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Digital twins are made of a real-world component where data is measured 
and a virtual component where those measurements are used to parameterize 
computational models. There is growing interest in applying digital twins-based 
approaches to optimize personalized treatment plans and improve health outcomes. 
The integration of artificial intelligence is critical in this process, as it enables the 
development of sophisticated disease models that can accurately predict patient 
response to therapeutic interventions. There is a unique and equally important 
application of AI to the real-world component of a digital twin when it is applied to 
medical interventions. The patient can only be treated once, and therefore, we must 
turn to the experience and outcomes of previously treated patients for validation and 
optimization of the computational predictions. The physical component of a digital 
twins instead must utilize a compilation of available data from previously treated 
cancer patients whose characteristics (genetics, tumor type, lifestyle, etc.) closely 
parallel those of a newly diagnosed cancer patient for the purpose of predicting 
outcomes, stratifying treatment options, predicting responses to treatment and/
or adverse events. These tasks include the development of robust data collection 
methods, ensuring data availability, creating precise and dependable models, 
and establishing ethical guidelines for the use and sharing of data. To successfully 
implement digital twin technology in clinical care, it is crucial to gather data that 
accurately reflects the variety of diseases and the diversity of the population.
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1. Introduction

Digital Twins (DT) have gained widespread adoption as a crucial component of the 
industrial engineering approach to optimize manufacturing processes and drive advancements 
in modern industrial design. However, the transformative potential of DT extends beyond the 
industrial realm and finds numerous impactful applications in healthcare (Madhavan et al., 
2021; Stahlberg et al., 2022). In particular, DT have emerged as powerful tools in precision 
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medicine, clinical trials, and drug development (Haleem et al., 2023; 
Sun et  al., 2023). A notable example is Unlearn.AI, a pioneering 
startup that secured an impressive $17 million in funding to develop 
DT specifically for trials. In a groundbreaking study by Venkatesh 
et al. (2022), Unlearn.AI predicted that Health Digital Twins (HDT) 
could potentially reduce clinical trial expenses by a staggering 25%. 
This groundbreaking finding underscores the immense value and 
potential of DT in revolutionizing the healthcare landscape and 
highlights their ability to drive substantial cost savings while 
enhancing patient outcomes.

In its most general form, a DT consists of a real-world object and 
its virtual counterpart, which work together to enhance each other 
through an iterative process. Data is collected under different 
conditions to refine the computational simulations, and the virtual 
representation is used to predict how to optimize the real-world 
system. By testing these predictions, we can identify their success and 
failure, and further improve the virtual model. As a result, through 
each DT iteration, the real-world system is continuously updated 
and improved.

In order to avoid altering the state of a real-world system, 
successful DT applications often rely on having identical copies of the 
real-world counterpart available for testing the predicted response. 
This allows for testing multiple, potentially destructive conditions, 
and, unfortunately, does not apply to HDT. In the absence of identical 
copies of an individual, we must look to other patients when training 
predictive models and evaluating the predicted outcomes of various 
therapeutic interventions. These patients are closely matched with 
respect to their biological characteristics, and longitudinal data 
detailing their intervention and response, and the outcome can serve 
to validate model predictions.

The incorporation of artificial intelligence (AI) plays a pivotal 
role in the realm of DT and can be  dissected into three key 
components: (1) identify patient data from individuals that closely 
mimic the biological system of the target patient to evaluate 
predicted outcomes; (2) predict the patient outcome to optimize an 
individualized therapeutic approach and reduce the cost associated 
with healthcare interventions; (3) unravel the underlying biological 
mechanisms that drive diseases. It is worth noting that components 
(2) and (3) would greatly benefit from an efficient method for 
identifying real-world DT, as the increased information on patient 
disease and response would expedite the development of disease 
models and drive further understanding disease mechanisms.

