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Background: There is increasing evidence indicating that immune system
dysregulation plays a pivotal role in the pathogenesis of retinopathy of
prematurity (ROP) and sepsis. This study aims to identify key diagnostic
candidate genes in ROP with sepsis.

Methods: We obtained publicly available data on ROP and sepsis from the gene
expression omnibus database. Differential analysis and weighted gene correlation
network analysis (WGCNA) were performed to identify differentially expressed
genes (DEGs) and key module genes. Subsequently, we conducted functional
enrichment analysis to gain insights into the biological functions and pathways. To
identify immune-related pathogenic genes and potential mechanisms, we
employed several machine learning algorithms, including Support Vector
Machine Recursive Feature Elimination (SVM-RFE), Least Absolute Shrinkage
and Selection Operator (LASSO), and Random Forest (RF). We evaluated the
diagnostic performance using nomogram and Receiver Operating
Characteristic (ROC) curves. Furthermore, we used CIBERSORT to investigate
immune cell dysregulation in sepsis and performed cMAP analysis to identify
potential therapeutic drugs.

Results: The sepsis dataset comprised 352 DEGs, while the ROP dataset had
307 DEGs and 420 module genes. The intersection between DEGs for sepsis and
module genes for ROP consisted of 34 genes, primarily enriched in immune-
related pathways. After conducting PPI network analysis and employing machine
learning algorithms, we pinpointed five candidate hub genes. Subsequent
evaluation using nomograms and ROC curves underscored their robust
diagnostic potential. Immune cell infiltration analysis revealed immune cell
dysregulation. Finally, through cMAP analysis, we identified some small
molecule compounds that have the potential for sepsis treatment.

Conclusion: Five immune-associated candidate hub genes (CLEC5A, KLRB1,
LCN2, MCEMP1, and MMP9) were recognized, and the nomogram for the
diagnosis of ROP with sepsis was developed.
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1 Introduction

Sepsis is a severe systemic infection characterized by a
dysregulated host response, leading to organ dysfunction to
varying degrees (Singer et al., 2016). Furthermore, according to
population-level studies over the past 2 decades, the occurrence of
neonatal sepsis was recorded at 2.2%, with mortality rates spanning
from 11% to 19% (Liu et al., 2016; Dong et al., 2020). In summary,
sepsis stands as one of the primary contributors to hospital-related
mortality (Rhee et al., 2019). Additionally, it imposes significant
economic burden and psychological stress on patients and their
families.

Retinopathy of prematurity (ROP) constituted a significant
factor that led to visual impairment and blindness in children,
characterized by abnormal retinal neovascularization in
premature infants (Rivera et al., 2011). It was recognized as an
“iatrogenic disease” following the introduction of supplemental
oxygen and incubators, which made survival of premature infants
possible (Dogra et al., 2017). The incidence and severity of ROP were
impacted by multiple factors, such as birth weight, gestational age,
oxygen exposure, bronchopulmonary dysplasia, blood transfusions,
as well as several systemic risk factors (Wu et al., 2018).

Inflammation is widely recognized as a significant factor in the
development of ROP. Furthermore, in the oxygen-induced
retinopathy model, it has been demonstrated that systemic
inflammation in newborns disrupts the development of retinal
blood vessels and induces the pathological features of ROP
(Tremblay et al., 2013; Hong et al., 2014). Premature infants are
at increased risk of developing ROP due to incomplete development,
especially in the vascular system of the eyes (Sato et al., 2009). Sepsis,
as a systemic infection, can lead to vascular inflammation and
endothelial dysfunction, thereby increasing the risk of ROP in
premature infants (Lee and Dammann, 2012). Premature infants
with low birth weight were more susceptible to infections, and there
was evidence of an increased risk of ROP in these cases. Several
studies have demonstrated an association between the incidence of
early-onset sepsis in premature infants and an elevated risk as well as
severity of ROP (Huang et al., 2019; Bonafiglia et al., 2022; Shen
et al., 2022). This indicates that infections and inflammatory
responses may have a vital role in the pathogenesis of ROP.
Currently, the mechanisms underlying the role of inflammation
in ROP accompanied by sepsis are still under investigation.

