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Abstract: Time series of counts are observed widely in actuarial science, finance, epidemiology and 
biology. These time series may exhibit over-, equi- and under-dispersion. The Poisson distribution is 
commonly used in count time series models, but it is restricted by the equality of mean and variance. Other 
distributions such as the generalized Poisson, double Poisson, hyper-Poisson, and COM-Poisson 
distributions have been proposed to replace the Poisson distribution to model the different levels of 
dispersion in time series of counts. These models have certain limitations such as complex expressions for 
the mean and variance which complicate the formulation as GARCH models. In this study, we propose an 
alternative hyper-Poisson (AHP) distribution, with simple forms of conditional mean and variance, for an 
integer-valued GARCH (INGARCH) model for time series of counts that also exhibit the different levels 
of dispersion. We demonstrate that the AHP-INGARCH model is comparable to some existing INGARCH 
models. Additionally, the model can cover a wider range of dispersion. The maximum likelihood estimation 
can be used to estimate the parameters of the proposed model. Applications to three real-life data sets 
related to polio, internet protocol and daily COVID-19 new deaths underscore the usefulness of the 
proposed model in studying both over-dispersed and under-dispersed time series of counts. 
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1. Introduction  

Various modelling approaches have been proposed for the time series of counts and recent 
reviews on this topic can be found in many sources ([5,15,16,21,22,24,32,34]). The time series of 
counts analysis in the literature can generally be classified into parameter-driven or observation-driven 
models. Zeger [38] initiated a class of parameter-driven models for time series of counts, which 
introduces autocorrelation as well as over-dispersion into the model through a latent process. Despite 
having wide applications in various fields, there is difficulty with efficient estimation for such 
parameter-driven models. Recently, Koh et al. [24] showed that the Monte Carlo Expectation 
Maximization (MCEM) algorithm is one of the alternative for the estimation of the parameters, and 
particle filter and smoother are useful approaches in inferencing the unobserved latent variables of the 
model. Jung et al. [21] and Jung and Tremayne [22] have reviewed both approaches of the parameter-
driven and observation-driven models for time series of counts as well as the estimation and diagnostic 
tests performed for these time series models. 

Observation-driven thinning-based models are commonly used to model over-dispersed or under-
dispersed count data, see for example Weiß [33], Bourguignon and Weiß [3], Yang [37] and Kang [23]. 
Weiß [33] showed that the first-order nonnegative integer-value autoregressive (INAR(1)) model based 
on binomial thinning operator with Good- and power-law weighted Poisson-distributed innovations are 
particularly well-suited for modelling under-dispersed counts. Bourguignon and Weiß [3] proposed a new 
INAR(1) model for stationary count data processes with Bernoulli-geometric (BerG) marginal 
distributions, that can model time series of counts with over-, equi- and under-dispersion, from a new 
generalized thinning operator based on the convolution of binomial and negative binomial random 
variables. Recently, Yang [37] introduced a novel thinning operator based on the generalized Poisson 
distribution, called GP thinning operator, and Kang [23] defined a new thinning operator, called GSC 
thinning operator, based on a new discrete distribution proposed by Gómez-Déniz et al. [17], to 
construct a new INAR(1) model to capture the dispersion features of count time series count. 

Another popular observation-driven approach for modelling time series of count are the 
INGARCH models. Heinen [19] proposed the autoregressive conditional Poisson (ACP) model, 
Ferland et al. [14] called it as integer-valued generalised autoregressive conditional heteroscedasticity 
(INGARCH) model, that has the advantage in the ease of application of the likelihood to evaluate the 
model. More specifically, the time series of counts ሼ𝑌௧ሽ  for 𝑡 ൒ 1  follows a conditional Poisson 
distribution with an autoregressive mean 𝜇௧, which is defined as 

𝑌௧|ℱ௧ିଵ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛ሺ𝜇௧ሻ 

𝐸ሾ𝑌௧|ℱ௧ିଵሿ ൌ 𝜇௧ ൌ 𝛼଴ ൅ ∑ 𝛼௜𝑌௧ି௜
௣
௜ୀଵ ൅ ∑ 𝛽௝𝜇௧ି௝

௤
௝ୀଵ ,    (1.1) 

where 𝛼଴ ൐ 0 , 𝛼௜ ൒ 0 , 𝛽௝ ൒ 0 , 𝑖 ൌ 1,2, … , 𝑝 , 𝑗 ൌ 1,2, … , 𝑞 , 𝑝 ൒ 1, 𝑞 ൒ 0  and ℱ௧ିଵ  denotes the 
information available on the series up to and including time 𝑡 െ 1 . It is worth noting that the 
conditional mean (1.1), dependent on past observed counts and past conditional means, is similar to 
the conditional variance in the GARCH model by Bollerslev [2] as well as the conditional intensity of 
the autoregressive conditional duration model by Engle and Russell [12] for continuous-valued 
discrete-time data. However, the INGARCH model with Poisson distribution is suitable only for 
positive serial correlation and over-dispersion in the count data. 
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In this paper, we will focus on developing a class of observation-driven INGARCH-type models 
for modelling time series of counts that may exhibit over-, equi- and under-dispersion. The Poisson 
distribution, which has been commonly used to model time series of counts, is restrictive to the model 
variance equal to the mean; that is, for modelling equi-dispersed data. Therefore, Heinen [19] proposed 
the generalised double autoregressive conditional Poisson model which can model over-, equi- and 
under-dispersion of count time series. The double Poisson (DP) distribution proposed by Efron [11], 
which has two parameters, is used in this model. Bourguignon et al. [4] also used the double Poisson 
distribution to extend the INAR(1) for modelling count time series with over-, equi- and under-
dispersion. However, Winkelmann [36] found that the results of the DP with its normalizing constant 
approximated by Efron’s original method are not exact, making it a hurdle for applications. Moreover, 
Zhu [41] also argued that the DP distribution, having intractable normalizing constant and moments, 
is difficult to utilize for modelling and many of its properties remained unknown. Hence, some of the 
theoretical aspects of the resulting DP-INGARCH(1,1) models may be difficult to establish. On the 
other hand, Zou et al. [42] noted that while DP provides a good fit when the mean is high for all 
dispersion types, the fit is highly unreliable when the mean is small. With these shortcomings, the DP 
distribution may be unattractive for the analysis of time series despite being able to model over-, equi- 
and under-dispersion of the count data. 

Zhu [39] presented the negative binomial INGARCH (NB-INGARCH) model that works well for 
an over-dispersed poliomyelitis monthly data, and claimed that the proposed model is better than the 
Poisson- and DP-INGARCH models. Although the mean-variance relationship of the NB enables over-
dispersion to be captured, there is difficulty in handling data characterized by under-dispersion ([26]). 
Subsequently, Zhu [41] proposed a generalized Poisson INGARCH (GP-INGARCH) model as an 
alternative model to account for both over- and under-dispersion in time series of counts data. The 
generalized Poisson (GP) distribution has been studied extensively by many sources ([6,7,13]). 
Unfortunately, Zhu [40] states that the GP model is not a true probability model under certain 
conditions, leading to its inability to model some levels of under-dispersion. 

Zhu [40] in turn addressed the weakness of this model by proposing a COM-Poisson INGARCH 
model and indicating that this model is a powerful competitor to the GP model. The COM-Poisson (COMP) 
distribution has been proposed by Conway and Maxwell [8] as a model for queuing systems with state-
dependent service times. This distribution has been used widely after Shmueli et al. [29] further examined 
its statistical and probabilistic properties. The COMP distribution has two parameters with λ as the 
centering parameter and v as the dispersion parameter. Zhu [40] noted that a COMP model based on the 
COMP formulation for λ would be difficult to interpret. To overcome this problem, a re-parameterization 
of the COMP distribution, 𝜇 ൌ 𝜆ଵ ௩⁄ , has been proposed by Guikema and Goffelt [18] to provide a clear 
centering parameter. Recently, Qian and Zhu [27] used the generalized COMP distribution, which has one 
more parameter than COMP distribution to handle heavy-tailed count time series. 

Suitable to model both over- and under-dispersed data, the hyper-Poisson (HP) distribution is a 
popular distributions besides DP, GP and COMP distributions and belongs to the two-parameter family 
of discrete distributions. The HP distribution, introduced by Bardwell and Crow [1], is generated by 
the confluent function and admits over-dispersion as well as under-dispersion. Although the HP 
distribution was applied in generalized linear models and regression models for over-dispersed and 
under-dispersed count data (see Sáez-Castillo and Conde-Sánchez [28]), it is difficult to apply in 
INGARCH model. The mean and variance are in confluent hypergeometric form and hence, the 
conditional mean and conditional variance for INGARCH model are hard to derive. Kumar and Nair [25] 
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then introduced an alternative hyper-Poisson (AHP) distribution, which has simpler forms of the mean 
and variance. 

In this paper, we introduce the AHP distribution as an INGARCH model for modelling over-
dispersed and under-dispersed count time series data, and then compare it to existing INGARCH 
models. The AHP distribution has simpler forms for the mean and variance compared to the HP 
distribution, making it potentially more viable and useful choice as an INGARCH model. We also 
investigate the properties of the AHP distribution and derive a lower bound for one of the parameters to 
ensure a valid probability mass function (pmf) for the case of under-dispersion. Similar to Weiß [31], we 
provide a set of Yule-Walker type equations from which the autocorrelation function of general AHP-
INGARCH(𝑝, 𝑞) models can be obtained. In particular, we derive the equations of variance and 
autocorrelation function for AHP-INGARCH(1,1) model. It is worth to noting that the unconditional 
variance of AHP-INGARCH(1,1) model is more general than the unconditional variance of 
INGARCH model of Weiß [31]. The INGARCH model of Weiß [31] is a special case of AHP-
INGARCH model when 𝛾 ൌ 1. In the applications to three real-life data sets, we have included five 
existing INGARCH models, namely the Poisson-, NB-, COMP-, GP- and DP-INGARCH models in 
direct comparison against the proposed AHP-INGARCH model, highlighting the usefulness of AHP-
INGARCH as a competitive model in practice.  

