 50 mm

from the cut end of the stem (Robinson et al., 2007).

Air emboli are the result of air entering the xylem at the cut end

(van Doorn, 1990; van Meeteren, 1992) or higher up in the xylem

caused by cavitation which results from strong negative xylem

pressure due to strong transpiration. During harvest, the xylem

vessels are cut from the root, exposing them to the air, which is

sucked into the vessels due to the negative pressure in the xylem.

This causes complete embolization. Air does not pass to adjacent

non-cut xylem vessels because air cannot pass the pit membranes.

The air is trapped between the entering water column and the pit

membranes and high surface tension prevent water transport

(Zimmermann, 1983; Nijsse et al., 2000; Nijsse et al., 2001; van

Ieperen et al., 2001). Large diameter xylem vessels are more

susceptible to air emboli than narrow ones. Smaller, less

developed vessels are less susceptible to air embolism because

they have smaller pit pores (Sperry and Tyree, 1988; Hargrave

et al., 1994; van Ieperen et al., 2002). Cutting of the stem under

water is the best way to prevent air emboli. Cold water is also
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advised, because it reduces bacterial growth, and air has a higher

solubility in cold water (van Meeteren, 1992). Reducing the surface

tension by addition of surfactant can also reduce air emboli (van

Doorn, 2012; Schouten et al., 2018a).

Mechanical damage of the tissue can induce a wound response:

the deposition of materials such as gums and mucilage in the lumen

of xylem vessels, and formation of tyloses on the cut stem surface

(van Doorn, 1996). These water-uptake restricting depositions are

considered a physiological (oxidative) wound response to cutting,

depending both on peroxidase and catechol oxidase activity.

Inhibitors of oxidative enzymes can prevent these responses (van

Doorn and Cruz, 2000; Çelikel et al., 2011).

Removal of 2.5 to 5 cm of the stem improves water balance,

removing air emboli, bacterial colonization, and wound induced

depositions. However, there is hesitance to remove too much

because stem length determines value (Moody et al., 2014). Also,

further wounding of the tissue could lead to the additional

biosynthesis of blocking depositions. Commercial vase solutions

contain carbohydrates to prevent early senescence, and in addition,

compounds that prevent bacterial growth, air emboli and wound

response (Vaslier and van Doorn, 2003).
Role of cultivation on
xylem architecture

For most cut flower quality related factors, the xylem

architecture is important. Although wide vessels are responsible

for most of the water transport, the presence of narrow shorter

vessels is needed to overcome air emboli (Zimmermann, 1983; van

Doorn, 1996). In grape, it was shown that bacterial growth is

restricted in cultivars with more narrow xylem vessels (Chatelet

et al., 2011). Nevertheless, dedicated experiments linking growth

conditions with bacterial xylem blockage have not been carried out,

perhaps due to the complexity of the interacting factors that not

only affect the risk of cavitation but also affect the type of bacteria

growing on stems (Carlson et al., 2015). Experiments with varying

light intensity, and cultivation temperatures led to only minor

changes in the ability to restore Kh after induction of air emboli.

This was observed when conditions were rather extreme (van

Meeteren et al., 2005). However, the water content of the root

substrate was shown to have a significant effect on restoration of

induced air emboli in chrysanthemum flowering stems. Without air

emboli, stems grown at perlite with a 70% water content had a

better Kh that those grown at 20% (van Meeteren et al., 2005). In

grape and zinnia, the effect of reduced irrigation and water stress

during growth was also shown to lead to reduced xylem diameter

(Lovisolo and Schubert, 1998; Twumasi et al., 2005). This might be

employed to optimize water transport during postharvest. However,

effect of growth conditions on xylem architecture is anecdotal and

limited to few species. The limiting factor is quick and non-

destructive quantification of the xylem architecture. Recent work

has demonstrated the visualization of xylem architecture with

micro-CT images and ultrasound (Schneider et al., 2021; Wason

et al., 2021; Dutta et al., 2022). Also helpful is that the xylem

architecture can be simulated using water flow equations (Nijsse
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et al., 2001; van Ieperen et al., 2002; Couvreur et al., 2021). These