In recent years, bioinformatics analysis has found widespread
applications in exploring potential pathogenic mechanisms, identify
therapeutic targets, and discover small molecule drugs for various
diseases. In our study, we utilized sepsis and ROP datasets
downloaded from GEO to identify differentially expressed genes
(DEGs) and important module genes through weighted gene co-
expression network analysis (WGCNA). We conducted enrichment
analysis on intersecting genes, constructed PPI networks, and
applied machine learning algorithms, including LASSO, RF, and
SVM-RFE. We performed immune cell infiltration analysis and
Connectivity map (cMAP) analysis. Furthermore, we assessed the
essential immune-related diagnostic genes for sepsis combined with
ROP using nomogram and ROC curve analysis. This research aims
to identify potential immune-related diagnostic biomarkers for ROP
with sepsis, providing valuable insights for clinical diagnosis and
treatment guidance.

2 Materials and methods

2.1 Data collection

We performed a search using “retinopathy of prematurity” and
“sepsis” as keywords in the GEO database and retrieved two relevant
gene expression datasets: GSE13904 and GSE218039 (Barrett et al.,
2013). The microarray dataset GSE13904, comprises 18 samples
from normal children and 52 samples from sepsis cases. The RNA-
seq-based dataset GSE218039, consists of 16 control samples and
14 samples from ROP cases. To better illustrate our research process,
we have created a flowchart in the Figure 1.

2.2 Data preprocessing and differentially
expressed genes analysis

Themicroarray dataset for GSE13904was downloaded fromGEO
and subjected to normalization using the “limma” package in R
software. The “limma” package was employed to compare the gene
expression profiles between normal samples and sepsis cases in order
to identify DEGs. For GSE218039, we obtained the raw expression
data, normalized the data, and employed the DESeq2 package in R to
identify DEGs. Probe sets without corresponding gene symbols were
excluded. Genes with multiple probe sets were averaged. Genes with
an adjusted p-value <0.05 and a threshold of |log2 Fold Change| >
1 were set for the analysis. Furthermore, we employed the R software
package “ggplot2” to create separate volcano plots for visualizing the
DEGs obtained from each of the two datasets.

2.3 Weighted gene correlation network
analysis (WGCNA)

To investigate the correlation between genes, we constructed a
gene co-expression network using the WGCNA (Langfelder and
Horvath, 2008). Firstly, we calculated the median absolute
deviation (MAD) for each gene and identified the top 5,000 genes.
Then, we computed the adjacency using a “soft” thresholding power
(β) derived from co-expression similarity. The adjacency was
transformed into a topological overlap matrix (TOM), and gene
dissimilarity and heterogeneity were assessed. Thirdly, module
detection was performed using hierarchical clustering and dynamic
tree cutting. Genes that displayed comparable expression profiles were
assigned to gene modules utilizing the average linkage hierarchical
clustering method, ensuring a minimum gene module size (n = 30)
based on the TOM-based dissimilarity measure and gene
dendrogram. Finally, employing WGCNA analysis, we identified
and visualized the crucial modules associated with ROP.

2.4 Function enrichment analysis

To explore the functional and interactive roles of genes in biological
pathways, we utilized the DAVID online database (https://david.ncifcrf.
gov) to performGOandKEGGpathway enrichment analyses (Kanehisa
and Goto, 2000; The Gene Ontology Consortium, 2019). In this study,
the results were visualized using the bioinformatics platform (https://
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www.bioinformatics.com.cn). We performed two rounds of GO and
KEGG analysis based on the intersection of DEGs and the key module
genes of ROP, and the intersection of sepsis-related DEGs and the key
module genes of ROP.

