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Advances in digital technology have greatly increased the ease of collecting intensive
longitudinal data (ILD) such as ecological momentary assessments (EMAs) in studies
of behavior changes. Such data are typically multilevel (e.g., with repeated measures
nested within individuals), and are inevitably characterized by some degrees of
missingness. Previous studies have validated the utility of multiple imputation as a
way to handle missing observations in ILD when the imputation model is properly
specified to reflect time dependencies. In this study, we illustrate the importance
of proper accommodation of multilevel ILD structures in performing multiple
imputations, and compare the performance of a multilevel multiple imputation
(multilevel MI) approach relative to other approaches that do not account for such
structures in a Monte Carlo simulation study. Empirical EMA data from a tobacco
cessation study are used to demonstrate the utility of the multilevel MI approach,
and the implications of separating participant- and study-initiated EMAs in
evaluating individuals’ affective dynamics and urge.

KEYWORDS

multilevel data, multilevel multiple imputation, non-ignorable missing data, ecological
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1. Introduction

Advances in data collection technology and data modeling techniques offer many

opportunities for leveraging intensive longitudinal data (ILD) to better understand the

evolution of health processes over time. The introduction of ecological momentary
Abbreviations

AR, auto-regression; BFIML, Bayesian full information maximum likelihood; COVs, covariates; CR, cross-
regression; dSD, differences between the average SE across MC runs and the empirical MC standard
deviations of the parameter estimates; DV, dependent variables; EMA, ecological momentary assessments;
ESS, effective sample size; FIML, full information maximum likelihood; ICC, intra-class correlation; ILD,
intensive longitudinal data; LD, list-wise deletion; MAR, missing at random; MC, Monte Carlo; MCMC,
Markov chain Monte Carlo; MCAR, missing completely at random; MI, multiple imputation; MLMI,
multilevel multiple imputation; MNAR, missing not at random; MVAR, multilevel vector autoregressive
models; SE, standard error; SEM, Structural Equation Modeling; SES, Socioeconomic status; SLMI, single
level multiple imputation; VAR, vector autoregressive model.
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assessment (EMA) in studies of tobacco and substance use (1) has

led to a dramatic increase in the number of studies that utilize

EMAs. EMA studies are powerful in elucidating the everyday,

real world processes that affect individuals’ risk for tobacco use

and maintaining abstinence during a quit attempt (2–7).

However, EMA studies are also especially susceptible to

missingness issues related to noncompliance, attrition over time

(8, 9), and technological glitches (e.g. a completed EMA may not

be saved or uploaded to the cloud if the smart phone crashed

after a participant completed an EMA).

Despite recent EMA methodologies that consider how burden

and disengagement may influence missing data (e.g., (10–12)),

limited extant work exists to help illuminate the extent to which

use of distinct missing data handling techniques would impact

results and conclusions in analyses of EMA data, which are

typically multilevel (e.g., with repeated occasions nested within

individuals). Some of the previous work focused, instead, on

studying how modern missing data techniques, such as multiple

imputation (MI) and full information maximum likelihood

estimation (FIML), can be adapted to the characteristics of

intensive longitudinal data (for a review, see (13)). Attempts have

also been made to apply missing data handling techniques to

multilevel cross-sectional data (e.g., with linear regression models;

for a review, see (14, 15)). However, it is still not clear how to

adapt missing data handling approaches to multilevel ILD data.

ILD arising from EMA studies are, by nature, clustered, with

measurement occasions nested within persons. Prior studies

showed between-person heterogeneity in behavioral and

psychological dynamics (e.g. changes of urge levels, lapses, and

motivation to quit) during tobacco cessation studies. For instance,

lower socioeconomic status (SES) smokers were more likely to

experience smoking lapses (16), and neurotic participants tended

to report higher levels of negative affect (17, 18), which may, in

turn, have implications for intervention outcomes. Given the

importance of modeling such between-person differences in

intraindividual dynamics, it is crucial to account for data clustering

structure in ILD analysis. One of the popular ways to analyze such

clustered data is to apply multilevel modeling techniques to

dynamic models (19, 20). Examples of such models include

multilevel vector autoregressive models (MVAR) and related

variations (20, 21), including MVAR variations that have become

well-known in the structural equation modeling literature as

dynamic structural equation models (22–24). One purpose of this

paper is to illustrate the application of missing data handling

techniques with MVAR model.
1.1. Missing data handling methods for
longitudinal data

Understanding the mechanisms through which the data became

unobserved is important for deciding the appropriate missing data

handling approach. Based on Rubin’s classification, data may be

missing under one of three possible missing data mechanisms:

missing completely at random (MCAR), missing at random

(MAR), and missing not at random (MNAR) (25). Let Y
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represents a matrix of variables observed from n participants, with

some missing observations. Suppose z is a fully observed variable,

which is not of substantive modeling interest but may be related to

the causes of missing observations in Y , or the values of the

missing observations in Y . z is often referred to as auxiliary

variable. R represents the missing data indicator matrix associated

with each observation of Y . Each element of R, denoted as r, takes

on the value 0 if the corresponding y is observed, and 1 if y is

missing. According to Rubin’s (25) definition, when the probability

of r ¼ 1 does not depend on any variables of research interests,

either observed or missing, the missing-data mechanism is called

MCAR. In the cases of MAR, the causes of missing data in Y
depend on the observed data, z, or observed covariates in the

analysis model, but not on Y itself. For MNAR conditions, the

cause of missingness is unobserved. The probability of Y being

missing depends on values of Y itself, or on some other

unmeasured variables which are related to Y . Thoemmes and

Mohan provided a graphical illustration of missing data

mechanisms in their work (26). Thus, in the context of EMAs in

tobacco cessation studies, if instances of participant-initiated

assessments are systematically higher or lower in values of the

study variables compared to other instances on which the

participants are simply prompted to respond at fixed or random

intervals, analyzing only one set of assessments without regard to

other sets of assessments could yield data that are MNAR.

Failure to account for data missingness can lead to much more

severe consequences in longitudinal data analysis. In dynamic

models, dependent variables (DV: Y) serve not only as the

outcome variables but also as predictors of later time points.

When fitting a dynamic model, missing data methods that ignore

missing data and perform model fitting procedures only with

fully observed occasions (e.g., listwise deletion) would produce

biased parameter estimates and low power (27), even under

MCAR and MAR conditions. One important reason that leads to

the biased estimates is dropping observations with missing

variables inevitably alters the true time intervals between

observations, which would violate the equal-interval assumption

of many time series models that relate the observations at time t

to those from some discrete time steps earlier (t � 1, t � 2, etc.).

