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Harnessing the power of
diffusion models for plant
disease image augmentation

Abdullah Muhammad, Zafar Salman, Kiseong Lee
and Dongil Han*

Vision and Image Processing Lab, Department of Computer Engineering, Sejong University,
Seoul, Republic of Korea
Introduction: The challenges associated with data availability, class imbalance,

and the need for data augmentation are well-recognized in the field of plant

disease detection. The collection of large-scale datasets for plant diseases is

particularly demanding due to seasonal and geographical constraints, leading to

significant cost and time investments. Traditional data augmentation techniques,

such as cropping, resizing, and rotation, have been largely supplanted by more

advancedmethods. In particular, the utilization of Generative Adversarial Networks

(GANs) for the creation of realistic synthetic images has become a focal point of

contemporary research, addressing issues related to data scarcity and class

imbalance in the training of deep learning models. Recently, the emergence of

diffusion models has captivated the scientific community, offering superior and

realistic output compared to GANs. Despite these advancements, the application

of diffusion models in the domain of plant science remains an unexplored frontier,

presenting an opportunity for groundbreaking contributions.

Methods: In this study, we delve into the principles of diffusion technology,

contrasting its methodology and performance with state-of-the-art GAN

solutions, specifically examining the guided inference model of GANs, named

InstaGAN, and a diffusion-basedmodel, RePaint. Bothmodels utilize segmentation

masks to guide the generation process, albeit with distinct principles. For a fair

comparison, a subset of the PlantVillage dataset is used, containing two disease

classes of tomato leaves and three disease classes of grape leaf diseases, as results

on these classes have been published in other publications.

Results: Quantitatively, RePaint demonstrated superior performance over

InstaGAN, with average Fréchet Inception Distance (FID) score of 138.28 and

Kernel Inception Distance (KID) score of 0.089 ± (0.002), compared to

InstaGAN’s average FID and KID scores of 206.02 and 0.159 ± (0.004)

respectively. Additionally, RePaint’s FID scores for grape leaf diseases were

69.05, outperforming other published methods such as DCGAN (309.376),

LeafGAN (178.256), and InstaGAN (114.28). For tomato leaf diseases, RePaint

achieved an FID score of 161.35, surpassing other methods like WGAN (226.08),

SAGAN (229.7233), and InstaGAN (236.61).

Discussion: This study offers valuable insights into the potential of diffusion

models for data augmentation in plant disease detection, paving the way for

future research in this promising field.

KEYWORDS

plant science, plant disease, data augmentation, generative AI, GAN, diffusion, vision
transformers, leaf segmentation
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1 Introduction

The advent of artificial intelligence (AI) has revolutionized

numerous fields, including plant sciences. AI’s potential to

automate and optimize various tasks has been harnessed to address

some of the most pressing challenges in plant sciences, such as disease

detection and classification [Ahmad et al. (2018)]. The historical

progression of AI in plant sciences can be traced back to the early

applications of machine learning algorithms for tasks such as plant

classification and disease detection. These initial applications

primarily relied on handcrafted features extracted from plant

images, which were then used to train machine learning models.

The emergence of computer vision technologies marked a

significant milestone in the use of AI in plant sciences. Computer

vision, a field that enables computers to gain a high-level

understanding from digital images or videos, has been instrumental

in automating the process of disease detection and classification in

plants. The application of computer vision in plant sciences has been

facilitated by the development of Convolutional Neural Networks

(CNNs), which have shown remarkable success in image

classification tasks [Salman et al. (2023)]. The successful application

of computer vision technologies in plant sciences is heavily reliant on

the existence of broad and diverse datasets. Compared to regular

computer vision tasks, amassing a large amount of plant disease

image data can be a daunting task. Labeling plant disease data needs a

good understanding of biology. Also, to get top-quality disease data,

plants have to be grown in a very controlled and separate area to keep

them from getting contaminated. This process involves a lot of work,

costs and restrictions due to seasonal changes and geographical

locations. Datasets for plant diseases are often uneven, and things

like weather, temperature, and bugs that carry diseases can greatly

affect how diseases develop. Some diseases are hard to gather data on,

and the data that is collected often has uneven amounts for each class

of disease. Such datasets often exhibit a skew in representation, with

some disease classes being over-represented [Ahmad et al. (2021)].

To mitigate these issues, the concept of data augmentation has been

introduced. Data augmentation strategies enhance datasets by

creating varied versions of the original images, using methods such

as cropping, resizing, and rotation. This not only boosts the quantity

of available training data but also introduces an element of diversity.

This diversity aids in improving the model’s ability to generalize,

thereby enhancing its performance on unseen data.

The image features that give clues for diagnosis are often much

smaller than in general object recognition problems. For example,

in the early stages of a disease, the only signs might be just a tiny dot

or faint lines in the image. Diagnosing plants based on images is

very hard because it requires recognizing very fine details. Usually, a

deep learning model like a CNN looks at the big picture of an image,

like its brightness or color, rather than small details that might show

a disease. Also, when testing a model using different sets of data

(training, validation, and test sets), things like the background or

brightness of the images can make the model seem more accurate

than it really is. This might result in another form of overfitting,

such that it works well in one situation but not in others. For

example, a model might be 86% accurate at diagnosing a disease in

cucumbers on one farm but only 20.7% accurate on a different farm.
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Generally, there isn’t a lot of variety in pictures of diseased

plants, especially if they’re grown in a controlled environment. But

it’s usually easy to get pictures of healthy plants. So, we think that if

we can turn pictures of healthy plants into pictures of diseased

plants, we can create a more varied and reliable dataset. This could

make diagnosing diseases more accurate and also make it cheaper to

label the data. Image Inpainting techniques, which have seen

significant advancements in recent years, offer the potential to fill

this gap. By applying these techniques, it is possible to create

realistic simulations of plant diseases on healthy leaves, thereby

enriching the dataset and enhancing the model’s ability to

generalize across different scenarios.

Image Inpainting, sometimes called Image Completion, is like

filling in a puzzle where pieces are missing. It’s about adding parts to

an image so that everything fits together perfectly and looks natural.

One of the most effective and widely used tools for this job is called

Generative Adversarial Networks (GANs), introduced by Goodfellow

et al. (2014). GANs are a class of artificial intelligence algorithms that

use two neural networks, a generator, and a discriminator, contesting

with each other in a zero-sum game framework. They are capable of

generating synthetic images that are almost indistinguishable from

real images, providing a powerful tool for data augmentation.

Imagine having a brush that knows exactly how to paint flowers,

leaves, or faces. Somemethods make sure that the filled-in parts don’t

all look the same. This is important because we don’t want every leaf

or tree to look identical. Some new techniques are being developed to

make sure there’s a good balance between making things look real

and adding some variety. Some variations of GANs like StyleGAN by

Karras et al. (2019) and CycleGAN by Zhu et al. (2017) gained huge

popularity due to their superior results, especially in style transfer,

which is another useful technique in image processing. Consider

discoloration or patterns on a leaf as a style template for a particular

disease. In such cases, this ability to perform style transfer can be used

to create artificial disease symptoms in healthy leaf images in order to

fill the gap between under-represented and over-represented classes.

However, these methods may result in unwanted artifacts in

unwanted locations, such as disease symptoms on the ground or

any other object in the background. Therefore, in this research, we

performed experiments on an instance-aware generative adversarial

network, InstaGAN by Mo et al. (2019). This method uses instance

segmentation masks to guide the creation of images but does not

directly use them for filling in missing parts.

Diffusion models have emerged as a prominent approach in the

field of AI, specifically in image generation, and have become a

notable rival to Generative Adversarial Networks (GANs). RePaint by

Lugmayr et al. (2022) is a cutting-edge approach to free-form

inpainting that is built upon Denoising Diffusion Implicit Models

(DDIM) by Song et al. (2021). The structure of DDIM consists of two

main components: a forward diffusion process and a reverse diffusion

process. In the forward diffusion process, the original data is gradually

corrupted by adding noise at each step, following a carefully designed

noise schedule. This process transforms the data into pure noise over

a series of timesteps. In the reverse diffusion process, the model learns

to reverse this transformation, starting from noise and gradually

denoising it to generate new samples that resemble the original data.

