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Background: Immunogenic cell death (ICD) has been categorized as a variant of

regulated cell death that is capable of inducing an adaptive immune response. A

growing body of evidence has indicated that ICD can modify the tumor immune

microenvironment by releasing danger signals or damage-associated molecular

patterns (DAMPs), potentially enhancing the efficacy of immunotherapy.

Consequently, the identification of biomarkers associated with ICD that can

classify patients based on their potential response to ICD immunotherapy would

be highly advantageous. Therefore the goal of the study is to better understand

and identify what patients with bladder urothelial carcinoma (BLCA) will respond

to immunotherapy by analyzing ICD signatures and investigate ICD-related

prognostic factors in the context of BLCA.

Methods: The data obtained from The Cancer Genome Atlas (TCGA) and Gene

Expression Omnibus (GEO) databases regarding BLCA and normal samples was

categorized based on ICD-related genes (IRGs). Specifically, we conducted an

immunohistochemical (IHC) experiment to validate the expression levels of

Calreticulin (CALR) in both tumor and adjacent tissues, and evaluated its

prognostic significance using the Kaplan-Meier (KM) curve. Subsequently, the

samples from TCGA were divided into two subtypes using consensus clustering.

To obtain a more comprehensive comprehension of the biological functions, we

utilized Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG),

and Gene Set Enrichment Analysis (GSEA). The calculation of immune landscape

between two subtypes was performed through ESTIMATE and CIBERSORT. Risk

models were constructed using Cox and Lasso regression and their prognosis

predictive ability was evaluated using nomogram, receiver operating characteristic

(ROC), and calibration curves. Finally, Tumor Immune Dysfunction and Exclusion

(TIDE) algorithms was utilized to predict the response to immunotherapy.
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Results: A total of 34 IRGs were identified, with most of them exhibiting

upregulation in BLCA samples. The expression of CALR was notably higher in

BLCA compared to the adjacent tissue, and this increase was associated with an

unfavorable prognosis. The differentially expressed genes (DEGs) associated with

ICD were linked to various immune-related pathways. The ICD-high subtypes

exhibited an immune-activated tumor microenvironment (TME) compared to the

ICD-low subtypes. Utilizing three IRGs including CALR, IFNB1, and IFNG, a risk

model was developed to categorize BLCA patients into high- and low-risk groups.

The overall survival (OS) was considerably greater in the low-risk group compared

to the high-risk group, as evidenced by both the TCGA and GEO cohorts. The risk

score was identified as an independent prognostic parameter (all p < 0.001). Our

model demonstrated good predictive ability (The area under the ROC curve (AUC),

AUC1-year= 0.632, AUC3-year= 0.637, and AUC5-year =0.653). Ultimately, the

lower risk score was associated with a more responsive immunotherapy group.

Conclusion: The potential of the ICD-based risk signature to function as a

marker for evaluating the prognosis and immune landscape in BLCA suggests

its usefulness in identifying the suitable population for effective immunotherapy

against BLCA.
KEYWORDS

bladder urothelial carcinoma, immunogenic cell death, bioinformatics, immune,
prognostic model
Introduction

Urothelial carcinoma originates from the transitional

epithelium of the bladder. In 2023, 82,290 new urinary bladder

cases and 16,710 cancer deaths are projected to occur in the United

States (1). Over the years, immunotherapy has completely changed

the treatment patterns for advanced urothelial cancer which was

dominated by chemotherapy (2, 3). But the bladder urothelial

carcinoma (BLCA) still has a high risk for recurrence (4) and a

low 5-year overall survival (OS) rate (5). Hence, it is imperative to

employ sensitive methods for the precise assessment of clinical

prognosis outcomes in patients with BLCA, thereby fostering

advancements in the field of precision medicine.

The tumor microenvironment (TME) contains various

cellular components interacting with cytokines, chemokines,

and growth factors (6). Based on its distinctive features, tumors
CA, Bladder urothelial
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can be categorized as either immuno-cold or immuno-hot

types, which could offer a base for identifying the efficacy of

immunotherapies (7). Immuno-cold tumors are characterized by

an immunosuppressive TME and exhibit limited responsiveness to

immunotherapies. Conversely, immuno-hot tumors are associated

with a heightened response to immunotherapy and accompanied by

robust infiltration of active T-cells (8). Therefore, it is crucial to

utilize practical biomarkers to distinguish tumor type and its

response to immunotherapy.