The contents of this paper are organized as follows. Section 2 presents the AHP distribution along 
with its basic properties, while Section 3 outlines the proposed INGARCH model with the AHP 
distribution. The maximum likelihood estimation for the proposed model is briefly discussed in 
Section 4, followed by a simulation study to assess the performance of this estimation method in 
Section 5. Section 6 demonstrates the application of the proposed model to three real-life data sets, 
which exhibit different types of dispersions, in comparison to some existing models for time series of 
counts. Finally, Section 7 provides some concluding remarks.  

2. Some properties of the alternative hyper-Poisson distribution 

In this section, we give a brief review of the hyper-Poisson (HP) distribution and its alternative 
form. The two-parameter HP distribution is first introduced by Bardwell and Crow [1] through the 
following probability generating function (pgf): 

𝐺ሺ𝑢ሻ ൌ 𝐸ሾ𝑢௓ሿ ൌ
𝜙ሺ1; 𝛾; 𝜃𝑢ሻ
𝜙ሺ1; 𝛾; 𝜃ሻ

, 𝜃 ൐ 0, 𝛾 ൐ 0, 

where 𝜙ሺa; 𝑏; 𝑐ሻ ൌ ∑ ሺୟሻೖ௖ೖ

ሺ௕ሻೖ௞!
∞
௞ୀ଴  is the confluent hypergeometric series, or known as the Kummer M 

function, in which ሺ𝑎ሻ௞ ൌ ୻ሺ௔ା௞ሻ

୻ሺ௔ሻ
 is the Pochhammer symbol and Γሺ∙ሻ is a gamma function. Sáez-

Castillo and Conde-Sánchez [28] utilize the HP distribution to model over-dispersed and under-
dispersed count data and showed that the range of values of the dispersion index of HP distribution is 
wide in both situations of over- and under-dispersion. However, the mean of HP distribution can only 
be expressed in term of the confluent hypergeometric series.  

Kumar and Nair [25] then introduced an alternative form of HP distribution, called AHP. The 
pmf and pgf of AHP distribution (𝐴𝐻𝑃ሺ𝜃, 𝛾ሻሻ can be written, respectively as  

𝑃ሺ𝑍 ൌ 𝑧ሻ ൌ
𝜃௭

ሺ𝛾ሻ௭
𝜙ሺ1 ൅ 𝑧; 𝛾 ൅ 𝑧; െ𝜃ሻ,   𝜃 ൐ 0, 𝛾 ൐ 0, 𝑧 ൌ 0,1,2, …, 
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and  

𝐺ሺ𝑢ሻ ൌ 𝜙൫1; 𝛾; 𝜃ሺ𝑢 െ 1ሻ൯ ൌ ෍
ሺ1ሻ௞

ሺ𝛾ሻ௞

ሾ𝜃ሺ𝑢 െ 1ሻሿ௞

𝑘!

∞

௞ୀ଴

, 

where 𝑍  is the AHP distributed random variable. Note that when 𝛾 ൌ 1 , we have 𝐺ሺ𝑢ሻ ൌ

∑ ሾఏሺ௨ିଵሻሿೖ

௞!
∞
௞ୀ଴ ൌ 𝑒ఏሺ௨ିଵሻ, the pgf of a Poisson distribution with parameter 𝜃. 

The mean and variance of a AHP distributed random variable 𝑍 are, respectively, 𝜇௓ ൌ 𝐸ሾ𝑍ሿ ൌ ఏ

ఊ
 

and 𝜎௓
ଶ ൌ ఏ

ఊ
ቂ1 ൅ ఏ

ఊ
ቀఊିଵ

ఊାଵ
ቁቃ ൌ 𝜇௓ െ 𝜇௓

ଶ ൅ ଶఊఓೋ
మ

ଵାఊ
. However, we found that in order to guarantee the 

positivity of the variance, the parameter 𝛾 needs to be constrained by 𝛾 ൐ ିଵିఏା√ఏమା଺ఏାଵ

ଶ
 (or 𝛾 ൐

ఓೋିଵ

ఓೋାଵ
). Figure 1 shows the feasible range of 𝛾 for a given 𝜇௓; we note that large 𝛾 is required for large 

𝜇௓ so that 𝜎௓
ଶ ൐ 0.  

 

Figure 1. Feasible range of 𝛾 for a given mean 𝜇௓ (shaded region). 

The parameter constraint for the positivity of the variance can also be rewritten as 𝜃 ൏ 𝜃ଵ, for 0 ൏ 𝛾 ൏ 1, 

where 𝜃ଵ ൌ ఊሺఊାଵሻ

ଵିఊ
. However, in order to guarantee the positivity of the pmf of AHP distribution, the 

parameter 𝜃 needs to be constrained by 𝜃 ൏ 𝜃ଶ, where 𝜃ଶ is the solution of 𝜙ሺ𝛾 െ 1; 𝛾; 𝜃ଶሻ ൌ 0 (see 
Appendix A.1 for the poof). Figure 2 shows the boundary lines of 𝜃ଵ and 𝜃ଶ for a given 𝛾 ∈ ሺ0,1ሻ. For 
an AHP distribution, the feasible region of 𝜃 for a given 𝛾 ∈ ሺ0,1ሻ is the region below the solid line in 
Figure 2. 
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Figure 2. The boundary lines for the positivity of variance (dash line) and positivity of 
pmf (solid line) of an AHP distribution with 0 ൏ 𝛾 ൏ 1. 

The dispersion index of AHP distribution is given by 

𝐼௓ ൌ
𝜎௓

ଶ

𝜇௓
ൌ 1 െ 𝜇௓ ൬

1 െ 𝛾
1 ൅ 𝛾

൰. 

We note that the AHP distribution is under-dispersed ሺ0 ൏ 𝐼௓ ൏ 1ሻ when 
ିଵିఏା√ఏమା଺ఏାଵ

ଶ
൏ 𝛾 ൏ 1, 

equi-dispersed ሺ𝐼௓ ൌ 1ሻ when 𝛾 ൌ 1, and over-dispersed ሺ𝐼௓ ൐ 1ሻ when 𝛾 ൐ 1. Hence, the parameter 
𝛾 is the dispersion parameter for AHP distribution. Bourguignon and Weiß [3] studied the dispersion 
behaviour of a BerG distribution, that is, the distribution of the convolution of a Bernoulli and a 
geometric random variable. They found that the BerG distribution can be used in count time series 
modelling with over-, equi- and under-dispersion. As noted by Bourguignon and Weiß [3], there is no 
feasible region for under-dispersion when the mean is larger than two for a BerG distribution. However, 
the AHP distribution can be seen to cover a wider range of dispersion regions compared to the BerG 
distribution.  

In addition, the third and fourth central moments of an AHP random variable 𝑍 are obtained as follows: 

𝜇ଷ ൌ 𝐸ሾሺ𝑍 െ 𝜇௓ሻଷሿ ൌ 𝜇௓ െ 3𝜇௓
ଶ ൅ ଺ఊఓೋ

మ

ଵାఊ
൅ 2𝜇௓

ଷ െ ଺ఊఓೋ
య

ଵାఊ
൅ ଺ఊమఓೋ

య

ሺଵାఊሻሺଶାఊሻ
, 

𝜇ସ ൌ 𝐸ሾሺ𝑍 െ 𝜇௓ሻସሿ ൌ 𝜇௓ െ 4𝜇௓
ଶ ൅ ଵସఊఓೋ

మ

ଵାఊ
൅ 6𝜇௓

ଷ െ ଶସఊఓೋ
య

ଵାఊ
൅ ଷ଺ఊమఓೋ

య

ሺଵାఊሻሺଶାఊሻ
െ 3𝜇௓

ସ  

 ൅ ଵଶఊఓೋ
ర

ଵାఊ
െ ଶସఊమఓೋ

ర

ሺଵାఊሻሺଶାఊሻ
൅ ଶସఊయఓೋ

ర

ሺଵାఊሻሺଶାఊሻሺଷାఊሻ
. 

3. The AHP-INGARCH(p,q) model 

Let ሼ𝑌௧ሽ௧ஹଵ  denotes a univariate time series of counts and ℱ௧ିଵ  be the 𝜎 -field generated by 
ሼ𝑌௧ିଵ, 𝑌௧ିଶ, … ሽ . We assume that process ሼ𝑌௧ሽ  is conditionally independent given ℱ௧ିଵ  and the 
conditional distribution of 𝑌௧ given ℱ௧ିଵ is specified by an AHP distribution, that is  

𝑌௧|ℱ௧ିଵ~𝐴𝐻𝑃ሺ𝜃௧, 𝛾ሻ, 

𝐸ሾ𝑌௧|ℱ௧ିଵሿ ൌ ఏ೟

ఊ
ൌ 𝜇௧ ൌ 𝛼଴ ൅ ∑ 𝛼௜𝑌௧ି௜

௣
௜ୀଵ ൅ ∑ 𝛽௝𝜇௧ି௝

௤
௝ୀଵ ,     (3.1) 

0
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where 𝛼଴ ൐ 0, 𝛼௜ ൒ 0, 𝛽௝ ൒ 0,  𝑖 ൌ 1, … , 𝑝 , 𝑗 ൌ 1, … , 𝑞 , 𝑝 ൒ 1 , 𝑞 ൒ 0 , and 𝛾 ൐ 0 . This model is 
denoted by AHP-INGARCH(p,q). Since the conditional distribution of 𝑌௧ given ℱ௧ିଵ is specified by 
an AHP distribution, this model will be able to account for equi- (𝛾 ൌ 1), over- (𝛾 ൐ 1) and under-

dispersion (
ିଵିఏ೟ାටఏ೟

మା଺ఏ೟ାଵ

ଶ
൏ 𝛾 ൏ 1 ). When 𝛾 ൌ 1 , the model (3.1) is equal to the Poisson-

INGARCH model introduced by Heinen [19] and Ferland et al. [14] Some of the important properties 
of the AHP-INGARCH(p,q) time series model are given next. 
Theorem 3.1. Let ሼ𝑌௧ሽ be a weakly stationary process with range ሼ0,1, … ሽ  following the AHP-