RePaint starts with the original image and applies a forward diffusion
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process, corrupting the specified regions (masks) with noise. In the

reverse process, RePaint utilizes a pretrained unconditional DDIM as

the generative prior. By altering only the reverse diffusion iterations, it

reconstructs the image, filling in the masked regions with new

content that blends seamlessly with the surrounding areas.

The techniques described above can be applied to the creation

of disease images from healthy leaf images. By utilizing advanced

inpainting methods, it is possible to simulate the appearance of

plant diseases on healthy leaves. This can be particularly useful in

building diverse and reliable disease datasets for plant diagnosis.

The ability to transform healthy images into disease cases can

improve the performance of diagnosis models and reduce the cost

of labeling, contributing to more effective and efficient plant disease

management. In light of the evolving landscape of image generation

and the transition from traditional GANs to diffusion models, this

paper makes several key contributions to the field. These insights

not only deepen our understanding of the underlying principles of

models like InstaGAN and RePaint but also demonstrate their

practical applications in areas such as plant disease detection. The

specific contributions of this study are as follows:
Fron
• Comparative Analysis: Provides a detailed comparison of

diffusion models, specifically DDIM and RePaint, with

GAN-based methods, including InstaGAN, in the context

of plant disease image augmentation.

• Application to Agriculture: Demonstrates the application

of these models to plant disease detection, using a subset of

the PlantVillage dataset for a fair and relevant evaluation.

• Quantitative Evaluation: Introduces quantitative measures

such as FID [Heusel et al. (2017)], KID [Binkowski et al.

(2018)], IS [Salimans et al. (2016)], PSNR [Ledig et al.

(2017)], and SSIM [Wang et al. (2004)] for an objective

assessment of model performance.

• In-Depth Exploration: Offers an in-depth exploration of

InstaGAN and RePaint, including their underlying

principles, structures, and advantages.

• Contribution to Literature: Highlights the chronological

development of diffusion models, contributing valuable

insights into the field of AI and image generation.

• Practical Implications: Emphasizes the practical

implications of the findings, with potential applications in

various industries including agriculture and healthcare.
These contributions collectively enhance our understanding of

diffusion models and their application in image generation and

augmentation, offering valuable insights for both academic research

and practical implementation.
2 Background

2.1 Generative adversarial networks

The advent of Generative Adversarial Networks (GANs)

marked a significant advancement in generative AI technology.

The Generator’s goal is to create data that is indistinguishable from
tiers in Plant Science 03
real data. It takes random noise as input and generates samples as

output. The aim is to improve its ability to create fake data by

learning from the Discriminator’s feedback. The Discriminator’s

goal is to distinguish between real data from the training set and

fake data created by the Generator. It takes in both real and fake

samples and assigns a probability that a given sample is real. During

training, the Generator and Discriminator are in a continuous game

where the Generator tries to produce fake data that looks as real as

possible, and the Discriminator tries to get better at distinguishing

real data from fake. This process leads to the Generator creating

highly realistic data. The primary purpose of GANs extends beyond

merely creating realistic fake data; it leverages this capability for

various practical applications that can benefit different fields and

industries. These applications encompass a wide range of tasks,

including the creation of realistic images such as faces that do not

exist, data augmentation (particularly valuable when limited real

data is available), transferring the style of one image to another

(such as converting a photo into a painting), enhancing the

resolution of images (known as Super-Resolution), generating

molecular structures for potential new drugs (a key component in

Drug Discovery), and creating realistic voice recordings.

While the original GANs provided a novel way to generate data,

they suffered from training instability and mode collapse. To

address these limitations, Conditional Generative Adversarial

Nets (cGANs) were introduced by Mirza and Osindero (2014),

allowing the model to generate data conditioned on certain

information, thereby making the data generation process more

controlled. This approach mitigated some of the training issues

but still faced challenges in generating complex data structures. The

introduction of Deep Convolutional Generative Adversarial

Networks (DCGANs) by Radford et al. (2015) further advanced

the field by utilizing convolutional layers in both the generator and

discriminator, making them more suitable for image generation.

Wasserstein GAN (WGAN) by Arjovsky et al. (2017) introduced a

different loss function that provided more stable training and

helped to solve the vanishing gradient problem, a significant

improvement over previous methods. Cycle-Consistent

Adversarial Networks (CycleGAN) by Zhu et al. (2017) enabled

image-to-image translation without paired examples, such as

applying facial disguise i.e. glasses, mask, and beard on another

person’s face, addressing the limitation of needing paired training

data in previous models (Ahmad et al. (2022)). However,

CycleGANs could suffer from artifacts in the translated images.

Recent advancements such as BigGAN by Brock et al. (2018) have

focused on generating high-fidelity and diverse images at a large

scale, pushing the boundaries of what GANs can achieve. The field

continues to evolve with innovations like StyleGAN by Karras et al.

(2019), a style control on the generated images, allowing for fine-

grained control over the appearance of the generated data. While

StyleGAN provides unprecedented control, it also introduces new

challenges in understanding and manipulating the latent space.

StarGAN by Choi et al. (2017) introduced a novel and scalable

approach that uses a single model to perform image-to-image

translations for multiple domains.

Combining the concepts of cGANs and CycleGAN, Mo et al.

(2019) introduced InstaGAN, which incorporates instance-level
frontiersin.org
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information into image-to-image translation through the use of

instance segmentation masks, allowing for more precise control

over individual objects within the scene. These masks enable

InstaGAN to selectively target specific regions of the image,

enhancing the translation accuracy and flexibility. InstaGAN’s

approach of building upon the CycleGAN framework and

drawing inspiration from conditional GANs represents a novel

and powerful combination. By leveraging the global transformation

capabilities of CycleGAN and the targeted control offered by

cGANs, InstaGAN introduces a more nuanced and flexible

approach to image-to-image translation. This enables a wide

range of creative and practical applications, from object

transfiguration to style transfer, and represents a significant

contribution to the field of generative models.
2.2 Diffusion models

Diffusion models, also known as score-based generative models,

are rooted in the idea of modeling the data distribution directly

using a noise process. In the context of AI and image generation,

diffusion models have been explored as a way to create realistic and

high-quality images by modeling the data distribution directly. This

approach contrasts with GANs, which rely on a generator-

discriminator framework to create synthetic data. Diffusion

models have become a rival to GANs due to several key factors.

GANs are known for their training instability, where small changes

in hyperparameters can lead to vastly different results. Diffusion

models, on the other hand, have shown more stable training

behavior. Diffusion models have demonstrated the ability to

generate high-quality images that rival or even surpass those

produced by state-of-the-art GANs. Diffusion models also offer

flexibility in modeling different data distributions, making them

applicable to a wide range of tasks beyond image generation.

Diffusion models often have a simpler architecture and training

process compared to GANs, which require careful balancing

between the generator and discriminator. Diffusion models tend

to be more robust to hyperparameter choices and are less prone to

common GAN issues such as mode collapse. The diffusion process

provides a clear and interpretable way to understand how data is

generated, unlike the more opaque process of GANs. Some studies

have shown that diffusion models may generalize better to unseen

data, making them a valuable tool for tasks such as data

augmentation. The paper “High-Resolution Image Synthesis with

Latent Diffusion Models” by Rombach et al. (2022) marked a

significant step forward by achieving state-of-the-art synthesis

results on image data through diffusion models (DMs). This

approach greatly boosted visual fidelity. Following this, Choi et al.