Immune checkpoint inhibitors (ICIs) used for treating

advanced BLCA have impressive response rates and toxicity

characteristics (9, 10). However, urological cancers have different

response rates to immunotherapies because of immunogenic cancer

cells (11). And the efficacy of these treatments is limited to a

minority of patients (12), with a substantial proportion

experiencing either a restricted or non-existent response,

particularly in advanced BLCA cases. Therefore, additional

research is warranted to explore the correlation between

immunity and BLCA with the aim of exploring the possible

prognostic significance of immune and immune-related indicators.

Immunogenic ce l l death (ICD), as a modal i ty of

immunostimulatory cell death, was initially discovered and

developed by the laboratories of Guido Kroemer and Laurence

Zitvogel (13, 14). ICD can be delineated by its elicitation of three

primary damage associated molecular patterns (DAMPs), namely

the translocation of calreticulin, active secretion of adenosine

triphosphate, and release of the high mobility group box 1

protein (13, 15, 16). ICD is an exceptional form of cellular demise
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induced by diverse modalities for cancer treatment, including

radiotherapy and chemotherapeutic agents. By inducing ICD, the

non-immunogenicity of tumor cells can be transformed into

immunogenicity, leading to the initiation of an antitumor

immune response and the elimination of tumor cells (17).

Therefore, the activation of immune cells and the eradication of

tumors are significantly influenced by the presence of ICD (18). The

activation of ICD in cancer cells has the potential to address the

existing limitations of immunotherapy employed in tumor

treatment (19). However, there is a dearth of research on the

potential applications and underlying mechanisms of utilizing

ICD for the treatment of BLCA.

Researchers have developed a model based on ICD codes for

predicting prognosis and immunotherapy response in other

carcinomas (20). The association between genes associated with

ICD and the prognosis of BLCA remains uncertain at present. In

order to enhance the ability to forecast the effectiveness of

immunotherapy in BLCA patients and provide guidance for

clinical treatments, it is necessary to identify novel biomarkers.

Therefore, we developed an ICD-related genes (IRGs) risk model to

excavate its relationships with tumor immune environment,

prognosis, and immune treatment response of BLCA patients.

This may help to provide a molecular-level basis for screening

populations with effective immunotherapy in BLCA.
Materials and methods

Analysis of differentially expressed genes

For our study, transcriptome profiling data for 429 BLCA

patients came from The Cancer Genome Atlas (TCGA) (https://

portal.gdc.cancer.gov/repository) database (Supplementary

Table 1). The ICD parameters were assessed in this study through

an extensive review of relevant research investigations conducted in

vivo using mice and/or in vitro using primary human immune cells,

utilizing databases such asWeb of Knowledge, Scopus, and PubMed

(21). Garg et al. have identified the metagene signatures derived

from ICD that are associated with enhanced patient survival and

provided confirmation that the ICD can function as a valuable tool

for the identification of prognostic metagenes (21). The expression

of IRGs in BLCA tumors and normal tissues was calculated using

the limma R package from Bioconductor (www.bioconductor.org),

which employed a linear model for microarray data. The ratio of all

IRGs in the samples was counted to identify the fold-change FC of

ICD-high group and ICD-low group. The |log2FC| was set at >1 and

false discovery rate (FDR) was set at <0.05. The protein-protein

interaction (PPI) network of DEGs was performed using the

STRING database (https://string-db.org/).
Immunohistochemistry

Furthermore, immunohistochemical (IHC) experiments were

conducted to determine the expression level of Calreticulin (CALR)

in BLCA tissues and adjacent tissues. The BLCA sample tissue chip
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(HBlaU079Su01) was from Outdo Biotechnology (Shanghai,

China). The detailed clinical information was downloaded from

the companys website (Supplementary Table 2). The experiment

steps were as follows. First, we placed the tissue chips into an oven,

set temperature to 63 degree, and waxed it for one hour. Second,

dewaxing was performed in a fully automatic dying machine. Third,

we put the slides into the performing antigen repair apparatus and

started the repair after the selection procedure. After repair, the

slides were subjected to natural cooling in distilled water at ambient

temperature. Fourth, we washed the slides with PBS buffer and

added the diluted primary antibody working solution (CALR Rabbit

pAb, 1:2000, ABclonal, A1066) in refrigerator with 4 degree

overnight. Fifth, we removed the slides from the refrigerator and

washed them with PBS buffer after rewarming for 45 min at room

temperature. Sixth, we put the slides into the DAKO IHC

instrument, and selected the corresponding procedure. Seventh,

we counterstained the slides for 1 min with hematoxylin. Eighth, the

slides were then immersed in 0.25% hydrochloric alcohol for about

10s. Finally, we dried the slides and sealed them. At last, the

prepared sections were scanned as high-resolution digital images

at 5.4 using a Pannoramic MIDI II scanner (3DHISTECH Ltd.,

Budapest, Hungary). The staining intensity and staining positive

rate of CALR in the cytoplasm of cancer and adjacent tissues were

read separately. The frequency of positive staining was assessed

using a scoring system ranging from 0 to 100, where 0 indicated the

absence of positively stained cells and 1-100 represented the

percentage of cells stained. The staining intensity was evaluated

on a scale of 0 to 3, with 0 indicating no staining, 1 indicating weak

staining, 2 showing moderate staining, and 3 indicating strong

staining. The final IHC scores, ranging from 0 to 300, were

calculated by multiplying the frequency and intensity scores.