INGARCH(p,q) model in (3.1). If ∑ 𝛼௜ ൅ ∑ 𝛽௝ ൏ 1௤
௝ୀଵ

௣
௜ୀଵ , then 

(i) the unconditional expectation of 𝑌௧ is given by 

𝜇௒ ൌ 𝐸ሾ𝑌௧ሿ ൌ ఈబ

ቀଵି∑ ఈ೔ି∑ ఉೕ
೜
ೕసభ

೛
೔సభ ቁ

; 

(ii) the covariance Covሾ𝑌௧, 𝜇௧ି௞ሿ fulfills 

𝐶𝑜𝑣ሾ𝑌௧, 𝜇௧ି௞ሿ ൌ ൜
𝐶𝑜𝑣ሾ𝜇௧, 𝜇௧ି௞ሿ, 𝑘 ൒ 0,
𝐶𝑜𝑣ሾ𝑌௧, 𝑌௧ି௞ሿ, 𝑘 ൏ 0;

 

(iii) the autocovariances 𝛾௒ሺ𝑘ሻ ൌ 𝐶𝑜𝑣ሾ𝑌௧, 𝑌௧ି௞ሿ  and 𝛾ఓሺ𝑘ሻ ൌ 𝐶𝑜𝑣ሾ𝜇௧, 𝜇௧ି௞ሿ  will satisfy the 
following equations: 

𝛾௒ሺ𝑘ሻ ൌ ∑ 𝛼௜𝛾௒ሺ|𝑘 െ 𝑖|ሻ ൅௣
௜ୀଵ ∑ 𝛽௝𝛾௒ሺ𝑘 െ 𝑗ሻ ൅௠௜௡ሺ௞ିଵ,௤ሻ

௝ୀଵ ∑ 𝛽௝𝛾ఓሺ𝑗 െ 𝑘ሻ௤
௝ୀ௞ , 𝑘 ൒ 1,   (3.2) 

𝛾ఓሺ𝑘ሻ ൌ ∑ 𝛼௜𝛾ఓሺ𝑘 െ 𝑖ሻ ൅௠௜௡ሺ௞,௣ሻ
௜ୀଵ ∑ 𝛼௜𝛾௒ሺ𝑖 െ 𝑘ሻ ൅௣

௜ୀ௞ାଵ ∑ 𝛽௝𝛾ఓሺ|𝑘 െ 𝑗|ሻ௤
௝ୀଵ , 𝑘 ൒ 0.   (3.3) 

The proof of Theorem 3.1 is provided in Appendix A.2.  
From (3.1), the conditional mean and conditional variance of 𝑌௧ are given by, respectively, 

𝐸ሺ𝑌௧|ℱ௧ିଵሻ ൌ ఏ೟

ఊ
ൌ 𝜇௧,  

and  

𝑉ሺ𝑌௧|ℱ௧ିଵሻ ൌ ఏ೟

ఊ
ቂ1 ൅ ఏ೟

ఊ

ሺఊିଵሻ

ሺఊାଵሻ
ቃ ൌ 𝜇௧ ቂ1 ൅ 𝜇௧

ሺఊିଵሻ

ሺఊାଵሻ
ቃ. 

Then, the unconditional mean and unconditional variance of 𝑌௧ are, respectively,  

𝐸ሺ𝑌௧ሻ ൌ 𝜇௒ ൌ ఈబ

ଵି∑ ఈ೔
೛
೔సభ ି∑ ఉೕ

೜
ೕసభ

 , 

and 

𝑉ሺ𝑌௧ሻ ൌ 𝜎௒
ଶ ൌ 𝐸ሾ𝑉ሺ𝑌௧|ℱ௧ିଵሻሿ ൅ 𝑉ሾ𝐸ሺ𝑌௧|ℱ௧ିଵሻሿ ൌ 𝜇௒ ൅ 𝜇௒

ଶ ఊିଵ

ఊାଵ
൅ ቀ ଶఊ

ఊାଵ
ቁ 𝑉ሺ𝜇௧ሻ. 
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3.1. AHP-INGARCH(1,1) model 

Consider the special case of an AHP-INGARCH(1,1) model. With arguments similar to those in 
Example 1 of Weiß [31], we obtain the unconditional variance of the AHP-INGARCH(1,1) model as 

 𝑉ሺ𝑌௧ሻ ൌ ቀ𝜇௒ ൅ 𝜇௒
ଶ ఊିଵ

ఊାଵ
ቁ ൬

ሺఊାଵሻ൫ଵିఉభ
మିଶఈభఉభ൯

ሺఊାଵሻ൫ଵିఉభ
మିଶఈభఉభ൯ିଶఊఈభ

మ൰, 

with the variance of the conditional mean given by 𝑉ሺ𝜇௧ሻ ൌ ఈభ
మఓೊሺఊାଵሻାఈభ

మఓೊ
మሺఊିଵሻ

ሺఊାଵሻ൫ଵିఉభ
మିଶఈభఉభ൯ିଶఊఈభ

మ. 

The autocovariance is  

𝛾௒ሺ𝑘ሻ ൌ 𝛼ଵ𝛾௒ሺ𝑘 െ 1ሻ ൅ 𝛽ଵ𝛾௒ሺ𝑘 െ 1ሻ ൌ ሺ𝛼ଵ ൅ 𝛽ଵሻ௞ିଵ𝛾௒ሺ1ሻ 

      ൌ ሺ𝛼ଵ ൅ 𝛽ଵሻ௞ିଵ ቀ𝛼ଵ𝜇௒ ൅ 𝛼ଵ𝜇௒
ଶ ఊିଵ

ఊାଵ
ቁ ൤

ሺఊାଵሻ൫ଵିఉభ
మିఈభఉభ൯

ሺఊାଵሻ൫ଵିఉభ
మିଶఈభఉభ൯ିଶఊఈభ

మ൨ , 𝑘 ൒ 1, 

giving the autocorrelations as 

𝜌௒ሺ𝑘ሻ ൌ ሺ𝛼ଵ ൅ 𝛽ଵሻ௞ିଵ ఈభ൫ଵିఉభ
మିఈభఉభ൯

൫ଵିఉభ
మିଶఈభఉభ൯

 ൌ ሺ𝛼ଵ ൅ 𝛽ଵሻ௞ିଵ ఈభሾଵିఉభሺఈభାఉభሻሿ

ଵିሺఈభାఉభሻమାఈభ
మ , 𝑘 ൒ 1. 

The proof of this special case is provided in Appendix A.3.  
Corollary 3.1. Suppose that ሼ𝑌௧ሽ following the AHP-INARCHሺ𝑝ሻ model with 𝑞 ൌ 0 in model (3.1) is 
second-order stationary, then the autocovariance function 𝛾௒ሺ𝑘ሻ satisfies the equation   

γ௒ሺ𝑘ሻ ൌ ෍ 𝛼௜𝛾௒ሺ|𝑘 െ 𝑖|ሻ,

௣

௜ୀଵ

𝑘 ൒ 1. 

3.2. AHP-INARCH(1) model 

Consider the AHP-INARCH(1) model. The unconditional mean and unconditional variance are 
given by respectively,  

𝐸ሺ𝑌௧ሻ ൌ 𝜇௒ ൌ ఈబ

ଵିఈభ
,  

and 

 𝑉ሺ𝑌௧ሻ ൌ 𝜎௒
ଶ ൌ ఈబ

ሺଵିఈభሻమ ቂ
ሺఊାଵሻሺଵିఈభሻାఈబሺఊିଵሻ

ఊାଵିଶఊఈభ
మ ቃ. 

From Corollary 3.1, one immediately obtains the autocovariance function of the AHP-INARCH(1) 
model as 

𝛾௒ሺ𝑘ሻ ൌ ሺ𝛼ଵሻ௞ିଵ𝛾௒ሺ1ሻ ൌ ሺ𝛼ଵሻ௞ିଵ ቀ ఈబ

ሺଵିఈభሻమቁ ቂఈభሺఊାଵሻሺଵିఈభሻାఈభఈబሺఊିଵሻ

ఊାଵିଶఊఈభ
మ ቃ     

ൌ ሺ𝛼ଵሻ௞ ቀ ఈబ

ሺଵିఈభሻమቁ ቀ
ሺఊାଵሻሺଵିఈభሻାఈబሺఊିଵሻ

ఊାଵିଶఊఈభ
మ ቁ ൌ ሺ𝛼ଵሻ௞𝛾௒ሺ0ሻ. 
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Hence, the autocorrelation function of the AHP-INARCH(1) model is 

 𝜌௒ሺ𝑘ሻ ൌ ఊೊሺ௞ሻ

ఊೊሺ଴ሻ
ൌ ሺ𝛼ଵሻ௞, 

like in the standard AR(1) case.  

4. Maximum likelihood estimation 

In this section, we will discuss the maximum likelihood estimation (MLE) for the AHP-
INGARCH (p,q) model (3.1), that is 

𝑌௧|ℱ௧ିଵ~𝐴𝐻𝑃ሺ𝜃௧, 𝛾ሻ, 

𝐸ሾ𝑌௧|ℱ௧ିଵሿ ൌ
𝜃௧

𝛾
ൌ 𝛼଴ ൅ ෍ 𝛼௜𝑌௧ି௜

௣

௜ୀଵ

൅ ෍ 𝛽௝
𝜃௧ି௝

𝛾

௤

௝ୀଵ

. 