2.5 Protein–protein intersection network
construction

We uploaded the candidate genes to the STRING database
(www.string-db.org) and constructed a PPI network (Szklarczyk

et al., 2021), with a medium confidence score of >0.4. Subsequently,
we utilized the Cytoscape software to identify interacting genes for
further analysis (Shannon et al., 2003).

2.6 Machine learning

To further identify candidate biomarkers for ROP and sepsis
and establish a diagnostic model, we employed three machine
learning algorithms. Lasso is a regularization method for linear
regression that incorporates feature selection and model

FIGURE 1
Study flowchart.
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interpretability by adding an L1 regularization term, thereby
improving prediction accuracy (Yang et al., 2018). RF is an
ensemble learning algorithm that constructs multiple decision
trees for classification or regression (Ellis et al., 2014). The final
prediction result is based on the voting or average of all decision
trees, providing robustness and generalization capabilities. SVM-
RFE combines support vector machines with recursive feature
elimination, eliminating features with minimal impact on the
classification results to obtain a simpler and superior performing
model (Sanz et al., 2018). The genes identified by the overlapping of
these three machine learning algorithms serve as candidate hub
genes for diagnosis.

2.7 Nomogram construction and validation
of candidate biomarkers

A nomogram for candidate hub genes was constructed using the
“rms” package in R. Additionally, we utilized ROC analysis to
further assess the clinical value of the candidate hub genes and
the nomogram. The clinical value was determined by the area under
the curve (AUC). An AUC value greater than 0.7 was deemed to
indicate excellent diagnostic value.

To validate the robustness of the hub genes analysis results, we
conducted validation using the microarray dataset GSE26378, which
comprises 21 control samples and 82 sepsis cases. Statistical significance
was determined by an unpaired t-test with a p-value <0.05.

2.8 Immune infiltration analysis

The relative abundance of immune-infiltrating cells was
calculated using the CIBERSORT algorithm from the “IOBR” R
package (Newman et al., 2015; Zeng et al., 2021). A bar plot was
generated to illustrate the proportions of immune cells in different
samples, and a box plot was employed to compare the different types
of immune cells between the sepsis and control groups. Additionally,
the “ggplot” R package was used to visualize the correlations
between the hub genes and the 22 infiltrating immune cells.

2.9 Connectivity map (cMAP) analysis

The cMAP (https://clue.io) is an important gene expression database
that provides valuable resources for researchers to explore the associations
between genes, drugs, diseases, and small molecules (Subramanian et al.,
2017). In this study, the overlapping upregulated genes from the DEGs of
sepsis and the key modules of ROP were included in the cMAP online
database to identify potential small molecule drugs that could be used for
treatment. Finally, the top 10 small molecule compounds with the most
negative correlation were determined.

2.10 Statistical analysis

All statistical analyses were performed using R software. The
Wilcoxon or Student’s t-test was utilized to analyze the difference
between the two groups. The correlation analysis between the

variables was determined using the Spearman’s correlation test.
Statistical significance was set at a two-tailed p < 0.05.

3 Results

3.1 Differentially expressed genes

Overall, 352 DEGs were identified in the sepsis dataset, with
266 genes significantly upregulated and 86 genes significantly
downregulated. As for the ROP dataset, a total of 307 DEGs were
identified, with 267 genes upregulated and 40 genes downregulated.
The volcano plots of DEGs are shown in Figures 2A, B.