Modern missing data methods usually involve imputation

implicitly or explicitly, where missing values were filled in with

predicted scores based on specified models (28). Examples of

implicit imputation were FIML and Data Augmentation (29), both

of which simultaneous handle missing data and statistical

modeling, where model-based-imputed values were generated

during the estimation process. MI, an explicit imputation method

proposed by Rubin (30) has been widely applied in cross-sectional

survey data (31), and found to be effective in handling most of

missing data problems (31–34). MI methods have also been

extended to handle missing data problems in longitudinal panel

studies (35, 36), longitudinal clinical trials (37, 38), and intensive

longitudinal data models (13). MI is a two-step, data-based

approach that handles the missing data in one step, and then

estimates the full-data model in a separate step (39). Specifically,

MI procedures first generate multiple sets (the number of

imputations is denoted as m, where m . 1) of possible values of
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missing observations, using observed variables based on predefined

imputation model. The m sets of imputed values then substitute

the missing values in the original dataset, producing m versions of

plausible imputed data sets. Each imputed dataset is then used in

model fitting procedures as if all data were observed, resulting in m

sets of parameter estimates. Combining the m sets of parameter

estimates, one set of pooled parameter estimates, Q, can be

obtained. Rubin’s (30) rules in pooling parameter estimates specify

that the pooled parameter point estimates are simply the average of

the parameter estimates over the m sets of parameter estimates

from each model fitting procedure. For pooled standard error (SE)

estimates, both within—imputation variability and between—

imputation variability need to be accounted for.

A simulation study by Ji et al. (13) showed that using imputation

models with lagged variables when the true model was a VAR model

improved both parameters’ point estimates and SE estimates

compared with approaches that did not utilize the lagged

information effectively. To illustrate the importance of including

lagged variable, we present a comparison of imputed data points

for missing observations using simulated data with an

autoregressive model of order 1 (see, Figure 1). In particular,

when lagged variable (i.e., observation from the previous time

point) was included in the multiple imputation model, the mean

imputed observations at time point 5 and 7 were less biased than

performing multiple imputation without lagged variable. They

proposed a partial MI approach in which missing data in covariate

variables are imputed with MI procedures, whereas missing data

in DVs are retained in the dataset and handled using the FIML

approach. Simulation study results showed that this partial MI

approach produced the best estimation results, especially for point

estimates of time-series parameters that convey the dynamics of

the system over time (e.g., autoregression and cross-regression

parameters, as defined explicitly in a later section).

In recent years, research efforts have been dedicated toward

extending standard MI procedures to multilevel models. Previous
FIGURE 1

This plot compares multiple imputation with and without lagged
variable against true data under the context of autoregressive model
of order 1, 11 time points. The black circles represent true data
generated using an autoregressive model of order 1, where time-
points 5, 7, 8, 9 were set to be missing. The red squares represent
average multiply imputed data points with m ¼ 5 when the imputation
model does not include lagged variable. The green triangles represent
average multiply imputed data points with m ¼ 5 when the imputation
model includes lagged variable.
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research has shown that failing to account for this nested

structure of the data in the MI procedures may lead to different

variance and covariance properties of the imputed data, as

compared with the actual data (14). As a result, substantive

model estimation results may be biased. The extent to which the

parameters are biased depends on many factors, including

whether the parameters are within- or between- level parameters,

the intra-class correlation (ICC) of the data set (i.e., the amount

of variability accounted for by systematic between-person

differences in means (referred to as random intercepts in MVAR

models) relative to the total variability of the data). Simulation

studies found that applying single-level MI to clustered data

resulted in a biased estimation of between-group and within-

group regression coefficients independent of sample size (40).

However, all these properties are observed with cross-sectional

data with linear models. Even though, the use of MI for

longitudinal panel data in the context of linear regression and

linear mixed-effects model were explored and evaluated (41, 42),

the consequences of using single-level MI procedures with

intensive longitidinal clustered data when fitting dynamic models

involving time-lagged relationships are not well understood.
1.2. Study objectives

The purpose of this article is twofold. First, we highlight the

importance of accounting for the multilevel structure of ILD

from EMA studies, particularly when implementing missing data

handling procedures in the context of applying multilevel model

to multi-subject data. To illustrate this point, we used simulated

data sets designed to mirror the characteristics of ILD from EMA

studies to compare estimation results when treating data from

multiple individuals as single level data versus using a multilevel

multiple imputation (multilevel MI) procedure. Second, we

illustrate one application of multilevel MI using empirical data

from a longitudinal smoking cessation study. In this illustration,

we evaluate the tenability and sensitivity of conclusions

concerning bi-directional dynamic relations between negative

affect and urge. Specifically, by comparing estimation results with

different missing data handling approaches, including multilevel

MI, single-level MI, Bayesian_FIML, and listwise deletion, we

aimed to evaluate whether and to what extent conclusions

concerning the lead-lag relations between negative affect and

urge, interindividual differences, and correlates with time-varying

risk processes vary under different missing data handling

techniques. Note that even though we refer to individual as the

unit for analysis throughout this paper, the illustrated approaches

may also apply to a couple/dyad, a family, or other units of analysis.
2. The general MVAR model

The MVAR model has two components: the within-level

model, and the between-level model. For the within-level model,

we considered a bivariate VAR(1) model for the dynamic

process, with y1,i,t and y2,i,t influencing themselves as well as each
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other at the subsequent time point. This model essentially captures

the interdependence between the two change processes, y1,i,t and

y2,i,t , through how much the values of these processes from an

earlier time point, t � 1, affect their current values at time t.

Person-specific intercepts are incorporated to represent between-

person differences in baselines for these change processes. These

baseline values serve as anchor points which the processes of

interest fluctuate around and represent the average levels of these

processes within an individual. In other words, a high (low)

value on a DV is high relative to each person’s usual baseline,

not necessarily high (low) relative to other individuals. The

model also includes two time-varying COVs, x1,i,t and x2,i,t , as

part of the dynamic model. These COVs are measured person-

and time-specific independent variables thought to affect the

values y1,i,t and y2,i,t , but the change processes that govern them

are typically not of substantive interest to the researchers.

The within-level model for MVAR was expressed as:

y1,i,t � m1,i ¼ ar1,i�(y1,i,t�1 � m1,i)þ cr1,i�(y2,i,t�1 � m2,i)

þ c1�x1,i,t þ d1�x2,i,t þ z1,i,t (1)

y2,i,t � m2,i ¼ ar2,i�(y2,i,t�1 � m2,i)þ cr2,i�(y1,i,t�1 � m1,i)

þ c2�x1,i,t þ d2�x2,i,t þ z2,i,t (2)

z1,i,t
z2,i,t

� �
� N

0
0

� �
, S ¼ s2

1 rs1s2

rs1s2 s
2
2

� �� �
, (3)

The between-level model for MVAR was expressed as:

g(ui) ¼ BXi þ ni, ni � N(0, D): (4)

where y1,i,t and y2,i,t are the two DVs observed for the person i at

time point t; m1,i and m2,i are person-specific intercepts. In

tobacco cessation study, DVs could be participants’ urge to

smoke and participants’ negative affect, for example. yi,t � mi

represent the amounts of deviation in cravings and negative

affect from each person’s respective baseline (mi) at time t. ar1,i
and ar2,i represent person-specific auto-regression (AR)

parameters, capturing how much the amount of deviations at

time t are related to the person’s deviations from the baselines at

the previous time point. cr1,i and cr2,i represent person-specific

cross-regression (CR) parameters. At the between-level model, ui
is a matrix that consists of all person-specific parameters that

appear in Equations 1, 2, and 3. Variables Xi included exogenous

variables that explain some of the between-person differences in

the person-specific parameters, and B is the matrix of regression

coefficients (or fixed effects) at the between-level model. ni

represent random effects with distributions of zero means and

the random effect covaraince matrix D.