Let 𝜶 ൌ ൫𝛼ଵ, … , 𝛼௣൯
்

, 𝜷 ൌ ൫𝛽ଵ, … , 𝛽௤൯
்

, 𝛌∗ ൌ ሺ𝛼଴, 𝜶், 𝜷்ሻ், 𝛌 ൌ ሺ𝛾, 𝛌∗ఁሻ், and write the true value 
of 𝛌 as 𝛌଴. Suppose that the observation 𝐘 ൌ ሺ𝑌ଵ, … , 𝑌௡ሻ is fitted with the model (3.1). The conditional 
likelihood function at time t is 

𝑙௧ሺ𝛌ሻ  ൌ 𝑓ሺ𝑦௧|ℱ௧ିଵ;𝛌ሻ ൌ
𝜃௧

௒೟

ሺ𝛾ሻ௒೟

𝜙ሺ1 ൅ 𝑌௧; 𝛾 ൅ 𝑌௧; െ𝜃௧ሻ, 

where 𝜃௧ ൌ 𝛾𝛼଴ ൅ 𝛾 ∑ 𝛼௜𝑌௧ି௜
௣
௜ୀଵ ൅ ∑ 𝛽௝𝜃௧ି௝

௤
௝ୀଵ . The conditional log-likelihood function is 

𝑙ሺ𝛌ሻ ൌ ln  ෑ 𝑙௧

௡

௧ୀଶ

ሺ𝛌ሻ ൌ ෍ሼ𝑌௧ ln 𝜃௧ െ ln Γሺ𝛾 ൅ 𝑌௧ሻ ൅ ln Γሺ𝛾ሻ ൅ ℎሺ𝜃௧ሻሽ
௡

௧ୀଶ

, 

where ℎሺ𝜃௧ሻ ൌ lnሾ𝜙ሺ1 ൅ 𝑌௧; 𝛾 ൅ 𝑌௧; െ𝜃௧ሻሿ. The score function is defined by 

𝜕𝑙ሺ𝛌ሻ

𝜕𝛌
ൌ ෍

𝜕
𝜕𝛌

௡

௧ୀଶ

ln 𝑙௧ሺ𝛌ሻ, 

with 

డ ୪୬ ௟೟ሺ𝛌ሻ

డఊ
ൌ ௒೟

ఏ೟

డఏ೟

డఊ
െ 𝜓ሺ𝛾 ൅ 𝑌௧ሻ ൅ 𝜓ሺ𝛾ሻ ൅ డ

డఊ
ℎሺ𝜃௧ሻ, 

డ ୪୬ ௟೟ሺ𝛌ሻ

డ𝝀∗ ൌ ቂ௒೟

ఏ೟
൅ డ

డఏ೟
ℎሺ𝜃௧ሻቃ డఏ೟

డ𝝀∗ , 

 
డఏ೟

డఊ
ൌ 𝛼଴ ൅ ∑ 𝛼௜𝑌௧ି௜

௣
௜ୀଵ ൅ ∑ 𝛽௝

డఏ೟షೕ

డఊ
௤
௝ୀଵ , 

డఏ೟

డఈబ
ൌ 𝛾 ൅ ∑ 𝛽௝

డఏ೟షೕ

డఈబ

௤
௝ୀଵ , 

డఏ೟

డఈ೔
ൌ 𝛾𝑌௧ି௜ ൅ ∑ 𝛽௝

డఏ೟షೕ

డఈ೔

௤
௝ୀଵ , 𝑖 ൌ 1, … , 𝑝,  
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 డఏ೟

డఉೕ
ൌ 𝜃௧ି௝ ൅ ∑ 𝛽௞

డఏ೟షೖ

డఉೕ

௤
௞ୀଵ , 𝑗 ൌ 1, … , 𝑞.  

where 𝜓ሺ𝑥ሻ ൌ డ

డ௫
ሾln Γሺ𝑥ሻሿ ൌ ଵ

୻ሺ௫ሻ

డ

డ௫
ሾΓሺ𝑥ሻሿ  is the digamma function ([20]). The solution of the 

equation 
డ௟ሺ𝛌ሻ

డ𝛌
ൌ 0, if it exists, gives the conditional MLE of 𝛌, denoted by 𝛌෠ .  

The Hessian matrix is given by 

𝐻௡ሺ𝛌ሻ ൌ െ ෍
𝜕ଶ

𝜕𝛌𝜕𝛌்

௡

௧ୀଶ

ln 𝑙௧ሺ𝛌ሻ 

with 

డమ ୪୬ ௟೟ሺ𝛌ሻ

డఊమ ൌ ௒೟

ఏ೟

డమఏ೟

డఊమ െ ௒೟

ఏ೟
మ ቀడఏ೟

డఊ
ቁ

ଶ
െ 𝜓′ሺ𝛾 ൅ 𝑦௧ሻ ൅ 𝜓′ሺ𝛾ሻ ൅ డమ

డఊమ ℎሺ𝜃௧ሻ, 

డమ ୪୬ ௟೟ሺ𝛌ሻ

డఊడ𝝀∗ ൌ ቂെ ௒೟

ఏ೟
మ

డఏ೟

డఊ
൅ డమ

డఊడఏ೟
ℎሺ𝜃௧ሻቃ డఏ೟

డ𝛌∗ ൅ ቂ௒೟

ఏ೟
൅ డ

డఏ೟
ℎሺ𝜃௧ሻቃ డమఏ೟

డఊడ𝛌∗ , 

డమ ୪୬ ௟೟ሺ𝛌ሻ

డ𝛌∗డ𝛌∗೅ ൌ ቂെ ௒೟

ఏ೟
మ ൅ డమ

డఏ೟
మ ℎሺ𝜃௧ሻቃ డఏ೟

డ𝛌∗

డఏ೟

డ𝛌∗೅ ൅ ቂ௒೟

ఏ೟
൅ డ

డఏ೟
ℎሺ𝜃௧ሻቃ డమఏ೟

డ𝛌∗డ𝛌∗೅ , 

  డ
మఏ೟

డఈబ
మ ൌ 0, డమఏ೟

డఈ೔
మ ൌ 0, డమఏ೟

డఈబడఈ೔
ൌ 0, 𝑖 ൌ 1, … , 𝑝, 

డమఏ೟

డఈబడఉೕ
ൌ

డఏ೟షೕ

డఈబ
൅ ∑ 𝛽௞

డమఏ೟షೖ

డఈబడఉೕ
,௤

௞ୀଵ   డమఏ೟

డఉೕ
మ ൌ 2

డఏ೟షೕ

డఉೕ
൅ ∑ 𝛽௞

డమఏ೟షೖ

డఉೕ
మ , 𝑗 ൌ 1, … , 𝑞,௤

௞ୀଵ   

డమఏ೟

డఈ೔డఉೕ
ൌ

డఏ೟షೕ

డఈ೔
൅ ∑ 𝛽௞

డమఏ೟షೖ

డఈ೔డఉೕ
, 𝑖 ൌ 1, … , 𝑝, 𝑗 ൌ 1, … , 𝑞௤

௞ୀଵ ,  

 
డమఏ೟

డఉೕ డఉೖ
ൌ

డఏ೟షೕ

డఉೖ
൅ డఏ೟షೖ

డఉೖ
൅ ∑ 𝛽௟

డమఏ೟ష೗

డఉೖ డఉೕ

௤
௟ୀଵ , 𝑗, 𝑘 ൌ 1, … , 𝑞 

where 𝜓′ሺ𝑥ሻ ൌ డ

డ௫
ሾ𝜓ሺ𝑥ሻሿ is the trigamma function. According to White [35], the standard errors of 

𝛌෠   can be computed from the robust sandwich matrix 𝐻௡
ିଵ൫𝛌෠൯𝑆௡൫𝛌෠൯𝐻௡

ିଵ൫𝛌෠൯ , where 𝑆௡ሺ𝛌ሻ ൌ

∑ డ ୪୬ ௟೟ሺ𝛌ሻ

డ𝛌

డ ୪୬ ௟೟ሺ𝛌ሻ

డ𝛌೅
௡
௧ୀଶ , and 𝐻௡ሺ𝛌ሻ ൌ െ ∑ డమ ୪୬ ௟೟ሺ𝛌ሻ

డ𝛌డ𝛌೅
௡
௧ୀଶ . 

5. Monte Carlo simulation study 

Since the autocorrelation function of AHP-INGARCH(1,1) model is derived, the parameter of 
AHP-INGARCH(1,1) model can also be estimated according to the Yule-Walker approach. It is of 
interest to compare the efficiency of the Yule-Walker (YW) estimator with the maximum likelihood 
(ML) estimator. In this section, we conduct a Monte Carlo simulation study to investigate the 
performance of the YW and ML estimators for the proposed AHP-INGARCH(1,1) model. The 
simulations are computed by using the R programming language. The data set 𝑌ଵ, 𝑌ଶ, … , 𝑌௡ is generated 
in accordance to model (3.1) for different sample sizes 𝑛 and different parameter values. Due to space 
constraints, we showed only the simulation results for the data with fixed mean equal to one and 
parameters ሺ𝛼଴ ൌ 0.6 , 𝛼ଵ ൌ 0.3, 𝛽ଵ ൌ 0.1ሻ  for several sample sizes (𝑛 ൌ 100, 200 and 500ሻ  with 



29126 

AIMS Mathematics  Volume 8, Issue 12, 29116–29139. 

over-dispersion ሺ𝛾 ൌ 2ሻ, equi-dispersion ሺ𝛾 ൌ 1ሻ and under-dispersion ሺ𝛾 ൌ 0.8ሻ in Table 1. Similar 
results are obtained for other sets of parameter values considered. The parameter estimates and mean 
square errors for the parameters ሺ𝛼଴, 𝛼ଵ, 𝛽ଵ, 𝛾ሻ  are computed over 1000 replications. In the MLE 

estimation, we use sample mean as the initial mean value, namely 𝜇ଵ ൌ ଵ

௡
∑ 𝑌௜

௡
௜ୀଵ .  

Based on the results from the simulation study, the parameter estimates approach the true values 
along with small mean square errors at all three types of dispersions as the sample size increases. 

Table 1. Yule-Walker (YW) and maximum likelihood estimates (MLE) for simulated 
AHP-INGARCH(1, 1) model with ሺ𝛼଴ ൌ 0.6 , 𝛼ଵ ൌ 0.3, 𝛽ଵ ൌ 0.1, 𝛾ሻ  and different 
sample sizes 𝑛 over 1000 replications (Mean squared errors in parentheses). 