3.2 Weighted gene co-expression network
analysis and selection of critical modules

In GSE218039, we performed WGCNA to identify significantly
correlated gene modules in ROP. In order to determine the most
suitable soft threshold ensuring a scale-free network, we utilized the
“pick Soft Threshold” function from the WGCNA package, which
filtered power parameters within the range of 1–20. Based on a scale
independence value greater than 0.85, we selected a power value (β) of
3, which corresponded to a scale-free R2 of 0.88, as the optimal soft
threshold (Figure 2C). Figure 2D illustrates the dendrogram of
clustering for ROP and control groups. We used the “cutree”
dynamic and module eigengenes functions to create a cluster
diagram. This analysis resulted in the identification of 12 modules,
each composed of genes exhibiting similar co-expression patterns
(Figure 2E). Then, a heatmap was generated to display the correlation
between ROP and modules based on Spearman correlation
coefficients (Figure 2F). Notably, three modules—“red”, “green”,
and “greenyellow”—displayed robust positive correlations with
ROP and were therefore designated as ROP-related modules, with
respective correlation coefficients and p-values as follows: red module
(r = 0.46, p = 0.01), green module (r = 0.66, p = 8e-05), and
greenyellow module (r = 0.41, p = 0.02). These modules consist of
167, 186, and 67 genes, totaling 420 genes in all, collectively
considered as key module genes associated with ROP.

3.3 Functional enrichment analysis of ROP

Given the rare nature of ROP patients, we conducted an in-
depth analysis of the dataset GSE218039 to explore potential
mechanisms underlying ROP. Furthermore, this dataset is
relatively new and has not been previously explored. We further
conducted functional enrichment analysis based on the intersection
of differential analysis results and key module genes fromWGCNA.
By intersecting the 307 DEGs and the 420 in the key module genes, a
total of 117 common genes were screened (Figure 3A). As depicted
in Figure 3B, Biological Process (BP) terms were predominantly
enriched in “immune response”, “cell surface receptor signaling
pathway”, and “inflammatory response”. In terms of Cellular
Component (CC) ontology, enrichment was observed in “plasma
membrane”, and “external side of plasma membrane”. Regarding
Molecular Function (MF) analysis, enrichment was mainly found in
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“receptor binding”, and “C-C chemokine receptor activity”. In
addition, as shown in Figure 3C, KEGG analysis revealed
enrichment in “Viral protein interaction with cytokine and
cytokine receptor” and “Cytokine-cytokine receptor interaction”.

The enrichment analysis reveals a significant correlation
between the overlapping genes in ROP and immune response
and inflammation, suggesting their potential involvement in the
pathogenesis of ROP. The detailed results of the GO and KEGG
analyses from the DAVID database are available in Supplementary
Table S1.

3.4 Enrichment analysis of ROP with sepsis
and screening node genes via the PPI
network

To explore the potential relationship between ROP-associated
crucial genes and the pathogenesis of sepsis, we identified 34 genes
from the intersection of sepsis-related DEGs with ROP key module
genes using a Venn diagram (Figure 3D). GO analysis highlighted
that these genes were primarily enriched in “immune response”,
“inflammatory response”, and “innate immune response” (BP);

FIGURE 2
Analysis of DEGs in Sepsis and ROP datasets, and identification of critical modules using WGCNA in ROP. (A) The volcano plot revealing DEGs in the
Sepsis dataset. (B) The volcano plot revealing DEGs in the ROP dataset. (C) β = 3 is selected as the soft threshold with the combined analysis of scale
independence and average connectivity. (D) Sample dendrogram and trait heatmap. (E) Gene co-expression modules represented by different colors
under the gene tree. (F) The heatmap revealing the relationship betweenmodules and status of ROP. The correlation (upper) and p-value (bottom) of
module eigengenes and status of ROP were presented.
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“plasma membrane” and “interleukin-18 receptor complex” (CC);
“interleukin-18 receptor activity” and “interleukin-1 receptor
activity” (MF) (Figure 3E). Furthermore, based on KEGG
analysis, the 34 genes showed prominent enrichment in
pathways such as “Cytokine-cytokine receptor interaction” and
“Viral protein interaction with cytokine and cytokine receptor”
(Figure 3F, Supplementary Table S2). All the above findings
strongly implicate the involvement of the immune system in
these processes.

After identifying the immune-related nature of these genes, we
constructed a PPI network to explore the interacting nodes among
them (Figure 4A). Using Cytoscape software (Figure 4B), we
identified 24 genes that interacted with each other, and these
genes were sorted by their node degree.