We fit the MVAR model using the R package “rjags,” with the

default MCMC algorithms (43, 44). The MCMC algorithms

perform iterative sampling to get posterior distributions for each

parameters based on approximate conditional distributions. During

the sampling procedures, adaptation is performed by the
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algorithms to automatically tune the parameters. After that,

iterations during the initialization stage are discarded as burn-in.

Usually, longer number of iterations may produce higher quality

results. When autocorrelation is observed with the posterior, we use

thinning so that the algorithm only retained the samples at every

nth iteration. We assessed the convergence of the procedures using

R̂ (i.e., threshold <1.1), which is the ratio of the overall variance to

the within-chain variance of posterior samples across chains (45).

In addition, we also inspected the effective sample size (ESS) to

ensure that the number of independent posterior draws was greater

than the minimum threshold of 300 for all parameters (45).

The choice of prior distribution plays an vital role in the

estimation of Bayesian models. Weakly informative priors were

used based on prior knowledge of the possible range of the

parameters. Specifically, for the MVAR(1) model with random

intercepts and random-VAR-related parameters, the priors for

the between-level model parameters were set to a normal

distribution with means of 0 and variances of 100. The error

variances of the between-level model were set to uniform

distribution with lower bound at 0 and upper bound at 100.

When VAR-related parameters were fixed, instead of random, I

used normal priors with mean of 0 and variances of 10. For

covariate parameters (c1, c2, d1, d2), normal priors with means of

0 and variances of 1 were used. Given the permissible values of

VAR-related parameters for stationary time-series models, this

set-up of priors was more diffuse than the parameter values we

would expect for stationary MVAR(1) models, which typically

fell within the range of [� 1:5, 1:5] (46, 47). For the process

noises variance-covariance (referred to as “var-cov” hereafter)

parameters, variances parameters had an uniform prior between

0 and 100, and the correlation parameter had an uniform prior

constrained between the values of �1 and 1.

Fitting models in JAGS yields posterior distributions for each

model parameter, from which we can obtain point and standard

error estimates, and credible intervals (similar to “confidence

intervals” in the frequentist framework) by calculating the

distributions’ means/medians, standard deviations, and quantiles

respectively.
3. Simulation study: consequences of
ignoring nested data structures in
performing MI

3.1. Simulation designs

What are the consequences of ignoring multilevel or nested (e.g.,

repeated measures nested within days and/or within individuals) data

structures in performing MI procedures? Previous studies showed

that different missing data handling procedures performed

differently when the true data-generation model and the analysis

model were random-intercept-only multilevel models and

multilevel models with random slope coefficients for cross-

sectional data (40, 48). To investigate if the findings still hold with

multilevel dynamic models, we demonstrate the consequences of

inadvertently performing MI procedures on data that do have a
frontiersin.org
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nested structure in the context of a dynamic model known as a

random-intercept-only MVAR model (details forthcoming) under

scenarios with relatively high compared to low magnitudes of

interindividual differences in intercepts (i.e., high vs. low ICC). We

assume that the data are MAR. We also compared the

performance of the different MI approaches to a Bayesian FIML

(BFIML) method, a broadly accepted method to handle missing

data that has been shown to work well under MAR conditions

(49). This BFIML approach is similar to the data augmentation

approach implemented in Bayesian factor analysis models (50).

With the BFIML model, model-implied observed and/or latent

variable values are used as the “imputed” scores for missing

observations in DVs, and missing data in covariates (COVs) are

handled through specification of appropriate models and

distributional assumptions for the COVs. The underlying

assumption for this approach is that all missing data follow the

MAR or MCAR mechanism. For each simulation condition, we

ran 100 Monte Carlo replications.

Complete-data sets were generated based on a random-

intercept-only MVAR model as described in the previous

section (See Equations 1–4). In this simulation, we considered

a random-intercept only MVAR model, therefore the VAR-

related parameters (i.e., ar1,i, ar2,i, cr1,i, and cr2,i) are fixed at

the same value for all persons. Later in the empirical example,

we included both random-intercepts and random VAR

parameters in the model. The effects of the time-varying

COVs, x1,i,t and x2,i,t , on the process are estimated by

parameters c1, c2, d1, and d2. The time-varying COVs are

generated following an AR(1) model similar to the DV

processes. The process noises zi,t conforms to a multivariate

normal distribution with a zero mean vector and a covariance

matrix S, in which s2
1 and s2

2 represent variances of the

process noises and rs1s2 represent the covariance. At the

between-level model, all person-specific parameters in Equation

1 are regressed on a time-invariant person specific COV (x3,i).

The MVAR may be considered as a special case of dynamic

structural equation models (22, 23), or an extension of the

actor-partner interdependence model (51) widely used in the

context of dyadic data analysis. Values for the model

parameters were selected to reflect the parameter values we

often observe with dynamic models’ applications in empirical

studies (e.g., (52–54)). True values for the VAR parameters

were set at .4 and .3 for ars and �.3 and �.2 for crs.

Parameter values for the effects of the time-varying covariates

on the process, c1, c2, d1, and d2, were .3, .3, �.5, and �.4,

respectively. The process noises variances, s2
1 and s2

2, were 1

and the covariance was set at .3.

To simulate MAR missing condition, the probability of

having a missing value in the DVs and x1,i,t only depended

on the observed time varying covariate x2,i,t . (see Equations 5

and 6, where c0s represent intercepts of the missing data

model, x2 represents the observed time varying covariate

without missing data, and c1 and cx2 represent coefficients

related to the time varying covariate in the missing data

model.) Values of missing data model parameters were

chosen to achieve the target percentages of missingness of
Frontiers in Digital Health 05
30%, moderate level of missingness for EMA studies. A

comparison of two missing data handling procedures were

presented in this illustration: (1) single-level MI, ignoring the

multilevel structure (single-level MI) and (2) multilevel MI.

Both MI missing data handling methods included two steps.

First, missing observations in DVs and the time-varying

covariate were imputed using different MI methods, including

single-level MI and multilevel MI, generating five sets of

possible values for the missing observations. Imputation

models included all variables involved in the MVAR(1)

model, as well as auxiliary variables that were helpful for the

imputation procedures but not modeled in the MVAR(1)

model. Specifically, variables included in the imputation

model are the two DVs (y1,i,t and y2,i,t), the lagged DVs

(y1,i,t�1 and y2,i,t�1), the time varying covariates (x1,i,t and

x2,i,t), the level 2 predictor, and the variables used to generate

the covariates as auxiliary variables. Those imputed values

were then filled in to the dataset with missingness, and as a

result, five complete datasets were created. The second step

was the Bayesian MVAR(1) model fitting procedure with the

complete data set, which was performed using the statistical

software “Just Another Gibbs Sampler” (JAGS; (43, 44)).