Afterwards, the Kaplan-Meier (KM) curve was used to assess the

disparity in survival between the low- and high-expression group.
Consensus clustering analysis

In order to discern distinct molecular subtypes, consensus

clustering was conducted using the “ConsensusClusterPlus”

package, utilizing the expression of IRGs. The analysis was

iterated 1000 times to guarantee precise and consistent clustering

outcomes (22). The KM curve was utilized to visually represent

disparities in OS between the ICD-high and -low group, utilizing

the “survival” and “survminer” (version 4.2.0) R packages.
Differential analysis among the
ICD subgroups

Differentially expressed IRGs between the two ICD subgroups

were calculated using the “limma” package, which was adjusted for

P < 0.05 and |Log2(FC) |> 1 (23). The Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment

analyses were performed using the “clusterProfiler” R package

(Version 4.2.0) (24). In order to gain insight into the biological

functions within the ICD-high and -low groups, we conducted the

Gene Set Enrichment Analysis (GSEA) (25).
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Immune environment analysis between
two ICD subgroups

To assess the proportion of immune and stromal elements in

every tumor specimen, the ESTIMATE algorithm was utilized to

evaluate an immune score. Subsequently, the Immune, Stromal,

ESTIMATE, and TumorPurity scores were computed. Following

this, CIBERSORT (26, 27) analysis, which calculated the association

between the status of immune infiltration and different groups, was

performed. The expression data of both subgroups of the ICD were

computed utilizing CIBERSORT (HTTPS://cibersort.stanford.edu/)

in order to ascertain the relative proportion of 22 immune cell

types (28).

Then, we investigated the relationship between different ICD

subgroups and human leukocyte antigen (HLA) genes expression

levels using “limma, plyr, shape2, ggplot2, ggpubr” packages in R

software. The examination of the relationship between two ICD

subgroups and the levels of expression of immune checkpoint genes

was conducted utilizing the R software.
Development and validation of an ICD
score prognostic model

Clinical data from 410 BLCA samples was acquired using the

TCGA. The series Matrix Files and Platforms of 256 BLCA samples

of GSE13507 (GPL6102) were taken from the Gene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/)

(Supplementary Table 3). The training cohort consisted of BLCA

samples obtained from the TCGA dataset, while the validation

cohort comprised BLCA samples obtained from the GEO dataset.

The DEGs with significant effects on the prognosis was obtained

using a univariate cox regression with P < 0.01. A LASSO Cox

regression analysis was conducted using the “glmnet” R package

(Version 4.2.0) to determine the extent of gene selection. A formula

was employed to compute the IRG score: IRG score = ∑ (Expi ∗
Coefi). Patients with BLCA were categorized into high- and low-risk

groups according to their median risk scores. The KM plots were

utilized to assess the survival of the two risk score groups. The

GSE13507 cohort was considered as an external validation dataset.

The risk curve was conducted to assess the prognostic prediction of

patients with BLCA. Furthermore, univariate and multivariate Cox

regression analyses were conducted to examine the risk score as a

standalone prognostic indicator.
Independence evaluation of the risk model

The R package ‘rms’ was utilized to create a nomograph model

that integrates clinicopathological characteristics and risk score.

The Cox regression analysis was used to compute factors and

predict the chances of patient survival at intervals of 1, 3, and 5

years. The precision of the nomogram was assessed by means of a

calibration graph and consistency index (C index). The C index

serves as a measure of accuracy for the nomogram, indicating a

positive correlation. The predictive ability of the risk model, built on
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the risk score, was confirmed through time-dependent receiver