Dispersion 
n  Estimates 

𝛼ො଴ 𝛼ොଵ 𝛽መଵ 𝛾ො 

𝛾 ൌ 2 
(over-dispersion) 

100 YW 0.6688 (0.1866) 0.2825 (0.0188) 0.0486 (0.2298) 2.0157 (1.3083) 
 MLE 0.5699 (0.0387) 0.2854 (0.0113) 0.1471 (0.0411) 2.0355 (0.9536) 
      
200 YW 0.6686 (0.0913) 0.2957 (0.0177) 0.0339 (0.1070) 2.0541 (0.6345) 
 MLE 0.5905 (0.0249) 0.2907 (0.0070) 0.1193 (0.0262) 2.0767 (0.5949) 
      
500 YW 0.6189 (0.0257) 0.2910 (0.0036) 0.0859 (0.0290) 2.0191 (0.1926) 
 MLE 0.5953 (0.0121) 0.2931 (0.0026) 0.1083 (0.0128) 2.0237 (0.1751) 
      

𝛾 ൌ 1 
(equi-dispersion) 

100 YW 0.6755 (0.2987) 0.2842 (0.0386) 0.0327 (0.3618) 1.0375 (0.1024) 
 MLE 0.5794 (0.0388) 0.2688 (0.0114) 0.1472 (0.0413) 1.0436 (0.0871) 
      
200 YW 0.6670 (0.0868) 0.2798 (0.0095) 0.0499 (0.0924) 1.0186 (0.0490) 
 MLE 0.5932 (0.0263) 0.2763 (0.0059) 0.1278 (0.0281) 1.0194 (0.0354) 
      
500 YW 0.6159 (0.0246) 0.2926 (0.0028) 0.0925 (0.0287) 1.0097 (0.0149) 
 MLE 0.5947 (0.0130) 0.2923 (0.0024) 0.1145 (0.0145) 1.0130 (0.0128) 
      

𝛾 ൌ 0.8 
(under-dispersion) 

100 YW 0.6566 (0.1908) 0.2841 (0.0255) 0.0358 (0.2377) 0.8560 (0.0614) 
 MLE 0.5611 (0.0353) 0.2759 (0.0107) 0.1418 (0.0379) 0.8513 (0.0387) 
      
200 YW 0.6418 (0.0710) 0.2828 (0.0125) 0.0510 (0.0877) 0.8205 (0.0192) 
 MLE 0.5801 (0.0230) 0.2776 (0.0055) 0.1212 (0.0254) 0.8284 (0.0166) 
      
500 YW 0.6121 (0.0228) 0.2878 (0.0023) 0.0837 (0.0281) 0.8165 (0.0076) 
 MLE 0.5892 (0.0110) 0.2880 (0.0021) 0.1073 (0.0128) 0.8185 (0.0064) 

6. Comparison of INGARCH models 

This section describes the analysis of three real-life data sets fitted by the Poisson, NB, DP, GP, 
COMP, and AHP distributed INGARCH-type modes. Based on the sample mean and variance, the 
first data set exhibits over-dispersion and the last two data sets exhibit under-dispersion. The MLE 



29127 

AIMS Mathematics  Volume 8, Issue 12, 29116–29139. 

results are obtained using the R software through the Box constraints optimization (L-BFGS-B) 
function with the initial conditional mean equals to the sample mean. Statistical consistency between 
the predictive and observed distributions is investigated by plotting the histogram of probability 
integral transform (PIT) (see, Dawid [10]). According to Czado et al. [9], from the PIT histogram, 
under-dispersed predictive distribution is signified by a U-shaped histogram whereas over-dispersed 
predictive distribution is indicated by a hump or inverse-U shaped histogram. When central tendencies 
are biased, a skewed histogram is observed.  

6.1. Polio series 

The polio data is a time series of length 168, which has been fitted by Zhu [39] using the NB-
INGARCH model. The data series is the monthly number of cases of poliomyelitis reported by the 
U.S. Centers for Disease Control from 1970 to 1983 with a sample mean of 1.33 and a sample variance 
of 3.50. These statistics indicate that the series is over-dispersed and the sample first-order 
autocorrelation coefficient (FOAC), 𝜌ොሺ1ሻ ൌ 0.2948.  

Figure 3 describes the original data, autocorrelation function (ACF) and partial autocorrelation 
function (PACF) of the polio series while Table 2 summarizes the result of six fitted INGARCH(1,1) 
models.  

 

 

Figure 3. Plots of time series, ACF and PACF of polio cases from 1970 to 1983. 
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Table 2. Polio series: Parameter estimates with Poisson-, NB-, DP-, GP-, COMP-, and 
AHP-INGARCH(1,1) models, standard errors are shown in parentheses. 

Model 𝛼ො଴ 𝛼ොଵ 𝛽መଵ 𝑟̂/𝛾ො/𝜙෠/𝜐ො/𝛾ො AIC BIC 

Poisson 0.6357 (0.1702)  0.3515 (0.0678)  0.1846 (0.1342)   562.08   571.40   
NB 0.6075 (0.2275)  0.3643 (0.1029)  0.1982 (0.1858)  1.6346 (0.4326)  520.47   532.87   
DP 0.6357 (0.2278) 0.3515 (0.0907)  0.1846 (0.1796)  0.5585 (0.0611)  529.33   541.73   
GP 0.3645 (0.4105)  0.1647 (0.0859)  0.5689 (0.3497)  1.4089 (0.1083 528.08   540.48   
COMP  0.0529 (0.0399)  0.1845 (0.0713)  0.1670 (0.1896) 0.2546 (0.0524)  524.37   536.77   
AHP 0.6418 (0.2063)  0.4214 (0.1082)  0.1344 (0.1536)  4.1310 (2.0243)  521.15   533.55 

Based on the Akaike information criterion (AIC) and Bayesian information criterion (BIC) for all the 
models, the AHP-INGARCH(1,1) model is found to be comparable to the NB-INGARCH(1,1) but 
better than the Poisson, DP-, GP- and COMP-INGARCH(1,1) models for this over-dispersed polio 
dataset. It is worth noting that the values of the parameter estimates for NB-INGARCH(1,1) model are 
different from Zhu [39] because they fixed the parameter 𝑟 ൌ 2. 

Figure 4 shows the PIT histogram of the six INGARCH(1,1) models. Overall, Poisson-
INGARCH(1,1) model have a U-shaped histogram while DP-INGARCH(1,1) model has a skewed 
histogram. Although not uniform, the NB-, GP-, COMP- and AHP-INGARCH(1,1) have only a slight 
hump in the histogram indicating better performance than the Poisson- and DP-INGARCH(1,1) 
models. 

 

 

Figure 4. PIT histogram for Poisson-, NB-, DP-, GP-, COMP- and AHP-INGARCH (1,1) 
models of polio series. 
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Comparison of the estimated means, variances, dispersion index and FOACs within the fitted 
Poisson, NB, DP, GP, COMP and AHP models for polio data and another two under-dispersion data 
sets that will be discussed later in the next sections are summarized in Table 3. The dispersion index 
for NB- and AHP-INGARCH(1,1) models are closest to the dispersion index for the polio data 
compared to the Poisson-, DP-, GP- and COMP-INGARCH(1,1) models.  

Table 3. Sample and estimated mean, variance, dispersion index (𝐼௓) and FOAC under the 
Poisson, NB, DP, GP, COMP and AHP models. 

Data Model Sample Poisson NB DP GP COMP AHP 

Polio 

Mean 1.3333 1.3701 1.3888 1.3701 1.3683 1.9624 1.4449 

Variance 3.5050 1.6076 3.4813 2.8786 2.8756 2.0349 4.0534 

𝐼𝑍 2.6288 1.1733 2.5067 2.1010 2.1016 1.0370 2.8053 

FOAC 0.2948 0.3787 0.3966 0.3787 0.1963 0.1908 0.4489 

IP 

Mean 1.2863 1.2917 1.2916 1.2917 1.2917 1.3154 1.2913 

Variance 1.2052 1.4039 1.4039 1.4589 1.1777 1.2184 1.2806 

𝐼𝑍 0.9370 1.0869 1.0869 1.1294 0.9117 0.9263 0.9917 

FOAC 0.2925 0.2827 0.6927 0.2827 0.2834 0.2825 0.2830 

COVID-
19 

Mean 0.8416 0.5032 0.5045 0.5045 0.4001 0.7396 0.6022 

Variance 0.7347 0.5814 0.5829 0.4981 0.3315 0.5985 0.5547 

𝐼𝑍 0.8729 1.1555 1.1554 0.9873 0.8285 0.8091 0.9212 

FOAC 0.2374 0.2082 0.2081 0.2081 0.1891 0.2383 0.2993 

6.2. Internet Protocol (IP) count series 

The IP counts data is a time series of length 241 that gives the number of different IP addresses 
registered within periods of 2-min length at the server of the Department of Statistics of the University 
of W𝑢ሷ rzburg in 29 November 2005 between 10 a.m and 6 p.m. This data set has been investigated by 
Weiß [30] and Zhu [40,41]. The data examined is under-dispersed since the variance (1.2052) is 
smaller than the mean (1.2863) with the sample FOAC of 0.2925. Figure 5 presents the IP counts time 
series, ACF and PACF, respectively. 
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Figure 5. Plots of time series, ACF and PACF of IP counts series. 

Zhu [41] fitted the Poisson INAR(1), the Poisson-, DP- and GP- INARCH(1) and INGARCH(1,1) 
models to the data and claimed that the GP-INARCH(1) model is more appropriate for this time series. 
Comparison of existing INARCH(1) and AHP-INARCH(1) models are summarized in Table 4. It is 
worth noting that the over-dispersed NB-INARCH(1) model of Zhu [39] is added in our analysis for 
comparison. As seen from Table 4, the estimated value of the NB-INARCH(1) parameter 𝑟̂ is large and 
significant, but unreliable. This is because the differentiation of the likelihood function with respect to 
the parameter 𝑟 is problematic as reported in Zhu [39]. We obtain the same conclusion as Zhu [40], that 
is, (i) the estimated dispersion index of GP-, COMP- and AHP-INARCH(1) models are less than 1, 
which indicate that the data set is under-dispersed count time series, and Poisson-, DP- and NB- 
INARCH(1) models wrongly indicate that the data set is over-dispersed; (ii) GP model performs better 
in AIC and Poisson INARCH(1) performs better in BIC, but the difference of AIC and BIC values 
between other models are rather small. Typically, a difference in AIC value less than 2 is considered not 
significant (Zhu [40]). Based on Figure 6, the PIT histogram of the AHP, GP and COMP models shows 
approximate uniformity, while Poisson-, NB- and DP-INARCH(1) are slightly hump-shaped. 