(2021) introduced Iterative Latent Variable Refinement (ILVR),

guiding the generative process in Denoising Diffusion Probabilistic

Models (DDPM) [Ho et al. (2020)] to generate high-quality images

based on a given reference image. This method enabled a single

DDPM to sample images from various sets. Various studies have

proven that DMs offers a more stable training process compared to

traditional GANs [Muhammad et al. (2023)]. The diffusion process
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provides a clear and smooth path from the data to noise, making the

learning of the reverse process more tractable [Dhariwal and

Nichol (2021)].

RePaint by Lugmayr et al. (2022) takes image inpainting to a

new level. RePaint leverages the structure and principles of DDPM

to achieve high-quality inpainting. Arbitrary binary masks are used

to specify the regions for inpainting. The forward and reverse

diffusion processes of DDPM are used to model the data

distribution and generate new content within specified regions of

an image. RePaint offers fine-grained control over the inpainting

process, allowing for targeted modifications within specific regions

defined by the masks. Unlike traditional methods that train for

specific mask distributions, RePaint can handle even extreme

masks, providing flexibility in the inpainting process. By

employing a pretrained unconditional DDPM, RePaint doesn’t

require paired examples for training. This allows it to generate

diverse and high-quality output images for any inpainting form.
3 Related work

GANs have been used to generate synthetic images of plant

diseases, addressing the issue of class imbalance and enhancing the

robustness of disease detection models. Several studies have

proposed modifications and improvements in the original GAN

architecture to address limitations of GANs such as mode collapse,

training instability and other issues faced in plant disease

data modeling.

Bi and Hu (2020) utilized improved the training stability of

Wasserstein GANs for complex image generation such plant disease

images. LR-GAN by Yang et al. (2016) further extended GANs with

LRGAN, introducing layered recursive networks for image

generation. The introduction of Self-attention Generative

Adversarial Networks (SAGAN) by Zhang et al. (2018) marked a

significant advancement by enhancing the focus on specific regions

of images. A substantial leap towards plant-specific image synthesis

was made with the work on Two Pathway Encoder GAN Yilma

et al. (2020), providing a novel architecture focusing on data

generation. Zhang et al. (2022) introduced MMDGAN, a fusion

data augmentation method for tomato-leaf disease identification.

Abbas et al. (2021) further refined this approach by utilizing

transfer learning with C-GAN for tomato plant disease detection.

In 2022, the introduction of LeafGAN by Cap et al. (2022) marked a

turning point by providing a versatile and effective tool specifically

designed for plant disease image augmentation. The most recent

advancements include hybrid approaches such as the combination

of E-GAN and CapsNet by Vasudevan and Karthick (2023),

PiiGAN by for pluralistic image inpainting, and Fine Grained-

GAN for grape leaf spot identification by Zhou et al. (2021). These

methods collectively enhanced the robustness, diversity, and

realism of image generation, significantly advancing data

augmentation techniques.

Diffusion models, unlike GANs, do not rely on adversarial

training. Instead, they model the data distribution by reversing a

diffusion process, which starts from the data and adds noise at each
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step until it reaches a known prior distribution. Despite the fact that

diffusion models have demonstrated superior performance over

GANs in terms of image quality and other metrics, no significant

research has been conducted to investigate their performance in

complex applications such as plant disease synthesis. In this study,

we delve into the principles of diffusion technology, contrasting its

methodology and performance with state-of-the-art GAN

solutions. We examine the guided inference models of GANs,

named InstaGAN, and compare it with RePaint, a diffusion-based

model. Our findings reveal that the diffusion model demonstrates

superior quality in data augmentation against GAN-based

solutions. This study offers valuable insights into the potential of

diffusion models for data augmentation in plant disease detection,

paving the way for future research in this promising field.
4 Methodology

The methodology section provides a comprehensive overview of

the techniques and algorithms employed in this research. It includes

the principles, architecture, and mathematical foundations of the

methods under investigation, namely InstaGAN and RePaint. The

section also delves into the principles of Denoising Diffusion

Probabilistic Models (DDPM), which form the basis of the

RePaint method. Understanding these methodologies is essential

for replicating the research and building upon the findings.
4.1 InstaGAN

InstaGAN, or Instance-aware Generative Adversarial Network,

is a novel approach for unsupervised image-to-image translation. It

is particularly effective in challenging cases where an image has

multiple target instances, and the translation task involves

significant changes in shape. The methodology of InstaGAN is

divided into several key components and introduces several

unique features.
4.1.1 Instance level control
At its core, InstaGAN is a specialized GAN that emphasizes

instance-aware image-to-image translation. It uses binary instance

masks to guide the transformation process, allowing for targeted

modifications within specific instances. This control is achieved

through a specialized loss function that considers both the

traditional GAN loss and an instance-level loss. In the context of

plant science, masks can be used to target specific leaves or flowers

for transformation, while leaving the rest of the image unchanged.

To understand how InstaGAN accomplishes this, let’s explore its

architecture, instance-level control, training losses, and the unique

sequential mini-batch translation technique.
4.1.2 InstaGAN architecture
It builds upon the CycleGAN framework by Zhu et al. (2017),

inspired by conditional GANs by Mirza and Osindero (2014). It
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consists of two coupled generators GXY: X×A → Y ×B and GY X:

Y ×B→ X×A, and adversarial discriminators DX: X × A→ {‘X’, ‘not

X’} and DY: Y × B → {‘Y’, ‘not Y’}. These generators play a pivotal

role in the translation process. Notably, GXY transforms healthy leaf

images X into their corresponding diseased versions Y, while GY X

performs the inverse operation, converting disease leaf images Y

back to healthy ones X. Furthermore, these generators are

responsible for the reconstruction of masks on both sides, where

A represents binary masks for healthy leaves, and B represents

binary masks for disease-infected leaves. This level of control is

crucial for simulating plant diseases accurately. For example, you

can target specific leaves or parts of leaves for transformation,

leaving the rest of the image unchanged, which is essential for

creating realistic synthetic data. By having generators responsible

for mask reconstruction, InstaGAN ensures that the transformed

images align with the corresponding masks, enhancing the accuracy

of synthetic data generation. The cycle consistency ensures that

translated images can be transformed back to their original state.

This property helps maintain image quality and realism during the

translation process.

The leaf image representation hGX as formulated in Equation 1

and the n-th instance mask representation hnGA in Equation 2 in the

generator G are presented below:

hGX(x, a) = fGX(x);o
N

i=1
 f GA(ai)

" #
(1)

hnGA(x, a) = fGX(x);o
N

i=1
 f GA(ai); fGA(an)

" #
(2)

fGX function extracts features from the healthy leaf image x and

fGA extracts features from the binary mask ai.

The discriminator D’s representation, which is permutation-

invariant to the instances, is formulated in Equation 3.

hDX(x, a) = fDX(x);o
N

i=1
 f DA(ai)

" #
: (3)

In Figure 1, an overview of the InstaGAN architecture is

presented, illustrating its key components. The figure also

provides a visual representation of both the generator and

discriminator networks, offering insights into the underlying

structure of InstaGAN.

4.1.3 Training losses
The training process of InstaGAN incorporates several critical

loss components, each serving a specific purpose in guiding the

model’s learning. The GAN loss leverages the adversarial nature of

GANs to encourage the generated images to be indistinguishable

from real images in the target domain. Specifically, InstaGAN

utilizes Least Square GAN by Mao et al. (2017) to ensure stable

training, sharper image quality, and reduced mode collapse by

improving gradient behavior and discriminator performance. It

consists of two terms as shown in Equation 4. One term penalizes

the difference between the discriminator’s prediction for real
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images. The other term penalizes the discriminator’s predictions for

the translated images.

LLSGAN =  (DX(x, a)  −  1)2 + DX(GYX(y, b))
2 +  (DY (y, b) 

−  1)2 + DY (GXY (x, a))
2 (4)

The Cycle-Consistency Loss Lcyc as introduced by CycleGAN is

presented in Equation 5. Lcyc is essential for maintaining the

integrity of images throughout the translation process. This loss

term measures the difference between the reconstructed images

GYX(GXY(x, a)) and GXY(GY X(y, b)) and their corresponding input

images (x,a) and (y,b).