operating characteristic (ROC) analysis utilizing the R software

package ‘timeROC’.
Response to immunotherapy

To further evaluate the tumor-immune microenvironment in

the different subgroups, We used CIBERSORT to identify the

tumor-infiltrating immune cells (TIICs) and the Tumor Immune

Dysfunction and Exclusion (TIDE) tool (29) to predict the response

of BLCA patients to immunotherapy.
Statistical analysis

All statistical analyses were performed using the R (version

4.2.0) software and related R packages in the bioinformatic analysis

section. An adjusted P value <0.05 indicated a statistically

significant difference. The OS between the low and high ICD risk

cohort was compared using KM analysis, employing the survminer

and survival packages in the R programming language. The

prospective prognostic indicators were identified through

Univariate Cox analysis, while the assessment of the risk score as

an independent risk factor for OS in BLCA was conducted using

multivariate Cox analysis. In the IHC analysis section, a two-tailed

unpaired t-test was used to examine the differences between the two

variables. The log-rank (Mantel–Cox) test was used to compare the

survival curves. A value of p < 0.05 was considered statistically

significant. GraphPad Prism software (V. 8.0) was used for data

management and statistical analyses.
Results

Different expression of IRGs in the
TCGA cohort

Figure 1 illustrated the flow of our research. Most of the 34 IRGs

(Supplementary Table 4) (21) were upregulated in tumor samples

(Figure 2A). The PPI network showed the interrelated relationships

between these IRGs (Figure 2B). CALR was identified as one of the

ICD genes. Calreticulin (CALR) is an endoplasmic reticulum

-resident protein and exerts influence on numerous essential

physiological processes, such as protein folding, calcium

homeostasis, cellular adhesion, motility, antigen presentation, and

the transmission of danger signals (30). The intracellular roles of

CALR, serving as a crucial controller of Ca2+ homeostasis and

integrin-dependent signaling, may be imperative for advancing

certain tumors (30). Research has indicated that elevated CALR

levels detected in diagnostic biopsies have been linked to

unfavorable prognostic outcomes in certain groups of patients

(31–34). The adverse prognostic effect of strong CALR expression

in certain oncological contexts may stem from the compensatory

upregulation of CD47 (35). In our study, we observed CALR was

mainly expressed in the cytoplasmin both BLCA tissues and
frontiersin.org
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adjacent tissues (Figure 2C). Its staining intensity in BLCA tissues

was significantly higher than that in adjacent tissues (Figure 2C). In

the unpaired BLCA samples, compared to adjacent tissues,

carcinoma tissues expressed higher levels of CALR (Figure 2D).

And the high-expression CALR group had significantly worse OS

than the low-expression group (Figure 2E). Patient clinical

information used in the TCGA, HBlaU079Su01, and GEO

cohorts was presented in Supplementary Tables 1–3, respectively.
Typing and grouping of IRGs

Based on the levels of IRGs expression, the samples were

categorized into two isoform categories (C1 and C2) using

consensus clustering (Figures 3A, B; Supplementary Table 5).

Most IRGs were upregulated in the C1 isoform (Figure 3C).

Afterwards, the IRGs in the C1 and C2 subtypes were divided

into the ICD-high and ICD-low categories, respectively.

Significantly, the ICD-high group demonstrated a notable rise in

survival probability when compared to the ICD-low group, as

illustrated in Figure 3D.
The functional and pathway analyses in
two subgroups

To further explore the mechanisms causing the prognostic

differences between the two subgroups, we conducted functional

and pathway analyses in 3305 DEGs (Supplementary Table 6) using

the “limma” package. The ICD-high group showed upregulation of

fifty genes (Supplementary Table 7), such as IFNG, and IFNB1, as

displayed in the volcano map (Figure 4A). However, no significant

difference was observed in CALR expression level between the ICD-

high and -low groups (Figure 4A). In the GO analysis, it was found

that leukocyte-mediated immunity, T-cell receptor complex, and
Frontiers in Oncology 05
antigen binding were enriched (Figure 4B), whereas the KEGG

enrichment analysis primarily indicated involvement of cytokine-

cytokine receptor interaction, natural killer cell-mediated

cytotoxicity, and chemokine signaling pathway (Figure 4C). This

showed that the IRGs regulated the tumor immune

microenvironment. Next, we delved deeper into the biological

functionalities within both risk score categories by employing

GSEA. In the ICD-high group, we discovered a greater

enrichment of immune-related pathways, such as lymphocyte-

mediated defense, immunoglobulin complex, and T-cell receptor

complex (Figures 4D). Figures 4E showed that the ICD-low group

engaged in cellular hormone metabolic process, cellular response to

xenobiotic stimulus, and olefinic compound metabolic process.
Comparison of the immune landscape
between both subgroups

The ICD-high group exhibited increased stromal, immune, and

ESTIMATE scores, while the tumor purity score decreased

(Figures 5A–D). Consequently, these patients may exhibit

heightened immune activity and robust anti-tumor immunity.