Table 4. IP counts series: Parameter estimates with Poisson-, NB-, DP-, GP-, COMP- and 
AHP-INARCH(1) models, standard errors are shown in parentheses. 

Model 𝛼ො଴ 𝛼ොଵ 𝑟̂/𝛾ො/𝜙෠/𝜐ො/𝛾ො AIC BIC 
Poisson 0.9265 (0.1007) 0.2827 (0.0684)  675.20 682.15  
NB 0.9264 (0.1007) 0.2828 (0.0684) 39722.23 (253.85) 677.20 687.62 
DP 0.9265 (0.1026) 0.2827 (0.0697) 0.9623 (0.0878) 677.02 687.44  
GP 0.9256 (0.0917) 0.2834 (0.0622) 0.9157 (0.0409) 673.78 684.19  
COMP 1.0492 (0.1157) 0.2825 (0.0636) 1.2674 (0.1790) 674.81 685.22  
AHP 0.9258 (0.0974) 0.2830 (0.0653) 0.8796 (0.0937) 675.90 686.32  
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Figure 6. PIT histogram for Poisson-, NB-, DP-, GP-, COMP- and AHP-INARCH (1) 
models of IP counts series. 

6.3. COVID-19 series 

The COVID-19 data is a time series of length 101 that gives the number of daily COVID-19 new 
deaths recorded in Saudi Arabia between 26th January 2023 to 6th May 2023. This data is publicly 
available at the website https://ourworldindata.org/. The data examined is under-dispersed since the 
variance (0.7347) is smaller than the mean (0.8416) with the sample FOAC of 0.2374. Figure 7 
presents the COVID-19 new deaths time series, ACF and PACF, respectively.  

 

 

Figure 7. Plots of time series, ACF and PACF of daily COVID-19 new deaths. 
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Table 5 summarizes the results of six INGARCH(1,1) models for the COVID-19 new deaths data. 
Based on AIC and BIC, the AHP-INGARCH(1-1) model is the best. The estimated value of the NB-
INGARCH(1,1) parameter 𝑟̂ is again large and significant, but unreliable. Besides the over-dispersed 
Poisson- and NB-INGARCH(1,1) models, the dispersion index of DP-, GP-, COMP- and AHP-
INGARCH(1,1) are all less than 1 which indicate that these models are capable of capturing under-
dispersed feature from the empirical data (see Table 3). All the PIT histrograms in Figure 8 visibly 
deviate from uniformity (with a slight preference for the AHP-INGARCH(1,1) model). In particular, 
the PIT histrograms of Poisson-, NB- and DP-INGARCH(1,1) models are slightly hump-shaped while 
GP-, COMP- and AHP-INGARCH(1,1) models are slightly U-shaped. 

Table 5. Daily COVID-19 new deaths: Parameter estimates with Poisson-, NB-, DP-, GP-, 
COMP-, and AHP-INGARCH(1,1) models, standard errors are shown in parentheses. 

Model 𝛼ො଴ 𝛼ොଵ 𝛽መଵ 𝑟̂/𝛾ො/𝜙෠/𝜐ො/𝛾ො AIC BIC 

Poisson 0.0130 (0.0268)   0.0890 (0.0472)    0.8851  (0.0645)    223.01 230.76 

NB 0.0131 (0.0268)   0.0891 (0.0472)    0.8850 (0.0646)    16860.79 (267.79)   225.01 235.31 

DP 0.0131 (0.0248)   0.0891 (0.0436)    0.8850 (0.0597)    1.1702 (0.1655)       223.83 234.13 

GP 0.0075 (0.0225)   0.0736 (0.0360)    0.9077 (0.0537)    0.8503 (0.0502)       219.61 229.91 

COMP 0.0520 (0.0413)   0.1012 (0.0423)    0.8710 (0.0580)    1.9497 (0.4518)       219.35 229.64 

AHP 0.0172 (0.0265)   0.1220 (0.0501)    0.8493 (0.0639)    0.4912 (0.1070)       217.55 227.85 

 

 

Figure 8. PIT histogram for Poisson-, NB-, DP-, GP-, COMP- and AHP-INARCH(1) 
models of daily COVID-19 new deaths series. 
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7. Conclusions 

This work introduces a new family of AHP-INGARCH models for analysing over-dispersed and 
under-dispersed count time series data. The advantages of the AHP-INGARCH-type model are (i) the 
ease in obtaining the model mean and variance compared to distributions like the COMP and DP 
distributions, making the AHP distribution a useful choice for an INGARCH model, and (ii) the ability 
to accommodate a wider range of dispersion, placing the AHP distribution as a flexible model for 
applications. The application of the AHP-INGARCH models to three real-life data sets clearly 
demonstrates the model competitiveness in studying both over-dispersed and under-dispersed data. 
Since 𝛾 is the dispersion parameter of AHP distribution, one of the potential future research is to relax 
the assumption of constant dispersion by allowing time-varying dispersion. Another direction of future 
research is to extend the results to multivariate cases. 
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Appendix A 

A.1 Parameter constraint of AHP distribution 

Let 𝑍~𝐴𝐻𝑃ሺ𝜃, 𝛾ሻ. The probability mass function of 𝑍 can be written as  

𝑃ሺ𝑍 ൌ 𝑧ሻ ൌ
𝜃௭

ሺ𝛾ሻ௭
𝜙ሺ1 ൅ 𝑧; 𝛾 ൅ 𝑧; െ𝜃ሻ ൌ

𝜃௭𝑒ିఏ

ሺ𝛾ሻ௭
𝜙ሺ𝛾 െ 1; 𝛾 ൅ 𝑧; 𝜃ሻ 

where the second equality is obtained from Johnson et al. [20]. Since 
ఏ೥௘షഇ

ሺఊሻ೥
൐ 0 for 𝜃 ൐ 0 and 𝛾 ൐ 0. 

The positivity of the pmf of 𝑍 depends on the confluent hypergeometric function 

𝜙ሺ𝛾 െ 1; 𝛾 ൅ 𝑧; 𝜃ሻ ൌ ෍
ሺ𝛾 െ 1ሻ௞𝜃௞

ሺ𝛾 ൅ 𝑧ሻ௞𝑘!
 

∞

௞ୀ଴

. 
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It is easy to see that 𝜙ሺ𝛾 െ 1; 𝛾 ൅ 𝑧; 𝜃ሻ ൐ 0 when 𝛾 ൒ 1. Hence, the positivity of the pmf of 𝑍 is 
guaranteed for 𝛾 ൒ 1. 
For 0 ൏ 𝛾 ൏ 1, we note that ሺ𝛾 ൅ 𝑧ሻ௞ ൒ ሺ𝛾ሻ௞ for all 𝑧 ൒ 0 and 𝑘 ൒ 0. Since  

𝜙ሺ𝛾 െ 1; 𝛾 ൅ 𝑧; 𝜃ሻ ൌ ෍
ሺ𝛾 െ 1ሻ௞𝜃௞

ሺ𝛾 ൅ 𝑧ሻ௞𝑘!
 

∞

௞ୀ଴

൒ ෍
ሺ𝛾 െ 1ሻ௞𝜃௞

ሺ𝛾ሻ௞𝑘!
 

∞

௞ୀ଴

ൌ 𝜙ሺ𝛾 െ 1; 𝛾; 𝜃ሻ, 

we have  

𝑃ሺ𝑍 ൌ 𝑧ሻ ൌ
𝜃௭𝑒ିఏ

ሺ𝛾ሻ௭
𝜙ሺ𝛾 െ 1; 𝛾 ൅ 𝑧; 𝜃ሻ ൒ 𝑃ሺ𝑍 ൌ 0ሻ ൌ 𝑒ିఏ𝜙ሺ𝛾 െ 1; 𝛾; 𝜃ሻ 

for all 𝑧 ൒ 1. Thus, for 0 ൏ 𝛾 ൏ 1, the positivity of the pmf of 𝑍 is guaranteed as long as  𝑃ሺ𝑍 ൌ 0ሻ ൐
0. This condition can be further simplified as  

𝜙ሺ𝛾 െ 1; 𝛾; 𝜃ሻ ൌ ෍
ሺ𝛾 െ 1ሻ௞𝜃௞

ሺ𝛾ሻ௞𝑘!
 

∞

௞ୀ଴

ൌ ෍
Γሺ𝛾 െ 1 ൅ 𝑘ሻΓሺ𝛾ሻ𝜃௞

Γሺ𝛾 െ 1ሻΓሺ𝛾 ൅ 𝑘ሻ𝑘!
 

∞

௞ୀ଴

 

ൌ ሺ𝛾 െ 1ሻ ෍
𝜃௞

ሺ𝛾 െ 1 ൅ 𝑘ሻ𝑘!
 

∞

௞ୀ଴

൐ 0 

It is worth to note that the confluent hypergeometric function 𝜙ሺ𝛾 െ 1; 𝛾; 𝜃ሻ is a decreasing function 
on 𝜃 . Hence, for a given 𝛾 ∈ ሺ0,1ሻ , 𝜙ሺ𝛾 െ 1; 𝛾; 𝜃ሻ ൐ 0  iff 𝜃 ൏ 𝜃∗ , where 𝜃∗  is the solution of 
𝜙ሺ𝛾 െ 1; 𝛾; 𝜃∗ሻ ൌ 0. 