Lcyc =   ∥GY  X(GXY (x, a))  −  (x, a) ∥1 +  ∥GXY (GYX(y, b)) 

−  (y, b) ∥ (5)

Identity Mapping Loss Lidt was also introduced by CycLeGAN.

Lidt as presented in Equation 6 measures the difference between the

translated images GXY(y,b) and GYX(x,a) and their corresponding

original images (y,b) and (x,a). This ensures that images do not lose

their essential characteristics during the translation process.

Lidt =   ∥GXY (y, b)  −  (y, b) ∥1 +  ∥GYX(x, a)  −  (x, a) ∥ (6)

Context Preserving Loss Lctx as proposed originally for InstaGAN

encourages the network to focus on translating instances while

preserving the background context. This loss term is computed

based on weighted differences between the translated and original

images, as shown in Equation 7 taking into account the binary masks

(a,b′) and (b,a′) that define which regions are translated.

Lctx =   ∥w(a, b0) ⊙  (x − y0) ∥1 +  ∥w(b, a
0) ⊙  (y − x0) ∥ (7)

The combination of these loss components denoted as LInstaGAN
is presented in Equation 8. Hyperparameters lcyc, lidt, lctx are used
to control the influence of each loss term, allowing for fine-tuning

and balancing during the training process.

LInstaGAN = LLSGAN + lcycLcyc + lidtLidt + lctxLctx (8)

InstaGAN introduces a sequential mini-batch translation

technique to handle an arbitrary number of instances without

increasing GPU memory. The sequential version of the training
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loss is presented in Equation 9.

LInstaGAN−SM = o
M

m=1
LLSGAN ((x, a), (y

0
m, b

0
1 :m))

+ Lcontent((xm, am), (y
0
m, b

0
m)) (9)

where Lcontent = lcycLcyc + lidtLidt + lctxLctx .
However, for the current Plant Village dataset, which

predominantly consists of images with a single leaf instance per

image, the application of the sequential mini-batch technique may

not be imperative. Nonetheless, it’s worth noting that this

technique remains a valuable tool in our arsenal and could be

considered for future datasets or scenarios where images contain

multiple leaf instances per image, offering efficient training

options in such cases.
4.2 RePaint

RePaint introduces a powerful inpainting approach, free-form

inpainting, which involves adding new content to an image based

on arbitrary binary masks. Unlike existing methods that struggle

with generalization to unseen mask types and tend to produce

simple textural extensions, RePaint presents a novel solution that

leverages Denoising Diffusion Probabilistic Models (DDPM) to

handle extreme masks effectively.

The core idea behind RePaint is to utilize a pretrained

unconditional DDPM as the generative prior, enhancing its

versatility and capability to generate high-quality inpainted

images. To achieve this, the reverse diffusion iterations are

modified to condition the generation process using the

information provided by the input image. Importantly, RePaint

achieves these improvements without altering or conditioning the

original DDPM network, ensuring that it can produce diverse and

top-quality output images regardless of the inpainting form.

RePaint holds significant promise for enhancing our synthetic leaf

data generation task, particularly in constructing disease-infected

leaf samples from healthy leaf images as input when compared to

InstaGAN. Unlike InstaGAN, which primarily focuses on image-to-

image translation with an emphasis on instance-level control,

RePaint’s strength lies in its ability to handle extreme and
B CA

FIGURE 1

Overview, Generator, and Discriminator of InstaGAN Architecture. (A) Provides an overview of the image-to-image translation process, (B) illustrates
the generator responsible for transforming healthy leaf images into disease-infected counterparts, and (C) showcases the discriminator’s role in
distinguishing between generated and real images.
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arbitrary binary masks. In our task context, RePaint can effectively

simulate various disease patterns on healthy leaves, providing a

more diverse and adaptable approach.
4.2.1 Denoising diffusion probabilistic models
The DDPM learns a distribution of images given a training set.

During training, DDPM methods define a diffusion process that

transforms an image x0 to white Gaussian noise xT ∼ N(0,1) in T

time steps. The forward direction is given by Equation 10.

q(xt jxt−1)  =  N(xt ;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1  − bt

p
xt−1, btI) (10)

The sample xt is obtained by adding independent and

identically distributed Gaussian noise with variance bt at timestep

t and scaling the previous sample xt−1 with
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − bt

p
according to a

variance schedule.

The inference process works by sampling a random noise vector

xT and gradually denoising it until it reaches a high-quality output

image x0. This reverse process in Equation 11 is modeled by a neural

network that predicts the parameters μq(xt,t) and Sq(xt,t) of a

Gaussian distribution:

pq(xt−1jxt)  =  N(xt−1; μq (xt , t),Sq(xt ,  t)) (11)
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Both forward and reverse diffusion processes presented by

Equation 10 and 11 are illustrated in Figure 2. The learning

objective is to predict the cumulative noise ϵ0 that is added to the

current intermediate image xt. Therefore the objective is derived by

considering the variational lower bound, leading to the following

simplified training objective given in Equation 12:

Lsimple = Et,x0,ϵ½ ϵ − ϵq(xt , t)k k2� (12)

By using the independence property of the noise added at each

step, we can calculate the total noise variance as a t =
Qt

s=1 (1 − bs).
The reverse transition step in Equation 10 can be re-written as a

single step as given below in Equation 13

q(xt jx0) = N (xt ;
ffiffiffiffi
�at

p
x0, (1 − �at)I) (13)
4.2.2 Inpainting process
In RePaint, masks are used to guide the inpainting process as

shown in Figure 3. They define the regions where the image needs to

be reconstructed. By altering the denoising steps of DDPM and

sampling the unmasked regions, RePaint achieves high-quality

inpainting. This can be likened to completing a puzzle where

certain pieces are missing. The goal of inpainting is to predict
FIGURE 3

Overview of RePaint architecture.
FIGURE 2

Overview of denoising diffusion probabilistic models.
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missing pixels of an image using a mask region as a condition. The

reverse step in the approach is given by Equation 16:

xknownt−1 ∼ N(
ffiffiffiffi
a

p
tx0, (1 − a t)I) (14)

xunknownt−1 ∼ N( μq (xt , t), Sq(xt , t)) (15)

xt−1 = m⊙ xknownt−1 + (1 −m)⊙ xunknownt−1 (16)

Here ground truth image is denoted as x, the unknown pixels

are denoted asm⊙ x, and the known pixels as (1−m)⊙x. When this

method is directly applied it is observed that the content type

matches only with the known regions in the current image. The

inpainted region may match the neighboring region and it may

result in semantically incorrect regions. The resulting image may

not be harmonizing well with the remaining image. DDPM is

trained to generate an image that lies within a data distribution

and tries to produce consistent structures. RePaint uses this quality

of DDPM by diffusing the output xt−1 back to xt. The resulting

xunknownt better harmonizes with xknownt and contains conditional

information from it.
4.3 Comparison between InstaGAN
and RePaint
Fron
• Principles: InstaGAN uses adversarial training, while

RePaint uses denoising diffusion.

• Utilization of Masks: InstaGAN uses masks for instance-

level control, while RePaint uses them for guided

inpainting.

• Applications: InstaGAN is suitable for instance-level

transformations, while RePaint is designed for image

inpainting.

• Complexity : InstaGAN involves a more complex

adversarial training process, while RePaint focuses on a

simpler, gradual denoising process.
5 Dataset

5.1 PlantVillage dataset

The PlantVillage dataset is a comprehensive collection of leaf

images that are labeled with 38 different disease categories or as

healthy. It was created to facilitate research in automated plant

disease diagnosis and classification. The dataset consists of over

54,000 images, covering 14 crop species and 26 diseases, making it

one of the largest publicly available datasets of its kind Hughes and

Salathé (2015).