After this step, we obtained five sets of parameter estimates,

as well as posterior distributions of all parameters of interest,

corresponding to the five imputed data sets. We used the

posterior distributions of the parameter estimates from the

five model fitting procedures to calculate summary statistics

such as mean, standard deviation, and credible intervals. This

approach took into consideration the variability of parameter

estimates both within each imputation and across different

imputations.1

P(rDVi,t ¼ 1jx2,i,t) ¼ logit�1(c0DV þ c1x2,i,t) (5)

P(rx1,i,t ¼ 1jx2,i,t) ¼ logit�1(c0x1 þ cx2x2,i,t) (6)

The performances of the different missing data handling

approaches were evaluated under different sample size

conditions (i.e., combinations of small/large N and small/large

T) and different intraclass correlation coefficient (ICC) levels

(i.e., the proportion of the total variance that is explained by

the between-person differences (23)). The performance of the

different missing data procedures were assessed using the

following criteria. The accuracy of point estimates of the

model parameters were evaluated using both average bias

(Equation 7), average relative bias (Equation 8) and average
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root-mean-squared error (RMSE, Equation 9) across MC runs,

which were calculated as:

bias(u) ¼ 1
H

XH
h¼1

(û h � u) (7)

relative bias(u) ¼ 1
H

XH
h¼1

ûh � u

u

 !
(8)

RMSE(u) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
H

XH
h¼1

(̂uh

vuut � u)2, (9)

where H represented the total number of MC runs, ûh
represented the estimated parameter value for the hth MC

run, and u represented the true parameter value used in the

data generation procedure. Compared with bias and relative

bias, RMSE provided additional information on the variability

of the estimates.
FIGURE 2

Average bias in parameter estimates in different modeling approaches and
calculated by: bias(u) ¼ 1

H

PH
h¼1 (̂uh � u). Parameters with estimation biases clo

noise covariance, and fixed effects for random intercepts, were not included
with complete data set; BFIML = Results with Bayesian full-information ma
Results with single-level MI.
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The quality of the SE estimates was assessed with differences

between the average SE across MC runs and the empirical MC

standard deviations of the parameter estimates (dSD, Equation

10). The dSD was calculated with:

dSD(u) ¼ 1
H

XH
h¼1

SEh(û )�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
H � 1

XH
h¼1

(ûh � �u )2

vuut , (10)

where�u ¼ 1
H

PH
h¼1ûh, SEh(û) represented SE estimates of parameter

u for the hth MC run.

The R package, mice (55), was used for both single-level MI

and multilevel MI approaches. Detailed procedures for the single-

level MI method followed the steps described in Ji et al. (13). For

the multilevel MI method, we followed the recommended steps

detailed in vignette 5 of the mice r package (56). In the

imputation procedure, participant IDs were included in

the model, allowing for between-person heterogeneity in the

imputation procedures.
with different sample sizes, grouped by parameter category. Bias was
se to zero across all conditions, including covariate parameters, process
in the plot to ease presentation. Complete = Results from fitting model
ximum likelihood method; MLMI = Results with multilevel MI; SLMI =

frontiersin.org

https://doi.org/10.3389/fdgth.2023.1099517
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Ji et al. 10.3389/fdgth.2023.1099517
3.2. Simulation results

To facilitate the presentation of the simulation results,

parameters of the same type that showed the same patterns

across different conditions with different approaches were

grouped together, and averaged results were presented. We refer

to the AR (ar1 and ar2) and CR (cr1 and cr2) parameters as VAR

parameters; the parameters involved in the between-level model

for the random intercepts (i.e., fixed-effects and random-effect

variances) as random-intercept parameters; the fixed effects for

the time-varying COVs, c1, c2, d1, and d2, as COVs parameters.

We observed that when the multilevel structure of the data was

not accounted for in the imputation procedure, estimation results

were biased both in terms of point estimates and SE estimates

for most of the parameters across all sample size conditions.

Among all the parameters in the hypothesized MVAR model,

single-level MI for the multilevel data led to the most biased

estimates for the random intercepts variances at the between-

level and the process noise variance at the within-level.

Specifically, as Figures 2C,D indicated, when single-level MI
FIGURE 3

dSDs in parameter estimates in different modeling approaches and with differe

with dSD(u) ¼ 1
H

PH
h¼1 SEh (̂u)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

H�1

PH
h¼1 (ûh��u)2

q
. Random-intercept parame

Complete = Results from fitting model with complete data set; BFIML = Res
Results with multilevel MI, pooled using posteriors; SLMI = Results with single
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were used, process noise variances for the within-level VAR

model were over-estimated, whereas the random intercepts

variances were under-estimated across all sample size conditions.

The relative bias for the parameter estimates were also higher

with single-level MI when compared with multi-level MI. For

instance, the mean relative bias for process noise variance

parameters under the high ICC and large sample size condition

with single-level MI was 0.47, compared to �0.02 when multi-

level MI was used. For the intercept random effect under the

same condition, relative bias with single-level MI was �0.2 and

dropped to 0.01 when multi-level MI was used. Under the same

simulation condition, smaller root-mean-square error (RMSEs)

were observed for the parameter estimates with multi-level MI, as

compared with single-level MI for intercept random effects and

process noise variances. Specifically, average RMSE for process

noise variance parameters with single-level MI was 0.24,

compared to 0.12 with multilevel MI. For intercept random effect

parameters, RMSEs with single-level MI was 0.29, compared to

0.1 with multi-level MI. This was mainly due to the fact that in

the imputation procedure, variability in the intercepts was not
nt sample sizes, grouped by parameter category. The dSDs was caluclated

ters here include fixed-effects parameters and random-effect variances.

ults with Bayesian full-information maximum likelihood method; MLMI =
-level MI, pooled using posteriors.
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accounted for with single-level MI. In addition, Figure 2B also

shows that CR parameters were under-estimated with single-level

MI under high ICC condition, but the differences were relatively

small for this particular set of parameters.

Similarly, the results for SE estimates when single-level MI was

used were worse for random-intercept parameters and process

noise var-cov parameters compared with other approaches.

When compared with the MC empirical SEs of the parameter

estimates, pooled SE estimates using single-level MI tended to be

smaller for random-intercept parameters and process noise var-

cov parameters, especially with large sample sizes (i.e., T ¼ 100)

and high ICC level (see Figures 3C,D). In addition, pooled SEs

were over estimated for VAR parameters when sample sizes were

smaller (i.e., T ¼ 10) (see Figure 3A). The difference of SE

estimates for covariate parameters were similar across missing

data handling approaches most due to no between person

differences were involved for time-varying covariate effects (see

Figure 3B).