3.5 Screening key genes via machine
learning

Potential candidate hub genes were screened using the LASSO
regression, RF algorithm, and SVM-RFE. Notably, LASSO
regression revealed 12 potential candidate hub genes (Figures 5A,
B). The RF algorithm ranked candidate genes based on the Mean
Decrease Gini and selected the top eight genes with the highest
scores (Figures 5C, D). SVM-RFE identified 7 genes as candidate
biomarkers (Figure 5E). By employing a Venn diagram (Figure 5F),
we intersected the results from the three algorithms, ultimately
identifying five hub genes (CLEC5A, KLRB1, LCN2,
MCEMP1 and MMP9) as potential candidate biomarkers
(Supplementary Table S3).

FIGURE 3
Enrichment analysis. (A) A total of 117 genes in ROPwere identified from the intersection of DEGs and crucial module genes via the venn diagram (B)
The GO analysis of the intersection of genes in ROP. (C) KEGG pathway analysis of the intersection of genes in ROP. (D) A total of 34 genes are identified
from the intersection of sepsis-related DEGswith ROP keymodule genes via the venn diagram. (E)GO analysis of 34 common genes. (F) KEGG analysis of
34 common genes.
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3.6 Diagnosis value evaluation

To better diagnose and predict the five hub genes, we
constructed a nomogram (Figure 6A). The calibration curve
demonstrated that the predicted probabilities of our nomogram
diagnostic model were in close agreement with the ideal model’s
predicted probabilities (Figure 6B). Additionally, decision curve
analysis (DCA) was performed on the nomogram, indicating that
using the nomogram model for decision-making may be beneficial
for diagnosing ROP with sepsis (Figure 6C). We calculated the AUC
values for both the nomogram and each hub gene as follows:
nomogram (AUC: 0.991), CLEC5A (AUC: 0.9071), KLRB1
(AUC: 0.9209), LCN2 (AUC: 0.9049), MCEMP1 (AUC: 0.9466),
and MMP9 (AUC: 0.9396) (Figures 6D, E). As observed, all five
candidate biomarkers had AUC values greater than 0.9, and the
AUC value of the nomogram was higher than that of each individual
hub gene, suggesting that the nomogram has strong diagnostic value
for ROP with sepsis.

Furthermore, we validated five candidate biomarkers using the
GSE26378 dataset. CLEC5A, LCN2, MCEMP1, and
MMP9 exhibited significantly higher expression levels in patients,
while KLRB1 showed markedly lower expression in patients
(Figure 6F). Subsequently, we conducted ROC curve single-factor
analysis on the GSE26378 dataset, resulting in AUC values of
0.9431 for CLEC5A, 0.9332 for KLRB1, 0.9344 for LCN2,
0.9994 for MCEMP1, and 0.883 for MMP9 (Figure 6G). These
findings indicate substantial diagnostic potential for these five
candidate biomarkers.

3.7 Immune infiltration analysis

Our findings suggest that genes associated with ROP can also
play a role in sepsis, particularly in immune regulation. Therefore,
we proceeded with immune cell infiltration analysis to gain further
insights into the involvement of the immune system in sepsis.
Figure 7A displays the proportions of 22 immune cell types in

samples from the sepsis group and the normal group. The box plots
demonstrate that sepsis patients have higher levels of Macrophages
M0, Macrophages M2, Mast cells resting, and Mast cells activated,
while lower levels of T-cells CD8+, T-cells CD4 naive, CD4 memory
resting, and T-cells follicular helper (Figure 7B). Furthermore, we
observed significant correlations between the five hub genes and
immune cell infiltration in sepsis, as depicted in Figure 7C. In
conclusion, various immune cell types exhibit varying degrees of
infiltration in sepsis patients, which may provide potential targets
for novel therapies.