new non-destructive phenotyping methods can be used to study

plants grown under highly controlled growing conditions, allowing

the study of the effects of cultivation on xylem architecture

(Rosenqvist et al., 2019; van Delden et al., 2021).
Stomata

A stoma consists of two guard cells that control opening and

closing of the stomatal pore by swelling and shrinking, respectively

(Schroeder et al., 2001a). Stomata form the connection between

internal leaf space and aerial environment around the leaf

controlling CO2 entry for photosynthesis and outflow of

transpired water (Tallman, 2004). Stomatal guard cells are

regulated by signals as diverse as light (spectrum, intensity, and

photoperiod), relative air humidity (RH), temperature, air velocity,

nutrition, leaf water status, and carbon dioxide concentration

(Tallman, 2004; Reynolds-Henne et al., 2010; Feller and Vaseva,

2014). In addition, stomatal functioning is also regulated through

abscisic acid (ABA) and nitric oxide (NO), and mediated by gene

expression and protein activity (Assmann, 1993; Schroeder et al.,

2001a; Schroeder et al., 2001b; Cutler et al., 2010; Kline et al., 2010;

Assmann and Jegla, 2016; vanMeeteren et al., 2020). Recent work in

arabidopsis suggests an involvement of ethylene in stomata

response, by tuning/accelerating stomatal conductance responses

to CO2 and ABA (Azoulay-Shemer et al., 2023).

To reduce energy use in greenhouses, growers are stimulated to

grow plants at high RH (>85% RH) (de Gelder and Dieleman, 2012;

de Gelder et al., 2012; Marcelis et al., 2014). Growing at high RH

often leads to malfunctioning stomata, meaning that they do not

respond well to closing stimuli such as light-dark transition, ABA,

or desiccation (Torre and Fjeld, 2001; Rezaei Nejad and van

Meeteren, 2006; Fanourakis et al., 2011; Arve et al., 2013;

Fanourakis et al., 2013a; Aliniaeifard et al., 2014). The

consequence of this stomatal malfunctioning is a high

transpiration rate after harvest leading to early onset of wilting

(Lange et al., 1971; Fanourakis et al., 2012; Arve et al., 2013). A

significant shortening (9-80%) of vase life in roses, bouvardia, and

chrysanthemum was observed (Torre and Fjeld, 2001; Fanourakis

et al., 2013a; Aliniaeifard and van Meeteren, 2016; Fanourakis et al.,

2016; van Meeteren and Aliniaeifard, 2016; Aliniaeifard and Van

Meeteren, 2018; Schouten et al., 2018a). Interestingly, depending on

the species, exposure time to high RH leading to stomatal

malfunctioning can vary from less than one day to more than

four days (Aliniaeifard and van Meeteren, 2013). There is genotypic

variation in stomatal malfunctioning, at least in arabidopsis and

rose (Aliniaeifard and van Meeteren, 2014; Carvalho et al., 2016). In

arabidopsis, there is a variation in sensitivity to growth at high RH;

and in rose, a segregating population was phenotyped for stomatal

responsiveness to which led to the identification of genomic regions

(Carvalho et al., 2015). This suggests that breeding can be used to

reduce the effects of stomatal malfunction.

Stomata respond strongly to light. Continuous light can worsen

the negative effects of high RH in stomatal functioning in rose

(Mortensen and Gislerød, 1999). High light can alleviate the
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stomata function, cultivation at PPFD of >200 mmol·m-2·s-1 led to

more responsive stomata and decreased cuticular permeability

(Fanourakis et al., 2019). It was shown that a dark period is

important to develop functional stomata (Arve et al., 2013). Also,

in well-watered plants, blue light suppressed signalling of ABA-

induced stomatal closure and promoted stomatal opening

(Boccalandro et al., 2012). A recent publication demonstrated that

growing chrysanthemum plants under red light reduced

postharvest water loss from leaves. Possibly, this is caused by

generation of small/fast acting stomata during the growth of

plants (Seif et al., 2021). At this time, it is not understood how

high relative humidity causes stomata to lose the ability to respond

to closing stimuli (Aliniaeifard and van Meeteren, 2014; Arve et al.,

2014). In rose, multiple genes involved in ABA pathway form a

highly complex regulatory network acting together towards

tolerance to high RH (Carvalho et al., 2016). Plants grown at high

RH have reduced ABA content through upregulated ABA

catabolism genes, or increased derivatization, however this does

not entirely explain the reduced response to ABA (Schwartz et al.,

2003; Lee et al., 2006; Rezaei Nejad and van Meeteren, 2006; Seki

et al., 2007; Giday et al., 2013; Arve et al., 2015).