The images in the PlantVillage dataset are collected under

controlled conditions, ensuring consistent lighting and

background. This allows for a more accurate evaluation of

computer vision models designed to recognize plant diseases. The
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dataset includes a wide variety of leaf diseases, ranging from fungal

and bacterial infections to viral and nutrient deficiencies. The

diversity of diseases and the inclusion of healthy leaves provide a

robust and representative sample for training and evaluating

machine learning models.

Figures 4, 5 show sample images from the selected classes for

grape and tomato leaves, respectively. For grape leaves, the images

represent healthy leaves, black rot, black measles, and leaf blight, as

shown in Figure 4. For tomato leaves, the images represent healthy

leaves, early blight, and bacterial spot, as depicted in Figure 5. These

images highlight the diversity and complexity of the leaf diseases

within the dataset, emphasizing the variations in symptoms and

visual characteristics for different disease classes.

The PlantVillage dataset has been instrumental in advancing

the field of plant disease detection and classification. It has been

used in numerous research studies to develop and evaluate machine

learning models for automated plant disease diagnosis. By

providing a standardized and publicly available resource, the

PlantVillage dataset continues to drive innovation and progress in

the field of agricultural technology.

A significant number of research publications have reported

results specifically on tomato and grape leaf images. These two

crops have been the subject of extensive study in the field of plant

disease detection and classification. By focusing on these two crops,

we align our work with existing research, allowing for a fair and

meaningful comparison with other published methods. There for

our experiments, we selected 9 disease classes of tomato leaves and 3

disease classes of grape leaves, along with healthy classes for both

types of plants. Table 1 provides detailed statistics for the selected

classes from the PlantVillage dataset. It includes the number of

images for each disease class and the healthy class for both tomato

and grape leaves.

The selected classes from the PlantVillage dataset provide a

robust and representative sample for evaluating the performance of

InstaGAN and RePaint. By focusing on specific disease classes and

including healthy leaves, we ensure a fair and comprehensive

comparison that reflects the real-world challenges of plant disease

detection and transformation.
5.2 Mask data preparation

The efficacy of our image generation models, InstaGAN and

Repaint, critically hinges upon the accessibility and quality of

segmentation masks. These masks assume a pivotal role as

guiding constructs in the generative processes, facilitating the

models in the precise localization and transformation of specific

regions within leaf imagery. In this subsection, we detail the

meticulous procedure underpinning the preparation of

segmentation masks for our dataset.

5.2.1 Leaf segmentation masks for InstaGAN
The segmentation process in the InstaGAN framework is

essential for precisely identifying and isolating regions of interest

within leaf images. These regions are then used to guide the

generative process for the transformation of healthy leaf images
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FIGURE 4

Sample images of grape leaves from the Plant Village dataset, showcasing different disease classes.
FIGURE 5

Sample images of tomato leaves from the Plant Village dataset, showcasing different disease classes.
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into their corresponding diseased versions. To create accurate

segmentation masks, a dataset comprising a diverse set of leaf

images was employed. As mentioned in the previous section, the

dataset consisted of a total of 7100 leaf images belonging to 14

classes. Of these, 1033 pairs of images and their corresponding

manually annotated masks were utilized for training the

segmentation model, while an additional 230 pairs were reserved

for evaluation purposes. It’s worth noting that the training dataset

was deliberately designed to include images from various classes,

ensuring the model’s ability to generalize across different leaf types

and disease symptoms.

The segmentation network architecture is based on the U-Net

framework, which is renowned for its effectiveness in image

segmentation tasks. The U-Net architecture is particularly suited

for its ability to capture fine-grained information while preserving

spatial details. The backbone of the segmentation model utilized in

this research is based on ResNet-50, a well-established deep learning

architecture known for its feature extraction capabilities. This

choice of backbone enhances the model’s ability to capture

intricate details within the leaf images. During the training phase,

the segmentation model learned to generate precise masks that

delineate the boundaries of leaves in the images. The manually

annotated masks from the training dataset served as ground truth

labels for supervising the model’s learning process. This supervised

training process enabled the segmentation model to understand the

intricate patterns and shapes of leaves across various classes.
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Recognizing the challenges associated with manual annotation,

an alternative method was explored. Otsu thresholding, a simple yet

effective technique, was applied to some images to extract leaf masks

automatically. While Otsu thresholding performed well on certain

images, it encountered limitations when applied to a larger and

more diverse dataset. The shortcomings included the inclusion of

unwanted background regions and shadows in the final mask.

Moreover, it failed to accommodate various disease symptoms,

resulting in the omission of relevant details from the leaf mask.

The qualitative results are presented in Figure 6.

To quantitatively assess the performance of the segmentation

process, the mean Intersection over Union (mIOU) metric was

computed. This metric provides a quantitative measure of the

overlap between the predicted masks and the ground truth masks.

The results of this evaluation are presented in 2, offering insights

into the accuracy and effectiveness of the segmentation model. Our

evaluation results clearly demonstrate the effectiveness of the

segmentation models. The UNet model achieved an impressive

mIOU score of 97.43%, indicating its ability to accurately delineate

leaf regions within images. This high level of accuracy is crucial for

guiding the generative process of InstaGAN effectively. While the

Otsu thresholding also performed well, it exhibited slightly lower

mIOU scores in comparison as presented in Table 2. This method,

although proficient, did not match the precision achieved by our

custom-trained U-Net on our dataset.

5.2.2 Masks for RePaint
Repaint utilizes masks to guide the diffusion process, similar to

our GAN-based InstaGAN. However, there are several key

distinctions in how Repaint operates. One crucial difference is

that Repaint requires inverted masks. In this context, the white

regions of the mask are used to evaluate contextual information,

while the black regions are regenerated. This inverted mask

approach is fundamental to the unique functioning of Repaint.

When applying inverted versions of the masks created in the

previous section, we encountered a challenge known as the “ghost

leaf problem.” This problem manifests as the outline of the input

leaf image being filled with background texture, and within this

outline, a smaller leaf appears. The output image seems to contain

two leaves: one leaf with the desired disease symptoms but entirely

different from the input image, and another larger leaf that matches

the outline of the input leaf but has become transparent.

The root cause of this problem lies in the difference in image

generation approaches used by InstaGAN and Repaint. InstaGAN

regenerates the masked region with desired features, such as disease

symptoms. In contrast, Repaint gradually adds noise to the region

until it’s entirely filled with noise and then regenerates the region

based on local context, i.e., other parts of the leaf. However, because

we masked the entire leaf region, there was insufficient contextual

information to guide the generation process, except for a very thin

outline of the leaf unaccounted for by the segmentation mask. As a

result, Repaint attempted to fill the masked region with an entire

image, including the background and a random leaf with

desired features.
TABLE 1 Statistics for the selected classes from the PlantVillage dataset.

Dataset
No

Plant
Type

Diseases
Name

Number of
Images

1 Tomato Late Blight 1000

2 Tomato Early Blight 800

3 Tomato Septoria Leaf Spot 700

4 Tomato Target Spot 600

5 Tomato Mosaic Virus 500

6 Tomato Yellow Leaf Curl
Virus

400

7 Tomato Spider Mites 300

8 Tomato Leaf Mold 200

9 Tomato Bacterial Spot 100

10 Grape Black Rot 500

11 Grape Esca (Black
Measles)

400

12 Grape Leaf Blight 300

13 Tomato Healthy 1200

14 Grape Healthy 600

1 ∼ 9,13 Tomato Total 5800

10 ∼ 12,14 Grape Total 1800

1 ∼ 14 Total Total 7600
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To address the ghost leaf problem, we modified the

segmentation masks by dilating them, leaving more area along

the boundaries of the leaf. This adjustment aimed to provide

enough information for Repaint to regenerate the input leaf

image with the desired disease features. This solution proved

effective, as Repaint was then able to utilize the bordering area of

the leaf to generate the remaining portions with the desired diseased

features. However, this method introduced a drawback. Since the

bordering area of the input image with the healthy leaf was not

masked, it was never regenerated with disease symptoms. This

could result in a significant data bias in the synthetic dataset, as

many diseases affect the leaf edges more than the central regions.