Hence, the CIBERSORT algorithm was used to determine the

infiltration patterns of 22 immune cells. The results showed that

people in the ICD-high category exhibited higher percentages of

CD8 T-lymphocytes, activated CD4 memory T-lymphocytes, T-

helper cells in the follicles, inactive natural killer cells, and M1

macrophages (Figures 6A). Moreover, the ICD-high group

demonstrated a notable rise in the expression levels of all HLA

genes (Supplementary Table 8), as depicted in Figure 6B. The

expression levels of eight immune checkpoint genes, including

CD274, CTLA4, HAVCR2, LAG3, PDCD1, PDCD1LG2, TIGIT,

and SIGLEC15, were calculated in different ICD subgroups. The

ICD-high group demonstrated a notable rise in the expression levels

of CD274, CTLA4, HAVCR2, LAG3, PDCD1, PDCD1LG2, and
FIGURE 1

Shows a flow chart of the study.
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TIGIT (Figure 6C). However, the ICD-low group demonstrated a

notable rise in the expression level of SIGLEC15 (Figure 6C).
Construction and validation of an
ICD-related prognostic gene model

In this study, we develop a prognostic model by evaluating the

prognostic characteristics of BLCA patients based on 34 IRGs. 3

ICD-related genes, including CALR, IFNB1, and IFNG, were found

to be considerably linked to the OS of patients in the Cox univariate

analysis (Figure 7A). Further, the LASSO model was applied to

those three IRGs to calculate the optimal coefficient, and they were

selected for follow-up research (Figures 7B, C). The algorithm

provided below was used to determine the risk score signature:
Frontiers in Oncology 06
Risk score = (0.597009118354826) * CALR + (-0.668324769314062)

* IFNB1 + (-0.232629267444094) * IFNG.

In addition, we investigated the relationship between survival status

and risk score. In order to validate the precision and dependability of

the prognostic significance associated with the IRGs-based risk score,

we constructed risk models utilizing the TCGA and GEO datasets,

respectively. According to their median risk scores, BLCA patients were

divided into high- and low-risk categories (Figures 8A, E). Figures 8B, F

showed an inverse relationship between the risk score and BLCA

survival time. Figures 8C, G displayed distinct expressions of three

IRGs in both low-risk and high-risk groups, as shown by

thermographic visualization. Patients classified as low-risk in the

TCGA dataset exhibited a considerably extended overall survival

compared to high-risk patients, as illustrated in Figure 8D. The GEO

cohort (Figure 8H) confirmed the validity of this outcome.
B

C

D E

A

FIGURE 2

Different expressions of IRGs in the TCGA cohort. (A) Different expression of IRGs in tumor and normal tissues in BLCA. (B) PPI of the different
expressions of IRGs. (C) IHC staining of Calreticulin expression from a tissue microarray of BLCA patients (100×: scale bar, 100 mm; 400×: scale bar,
50 mm). (D) IHC scores of Calreticulin expression in unpaired BLCA tissues and adjacent tissues from the tissue microarray. BLCA tissues (num = 63)
and adjacent tissues (num = 16). (E) The overall survival of patients with BLCA in low-expression Calreticulin group and in high-expression
Calreticulin group. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
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Risk model based on the IRGs as an
independent prognostic factor

Next, risk score was examined as an independent prognostic

factor of the model. Our study showed that the risk ratio (HR) of the

risk score in univariate COX regression analysis was 2.867 (95% CI

1.902-4.321) (P<0.001) (Figure 9A), while the HR of risk score in

multivariate COX regression analysis was 2.624 (95% CI 1.724-

3.995) (P<0.001) (Figure 9B). Then we constructed a nomograph

model to accurately predict the OS of BLCA patents in 1-, 3-, and 5-

year according to the risk score and clinicopathological

characteristics (Figure 9C). In addition, the calibration curve

showed that the OS of 1-, 3-, and 5- year predicted by the

nomogram was in satisfactory agreement with the actual OS of

patients with BLCA (Figure 9D). The ROC values of 1-, 3-, and 5-

year survival rates in the TCGA dataset were 0.632, 0.637, and 0.653

respectively (Figure 9E). To summarize, the prognosis model of

ICD-related risk scoring evaluated results with higher accuracy and

stability and demonstrated a commendable ability to accurately

assess the prognosis of patients diagnosed with BLCA.
Association between risk scores with TIICs,
and the response to immunotherapy