A.2 Proof of Theorem 3.1 

(i) Let 𝜇௒ ൌ 𝐸ሾ𝑌௧ሿ denote the unconditional expectation of 𝑌௧  if it exists. Then by the tower 
property of conditional expectation, we have 

𝜇௒ ൌ 𝐸ൣ𝐸ሾ𝑌௧|ℱ௧ିଵሿ൧ ൌ 𝛼଴ ൅ ෍ 𝛼௜𝐸ሾ𝑌௧ି௜ሿ

௣

௜ୀଵ

൅ ෍ 𝛽௝𝐸ൣ𝜇௧ି௝൧

௤

௝ୀଵ

ൌ 𝛼଴ ൅ ෍ 𝛼௜𝜇௒

௣

௜ୀଵ

൅ ෍ 𝛽௝𝜇௒

௤

௝ୀଵ

ൌ
𝛼଴

ቀ1 െ ∑ 𝛼௜ െ ∑ 𝛽௝
௤
௝ୀଵ

௣
௜ୀଵ ቁ

, 

where 𝐸ൣ𝜇௧ି௝൧ ൌ 𝐸 ቂ𝐸ൣ𝑌௧ି௝|ℱ௧ି௝ିଵ൧ቃ ൌ 𝜇௒by the tower property of conditional expectation. 

(ii) By the definition of covariance and the tower property, we have 

𝐶𝑜𝑣ሾ𝑌௧ െ 𝜇௧, 𝜇௧ି௞ሿ ൌ 𝐸ൣ𝐸ሾሺ𝑌௧ െ 𝜇௧ሻሺ𝜇௧ି௞ െ 𝜇௒ሻ|ℱ௧ିଵሿ൧

ൌ 𝐸ൣሺ𝜇௧ି௞ െ 𝜇௒ሻ ∙ 𝐸ሾ𝑌௧ െ 𝜇௧|ℱ௧ିଵሿ൧
ൌ 𝐸ሾሺ𝜇௧ି௞ െ 𝜇௒ሻ ∙ ሺ𝜇௒ െ 𝜇௒ሻሿ          
ൌ 0                                                          
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for 𝑘 ൒ 0, where 𝜇௧ is ℱ௧ିଵ measurable, i.e, 𝐸ሾ𝜇௧|ℱ௧ିଵሿ ൌ 𝜇௧. The proof is completed by noticing 
that  

𝐶𝑜𝑣ሾ𝑌௧ െ 𝜇௧, 𝜇௧ି௞ሿ ൌ  𝐶𝑜𝑣ሾ𝑌௧, 𝜇௧ି௞ሿ െ 𝐶𝑜𝑣ሾ𝜇௧, 𝜇௧ି௞ሿ ൌ 0. 

For 𝑘 ൏ 0, by the same argument, we have 

𝐶𝑜𝑣ሾ𝑌௧ି௞ െ 𝜇௧ି௞, 𝑌௧ሿ ൌ 𝐸ൣ𝐸ሾሺ𝑌௧ି௞ െ 𝜇௧ି௞ሻሺ𝑌௧ െ 𝜇௒ሻ|ℱ௧ିଵሿ൧    

ൌ 𝐸ൣሺ𝑌௧ െ 𝜇௒ሻ ∙ 𝐸ሾ𝑌௧ି௞ െ 𝜇௧ି௞|ℱ௧ି௞ିଵሿ൧
ൌ 𝐸ሾሺ𝑌௧ െ 𝜇ሻ ∙ ሺ𝜇௧ି௞ െ 𝜇௧ି௞ሻሿ                  
ൌ 0                                                                  

 

Again, we use the property that 𝜇௧ି௞  is ℱ௧ି௞ିଵ measurable, i.e., 𝐸ሾ𝜇௧ି௞|ℱ௧ି௞ିଵሿ ൌ 𝜇௧ି௞ 
and 𝐸ሾ𝑌௧ି௞|ℱ௧ି௞ିଵሿ ൌ 𝜇௧ି௞. The proof is completed by noticing that  

𝐶𝑜𝑣ሾ𝑌௧ି௞ െ 𝜇௧ି௞, 𝑌௧ሿ ൌ 𝐶𝑜𝑣ሾ𝑌௧ି௞, 𝑌௧ሿ െ 𝐶𝑜𝑣ሾ𝜇௧ି௞, 𝑌௧ሿ ൌ 0. 

(iii) Finally, applying part (ii), we have for 𝑘 ൒ 0, 

𝛾ఓሺ𝑘ሻ ൌ 𝐶𝑜𝑣ሾ𝜇௧, 𝜇௧ି௞ሿ ൌ 𝐶𝑜𝑣 ቎ቌ𝛼଴ ൅ ෍ 𝛼௜𝑌௧ି௜

௣

௜ୀଵ

൅ ෍ 𝛽௝𝜇௧ି௝

௤

௝ୀଵ

ቍ , 𝜇௧ି௞቏                           

ൌ ෍ 𝛼௜ ∙ 𝐶𝑜𝑣ሾ𝑌௧ି௜, 𝜇௧ି௞ሿ ൅

௣

௜ୀଵ

෍ 𝛽௝ ∙ 𝐶𝑜𝑣ൣ𝜇௧ି௝, 𝜇௧ି௞൧                                               

௤

௝ୀଵ

  

ൌ ෍ 𝛼௜ ∙ 𝐶𝑜𝑣ሾ𝜇௧ି௜, 𝜇௧ି௞ሿ ൅ ෍ 𝛼௜ ∙ 𝐶𝑜𝑣ሾ𝑌௧ି௜, 𝑌௧ି௞ሿ

௣

௜ୀ௞ାଵ

൅ ෍ 𝛽௝𝛾ఓሺ|𝑘 െ 𝑗|ሻ

௤

௝ୀଵ

௠௜௡ሺ௞,௤ሻ

௜ୀଵ

  

ൌ ෍ 𝛼௜ ∙ 𝛾ఓሺ|𝑘 െ 𝑖|ሻ ൅ ෍ 𝛼௜ ∙ 𝛾௒ሺ𝑖 െ 𝑘ሻ

௣

௜ୀ௞ାଵ

൅ ෍ 𝛽௝𝛾ఓሺ|𝑘 െ 𝑗|ሻ

௤

௝ୀଵ

.  

௠௜௡ሺ௞,௤ሻ

௜ୀଵ

                  

 

Again, applying part (ii), we obtain for 𝑘 ൒ 1, 

𝛾௒ሺ𝑘ሻ ൌ 𝐶𝑜𝑣ሾ𝑌௧, 𝑌௧ି௞ሿ ൌ 𝐶𝑜𝑣ሾ𝜇௧, 𝑌௧ି௞ሿ ൌ 𝐶𝑜𝑣 ቎ቌ𝛼଴ ൅ ෍ 𝛼௜𝑌௧ି௜

௣

௜ୀଵ

൅ ෍ 𝛽௝𝜇௧ି௝

௤

௝ୀଵ

ቍ , 𝑌௧ି௞቏

ൌ ෍ 𝛼௜ ∙ 𝐶𝑜𝑣ሾ𝑌௧ି௜, 𝑌௧ି௞ሿ ൅

௣

௜ୀଵ

෍ 𝛽௝ ∙ 𝐶𝑜𝑣ൣ𝜇௧ି௝, 𝑌௧ି௞൧                                                      

௤

௝ୀଵ

ൌ ෍ 𝛼௜ ∙ 𝛾௒ሺ|𝑘 െ 𝑖|ሻ ൅

௣

௜ୀଵ

෍ 𝛽௝ ∙ 𝐶𝑜𝑣ൣ𝑌௧ି௝, 𝑌௧ି௞൧ ൅

௠௜௡ሺ௞ିଵ,௤ሻ

௝ୀଵ

෍ 𝛽௝ ∙ 𝐶𝑜𝑣ൣ𝜇௧ି௝, 𝜇௧ି௞൧

௤

௝ୀ௞

ൌ ෍ 𝛼௜𝛾௒ሺ|𝑘 െ 𝑖|ሻ ൅

௣

௜ୀଵ

෍ 𝛽௝𝛾௒ሺ𝑘 െ 𝑗ሻ ൅

௠௜௡ሺ௞ିଵ,௤ሻ

௝ୀଵ

෍ 𝛽௝𝛾ఓሺ𝑗 െ 𝑘ሻ

௤

௝ୀ௞

.                               
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A.3 Proof of Special Case AHP-INGARCH(1,1)  

(i) Unconditional variance  
From Eq (3.2), we obtain for 𝑘 ൒ 2 that 

𝛾௒ሺ𝑘ሻ ൌ 𝛼ଵ𝛾௒ሺ𝑘 െ 1ሻ ൅ 𝛽ଵ𝛾௒ሺ𝑘 െ 1ሻ ൌ ሺ𝛼ଵ ൅ 𝛽ଵሻ௞ିଵ𝛾௒ሺ1ሻ.   (*) 

 
Again, from Eq (3.2), for 𝑘 ൌ 1, we have 

 

𝛾௒ሺ1ሻ ൌ 𝛼ଵ𝛾௒ሺ0ሻ ൅ 𝛽ଵ𝛾ఓሺ0ሻ ൌ 𝛼ଵ𝑉ሺ𝑌௧ሻ ൅ 𝛽ଵ𝑉ሺ𝜇௧ሻ 

ൌ 𝛼ଵ൫𝐸ሾ𝑉ሺ𝑌௧| ℱ௧ିଵሻሿ ൅ Vሺ𝐸ሾ𝑌௧| ℱ௧ିଵሿሻ൯  ൅ 𝛽ଵ𝑉ሺ𝜇௧ሻ  

ൌ 𝛼ଵ ൭𝐸 ቈ𝜇௧ ቆ1 ൅ 𝜇௧ ቀఊିଵ

ఊାଵ
ቁቇ቉ ൅ 𝑉ሺ𝜇௧ሻ൱ ൅ 𝛽ଵ𝑉ሺ𝜇௧ሻ  

ൌ 𝛼ଵ ቀ𝐸ሺ𝜇௧ሻ ൅ 𝐸ሾ𝜇௧
ଶሿ ሺఊିଵሻ

ሺఊାଵሻ
ቁ ൅ ሺ𝛼ଵ ൅ 𝛽ଵሻ𝑉ሺ𝜇௧ሻ  

ൌ  𝛼ଵ𝜇௒ ൅ 𝛼ଵሾ𝑉ሺ𝜇௧ሻ ൅ 𝜇ଶሿ ሺఊିଵሻ

ሺఊାଵሻ
൅ ሺ𝛼ଵ ൅ 𝛽ଵሻ𝑉ሺ𝜇௧ሻ  

ൌ 𝛼ଵ𝜇௒ ൅ 𝛼ଵ𝜇௒
ଶ ሺఊିଵሻ

ሺఊାଵሻ
൅ ቀ𝛼ଵ

ሺఊିଵሻ

ሺఊାଵሻ
൅ 𝛼ଵ ൅ 𝛽ଵቁ 𝑉ሺ𝜇௧ሻ  

ൌ 𝛼ଵ𝜇௒ ൅ 𝛼ଵ𝜇௒
ଶ ሺఊିଵሻ

ሺఊାଵሻ
൅ ቀଶఈభఊାఉభሺఊାଵሻ

ሺఊାଵሻ
ቁ 𝑉ሺ𝜇௧ሻ     (**) 

To determine an expression for 𝑉ሺ𝜇௧ሻ, note first that for 𝑘 ൒ 1, Eq (3.3) can be written as 

𝛾ఓሺ𝑘ሻ ൌ 𝛼ଵ𝛾ఓሺ𝑘 െ 1ሻ ൅ 𝛽ଵ𝛾ఓሺ𝑘 െ 1ሻ ൌ ሺ𝛼ଵ ൅ 𝛽ଵሻ௞𝑉ሺ𝜇௧ሻ. 