Through experimentation, it was deduced that Repaint does not

necessarily require a well-bordered region of the leaf to generate

new leaf images. Any part of the leaf image can assist the diffusion

process in completing the remaining part with the desired disease

symptoms. For instance, if half of the leaf is masked while the rest is

unmasked, Repaint generates a seamlessly blended version of the

remaining leaf with the desired disease symptoms. Importantly,

since there is no constraint of a close boundary, the Repaint model

is free to create versions of the leaf with different boundaries and

shapes than the input image. This diversity enhances the novelty of
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the results, including the creation of leaf versions not present in the

input data. Disease symptoms are generated in the newly generated

regions of the leaf, encompassing the boundary areas and edges.

To ensure a balanced representation of synthetic disease

symptoms across all parts of the leaf, various versions of simple

masks were created and randomly applied at a uniform distribution.

The results of this approach were remarkably positive, providing a

diverse set of synthetic disease symptoms. Sample masks and output

images are illustrated in Figure 7, showcasing the effectiveness of

our mask generation strategy in Repaint.
6 Performance measures

In the field of image generation, synthesis, and augmentation, a

variety of evaluation metrics are commonly employed to assess the

quality and effectiveness of the methods. In this research, we

considered a comprehensive set of evaluation metrics to assess the

effectiveness of the proposed methods. These metrics provide a

quantitative analysis of the performance, capturing various aspects

of image quality, similarity, and statistical properties. However, the

evaluation of generative AI models has resulted, in the introduction of

newmetrics that address the limitations of previous methods and cater

to advanced applications. Therefore, we utilize a subset of these metrics

that are particularly relevant to our study, while acknowledging that

some commonly used metrics may not be as applicable in our context.

Below, we introduce each metric, explaining its working

principles, and reflecting on their development and significance in

the field.
FIGURE 6

This figure presents the segmentation masks generated by Otsu Thresholding, and U-Net model.
TABLE 2 Segmentation model performance.

Model mIOU

Otsu Threshold 75.36%

U-Net (Backbone ResNet 50) 97.43%
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6.1 Peak signal-to-noise ratio

PSNR was one of the early metrics used to measure the quality

of a reconstructed image compared to the original. However, it

primarily focuses on pixel-level differences and may not capture

perceptual quality. The equation for PSNR is:

PSNR = 20 · log10
MAXIffiffiffiffiffiffiffiffiffiffi
MSE

p
� �

(17)
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6.2 Structural similarity index

To address the limitations of PSNR, SSIM was introduced to

assess the perceptual similarity between two images. However, in

some contexts, SSIM may not be as pertinent. The equation for

SSIM is:

SSIM(x, y) =
(2mxmy + c1)(2sxy + c2)

(m2
x + m2

y + c1)(s 2
x + s 2

y + c2)
(18)
FIGURE 7

This figure displays the stages of RePaint’s image generation process. Row 1 shows healthy leaf images, Row 2 reveals the corresponding
segmentation masks, and Row 3 displays the output of Repaint when using segmentation masks for guidance. Row 4 presents the split masks, while
Row 5 showcases the results achieved by Repaint when utilizing these split masks for image generation. This comparison highlights the effectiveness
of different mask strategies in RePaint’s generative capabilities.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1280496
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Muhammad et al. 10.3389/fpls.2023.1280496
6.3 Inception score

IS was developed to measure both the quality and diversity of

generated images, addressing the need for a more comprehensive

evaluation. Higher IS values indicate better performance. The

equation for IS is:

IS =  exp(ExDKL(p(yjx) ‖ p(y))) (19)
6.4 Fréchet inception distance

FID was introduced to overcome the limitations of IS by

measuring the statistical similarity between real and generated

images. Lower FID values indicate better quality and similarity.

The equation for FID is:

FID =   ‖ μreal − μfakejj2 + Tr(Sreal +  Sfake −  2(SrealSfake)
0:5) (20)
6.5 Kernel inception distance

KID further advanced the field by comparing the distribution of

Inception features between real and generated images. Unlike FID,

KID is unbiased and does not require a large number of samples.

The equation for KID is:

KID = E½k ((xi, yj))� (21)
6.6 Effectiveness in this research

In our study, we focused on FID and KID for detailed

comparison between InstaGAN and RePaint, reflecting the

complexity and nuances of our research in image generation,

synthesis, and augmentation. FID was also used as the primary

metric for evaluating our methods against existing works, given its

widespread adoption in the literature. By carefully selecting and

employing these metrics, we ensure a rigorous and targeted

assessment of performance, capturing the evolution and

advancements in the field.
7 Experimental settings

7.1 InstaGAN settings

InstaGAN was configured with the following key parameters for

the experiments:
Fron
• Batch Size: Set to 1, controlling the number of training

samples processed simultaneously. A smaller batch size was
tiers in Plant Science 13
chosen to allow for more frequent updates and to fit the

model into GPU memory.

• Image Sizes: Load size of 220x220 and fine size of 200x200

were used for scaling and cropping. These sizes were

selected to preserve the details of the images while

reducing computational complexity.

• Number of Filters: 64 filters in the first convolution layer

for both generator and discriminator, providing a balance

between model complexity and computational efficiency.

• Learning Rate: Set to 0.0002, with a decay after 100

iterations, allowing the model to converge smoothly

without overshooting the optimal solution.

• Dropout: Disabled, to prevent overfitting and ensure stable

training.

• Normalization: Instance normalization was used to

normalize the activations within a feature map, improving

the training stability.

• Data Augmentation: Random flipping and resizing with

cropping were applied to increase the diversity of the

training data and enhance the model’s generalization

ability.
7.2 RePaint settings

RePaint was configured with the following key parameters for

the experiments:
• Attention Resolutions: Set to 32, 16, 8, defining the

resolutions for attention mechanisms. These resolutions

allow the model to capture different levels of details in the

images.

• Diffusion Steps: 4000 steps were used, controlling the

number of diffusion steps in the process. A higher

number of steps enables more refined image generation.

• Number of Channels: 128 channels were used, defining the

complexity of the model and allowing it to capture intricate

patterns.

• Learning Rate Kernel Standard Deviation: Set to 2,

controlling the adaptiveness of the learning rate during

training.

• Use of 16-bit Precision: Enabled, to reduce memory

consumption and accelerate training without significant

loss of accuracy.

• Image Size: 256, defining the size of the input images,

chosen to retain sufficient details while managing

computational resources.
These settings were carefully chosen to align with the specific

requirements of the experiments and to ensure optimal

performance of both InstaGAN and RePaint models. The

selection of parameters reflects a balance between model
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complexity, computational efficiency, and the ability to capture the

underlying patterns in the data.
8 Results

8.1 Qualitative results

The qualitative analysis of the generated images for 12 distinct

disease classes provides a comprehensive understanding of the

performance of both InstaGAN and RePaint.

8.1.1 Early blight in tomato leaves
Early blight in tomato leaves is characterized by concentric rings

and dark spots, often leading to wilting and death of the plant.

These intricate patterns may pose challenges for generative models,

as capturing the precise shape and texture of the rings requires a

high level of detail. Supplementary Figure 1 illustrates the healthy

tomato leaf images, their corresponding segmentation masks, and

the generated images depicting early blight disease symptoms by

both InstaGAN and RePaint. While InstaGAN’s outputs are

commendable, RePaint significantly outperforms InstaGAN in

capturing these complex symptoms.

8.1.2 Late blight in tomato leaves
Late blight symptoms include intricate patterns and authentic

appearance. Supplementary Figure 2 presents how RePaint excels in

capturing these patterns, overcoming the challenge of detailed

complexity. In contrast, while InstaGAN manages to simulate the

disease’s presence, it may struggle to depict the fine details that

make late blight unique.