To collect real-world datasets that closely align with an individual 
patient’s DT, we present a novel approach that capitalizes on the public 
availability of high throughput “omics” data and represents an early 
iteration of a workflow for identifying matched datasets to incorporate 
into patient DT. In the 21st century, many studies (McClellan and 
King, 2010; Tam et  al., 2019) propose that human disease can 
be characterized by marked genetic heterogeneity. While some studies 
apply clinical feature maps to represent a real-world patient virtually 
(Venkatesh et  al., 2022), we  propose a pioneering concept that 
characterizes clinical and molecular features (Figure  1) from The 
Cancer Genome Atlas (Weinstein et al., 2013) and identifies a subset 
of individuals to incorporate into a given patient’s DT. The outcomes 
and experience of this subset of “like” individuals can then be used to 
evaluate the robustness of the computational predictions.

Our methodology begins by constructing a low-dimensional 
embedding of clinical and molecular features, enriched by an external 

annotation database. This low-dimensional feature map serves as the 
foundation for identifying a subset of individuals most representative 
of the DT through Euclidean similarity, and the results are visually 
presented using UMAP. Consequently, these embeddings offer a 
better representation of each patient by projecting those with similar 
genetic patterns and clinical features to the same region of the plot. 
The selected DT have the potential to predict the survival outcomes 
of new patients and even forecast drug responses. Furthermore, this 
pipeline can be  extended to incorporate multi-omics data and 
environmental factors, enhancing its adaptability and comprehensive 
analytical capabilities.

2. Challenges to data collection

When collecting biological or clinical data for DT, there are 
various challenges that need to be addressed to ensure accurate and 
valuable representations of individuals. DT data is collected at 
various scales, capturing different types of information related to 
lifestyle, clinical and routine diagnostic data, as well as research 
data. For instance, they can gather data on individual lifestyle 
factors like physical activity, sleep patterns, nutrition, and stress 
levels, using wearable devices, mobile apps, or self-reporting. 
Additionally, they can collect clinical data on medication usage, 
laboratory test results, and vital signs, which is typically sourced 
from electronic health records (EHRs), health monitoring devices, 
or patient self-reporting. Processing and analyzing large amounts 
of data in digital twin computational models requires considerable 
computational power. To effectively handle the computational 
demands of these models, it is crucial to have a high-performance 
computing infrastructure, consisting of powerful processors, 
memory, and storage systems.

In addition to the many challenges associated with the data collection, 
the fact that the data comes from human patients presents additional 
considerations. These include data accessibility, data quality, 
standardization, data complexity, and ethical and privacy considerations. 
For example, getting the required biological data can be difficult because 
of privacy regulations, restricted entry to medical records or research 
databases, and the need for agreement from participants. It is essential to 
access diverse and representative datasets to create thorough and widely 
applicable DT. Furthermore, collecting and utilizing biological data for 
DT raises ethical and privacy concerns, such as informed consent, data 
anonymization, and data sharing. Ensuring compliance with ethical 
guidelines and implementing robust data security measures are essential 
to protect individual privacy and maintain public trust.

To tackle these obstacles, researchers, clinicians, data scientists, and 
policymakers need to work together. They must establish consistent 
protocols, create innovative analytics tools, and navigate ethical concerns. 
By overcoming these challenges, we  can achieve more precise and 
trustworthy DT to benefit personalized medicine and healthcare.

3. Modeling for breast cancer

When applied to cancer patients, DT offer a forward-thinking 
approach to healthcare by creating virtual representations of patients. 
These representations use mathematical and computational models to 
simulate personalized diagnosis and treatment options and are 
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increasingly integrating AI in several ways. In addition to directly 
learning the relationships between high throughput omics and clinical 
datasets and outcomes, it also serves a role in mapping patient data 
directly to model parameters. By utilizing DT, healthcare professionals 
can analyze the potential effects of different treatment approaches, 
leading to more informed decision-making and personalized patient 
care (Hernandez-Boussard et al., 2021).

Applying the digital twin paradigm to human subjects creates yet 
another application of AI, identifying previously treated patients that 
can bolster the data in the real-world component of the DT. It is 
impossible to test and validate multiple therapeutic interventions, and 
data on how patients who are matched on both their individual and 
tumor biologies must be used to evaluate the robustness of the virtual 
component of the DT.