3.8 Identifying core small molecule
compounds for treatment

To further explore potential small-molecule drugs that may have
therapeutic effects for ROP with sepsis, we inputted the upregulated
genes from the 34 overlapping genes into the cMAP database. Our
aim was to identify small-molecule compounds that could
potentially reverse the abnormal gene expression patterns. The
top-scoring compounds with the most antagonistic effects
included escitalopram, harpagoside, hydroquinidine, latrepirdine,
mepyramine, molsidomine, MW-STK33-3B, palonosetron,
phenprobamate, and T-0070907. These compounds displaying
antagonistic effects may serve as potential therapeutic drugs
(Figure 8A). Figure 8B displayed chemical structures of these ten
small molecule compounds.

4 Discussion

ROP is a retinal vascular regulatory disorder that affects the
development of the retinal vasculature in premature infants, and it is
influenced by various factors, including infection and prematurity
(Huang et al., 2019; Wang et al., 2019). Sepsis increases the risk and
severity of ROP at any stage, and the inflammatory factors triggered
by sepsis may regulate retinal vascular development and alter

FIGURE 4
The identification of node genes from PPI network. (A) The PPI network demonstrates that 24 genes interact with each other. (B) The column shows
the gene nodes of 24 genes in the PPI network.
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angiogenesis (Dong et al., 2020). Alterations in retinal vascular
development during the developmental process contribute to the
development of ROP, making it a prominent cause of visual
impairment in children (Hong et al., 2014). Currently, researches
combining these two diseases is relatively rare. Accordingly, we
conducted bioinformatics analysis and machine learning methods to
develop a nomogram for evaluating the diagnostic performance of
ROP with sepsis. Interestingly, we discovered five key immune-
related candidate hub genes (CLEC5A, KLRB1, LCN2, MCEMP1,
and MMP9) and built a nomogram for this purpose.

C-Type lectin receptor 5A (CLEC5A), also known as MDL-1,
promotes extracellular trap formation, reactive oxygen species
generation, and the production of pro-inflammatory cytokines in
neutrophils (Bakker et al., 1999; Chen et al., 2017). CLEC5A is
primarily expressed on myeloid cells (neutrophils, monocytes,
macrophages, and dendritic cells) and its expression is regulated by
the key transcription factor PU.1, indicating that CLEC5A expression is
modulated by oxidative stress (Cheung et al., 2011; González-
Domínguez érika et al., 2015; Cheng et al., 2016). Furthermore,
CLEC5A can be considered as an innate immune checkpoint that

FIGURE 5
Machine learning in screening candidate hub genes for ROPwith sepsis. (A, B) The number of genes (n= 12) corresponding to the lowest point of the
curve in the LASSOmodel. (C)When “tree”was set to 200, the error within the model had essentially stabilized. (D)The Random Forest algorithm ranked
genes based on the MDG. (E) Based on SVM-RFE to screen biomarkers. (F) Venn plot exhibiting the reliable biomarkers among LASSO, RF, and SVM-RFE.
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amplifies pro-inflammatory signals to facilitate the occurrence of
infection or sterile inflammation (Tosiek et al., 2022). In sepsis,
uncontrolled immune responses lead to harmful and potentially
fatal inflammatory cascades. The involvement of CLEC5A in
extracellular trap formation may exacerbate tissue damage and
impede proper blood flow, potentially worsening the condition. In
premature infants, the role of CLEC5A in modulating inflammatory
responses in myeloid cells may contribute to abnormal retinal blood
vessel development and neovascularization, leading to ROP.

Killer cell lectin-like receptor B1 (KLRB1), encodes a C-type
lectin receptor found on natural killer cells and T-cells in peripheral
blood, umbilical cord blood, and thymus (Giorda et al., 1990; Lanier

et al., 1994; Duurland et al., 2022). According to research findings,
KLRB1 plays a crucial role in differentiation, particularly in
dendritic cells and monocytes, and the expression of KLRB1 can
serve as an indicator of NK cells involved in the pathogenesis of
inflammatory diseases (Poggi et al., 1997; Kurioka et al., 2018). The
increased expression of KLRB1 on NK cells and T cells may be
correlated with immune cell activation and inflammatory responses
in sepsis. NK cells release cytokines and participate in cytotoxicity
during inflammation, potentially influencing vascular development
and inflammatory responses.