8.1.3 Tomato black spot
Tomato black spot disease manifests as dark, sunken lesions.

The irregular shapes and varying sizes of the spots can be

challenging for AI models to replicate accurately. Supplementary

Figure 3 presents the results for this disease, with RePaint’s

generated images exhibiting a higher level of detail and quality

compared to InstaGAN.

8.1.4 Target spot in tomato leaves
Target spot symptoms are characterized by concentric rings and

discolorations, making them a challenging task for generative

models. Supplementary Figure 4 showcases how RePaint excels in

capturing the intricate details of target spot, reproducing the

characteristic concentric rings and discolorations with high

fidelity. While InstaGAN may simulate some ring-like patterns, it

may not capture the full complexity of the disease’s appearance.

8.1.5 Septoria leaf spot in tomato leaves
Septoria leaf spot symptoms involve precise spot patterns and

discolorations. Supplementary Figure 5 delves into how RePaint

excels in replicating these patterns, providing an authentic portrayal
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of this complex disease. While InstaGAN may exhibit some spot-

like effects, it may struggle to capture the full intricacy of

the symptoms.

8.1.6 Two spotted spider mites in tomato leaves
Two spotted Spider mites symptoms include distinctive

patterns and discolorations. Supplementary Figure 6 explores how

RePaint excels in replicating these patterns, offering a convincing

representation of the disease’s complexity. While InstaGAN may

capture some aspects of the disease, it may not fully convey the

intricate details that define spider mites two-spotted.

8.1.7 Yellow leaf curl virus in tomato leaves
Yellow leaf curl virus symptoms involve leaf curling and

yellowing, presenting a complex set of characteristics.

Supplementary Figure 7 explores how RePaint accurately

reproduces the curling and yellowing of leaves, providing an

authentic representation of the disease’s intricacies. While

InstaGAN may simulate some aspects of the disease, it may

struggle to convey the full complexity and nuances of yellow leaf

curl virus symptoms.

8.1.8 Mosaic virus in tomato leaves
Mosaic virus symptoms involve intricate mosaic patterns and

discolorations. Supplementary Figure 8 explores how RePaint

accurately reproduces these patterns, delivering a convincing

representation of the disease’s intricacies. While InstaGAN may

simulate some aspects of the disease, it may not fully convey the

level of detail and realism achieved by RePaint.

8.1.9 Leaf mold in tomato leaves
Leaf mold symptoms involve challenging mold patterns.

Supplementary Figure 9 presents how RePaint adeptly reproduces

these patterns, offering a convincing representation of the disease’s

intricacy. InstaGAN, though attempting to emulate the disease

style, may find it challenging to convey the nuanced details that

define leaf mold.

8.1.10 Grape Leaf black measle
Grape leaf black measle is characterized by dark spots with a

complex pattern. Modeling such symptoms requires capturing both

the geometry and texture of the affected areas, which can be

challenging for deep learning models. Supplementary Figure 10

showcases the ability of RePaint to synthesize these complex

patterns, outperforming InstaGAN.

8.1.11 Grape leaf black rot
Grape leaf black rot presents as dark, rotting areas with

defined edges. The sharp transitions and consistent coloring of

the rotting areas may pose difficulties for generative models.

Supplementary Figure 11 reveals similar trends between

InstaGAN and RePaint, with RePaint’s images exhibiting a more

refined portrayal.
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8.1.12 Grape leaf blight
Grape leaf blight involves subtle variations in color and texture,

which can be particularly challenging for AI to reproduce

accurately. Supplementary Figure 12 presents the results for this

disease, with RePaint demonstrating its superiority in generating

images that closely resemble the actual appearance.

The qualitative analysis across all 12 disease classes underscores

the remarkable performance of RePaint, especially in comparison to

InstaGAN. While InstaGAN provides a reasonable approximation

of the disease symptoms, RePaint’s ability to capture the intricate

details sets it apart. These findings reinforce the potential of RePaint

as a powerful tool in the field of precision agriculture.
8.2 Quantitative evaluation

The quantitative evaluation of the proposed methods,

InstaGAN and RePaint, was conducted using the Fréchet

Inception Distance (FID) and Kernel Inception Distance (KID)

metrics. Both of these metrics are widely used for evaluating the

quality of generated images, and it measures the statistical similarity

between the real and generated distributions. Lower FID and KID

values indicate better performance, as they signify that the

generated images are more similar to the real ones.

The FID results for both methods on different disease classes of

grape and tomato leaves are presented in Table 3. The results

demonstrate that RePaint consistently outperforms InstaGAN

across all the tested classes, achieving lower FID values.

The results indicate that RePaint is more effective in capturing

the underlying distribution of the real images, leading to more

realistic and accurate synthetic images. The improvement in FID

scores for RePaint over InstaGAN suggests that the diffusion-based
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approach of RePaint offers advantages in generating high-quality

images for the specific task of plant disease image augmentation.

The Kernel Inception Distance (KID) results for both InstaGAN

and RePaint methods across various plant diseases are presented in

Table 4. These results demonstrate the effectiveness of RePaint,

particularly for Grape diseases, where it consistently achieves lower

KID scores. The performance on Tomato diseases also indicates the

robustness and adaptability of RePaint across different plant types

and diseases. The comparative analysis between InstaGAN and

RePaint provides valuable insights into the strengths and

weaknesses of both methods, contributing to the understanding of

their applicability in plant disease image synthesis and augmentation.
9 Comparison with state-of-the-art
methods

In the rapidly evolving field of generative models for plant

disease image synthesis, it is essential to benchmark new methods

against existing state-of-the-art techniques. This comparison

provides insights into the relative strengths and weaknesses of

different approaches, guiding future research and development.

The following subsections present a detailed comparison of our

proposed methods, InstaGAN and RePaint, with other leading

methods, focusing on their performance in synthesizing images

for Tomato and Grape Leaf diseases.
9.1 Comparison on tomato leaf diseases

Table 5 presents a comparison of the Frechet Inception

Distance (FID) scores for various methods applied to the
TABLE 3 FID results for InstaGAN and RePaint on different disease classes.

Dataset No Plant Disease InstaGAN RePaint

1 Grape Black rot 81.71 56.02

2 Grape Esca (Black Measles) 105.89 68.83

3 Grape Leaf blight (Isariopsis Leaf Spot) 155.25 82.30

4 Tomato Bacterial spot 271.28 181.39

5 Tomato Early blight 195.33 135.84

6 Tomato Late Blight 212.47 143.62

7 Tomato Septoria Leaf Spot 225.13 153.49

8 Tomato Target Spot 203.78 138.94

9 Tomato Mosaic Virus 287.56 196.72

10 Tomato Yellow Leaf Curl Virus 228.94 156.08

11 Tomato Spider Mites 259.63 178.21

12 Tomato Leaf Mold 245.37 167.89

1 ∼ 3 Grape Average 114.28 69.05

4 ∼ 12 Tomato Average 236.61 161.35

1 ∼ 12 Total Average 206.02 138.28
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PlantVillage dataset, focusing on Tomato crop diseases. The FID

score is a widely used metric to measure the quality of generated

images, with lower scores indicating higher similarity between the

generated and real images.

Several methods, including WGAN, SAGAN, MAGAN,

HA+DMM, and MMDGAN, were applied to the Tomato crop,

focusing on 4 disease classes: Healthy, Yellow leaf curl virus, Leaf

mold, and Spider mite. The FID scores for these methods range

from 214.8867 (MMDGAN) to 229.7233 (SAGAN), indicating

varying levels of performance in generating realistic images.

In contrast, InstaGAN and RePaint were applied to 9 different

Tomato disease classes: Late Blight, Early Blight, Septoria Leaf Spot,

Target Spot, Mosaic Virus, Yellow Leaf Curl Virus, Spider Mites,

Leaf Mold, and Bacterial Spot. RePaint significantly outperforms

InstaGAN with an FID score of 161.35 compared to InstaGAN’s

score of 236.61. This highlights the superior performance of RePaint
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in generating high-quality images that closely resemble the

real data.