The BFIML approach performed reasonably well for all

simulation conditions, both in terms of parameter point

estimates and standard error estimates, in this simulation study.

This was illustrated by the very small bias and dSD for all

parameters in Figures 1 and 2. The exceptionally good

performance of BFIML in this simulation was mainly due to the

fact that both the dependent variable model and covariate

models were correctly specified according to the data generation

model. In addition, all missing observations were missing at

random, which aligns with the BFIML missing data assumption,

and thus no additional missing data model specification is

needed (see (13) for Bayesian selection models). However, with

the multi-level MI approach, imputation model was generally

specified to include all available information that was considered

to be helpful in predicting the missing observations. The

imputation model did not follow the data generation model in

terms of the functional form, but instead, represented a more

general imputation model. Future research shall exam the

performance of BFIML approch with non-ignorable missing data,

and the robustness of the approach with different levels of model

miss-specification, such as miss-specified dependent variable

model, covariates model, and missing data model.

The simulation results suggested that for most within-level model

parameters, a relatively small sample size with T ¼ 10 and N ¼ 30

was good enough to get reasonably good parameter point estimates

with random-intercept-only MVAR(1) model, even with 30% of

missing data, when the missingness was properly handled (i.e.,

with multilevel MI or BFIML). However, to get better estimates for

process noise var-cov parameters, larger T would be helpful (see

Figure 2D). In terms of SE estimates, a larger T � N combination

condition produced better SE estimates for all parameters (see

Figure 3) when missing data were properly handled. However,

when improper missing data handling approach was used (i.e.,

single-level MI), larger sample size did not improve SE estimates

for random-intercept parameters and Process Noises Variance-

covariances, especially when ICCs were high.

The point estimates and SE estimates of covariate parameters

were reasonably good with single-level MI. This was because we
Frontiers in Digital Health 08
did not have random effects for the covariate parameters in the

data generation model. In other words, when we generate the

time-varying covariates, we assumed no random intercept and no

random effect for the AR(1) parameters. As a result, the time-

varying covariates only have within-person variations at level 1

and do not have individual differences in the within-person

parameters at level 2. Thus using single-level MI was appropriate

for imputing the missing covariate in this simulation scenario.
4. Empirical example: bidirectional
association between urge and negative
affect during smoking cessation
intervention

We demonstrate the utility of multilevel MI procedures and the

impact of different missing data handling procedures on estimation

results using a tobacco cessation EMA study. ILD from this study

was used to investigate (1) how smoking urge and negative affect

relate to each other across time as well as to other factors

including cigarette availability and lapse; (2) how participants

differ in their baseline levels of urge and negative affect, as well

as the bi-directional time-lagged relationships between urge and

negative affect; and (3) how demographic characteristics were

associated with between-person differences in baseline levels of

urge and negative affect.
4.1. Data descriptions

4.1.1. Participants
Data used in this study were collected in a National Institute on

Drug Abuse–funded longitudinal study on factors (e.g., abstinence

self-efficacy, positive affect, negative affect, stress, urge) influencing

smoking cessation among 424 participants who were recruited

between 2005 and 2007 from the Houston, Texas area.

Participants were at least 21 years old at the time of enrollment,

smoked at least five cigarettes per day on average for the last

year, and were motivated to quit within the next month. Four

random EMAs were scheduled to be delivered each day during

typical waking hours. Participants were also instructed to self-

initiate nonrandom EMAs when they were about to smoke

(smoking EMAs), experienced an urge to smoke (urge EMAs), or

had already slipped (slip EMAs). Among the 424 participants

who enrolled in the study, 43 did not complete any EMAs and

were excluded. Data for the current study included both random

and nonrandom assessments during the 28 days of postquit

monitoring. More details about the study can be found in

previous studies (see, e.g., (16, 57)).

Since the time intervals between EMAs varied within

individuals over time, we aggregated the raw data to be equally

spaced so that a discrete-time model could be fitted. As in

previous studies (52, 58), we aggregated EMA data into four

blocks (i.e., 12a.m.–6a.m., 6a.m.–12p.m., 12p.m.–6p.m., 6p.m.–

12a.m.) per day to represent the sleeping, morning, afternoon,

and night periods. For instance, the negative affect data (either
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TABLE 1 Descriptives of time-invariant covariates.

Variable n % Mean SD Min Max
Age 42 11 21 73

Gender
Female 203 55

Male* 163 45

Race
Caucasian 120 33

African* 120 33

Hispanic* 118 32

Others* 8 2

Education
High school or less 148 40

More than high school* 215 59

PartnerLive
No partner or partner does not live with
you

209 57

Partner lives with you* 153 42

PartnerSmoke
No partner or partner does not smoke 294 80

Partner smokes* 68 19

Timetofirst
More than 5 s 189 52

5 s or less* 177 48

Cigsperday 21 10 5 80

The five columns represented sample sizes, percentages, means, standard

deviations, minimums and maximums, respectively.

*indicated variables coded as 1 when constructing dummy variables.
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from random EMAs or self-initiated EMAs) collected during

6p.m.–12a.m. were averaged to represent their levels of negative

affect during the night period. Such aggregation was

implemented on both random and self-initiated EMAs. Based on

the aggregated data, we excluded participants who had less than

8 total measurement occasions, yielding a sample size of 366,

with number of days ranging from 4 to 28 and number of time

points ranging from 14 to 112.

4.1.2. Measures
The dependent variables and time-varying COVs were

measured by random EMAs during the 28-day postquit period,

except for smoking lapse which was measured by random, urge

and slip EMAs in the same time period. We only considered

random EMA observations for the dependent variables to be in

correspondence with prior published work using the same data

set (57). The time-invariant COVs were measured at baseline;

and the auxiliary variables were measured by both random and

self-initiated EMAs as detailed below.

4.1.2.1. Dependent variables (DVs)
Urge was measured by the mean of 3 items, “I have an urge to

smoke,” “I really want to smoke,” and “I need a cigarette.” which

were rated on a scale of 1 (strongly disagree) to 5 (strongly agree).

Negative affect was measured by the mean of 5 items asking if

the respondent felt bored, sad, angry, anxious, or restless, which

were rated on a scale of 1 (strongly disagree) to 5 (strongly agree).

Note that in the context of MVAR models, linear or systematic

trends in the DVs have to be removed prior to model fitting in order

to meet the stationarity assumption of the model and avoid spurious

effects (see, e.g., (46)). We removed the linear trends in the DVs by

first regressing urge and negative affect on measurement occasions,

respectively, to obtain their residuals, and then added their person-

specific means back to the residuals to obtain the final scores for

urge and negative affect to be used in model fitting.

4.1.2.2. Time-varying covariates
Smoking lapse was measured by both random and self-initiated

EMAs. For random and urge EMAs, participants responded to a

single item asking if they had smoked any cigarettes that they

had not already recorded in the computer. Those indicating lapse

responded to two additional items, “How many cigarettes did

you smoke that you did not record?” and “How long ago did

you smoke the most recent cigarette that you did not record?”.