Lipocalin-2 (LCN2) is an innate immune protein involved in
various physiological and pathological processes, including iron

FIGURE 6
Nomogram construction and the diagnostic value evaluation. (A) Nomogram for the diagnostic model. (B) Calibration curve. (C) DCA for the
diagnostic model. (D, E) The ROC curve of nomogram and each candidate gene (CLEC5A, KLRB1, LCN2, MCEMP1, andMMP9). (F) Validation of candidate
hub genes in the GSE26378 dataset. (G) ROC curve of candidate hub genes in the GSE26378 dataset. *, p < 0.05, **, p < 0.01, ***, p < 0.001, ****, p <
0.0001.
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homeostasis, inflammation, and tumorigenesis (Chakraborty et al.,
2012; Moschen et al., 2017). Additionally, we have found a clinical
correlation between LCN2 and sepsis of intestinal origin (Lu et al.,
2019). LCN2, as a transporter of lipids and iron, plays a critical
regulatory role in lipid metabolism (Jaberi et al., 2021). Recent

research has revealed its involvement in lipid metabolism
dysregulation in various sepsis conditions (Amunugama et al.,
2021). Moreover, LCN2 may be implicated in septic
cardiomyopathy by mediating lipid accumulation and influencing
mitochondrial function (Liu et al., 2022).

FIGURE 7
Immune cell infiltration analysis between sepsis and normal. (A) The proportion of 22 immunocytes in different samples visualized from the bar plot.
(B) Comparison regarding the proportion of 22 kinds of immunocytes between sepsis and normal groups. (C) The correlation plot illustrates the
association between different immune cell infiltrates and the five hub genes. *, p < 0.05, **, p < 0.01, ***, p < 0.001.
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MCEMP1 is a transmembrane protein spanning the cell
membrane and is commonly expressed by immune-related cells
like mast cells and macrophages, playing a role in the pathogenesis
of allergic and inflammatory diseases (Li et al., 2005; Schleinitz,
2015). Previous research has revealed that MCEMP1 plays a crucial
role in sepsis and viral infections (Raman et al., 2016; Nicolas De
Lamballerie et al., 2021). Therefore, we also consider it as a
diagnostic biomarker.

MMPs are a zinc enzyme family that plays a critical role in
degrading and remodeling extracellular matrix proteins during
normal developmental processes, as well as being involved in
various physiological functions such as inflammatory responses,
organ morphogenesis, and vascular formation during pathological
processes (Stamenkovic, 2003). MMP9 is predominantly released by
neutrophils and macrophages, and it is responsible for regulating
inflammation in various tissues and diseases (Deryugina et al.,
2014). Interestingly, it has been observed that MMP9 is closely
associated with the human protein homolog of LCN2, known as
NGAL (Kjeldsen et al., 1993). The MMP9/NGAL complex exhibits a
strong correlation with TSP1, and they are found to be more actively

involved in the process of angiogenesis during orthodontic
periodontal remodeling (Surlin et al., 2014). This finding suggests
a potential interplay between MMP9/NGAL and TSP1 in the
regulation of vascular formation. Furthermore, several studies
have indicated that the expression and activity of MMPs increase
during preterm birth, and they play a crucial role in fetal
development, inflammatory responses, and angiogenesis (Cockle
et al., 2007; Qazi et al., 2009). The imbalance between MMPs and
their tissue inhibitors may also contribute to the occurrence of
complications in newborns (Cockle et al., 2007). In the OIR model,
we observed that systemic inhibition of metalloproteinases reduces
neovascularization (Das et al., 1999). We speculate that MMP9 may
be a candidate diagnostic gene for ROP patients with sepsis.