Several strategies are known to alleviate of stomatal

malfunctioning in plants developed under high RH: increased

salinity, ABA application, soil water deficit, increased air

movement, grafting, increased blue light, temporary increase of

temperature and temporary decrease of RH (Fanourakis et al.,

2016). Some of those strategies could have a direct implication in

increasing the vase life of cut roses (Fanourakis et al., 2013a).
Carbohydrates

At harvest, cut flowers are excised from organs that are the

source of carbohydrates: bulbs, tubers, roots, and stems. Cut flowers

are required to metabolize and grow during the postharvest phase.

Harvest and distribution often have a negative effect on the

carbohydrate status of cut flowers. During transportation and

storage, plant produce is usually kept in the dark in which

photosynthesis is restricted, and the carbohydrate reserves are

depleted by metabolic processes. Finally, during vase life, limited

light, nutrient and water availability strongly impair photosynthesis,

and carbohydrate availability is further reduced. These negative

circumstances for maintaining carbohydrate reserves can strongly

reduce postharvest quality of cut-flowers.

Carbohydrate starvation often leads to senescence-like

symptoms, such as flower wilting, loss of chlorophyll in leaves

and loss of chlorophyll and colour in flowers (van der Meulen-

Muisers et al., 2001; Han, 2003; Ichimura et al., 2003; Buchanan-

Wollaston et al., 2005; Kazuo et al., 2005; Trivellini et al., 2012; van

Geest et al., 2016). However, carbohydrate starvation also leads to

symptoms that are not observed during normal developmental

senescence such as leaf blackening and reduced flower opening

(Bieleski et al., 1992; van der Meulen-Muisers et al., 2001; Han,

2003; van Geest et al., 2016). The molecular pathways associated

with developmental senescence and carbohydrate-starvation

induced deterioration have many analogies, but there are also
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essential differences (Buchanan-Wollaston et al., 2005; Trivellini

et al., 2012). It can therefore be difficult to separate postharvest

problems associated with carbohydrate starvation or developmental

senescence, because they might have the same initial trigger (van

Doorn, 2004).

In chrysanthemum, cultivar differences in carbohydrate content

of disk florets are related to susceptibility to disk floret degreening,

with high light increasing the carbohydrate content of disk florets

(van Geest et al., 2017). Choice of cultivar and light intensity can

therefore significantly affect postharvest performance through

carbohydrate content. Also altering the sink-source balance, by

pruning, can strongly affect the amount of storage carbohydrates,

and with that the postharvest performance (Zieslin et al., 1975; Kool

et al., 1996).

Carbohydrates play an important role in the postharvest

performance in cut-flowers; the addition of sugars to the vase

water is usually one of the most effective measures to improve

vase-life. Cut flowers that can better cope with carbohydrate

starvation during the postharvest chain will be less perishable.

This notion brings interesting opportunities to improve

postharvest performance by breeding, improved growing practices

and postharvest technology.
Botrytis

B. cinerea (‘grey mould’) is a constant and costly threat to the

ornamental industry with various attack modes, and the ability to

survive in favourable and unfavourable conditions (Elad, 2016).

Even some B. cinerea species that grow as harmless endophytes

might turn into ‘necrotrophic thugs’ due to increased inbreeding

and reduced genetic diversity in ornamental crops (van Kan et al.,

2014). In addition, B. cinerea has the ability to quickly develop

fungicide resistances (Li et al., 2014). B. cinerea isolates were found

resistant to many single, and sometimes, several classes of

fungicides in commercial rose shipments (Muñoz et al., 2019).

Biological control agents such as fungi or bacteria are also

alternatives as they disturb B. cinerea hyphae development and

induce systemic resistance (Zhao et al., 2018; Calderón et al., 2019;

Nakkeeran et al., 2020; South et al., 2020; Motlagh and Jafari, 2022).

Managing B. cinerea during ornamental production starts with

proper sanitation protocols. Infections in cut roses has been

correlated with the spore density in glasshouses with dead leaves

as sources of inoculum (Kerssies et al., 1995; Dik and Wubben,

2007). The other key issue is to limit dew point temperatures to

prevent free water on the crop by e.g., drip irrigation, reducing plant

density and avoiding harvest on rainy days (Daughtrey and Benson,

2005; Elad, 2016). Fortification against B. cinerea is also a good

strategy, by e.g., calcium sprays. Fortification against B. cinerea can

also be elicited by phytohormones such as brassinosteroids,

salicylic-, jasmonic- and abscisic acid (AbuQamar et al., 2017; Liu

et al., 2018; Shafiee-Masouleh, 2018; Bennett et al., 2020). An

interesting, additional tool, for B. cinerea management is the use

of UV-C radiation. UV-C has shown to limit B. cinerea

development in gerbera and freesia flowers (Darras et al., 2010).