For slip EMAs, participants responded to two items, “How many

cigarettes did you smoke during this slip?” and “How long ago

did you smoke your last cigarette?”

Both random and self-initiated smoking lapse items assessed

the time that a lapse occurred with 7 response options ranging

from “0–15 min” to “8 h or more”. Time of lapse was measured

by subtracting the midpoint of the response option interval (e.g.,

0��15min ¼ 7:5min) from the time stamp of the current

EMA. If at a particular measurement point, participants reported

that they smoked the most recent cigarette 8 h ago or more, their

responses to the number of cigarettes would be set to missing

because the specific time of lapse could not be identified. Note
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that it could be the case that the time of lapse was before the

previous EMA—that is, the reported smoking time was before a

previous EMA. For these cases, we took the adjusted time stamp

to be the time between the current and previous EMA, which

was calculated by subtracting the midpoint between the previous

and current EMA from the time stamp of the current EMA.

Based on these adjusted time stamps, the smoking lapse in each

block was then calculated as the sum of cigarettes reported in

random, urge, and slip EMAs that occurred in this specific block.

Cigarette availability was measured with the item, “Cigarettes

are available to me.” which was rated on a scale of 1 (not at all

available, coded as 0 in analysis to facilitate result interpretation)

to 5 (easily, coded as 4 in analysis).

Based on the aggregated data where each person had 4 data

points per day, the overall missing rates for both DVs and time-

varying COVs were 48%, with the missing rate for each

participant ranging from 21% to 90%.

4.1.2.3. Time-invariant COVs
In addition to these time-varying COVs, we also considered time-

invariant COVs collected at baseline and investigated their effects

on random intercepts and slopes. As summarized in Table 1, the

time-invariant COVs included two continuous variables, age, and

number of cigarettes per day (i.e., Cigsperday), as well as

categorical variables measuring gender, race/ethnicity, education,

whether or not participants’ partners live with them (i.e.,

Partnerlive), whether or not participants’ partners smoke (i.e.,

PartnerSmoke), and how soon participants smoked the first
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cigarette after theywoke up (i.e., Timetofirst). The continuous variables

were scaled across persons to zero means and unit variances and the

categorical variables were coded as a set of dummy variables with 1

representing males, African American, Hispanic, other races, more

than high school, partner lives with you, partner smokes, and 5min

or less after waking up (see details in Table 1). In terms of missing

rates, there were 3 missing records in Education, and 4 missing

records in PartnerLive and PartnerSmoke.
4.1.2.4. Auxiliary variables
We considered urge, negative affect, and cigarette availability

measured in self-initiated EMAs as auxiliary variables in the

imputation procedures. We made the modeling decision to use the

self-initiated EMAs of urge and affect as auxiliary variables in the

imputation model, as opposed to an integral part of the DV values
FIGURE 4

Top four panels: Trajectories of urge and negative affect in random EMAs (red
selected participants. Bottom two: Densities of urge and negative affect in rand
all participants.
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in the fitted MVAR model, so that the DVs in this study are

consistent with prior published work on the same data set (57).

Figure 4 (top four plots) shows trajectories of urge and

negative affect in random EMAs (red solid lines) and self-

initiated EMAs (blue dashed lines) for two randomly selected

participants, and the overall densities of these two variables

across all participants (bottom two plots). It can be seen that

instances of self-initiated (slip) EMAs were characterized by

notably higher values of urge than instances of random EMAs.

Whereas the distributions of negative affect showed only

relatively minor differences during the two types of EMAs,

inspection of plots of data trajectories at the individual level

revealed that within participants, some of the slips EMAs were

indeed characterized by distinctly higher negative affect relative

to most other occasions of random EMAs, although some

random EMAs were obtained near the times of the slip EMAs
solid lines) and self-initiated EMAs (blue dashed lines) for two randomly
om EMAs (red solid lines) and self-initiated EMAs (blue dashed lines) across
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and thus showed largely similar negative affect values as the latter.

Therefore, we included observations of self-initiated EMAs and

nearby observations (i.e., lag one observations) of self-initiated

EMAs in the imputation model to inform the unreported values

of the random EMAs.

In addition to the above auxiliary variables, we also considered

positive affect, abstinence self-efficacy, and motivation to quit

measured in both random and self-initiated EMAs, all of which

were measured by items rated on a scale of 1 (strongly disagree) to

5 (strongly agree). Specifically, positive affect was measured with

the sum of 3 items asking if the respondent felt enthusiastic,

happy, or relaxed. Abstinence self-efficacy was assessed with the

item, “I am confident in my ability not to smoke.” Motivation to

quit was assessed with two items, “My desire to be a nonsmoker is

very strong,” and “I am extremely motivated to be smoke-free.”

In this study, 362 out of 366 participants had at least 1

measurement point from self-initiated EMAs during the postquit

period. Based on the aggregated/blocked data set, participants

had an average of 22 data points for auxiliary variables measured

by self-initiated EMAs.
4.2. Data analytic plans

The empirical study model was built using a MVAR(1) model as

described in Equations 1 with both random intercepts and random

VAR parameters. With this model, we aimed to examine the bi-

directional relationship of the two DVs across time, allowing for

individual differences in those associations. We also examined how

two time-varying COVs influenced the dynamic processes of the

two DVs. Four different missing data handling techniques were

considered in this illustration and the estimation results obtained

using the four different approaches were compared. Specifically, we

included two MI approaches: multilevel MI and single-level MI, a

BFIML approach, and a listwise deletion approach. For the two MI

approaches, the same imputation model was adopted, including all

DVs, time-varying COVs, and time-invariant COVs that were part

of the empirical study model. In addition, we also included

auxiliary variables, such as previous time DVs and lapse, positive

affect, and previous time positive affect, self-efficacy, motivation,

and missing data indicators for the DVs and Time-varying COVs.

Missing data indicators were included because previous simulation

studies found them as important auxiliary variables (59, 60). For

multilevel MI, participants’ IDs were also included as indicator of

levels. For single-level MI, since different values were imputed for

the time-invariant COVs, we took the average value as the imputed

values. For the listwise deletion approach, all observations with

missingness in time-varying COVs were dropped from the model

fitting procedures. We fitted the analytic model (i.e., MVAR(1)

model) using rJAGS (61).
4.3. Results

Model estimation results using four different approaches,

including multilevel multiple imputation, single-level multiple
Frontiers in Digital Health 11
imputation, BFIML, and listwise deletion were summarized in

Table 2. With 4000 adaptation, 1000 burn-ins, 15,000 iterations

and thin ¼ 2, the convergence of the MVAR models were

reasonably good with ESS over 300 for parameters of interest

and R̂ , 1:1.