In the low-risk group, there was a higher presence of infiltrating

activated memory CD4+ T-cells, CD8+ T-cells, andmacrophages M1

(Figures 10A–C). Patients who had high-risk scores demonstrated

markedly elevated TIDE scores (P=0.003) and a less favorable

reaction to immunotherapy (Figure 10D). Consequently, this could

offer groundbreaking perspectives for tailoring personalized and
Frontiers in Oncology 07
accurate medical treatments for BLCA patients belonging to diverse

risk groups in upcoming clinical environments.
Discussion

Bladder cancer is responsible for being the 10th leading cause of

cancer-related deaths (1). ICIs have changed the natural history of

genitourinary cancer treatment (36). Implementing ICIs yielded a

significantly longer OS in patients diagnosed with advanced renal-cell

carcinoma (37). The latest findings from the KEYNOTE-564 trial also

provided further evidence of endorsing pembrolizumab

monotherapy as the adjuvant treatment protocol for individuals

with renal cell carcinoma who had an increased risk of recurrence

after nephrectomy (38). ICD is a controlled mechanism of cellular

demise that stimulates innate and adaptive immune reactions via the

liberation of DAMPs. Furthermore, when combined with

immunotherapy, particularly ICIs, it has the potential to counteract

the immunosuppressive milieu within tumors (39). Timely

identification and categorization of risk factors can enhance the

immunotherapeutic regimens outcome of BLCA (40). Given the

observed impact of ICD on survival rates in various tumor types,

such as lung (41), ovarian malignancies (21), and head and neck

squamous cell carcinoma (20), as well as its relevance to cancer

therapy (16, 42, 43), it is imperative to investigate ICD-related

prognostic factors in the context of BLCA. It could be

advantageous to identify ICD-related biomarkers that help

distinguish BLCA patients who will benefit from immunotherapy.

In light of the heterogeneity of BLCA, we undertook a

consensus cluster analysis focusing on IRGs. Consequently,

patients from TCGA dataset were categorized into distinct
B

C D

A

FIGURE 3

Consensus clustering to identify ICD-associated subtypes. (A) Heatmap of 34 genes in BLCA clustered by consensus clustering (k = 2).
(B) Consensus clustering delta area curves show changes in area under cumulative distribution function curve for k = 2 to 10. (C) The heatmap
shows the expression of 34 IRGs in different subtypes, with red representing high expression and blue representing low expression. (D) The KM
curves of OS for ICD-highs and -lows.
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subgroups (C1 and C2) according to variations in the expression

levels of IRGs. In BLCA tumors, the majority of IRGs exhibited

notably elevated expression levels in comparison to normal tissues.

Additionally, a more favorable prognosis was observed in the group

with high-ICD. The group classified as ICD-high exhibited elevated

levels of immunescore, TIICs, HLA, and immune checkpoint genes.

The findings of our study indicated that gene sets linked to the high

group of the ICD were notably enriched in immune active signaling

pathways. We infer that the ICD-high group belongs to the
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immuno-hot type, while the ICD-low group belongs to the

immuno-cold type. The findings indicated that the ICD-high

group may be more responsive to immunotherapy than the ICD-

low group, which could help us in achieving a better prognosis.

As TIICs are also an important part of TME (44), their changes can

affect the biological properties of tumors. Higher rates of infiltration of

immune cells into tumor tissues are essential for effective

immunotherapy (45). The findings of extensive clinical studies have

revealed that immune infiltration, such as CD8+ cytotoxic T-
B C

D E

A

FIGURE 4

The functional and pathway analysis in two subgroups. (A) Volcano plot of all DEGs between two subgroups. Red = upregulated DEGs; Black = non-
significant genes; Green = downregulated DEGs. (B) GO enrichment analysis, including biological process analysis, cellular component analysis, and
molecular function analysis. (C) KEGG pathway analysis. (D) The terms enriched in the ICD high group. (E) The terms enriched in the ICD low group.
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lymphocytes, Th1 and Th17 CD4+ T-cells, and M1 macrophages

possess autonomous prognostic value in various cancer types (46–48).

On the other hand, elevated levels of intratumoral CD4+CD25

+FOXP3+ regulatory T-cells, Th2 CD4+ T-cells, and M0

macrophages have consistently been linked to an unfavorable

prognosis (49). Sharma P et al. indicated that the existence of CD8 T

cells infiltrating in muscle-invasive urothelial tumor, potentially

indicating a reaction to particular tumor antigens, was associated

with a more favorable prognosis for patients (50). Prior studies have

also looked at the impact of the TME on clinical outcomes and

treatment response in patients with bladder cancer, particularly the

role of TIICs, which significantly affected tumor progression and

treatment efficacy (51, 52). Hence, we further investigated the

extensive attributes of the TIICs in BLCA. Our study revealed that

individuals in the ICD-high category displayed increased levels of CD8

+ T-cells, T-cells CD4memory-activated cells, andmacrophageM1 cell

infiltration in BLCA. Furthermore, the infiltration of these

aforementioned cells demonstrated a negative correlation with the

risk score derived from our model. Conversely, the ICD-low group

displayed increased levels of T-cells CD4 memory resting cells and

mast cell infiltration. Previous research has provided evidence

supporting the association between the presence of resting memory

CD4+ T-cells and the prognostic outcomes of bladder cancer (53).