For 𝑘 ൌ 0, Eq (3.3) can be written as  
𝛾ఓሺ0ሻ ൌ 𝑉ሺ𝜇௧ሻ ൌ 𝛼ଵ𝛾௒ሺ1ሻ ൅ 𝛽ଵ𝛾ఓሺ1ሻ 

ൌ 𝛼ଵ ቂ𝛼ଵ𝜇௒ ൅ 𝛼ଵ𝜇௒
ଶ ሺఊିଵሻ

ሺఊାଵሻ
൅ ቀ𝛼ଵ

ሺఊିଵሻ

ሺఊାଵሻ
൅ 𝛼ଵ ൅ 𝛽ଵቁ 𝑉ሺ𝜇௧ሻቃ  ൅ 𝛽ଵሾሺ𝛼ଵ ൅ 𝛽ଵሻ𝑉ሺ𝜇௧ሻሿ  

ൌ 𝛼ଵ
ଶ𝜇௒ ൅ 𝛼ଵ

ଶ𝜇௒
ଶ ሺఊିଵሻ

ሺఊାଵሻ
൅ ቂ𝛼ଵ

ଶ ሺఊିଵሻ

ሺఊାଵሻ
൅ ሺ𝛼ଵ ൅ 𝛽ଵሻଶቃ 𝑉ሺ𝜇௧ሻ  

 ൌ ቀ𝛼ଵ
ଶ𝜇௒ ൅ 𝛼ଵ

ଶ𝜇௒
ଶ ሺఊିଵሻ

ሺఊାଵሻ
ቁ ቀ1 െ 𝛼ଵ

ଶ ሺఊିଵሻ

ሺఊାଵሻ
െ ሺ𝛼ଵ ൅ 𝛽ଵሻଶቁൗ  

ൌ
𝛼ଵ

ଶ𝜇௒ሺ𝛾 ൅ 1ሻ ൅ 𝛼ଵ
ଶ𝜇௒

ଶሺ𝛾 െ 1ሻ
ሺ𝛾 ൅ 1ሻሺ1 െ 𝛽ଵ

ଶ െ 2𝛼ଵ𝛽ଵሻ െ 2𝛾𝛼ଵ
ଶ. 

Therefore, the unconditional variance of 𝑌௧ can be obtained from 

𝑉ሺ𝑌௧ሻ ൌ 𝐸ሾ𝑉ሺ𝑌௧| ℱ௧ିଵሻሿ ൅ Vሺ𝐸ሾ𝑌௧| ℱ௧ିଵሿሻ ൌ 𝐸 ቈ𝜇௧ ቆ1 ൅ 𝜇௧ ൬
𝛾 െ 1
𝛾 ൅ 1

൰ቇ቉ ൅ 𝑉ሺ𝜇௧ሻ  
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ൌ 𝜇௒ ൅ 𝜇௒
ଶ 𝛾 െ 1

𝛾 ൅ 1
൅ ൬

2𝛾
𝛾 ൅ 1

൰ 𝑉ሺ𝜇௧ሻ 

ൌ ൬𝜇௒ ൅ 𝜇௒
ଶ 𝛾 െ 1

𝛾 ൅ 1
൰ ൅ ൬

2𝛾
𝛾 ൅ 1

൰
𝛼ଵ

ଶ𝜇௒ሺ𝛾 ൅ 1ሻ ൅ 𝛼ଵ
ଶ𝜇௒

ଶሺ𝛾 െ 1ሻ
ሺ𝛾 ൅ 1ሻሺ1 െ 𝛽ଵ

ଶ െ 2𝛼ଵ𝛽ଵሻ െ 2𝛾𝛼ଵ
ଶ 

ൌ ൬𝜇௒ ൅ 𝜇௒
ଶ 𝛾 െ 1

𝛾 ൅ 1
൰ ൅

2𝛾𝛼ଵ
ଶ ൬𝜇௒ ൅ 𝜇௒

ଶ ሺ𝛾 െ 1ሻ
𝛾 ൅ 1 ൰

ሺ𝛾 ൅ 1ሻሺ1 െ 𝛽ଵ
ଶ െ 2𝛼ଵ𝛽ଵሻ െ 2𝛾𝛼ଵ

ଶ 

ൌ ൬𝜇௒ ൅ 𝜇௒
ଶ 𝛾 െ 1

𝛾 ൅ 1
൰ ቆ1 ൅

2𝛾𝛼ଵ
ଶ

ሺ𝛾 ൅ 1ሻሺ1 െ 𝛽ଵ
ଶ െ 2𝛼ଵ𝛽ଵሻ െ 2𝛾𝛼ଵ

ଶቇ 

ൌ ൬𝜇௒ ൅ 𝜇௒
ଶ 𝛾 െ 1

𝛾 ൅ 1
൰ ቆ

ሺ𝛾 ൅ 1ሻሺ1 െ 𝛽ଵ
ଶ െ 2𝛼ଵ𝛽ଵሻ

ሺ𝛾 ൅ 1ሻሺ1 െ 𝛽ଵ
ଶ െ 2𝛼ଵ𝛽ଵሻ െ 2𝛾𝛼ଵ

ଶቇ. 

(ii) Autocovariance function  

Given that 𝑉ሺ𝜇௧ሻ ൌ ఈభ
మఓೊሺఊାଵሻାఈభ

మఓೊ
మ ሺఊିଵሻ

ሺఊାଵሻ൫ଵିఉభ
మିଶఈభఉభ൯ିଶఊఈభ

మ ൌ
ఈభሺఊାଵሻቀఈభఓೊାఈభఓೊ

మ ሺംషభሻ
ሺംశభሻቁ

ሺఊାଵሻ൫ଵିఉభ
మିଶఈభఉభ൯ିଶఊఈభ

మ and from Eqs (*) and (**), 

we obtain for 𝑘 ൒ 2 that 

𝛾௒ሺ𝑘ሻ ൌ ሺ𝛼ଵ ൅ 𝛽ଵሻ௞ିଵ ቂ𝛼ଵ𝜇௒ ൅ 𝛼ଵ𝜇௒
ଶ ሺఊିଵሻ

ሺఊାଵሻ
൅ ቀଶఈభఊାఉభሺఊାଵሻ

ሺఊାଵሻ
ቁ 𝑉ሺ𝜇௧ሻቃ  

    ൌ ሺ𝛼ଵ ൅ 𝛽ଵሻ௞ିଵ ቈ𝛼ଵ𝜇௒ ൅ 𝛼ଵ𝜇௒
ଶ ሺఊିଵሻ

ሺఊାଵሻ
൅ ቀଶఈభఊାఉభሺఊାଵሻ

ሺఊାଵሻ
ቁ ቆ

ఈభሺఊାଵሻቀఈభఓೊାఈభఓೊ
మ ሺംషభሻ

ሺംశభሻቁ

ሺఊାଵሻ൫ଵିఉభ
మିଶఈభఉభ൯ିଶఊఈభ

మቇ቉  

         ൌ ሺ𝛼ଵ ൅ 𝛽ଵሻ௞ିଵ ቀ𝛼ଵ𝜇௒ ൅ 𝛼ଵ𝜇௒
ଶ ሺఊିଵሻ

ሺఊାଵሻ
ቁ ൤1 ൅ ଶఊఈభ

మାఈభఉభሺఊାଵሻ

ሺఊାଵሻ൫ଵିఉభ
మିଶఈభఉభ൯ିଶఊఈభ

మ൨  

         ൌ ሺ𝛼ଵ ൅ 𝛽ଵሻ௞ିଵ ቀ𝛼ଵ𝜇௒ ൅ 𝛼ଵ𝜇௒
ଶ ሺఊିଵሻ

ሺఊାଵሻ
ቁ ൤

ሺఊାଵሻ൫ଵିఉభ
మିఈభఉభ൯

ሺఊାଵሻ൫ଵିఉభ
మିଶఈభఉభ൯ିଶఊఈభ

మ൨. 

Note that for 𝑘 ൌ 1, we have  

𝛾௒ሺ1ሻ ൌ ቆ𝛼ଵ𝜇௒ ൅ 𝛼ଵ𝜇௒
ଶ

ሺ𝛾 െ 1ሻ
ሺ𝛾 ൅ 1ሻ

ቇ ቈ
ሺ𝛾 ൅ 1ሻሺ1 െ 𝛽ଵ

ଶ െ 𝛼ଵ𝛽ଵሻ
ሺ𝛾 ൅ 1ሻሺ1 െ 𝛽ଵ

ଶ െ 2𝛼ଵ𝛽ଵሻ െ 2𝛾𝛼ଵ
ଶ቉. 
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