Shown in Figure 1, a workflow was developed as part of a community 
hackathon event with the goal of utilizing public data (specifically, the 
BRCA (Breast Invasive Carcinoma) dataset from The Cancer Genome 
Atlas (TCGA), which provides genomic, histological, and clinical data 
on breast cancer patients) to build a real-world cohort of patients from a 
query patient. To identify additional patient data as input to a patient’s 
DT, the data analysis process is divided into three stages: (a) Data 
Integration, (b) DT identification, and (c) Prediction of Clinical 
Outcomes. Our objective is to conduct an integrative analysis of BRCA 
data utilizing omics techniques, such as enriched variant scoring 
(Ioannidis et al., 2016), and clinical features, such as histological subtypes 
for outcome prediction and DT identification (Liu et  al., 2018; 
Thennavan et al., 2021). The BRCA dataset from TCGA consists of 970 
samples and 12,908 variants. We utilize annotation files from REVEL to 
enhance our analysis by assessing the likelihood of a variant being 
pathogenic. Our final feature matrix is enriched with variant scores and 
supported clinical features such as PAM50, ER, PR, HER2, and triple 
negative subtyping data. We then utilized the UMAP clustering approach 

to identify real world examples that closely matched data from the input 
DT. This involved visualizing the entire population and calculating 
similarity by measuring the Euclidean distance between new patients and 
each sample using the first two low-dimensional representations in 
UMAP space. We  selected k (default 50) samples with the smallest 
dissimilarity score as the set of DT and visualized them in the scatter plot. 
Through our research, we have discovered that DT can capture survival 
heterogeneity, making them a valuable resource for predicting the 
clinical outcome of new patients. It is important to note that the various 
sets of DT may have different survival outcomes, either better or worse 
than the overall population. Our survival data is obtained from UCSC 
Xena (Goldman et al., 2020).

Our approach can benefit from incorporating various other data 
types and computational modelling, including data that can be utilized 
for drug response prediction and prioritization of therapeutic options 
(McCoy and Madhavan, 2018; Kumar et al., 2019; Adam et al., 2020; 
Chang et al., 2020; Baptista et al., 2021; McCoy et al., 2021; Thiemeyer 
et al., 2021; Babbitt et al., 2022; Wang et al., 2022). DT can greatly aid 
breast cancer research by allowing for better patient stratification, 
improved treatment decision-making, and faster drug development. 
This technique has the capability to revolutionize breast cancer 
management by promoting personalized medicine and optimizing 
clinical practices.

4. Discussion

Artificial intelligence will play a crucial role in deploying DT to 
cancer patients. Aside from the direct application as models that 
predict the outcomes of different therapeutic interventions, they will 
also map patient data to parameters in mechanistic models of disease 
progression. However, applying AI to supplement the real-world 

FIGURE 1

Pipeline of patient DT identification. The pipeline is divided into three stages: (i) Data Integration for integrating enriched omics and clinical data, (ii) 
Digital Twins identification based on Euclidean distance in UMAP space, and (iii) Prediction of clinical outcomes for better patient stratification.
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component of the DT is equally essential. The progression and 
outcomes of the computational models of divergent intervention 
strategies can be validated by directly comparing patient trajectories 
and experiences. Also, the subset of patients that most closely match 
the real-world component of the DT can be  used to evaluate the 
robustness of model predictions by providing additional inputs. For 
any given model prediction, convergence of its output for the subset 
of real-world counterparts can boost confidence in the 
predicted outcomes.

The utilization of DT has the potential to greatly benefit patients 
and their caregivers by providing tailored information, tools, and 
resources. Patients can leverage their DT to gain insights into their 
health status, monitor their progress, and make informed decisions 
about their care. Patients can engage in meaningful conversations 
about their health and treatment options by sharing the DT data with 
their healthcare team. This collaborative approach prioritizes the 
patient’s voice, ensuring their preferences and goals are considered in 
the decision-making process. Moreover, the data collected from DT 
can help identify population-level trends, patterns, and insights, which 
are instrumental in supporting public health initiatives, advancing 
research studies, and informing policy-making.

Artificial Intelligence needs data to learn from, and development 
in all its applications to DT is dependent on widespread data 
collection. Unfortunately, collecting the data required for DT is 
invasive and disruptive. Educating patient populations about the 
importance and potential of collecting is critical to realizing the 
clinical application of DT.
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