This comparison provides valuable insights into the state-of-

the-art methods in the field of generative models for plant disease

image synthesis. It also emphasizes the effectiveness of RePaint,

particularly in comparison to other leading methods,

demonstrating its potential as a powerful tool for various

applications in plant science and computer vision.
9.2 Comparison on grape leaf diseases

Table 6 presents a comparison of the Frechet Inception Distance

(FID) scores for various methods applied to the PlantVillage dataset,

focusing on Grape Leaf diseases. The diseases considered in this

comparison include Black Rot, Black Measles, and Leaf Blight.
TABLE 4 KID results for InstaGAN and RePaint on different disease classes.

Dataset No Plant Disease InstaGAN RePaint

1 Grape Black rot 0.098 ( ± 0.002) 0.026 ( ± 0.001)

2 Grape Esca (Black Measles) 0.081 ( ± 0.002) 0.035 ( ± 0.002)

3 Grape Leaf blight (Isariopsis Leaf Spot) 0.161 ( ± 0.004) 0.046 ( ± 0.002)

4 Tomato Bacterial spot 0.125 ( ± 0.002 0.104 ( ± 0.002)

5 Tomato Early blight 0.064 ( ± 0.001) 0.057 ( ± 0.002)

6 Tomato Late Blight 0.212 ( ± 0.005) 0.143 ( ± 0.003)

7 Tomato Septoria Leaf Spot 0.225 ( ± 0.006) 0.153 ( ± 0.004)

8 Tomato Target Spot 0.203 ( ± 0.005) 0.138 ( ± 0.003)

9 Tomato Mosaic Virus 0.287 ( ± 0.007) 0.197 ( ± 0.004)

10 Tomato Yellow Leaf Curl Virus 0.229 ( ± 0.006) 0.157 ( ± 0.004)

11 Tomato Spider Mites 0.260 ( ± 0.007) 0.179 ( ± 0.004)

12 Tomato Leaf Mold 0.245 ( ± 0.006) 0.168 ( ± 0.004)

1 ∼ 3 Grape Average 0.1133 ( ± 0.0027) 0.0357 ( ± 0.00167)

4 ∼ 12 Tomato Average 0.205 ( ± 0.0055) 0.144 ( ± 0.00267)

1 ∼ 12 Total Average 0.1591 ( ± 0.0041) 0.08985 ( ± 0.00217)
TABLE 5 Comparison of FID scores with other publications.

Method Dataset Crop Disease Classes FID

WGAN PlantVillage Tomato Healthy, Yellow leaf curl virus, Leaf mold, Spider mite 226.08

SAGAN PlantVillage Tomato Healthy, Yellow leaf curl virus, Leaf mold, Spider mite 229.7233

MAGAN PlantVillage Tomato Healthy, Yellow leaf curl virus, Leaf mold, Spider mite 220.69

HA+DMM PlantVillage Tomato Healthy, Yellow leaf curl virus, Leaf mold, Spider mite 219.0633

MMDGAN PlantVillage Tomato Healthy, Yellow leaf curl virus, Leaf mold, Spider mite 214.8867

InstaGAN PlantVillage Tomato
Late Blight, Early Blight, Septoria Leaf Spot,

Target Spot, Mosaic Virus, Yellow Leaf Curl Virus, Spider Mites, Leaf Mold, Bacterial Spot
236.61

RePaint PlantVillage Tomato
Late Blight, Early Blight, Septoria Leaf Spot,

Target Spot, Mosaic Virus, Yellow Leaf Curl Virus, Spider Mites, Leaf Mold, Bacterial Spot
161.35
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Several generative models, including DCGAN, LeafGAN, E-

GAN, InfoGAN, WGAN, LRGAN, and Fine Grained GAN, were

applied to the Grape Leaf subset. The FID scores for these methods

range from 72.73 (Fine Grained GAN) to 309.376 (DCGAN),

reflecting a wide range of performance levels.

InstaGAN and RePaint (Diffusion) were also applied to the

same subset, with RePaint achieving the lowest FID score of 69.05,

outperforming all other methods. This result emphasizes the

effectiveness of RePaint, particularly in generating high-quality

images of Grape Leaf diseases, and demonstrates its superiority

over other leading methods.
10 Discussion

In this study, we introduced and evaluated two novel methods,

InstaGAN and RePaint, for plant disease image synthesis. Our

comprehensive comparison with state-of-the-art methods on both

Tomato and Grape Leaf diseases revealed the superior performance

of RePaint, particularly in generating high-quality images that

closely resemble real data. The results of this study have several

important implications. First, the effectiveness of RePaint

demonstrates the potential of diffusion-based models in the field

of generative models for plant science and computer vision. Second,

the ability to synthesize realistic images of plant diseases can

significantly enhance data augmentation techniques, providing a

valuable tool for training more robust and accurate disease detection

models. While the findings are promising, there are some

limitations to consider. The study focused on specific crops and

diseases, and the generalizability of the methods to other contexts

remains to be explored. Additionally, the comparison was based on

FID scores, and further evaluation using other metrics and human

assessments could provide a more comprehensive understanding of

the quality of the generated images. Future research could explore

the application of InstaGAN and RePaint to other crops and

diseases, assessing their performance across a broader range of

scenarios. Additionally, the integration of these methods with

existing disease detection models could be investigated to evaluate

their impact on detection accuracy. Further refinement of the
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diffusion process in RePaint and exploration of other generative

techniques may also lead to continued improvements in image

synthesis quality.
11 Conclusion

This study contributes valuable insights into the state-of-the-art

methods in the field of generative models for plant disease image

synthesis. The introduction of InstaGAN and RePaint, along with

their comprehensive evaluation, highlights the potential of these

methods as powerful tools for various applications in plant science

and computer vision. The findings pave the way for further research

and development in this exciting and rapidly evolving field.

Through rigorous comparison with state-of-the-art methods on

both Tomato and Grape Leaf diseases, the study demonstrated the

superior performance of RePaint in generating realistic and high-

quality images.

The implications of this work are far-reaching, offering new

avenues for data augmentation and the development of more robust

disease detection models in plant science. The success of RePaint, in

particular, underscores the potential of diffusion-based models in

the field of generative models, opening new possibilities for research

and application.

Despite the promising results, the study also acknowledged

limitations, such as the focus on specific crops and diseases and the

reliance on FID scores for evaluation. These areas provide

opportunities for future research, including the exploration of

other crops, diseases, and evaluation metrics, as well as the

integration of these methods with existing disease detection models.

In conclusion, this study marks a significant advancement in the

field of generative models for plant disease image synthesis. The

introduction and evaluation of InstaGAN and RePaint not only

contribute valuable insights into current methodologies but also

pave the way for continued innovation and exploration. The

findings of this research have the potential to impact various

applications in plant science and computer vision, underscoring

the importance of continued investment and exploration in this

exciting field.
TABLE 6 Comparison of FID scores on grape leaf diseases.

Method Dataset Subset Classes FID

DCGAN PlantVillage Grape Leaf Black Rot, Black Measles, Leaf Blight 309.376

LeafGAN PlantVillage Grape Leaf Black Rot, Black Measles, Leaf Blight 178.256

E-GAN PlantVillage Grape Leaf Black Rot, Black Measles, Leaf Blight 112.563

InfoGAN PlantVillage Grape Leaf Black Rot, Black Measles, Leaf Blight 178.13

WGAN PlantVillage Grape Leaf Black Rot, Black Measles, Leaf Blight 121.31

LRGAN PlantVillage Grape Leaf Black Rot, Black Measles, Leaf Blight 128.23

Fine Grained GAN PlantVillage Grape Leaf Black Rot, Black Measles, Leaf Blight 72.73

InstaGAN PlantVillage Grape Leaf Black Rot, Black Measles, Leaf Blight 114.28

RePaint (Diffusion) PlantVillage Grape Leaf Black Rot, Black Measles, Leaf Blight 69.05
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