Comparing parameter estimation results using different

missing data handling approaches, we observed consistent

findings in some but not all of the parameters. Cigarette

availability was found to be positively associated with negative

affect, indicating participants who had cigarettes available to

them in a certain time period experienced more negative affect in

the same time period. The intercept estimates for random-

intercept for both urge and negative affect, as well as the AR

coefficients of the two DVs, were all credibly different from zero

regardless of missing data handling approaches. In addition, the

mean level of negative affect across days (i.e., random-intercept

for negative affect) was estimated to be lower for African

Americans than for than Whites.

When multiple imputation approaches were used to handle the

missingness—whether it was single or multilevel MI—more

credible fixed effects (i.e., effects with credible intervals not

covering zero) were observed and the magnitudes of most of the

random-effect estimates were smaller than those observed

utilizing BFIML and LD. This highlighted the sensitivity of the

modeling results to the presence of potential extreme values of

the DVs. The participants were trained to self-initiate “urge

assessment” in response to high levels of urge, which are

generally accompanied by high levels of negative affect. Thus, by

design, we would expect higher levels of urge and negative affect

in self-initiated assessments. Such self-initiated surveys are one

example of event-contingent designs. The high levels of urge

collected during the self-initiated surveys are representative of the

participants’ underlying states. Using that information in the

imputation procedure will inform urge/negative affect levels of

missed observations adjacent to the lapse. Incorporating self-

initiated surveys in the imputation process was one possible way

to enable us to utilize both types of assessments in examining

participants’ recovery pathways, but this may not be the only

way. In addition, consistent with previously reported results,

VAR parameter estimates were generally smaller in magnitudes

in the LD than other approaches. This was expected since LD

altered the time intervals between successive observations,

leading to violation of the assumption of equally spaced time

intervals in the VAR models and consequently, biased estimates

especially for the VAR parameters.

Comparing results from multi-level MI to those from single-

level MI, more credible effects were observed for fixed effects of

random-intercepts and some of the random-VAR parameters

with multilevel MI. For instance, lower intercepts of urge (i.e.,

lower baseline level of urge) were observed among participants

who were African American, lived with partner, especially

partner who did not smoke, and who smoked fewer cigarettes

per day. In terms of baseline negative affect, participants who

were African American and Hispanic, relative to White and

other ethnic groups, lived with partner, partner who did not

smoke, were characterized by lower baseline negative affect.
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We observed interesting interaction effects of whether

participants lived with their partners and whether their partners

smoked on the dynamic parameters (i.e., AR and CR parameters)

for urge and negative affect. For instance, comparing with

participants living alone and those living with smoking partner,

participants who lived with non-smoking partners had the lowest

baseline levels for both urge and negative affect. Also, the negative

CR coefficient for previous time negative affect on urge for

participants living with non-smoking partners led to lower levels of

urge for this group as compared to the other two groups. However,

all partner effects observed in this analysis were small in magnitude

and future studies shall examine these effects and see if they

replicate. The positive CR effect of previous urge on negative affect,

indicating that higher than usual urge at a previous time block was

associated with higher than usual negative affect at the current

time point. In addition, we also observed a credible negative effect

for age on the AR coefficient of negative affect. This age-related

effect indicated that older participants had lower AR values and

thus quicker return to their baseline negative affect level following

any deviations from it.

Lapse at the current and previous blocks (t and t � 1,

respectively) were included as covariates in the VAR model. One

effect found to be credibly different from zero across most

approaches (except for LD) was that higher previous lapse was

credibly associated with higher negative affect at time t. The

concurrent association between lapse and negative affect within

the same time block was also found to be positive under most

approaches but not the full MI ML approach. In a similar vein,

the lagged association from previous lapse on current urge also

showed inconsistent variations in magnitudes and signs across

approaches. Overall, this suggested that complex associations

might exist between lapse and urge within and across time

blocks. In the current study, many lapse observations were

reported retrospectively and time of the lapse were adjusted

based on the participants’ report based on available information.

In addition, we aggregated EMA responses into six-hour blocks.

Those uncertainty about temporal ordering of lapse, urge, and

negative affect might lead to missed opportunities to detect these

relations at a more nuanced level.

In the current application, the estimation results using BFIML

approach for many parameters were different from the MI

approaches. This was mainly due to the fact that with BFIML

model, only data from random EMAs were modeled. In other

words, we did not incorporate information from self-initiated

EMAs as we did with MI approaches. This may lead to

underestimated levels of urge and negative effect. Future research

shall investigate methods to include auxiliary variables with

BFIML approach in MVAR models, especially when we expect

non-ignorable missing data.

To summarize, comparing results from different missing data

handling approaches, we observed more credible effects when we

incorporated information from self-initiated EMAs and proper

MI procedures (i.e., multilevel MI) were used. Credible between-

person differences were observed with both baseline levels and

AR CR parameters for the two DVs. Among the person-specific

covariates we tested in this model, we found that age, cigarettes
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per day, partner smoking status, and ethnicity had credible

effects on either baseline level or AR/CR parameters of the

MVAR model. In addition, at the within-person level, cigarette

availability was associated with higher levels of urge relative to

personal baselines; lapse was associated with higher negative

affect level at the following time block but lower negative affect

level during the same time block.
5. Discussion

With the growing interest in studying between-person differences

in the dynamics of behavioral processes, as well as the widespread

availability of portable and wearable devices that allow for intensive

data collection, we have seen more applications of MVAR models

in behavioral and social sciences in recent years. However, practical

issues also arise in the implementation of this rather complex

model, missing observation treatment being one of them. Available

software that supports the fitting of MVAR models often resorts to

heuristic methods of handling missing data. For instance, the R-

package mgm (62) only uses complete cases for modeling time-

varying VAR models (63). Mplus adopts a Bayesian estimation

approach based on MCMC algorithm via the Gibbs sampler for

dynamic SEM. Missing data in dependent variables were treated as

parameters (22). If there are missing covariates, they need to be

modeled the same way as other dependent variables with

appropriate distributional assumptions (64). This approach is

similar as the BFIML approach we described in our simulation.

Other sophisticated approaches can and have been implemented

for handling missingness involving longitudinal panel data (65, 66).

Building on existing research on multilevel MI and MI

implementations with dynamic models, this paper extends our

knowledge of missing data treatments for MVAR models and

illustrates the utility of this approach with EMA study data.

It is well recognized in the cross-sectional literature that

multilevel structures need to be accounted for in modeling

clustered data. Similarly, multilevel imputation, which

accommodates the clustering of data in the imputation procedure,

is necessary to avoid inaccurate estimation of model parameters.