From previous research, we have come to understand that
immune cells and inflammatory responses play a crucial role in
the development and progression of sepsis (Riedemann et al., 2003).
The core mechanism of sepsis is immune dysfunction, and as key
cells in the innate immune system, macrophages play a crucial role
in sepsis by performing functions such as antigen presentation and
secretion of inflammatory and chemotactic factors (Epelman et al.,

FIGURE 8
Identifying potential small-molecule compounds for the treatment of sepsis via cMAP analysis. (A) A heatmap illustrates the top 10 negatively
enriched compounds. (B) The chemical structures of these 10 compounds.
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2014; Luan et al., 2014; Qiu et al., 2019). Autophagy is closely linked
to inflammation and immunity, and enhancing autophagy in sepsis
can exert a protective effect by negatively regulating aberrant
macrophage activation, reducing inflammasome activation and
the release of pro-inflammatory cytokines, and influencing
macrophage apoptosis (Qiu et al., 2019). The majority of studies
emphasize the role of mast cells in the early stages of sepsis, where
they exhibit immediate inflammatory responses and unique
potential for combating infections (Gekara and Weiss, 2008; Heib
et al., 2008; Ramos et al., 2010). Furthermore, we observed that
inducing sepsis in mice leads to a decrease in the percentage of
CD4+ T-cells, while the percentages of T helper cells (Th2 and
Th17) and regulatory T-cells (Treg) are upregulated (Yeh et al.,
2022). In our study, we observed elevated levels of macrophages
and mast cells, while the levels of CD8+ T-cells, naive CD4+ T-cells,
memory CD4+ T-cells, and follicular helper T-cells were found to
be lower, which is consistent with previous research findings.
Furthermore, a recent study suggested that immune cells might
have played a role in the onset and progression of pediatric sepsis,
which aligns with our findings (Zhang et al., 2023). By gaining a
deeper understanding of the regulation mechanisms of immune
cells and inflammatory responses, we can better comprehend the
pathophysiology of sepsis, thus providing more comprehensive
and precise guidance for the search of effective therapeutic
strategies.

In recent years, significant progress has been made in identifying
small molecule compounds with therapeutic potential for various
diseases. Compared to other treatment methods, small molecule
compounds offer advantages such as strong penetrability, high
specificity, convenient administration, tunable pharmacokinetic
properties, diversity, and flexibility, making them promising
candidates for disease treatment. A metal gel capable of
inhibiting sepsis was successfully synthesized through direct
coordination interactions and Schiff base reactions between
aminoglycosides, 2,2′-bipyridine-4,4′-dicarbaldehyde, and metal
ions (Li et al., 2023). However, to date, there has been no
research focusing on identifying potential therapeutic small
molecule compounds based on sepsis gene expression
characteristics. Therefore, we conducted a cMAP analysis, linking
the upregulated genes in sepsis with the pathogenic genes related to
ROP, and identified ten small molecule compounds (escitalopram,
harpagoside, hydroquinidine, latrepirdine, mepyramine,
molsidomine, MW-STK33-3B, palonosetron, phenprobamate, and
T-0070907) as candidate compounds for potential sepsis treatment.
In the cMAP analysis, these small molecule compounds exhibited
the highest negative enrichment score, indicating that it has the
potential to effectively reverse the upregulated expression of
pathogenic genes in sepsis.

5 Conclusion

By leveraging bioinformatics analysis and machine learning
algorithms, we systematically identified five immune-related
candidate hub genes (CLEC5A, KLRB1, LCN2, MCEMP1, and
MMP9) and provided a nomogram for diagnosing ROP with
sepsis. Additionally, we emphasized the imbalance of immune
cells and uncovered small molecule compounds as highly

promising candidates for sepsis treatment based on our analysis
with cMAP. In conclusion, our research offered comprehensive
insights into the pathophysiology and treatment of ROP with
sepsis, ranging from the discovery of immune-related candidate
genes, the construction of predictive models, to the identification of
immune cell dysregulation and potential therapeutic drugs.
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