Memory CD4+ T-cells exhibit elevated quantities and accelerated
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effector function upon reinfection, in contrast to naive T-cells (54).

Mast cells, recognized as tissue-resident sentinel cells, have garnered

prominence for their ability to stimulate angiogenesis and

inflammation, thereby assuming a crucial role in modifying the

TME. The promoting or inhibitory effect of mast cells in tumors

depends on local stromal conditions (55). Crivellato et al. reviewed on

the ability of tumor-infiltrating mast cells to produce and release highly

potent angiogenic factors, such as vascular endothelial growth factor

(56). Multiple studies have demonstrated that tumor-infiltrating mast

cells in urologic malignancies exhibit a potential correlation with tumor

microvessel density and play a role in facilitating tumor angiogenesis

(57, 58). Consistent with their proinflammatory role, mast cells have

been documented to possess a robust ability to attract additional

immune cells to the TME, including neutrophils, macrophages, and

eosinophils (59). The capacity of mast cells to influence the TME has

garnered attention for investigating its potential prognostic and

predictive significance in bladder cancer (60).

HLA genes are the most polymorphic in the human genome and

are essential for regulating specific immunity (61). HLAmolecules play

a vital role in initiating and controlling immune responses by aiding in

the presentation of peptides derived from mutated neoantigens or

tumor-associated antigens to cytotoxic T-cells. According to the

reported findings, HLA has demonstrated its potential as a

prognostic marker for HNSCC by not only indicating enhanced
B

C D

A

FIGURE 5

Immune scores between ICD-low group and ICD-high gorup. (A–D) Stromal, immune, ESTIMATE, and purity scores in the subgroup.
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tumor antigen presentation but also accurately predicting improved

survival rates (62). HLA can be used as an independent biomarker for

immune checkpoint blocker therapy. Chowell et al. reported a positive

association between class I HLA allele diversity and clinical benefits in

an ICB-treated melanoma cohort (63). Our study found that the levels

of HLA in the BLCA ICD-high group were considerably higher than

those in the ICD-low group. Additionally, the former group exhibited a

more favorable prognosis. This illustrated that stratified management

of IRGs could be a better strategy to select the BLCA immunotherapy

population. Additionally, we discovered that the ICD-associated

characteristics of the genes exhibited strong performance in

predicting the effectiveness of immune checkpoint therapy. Tumor
Frontiers in Oncology 10
cells activate immune checkpoints by releasing several substances. This

will prevent the antigens from being submitted to the T-cells and lead

to no immunological response from the T-cells (64). In the group with

high levels of ICD, the majority of immune checkpoints showed a

significant increase in expression levels.Therefore, ICIs targeting these

checkpoints may be better treatments for these patients.

In our analysis, 3 of the 34 ICD-related genes were considerably

linked to the prognosis of BLCA patients, including CALR, IFNB1, and

IFNG. Following this, we developed a risk model utilizing these three

IRGs to assess its efficacy in prognosticating patient outcomes in BLCA.

Furthermore, we explored the correlation between the prognosis model

and the immune microenvironment, along with its potential
B

C

A

FIGURE 6

Immune landscapes between ICD-low group and ICD-high gorup. Bar plots illustrating the proportion of 22 different types of TIICs (A), HLA genes
expression levels (B), immune checkpoint gene expression levels (C) between ICD-high group and ICD-low group in the TCGA cohort. *P<0.05,
**P<0.01, ***P<0.001
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implications for immunotherapy. The three genes (CALR, IFNB1, and

IFNG) were involved in anti-tumor immunity, which improved the

predictive performance of this signature. Studies conducted previously

have discovered that individuals with BLCA exhibit a greater

expression of CALR in both tumor tissues and urine compared to

healthy individuals (65, 66). The findings from our experiment align
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with this observation. CALR is a highly conserved chaperone protein

and plays a crucial role in various physiological and pathological

processes (67). Notably, it exerts an influence on transcriptional

activity and the modulation of gene expression (68). Therefore, the

multifunctionality of CALR renders it a significant factor in the

pathogenesis of diverse diseases, encompassing cancer and
B CA

FIGURE 7

ICD-related prognostic gene model. (A) The IRGs with prognostic values were identified using a univariate Cox proportional hazards regression
model in the TCGA cohort. (B, C) The selection of three genes for the risk model using the LASSO analysis.
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FIGURE 8