Studies comparing multilevel imputation with single-level

imputation for cross-sectional multilevel regression models

demonstrated that when single-level imputation was used, the

within-level regression coefficients tended to be overestimated,

whereas the between-level regression coefficient was underestimated

(40). In addition, over-estimation of parameter SE for the within-

level parameters, and under-estimation of parameter SE for the

between-level parameters are expected (14). These biases in

estimates tend to lead to low coverage, though power may not be

affected. In contrast, our simulation study revealed, in the context

of the MVAR model and data that were MAR, more complex

patterns of biases across different types of parameters. For the

within-level model, dynamic parameters, including AR and CR

parameters, were all under-estimated, but process noise variances

and covariances were over-estimated. Similar to cross-sectional

models, SEs for the within-level parameters were over-estimated for

dynamic parameters, but only when the number of per-cluster
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FIGURE 5

Comparison of biases of selected model parameters estimates with (1)
multilevel MI for intensive longitudinal data, and (2) conventional
multilevel MI. Biases of model parameter estimates with multilevel MI
for intensive longitudinal data are indicated by triangles. Biases of
model parameter estimates with conventional multilevel MI are
indicated by red circles.
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observations (i.e., the number of time points in the present simulation

studies) was small. For process noise variance-covariance parameters,

underestimation in SEs was noted instead, especially when the per-

cluster sample size was large and ICC was high. Interestingly, the

estimation of parameters related to the time-varying COVs in the

within-level model was robust regardless of imputation methods.

This was mainly due to the fact that the COVs involved in the

simulation study did not have a clustering structure, and were

designed to comprise only fixed effects.

One distinct feature of implementing multi-level MI to multi-

subject multivariate intensive longitudinal data is that we included

lagged variables in the imputation model. This is because with time

series data, we assume observations at one time point will have an

impact on the observations at the next time point, hence previous

time point observations may help predict missing observtion at the

current time point, if there is any. We illustrated the difference of

multi-level MI for intensive longitudinal data (i.e. including lagged

variables) and conventional multi-level MI for cross sectional data

(i.e. without lagged variables) using one of the simulated dataset in

the simulation study. Biases of model parameter estimates with the

two different approaches were plotted in Figure 5. For fixed effects

of the random intercepts and all dynamic parameters, including AR,

CR, and process noises parameters, multilvel MI for intensive

longitudinal data had smaller biases when compared with

conventional multilevel MI without lagged variables in the

imputation model. We expect that including lagged variables is

helpful in multilevel MI for intensive longitudinal data. This result is

consistent with prior simulation with single-level MI for intensive

longitudinal data (13). The differences of biases of other model

parameters, such as time varying covariate effects, are smaller.

In addition, our results also underscored the importance of

integrating information from the self-initiated (slip) EMAs into the

modeling process in tobacco control studies. In the present study,

we found that inclusion of information from the self-initiated

EMAs helped provide imputed values of urge and negative affect

that would otherwise constitute a source of MNAR data. By design,

participants in the present study were asked to provide self-
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initiated EMAs when their urge, and by association, their negative

affect, were the highest. Thus, we would expect higher levels of

urge and negative affect in self-initiated assessments. Moreover,

because participants choose when to initiate an assessment, self-

initiated assessments will be plagued by self-selection bias and prior

research has suggested that they do not capture the most extreme

moments. In addition, there are no assessments where participants

are trained to report low levels of urge for example. As such, the

limitations of self-initiated assessments in the current study need to

be acknowledged in that they are biased by self-selection and are

not representative of the full range of experience (e.g., both high and

low levels). In the current study, including self-initiated EMAs in the

multilevel MI approach yielded more credible fixed effects, such as

effects of ethnicity, partner status, partner smoking status, and

cigarettes per day on baseline levels of urge and negative affect.

These fixed effects help inform future developments of more

targeted interventions for participants from diverse demographic

backgrounds. In addition, we also found substantial differences in

intercepts (i.e., baseline values) for both urge and negative effect for

different ethnic groups. Closer examination of the reasons/

mechanisms for these racial differences in future studies are warranted.

The MVAR model applied in this study is a discrete-time model

looking at within person lag/cross-lag effects among variables

overtime, and between person differences in these effects. Models

that include contemporaneous effects between change processes,

such as structural vector autoregressive models (67, 68) and other

continuous-time extensions (69, 70) may be needed to better

capture the interdependence among these changes processes at the

most strategic time scales. Continuous-time models also do not

require data binning as a data processing procedure, which may

lead to more accurate estimation results. In addition, incorporating

information from both random and self-initiated surveys,

longitudinal mediation models and Bayesian structural equation

models, which are special case of MVAR, would be helpful to test

specific mediational hypotheses (71–74).

Further expansions of the MVAR models investigated in this

paper to include observed measures of mixed measurement and

distributional characteristics (e.g., categorical and other non-

Gaussian variables; (75)) and simultaneous modeling of change

processes and missing data mechanisms (49, 76) are also critical

to help hasten our understanding of individuals’ dynamics in

tobacco control studies. In addition, the MVAR model we

applied in this study focused on modeling the intra-individual

variability overtime and the inter-individual differences in those

variability. If the research interest in studying how the

relationships of risk factors and lapses change overtime,

researchers may consider using models specifically looking at

time varying effects, such as Time-Varying Effect Model (TVEM;

(57, 77)). In the current empiricial data illustration, we focused

on the effect of time-varying covariates on the DVs at the

within-person level. Future research shall decompose time-

varying covariates into within- and between-person effects and

explore the effects at both within- and between-person levels.

The simulation and empirical studies in the present article are

characterized by several other limitations that might be circumvented

with improved designs in future studies. In the simulation study, we
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only considered MAR missing data. Ji et al.’s (13) simulation study

found that with a single-level VAR model, MI procedures performed

reasonably well with non-ignorable missingness. Therefore, future

simulations may explore the performance of multilevel MI when data

are missing not at random. The simulation in this study examined

how sample size may have an influence on model performance, but

did not test the impact of percentage of missing data and number of

imputations needed with different amount of missing information. It

would also be important to examine how magnitude of AR and CR

effects may have an impact on the estimation when missing data

exists and how different multilevel MI tools perform different with

different AR and CR. More extensive simulation studies are needed

to explore ways to determine the optimal number of imputations

needed for multilevel MI under different scale of missingness. Lastly,

in this study, we did not consider situations when participants differ

in their missing data model. It would be important to evaluate the

performance of the multilevel MI approach when multilevel structure

exist not only with empirical study model, but also with the missing

data model. Future research shall also explore and compare group-

based multi-level MI with imputing each persons data with different

timepoint and number of participants combinations.
6. Conclusion

This study demonstrated the importance of accounting for

multilevel structure in the MI procedures for ILD when fitting

MVAR models using simulated data. This missing data handling

procedure can be applied in EMA studies, which are helpful in

improving the efficacy of interventions. Without proper handling

of the clustered missingness, there may be underestimation of the

association of the variables of interest over time, which could lead

to underestimation of the participant’s resistance to change. With

empirical EMA data from a tobacco-cessation study, we illustrated

a novel way of incorporating self-initiated EMAs to inform missing

observations in the variables of interest, which are obtained using

random EMAs. With this approach, we reduced the occurrence of

NMAR and found more effects of substantive interests. Results of

the current study may inform future tobacco cessation intervention

tailored to population of varying demographic backgrounds.
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