UV-C has recently been applied commercially in rose greenhouse
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cultivation as an end of day treatment and during sorting. It is likely

a B. cinerea containment strategy can only be attained by both

fortifying the ornamental crop and limiting the number of spores,

either dormant or active, in a systemic management approach (Bika

et al., 2021). Perhaps the toughest hurdle to overcome is that

treatments published in literature are not necessarily effective in

the ornamental industry due to ever changing cultivars, cultivation

practises and global chains.
Conclusions and future perspectives

The quality of cut flowers is difficult to predict because it is

dependent on several interacting processes that depend on

carbohydrate status, xylem architecture, stomatal behaviour, and

microbial (botrytis) pressure; factors that are all shaped during

cultivation. The question is whether the continuing accumulation of

knowledge of important processes that shape quality is currently

sufficient to provide a strategy to create the best conditions for the

best cut flower quality. We mention a number of important factors;

(1) good hygiene is important both for pathogenic and

nonpathogenic microorganisms, (2) light conditions determine

photosynthesis and the carbohydrate status, and (3) the

importance for RH control is emphasized because high RH could

lead to stomatal malfunction.. We feel that we are currently not able

to do provide such a strategy and would like to emphasize gathering

more information during the cultivation phase, for instance by

embracing new phenotyping tools. For example, the influence of

root substrate on xylem architecture is not well understood, and

more research is needed. The use of novel non-destructive methods

opens new possibilities in this topic. Recent developments in new

phenotyping tools such as xylem architecture measurements with

sound, and with 3D high-resolution X-ray micro-computed

tomography (micro-CT) images have recently been reported

(Wason et al., 2021; Dutta et al., 2022).

Complete control of growth conditions does not necessarily

improve quality; vase life of zinnia grown in natural photoperiods

from May to June was better than that of those grown under

artificial long days in the greenhouse in February and April (Stimart

and Brown, 1982). During field production, plants are grown under

varying environmental conditions from spring to fall and this

influences quality (Kalinowski et al., 2022). Dry periods can be

good for xylem architecture, and high light improves carbohydrate

deposition, although dynamic control of these factors is possible in

protected horticulture.

Recent developments such as increases in gas prices and the

implementation of LED lights to replace traditional HPS lamps in

greenhouses can lead to changes in cut flower quality, especially in

winter. Lower quality could be caused by a lower carbohydrate load,

caused by a reduced photosynthesis, and reduced growth under

lower temperatures. However, it is also possibly due to stomatal

malfunctioning in plants developed under high RH. Strategies to

prevent this, are difficult to implement in horticultural practices

(e.g., ABA application is expensive) and therefore a more

permanent solution is required. Identification of the molecular

mechanism that leads to stomatal malfunction can lead to genetic
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markers that can be used to select for better stomatal function. A

better understanding of optimal conditions for quality would allow

for the application of dynamic growth conditions that yield

this quality.

To study the complex effects of preharvest conditions on

quality, illustrates the need for more rapid and reliable phenotyping

methods. Hydration status might also be evaluated non-destructively

by applying spectral information and artificial neural network. The

water status at harvest of leaves of two ornamental species

(Spathiphyllum wallisii, Chrysanthemum morifolium) was analysed

by multi spectral imaging (Fanourakis et al., 2023). During growth, it

might be possible to monitor stomatal function and crop health and

performance using thermal cameras, or by spectral imaging (Stamford

et al., 2023). Thermal camaras could be used to monitor stomatal

behaviour and photosynthetic activity (Vialet-Chabrand and Lawson,

2020). In addition, currently, the development of complete controlled

growth conditions in conditioned environmental agriculture and

vertical farms, as well as monitoring of the plants during their

growth has grown tremendously (van Delden et al., 2021). These

high tech growth conditions offer the possibility to study the effect of

growth conditions on postharvest quality in more detail (Rosenqvist

et al., 2019; Hall et al., 2022).
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