Prognosis of the risk model in TCGA dataset and GEO dataset. The distribution of risk scores in different groupings (A, E), risk score and survival
status (B, F), heat maps for CALR, IFNB1 and IFNG expressions (C, G), KM curves of BLCA patients (D, H) between low- and high-risk groups in the
TCGA, and GEO datasets, respectively.
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autoimmune disorders (30, 69, 70). The findings of our study indicated

a significant correlation between elevated CALR expression in BLCA

and unfavorable prognosis. In Figure 4A, there was no significant

difference observed in CALR expression level between the ICD-high

and -low groups. However, our study revealed that the ICD-high group

exhibited improved response to immunotherapy. This finding suggests

that the elevated CALR expression in BLCA tissues may contribute to

the unresponsiveness of BLCA patients to immunotherapy and their

overall poor prognosis. However, additional investigation into the

fundamental molecular mechanisms is necessary. As IFNB1 has both

direct antiangiogenic and anti-tumor effects, it can stimulate immune
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production (71). It was recently reported that an IFNB1-expressing

blister stomatitis virus was able to create a “comfortable” TME for

immune checkpoint suppression, which promotes the antitumor

immune response (72). It is a pleiotropic cytokine with a more

pronounced immunomodulatory effect than its antiviral activity (73).

IFNG is the secreted cytokine and is an important modulator of

immunity and inflammation (74). IFNG signaling is vital in the

immune response to tumors, and its activation is linked to the

effectiveness of checkpoint-blocking therapy (75). In Figure 4A, the

ICD-high group showed upregulation of IFNG and IFNB1. This

finding aligns with our subsequent analysis, which demonstrates a
B

C D
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FIGURE 9

Independent prognostic analysis of clinical characteristics and risk score based on the TCGA set. (A, B) Screening the independent predictors for
OS in BLCA using the univariate and multivariate Cox proportional hazards regression models. (C) Nomogram construction of risk score and
linicopathological characteristics to predict the 1-, 3-, 5-years OS rate of BLCA patients. (D) Calibration curve shows the accuracy between
predictive capacity and actual OS rate of 1-, 3-, and 5-years. (E) Time-dependent ROC curves indicate the area under the ROC curve (AUC) at 1-, 3-,
and 5-years.
B C DA

FIGURE 10

Relationship between the ICD-related signature and immune cell infiltration. (A–C) The infiltration levels of immune cell types in the two risk groups.
(D) Comparisons of the response of the risk score to immunotherapy.
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positive correlation between these two genes and a favorable prognosis

in patients with BLCA (Figure 7A). Additionally, we observed that the

responders to immunotherapy exhibited lower-risk scores compared to

the non-responders, indicating that our patients had a more favorable

response to immunotherapy.

To guarantee comprehensive validation and broad applicability of

the prognostic signature, two cohorts were chosen for analysis. These

cohorts include the development cohort obtained from TCGA and the

external validation cohort acquired from GEO. The three-gene pattern

played a vital part in differentiating patients into subgroups with low

and high risks. Remarkably, our signature consistently demonstrated

satisfactory performance in both cohorts, as evidenced by the clear

discrimination between risk subgroups, the unfavorable prognosis for

patients in the high-risk category, and the superior predictive

significance of genes related to the immune system.

In this study, we have substantiated the reliability and independence

of risk score as a prognostic biomarker for BLCA. The robustness and

precision of the risk model were demonstrated by the favorable ROC

values for 1-, 3-, and 5-year survival rates. Furthermore, the

incorporation of the risk score alongside other clinicopathological

parameters in the development of a nomogram yielded significantly

higher AUC values in the ROC curves compared to single-factor

variables such as age, risk score, age, and stage. The calibration graph

showed that the estimated curve closely resembled the perfect curve,

indicating that the created nomogram had the ability to improve the

predictive capability and precision for individuals with BLCA.

Consequently, the 3-gene signature panel established in our

investigation exhibits robust prognostic capabilities for BLCA. In the

end, our investigation uncovered notable statistical differences in the

tumor immune microenvironments linked to signatures and their

capacity to forecast the response to immunotherapy in subgroups

classified as low- and high-risk.

Nevertheless, there were certain constraints in our research.

Given the retrospective nature of this study, it is crucial to carry out

future prospective studies with larger sample sizes to confirm these

findings. Our study has experimentally validated the CALR

signature. However, further augmentation of relevant data in the

immunotherapy cohort is necessary in subsequent investigations.

Conclusions

By analyzing IRGs, this study effectively distinguished two distinct

phenotypes for BLCA and provided a comprehensive understanding of

the tumor immune microenvironment differences between them.

Additionally, we also developed prognostic models of risk features

that were closely related to the BLCA immune response. Therefore, we

are of the opinion that our findings may offer valuable perspectives on

the personalized treatment of patients with BLCA, aiding in the

selection of suitable individuals for better immunotherapy response.
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