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matrix representation of the Caputo fractional derivative (CFD) via an indirect method and applying it
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1. Introduction

The objective of this project is to employ the pseudospectral approach to approximate the solution
of the fractional Telegraph equation

∂ηw(x, t)
∂tη

+ s1
∂η−1w(x, t)
∂tη−1 + s2w(x, t) = s3

∂2w(x, t)
∂x2 + q(x, t), (1.1)

subjected to boundary and initial conditions

w(0, t) = f0(t), w(1, t) = f1(t), t ∈ [0, 1], (1.2)

w(x, 0) = p0(x), w′(x, 1) = p1(x), x ∈ [0, 1]. (1.3)
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Here, s1, s2 and s3 are constants, and q(x, t) is a known function. The fractional derivative is of the
CFD type, so we will introduce it later.

As it is widely acknowledged, partial differential equations (PDEs) play a significant role in the
simulation of multitudinous physical phenomena. Among them, the Telegraph equation, due to its
application in modeling several phenomena such as electrical phenomena, signal processing and wave
propagation, has been the focus of researchers. For this reason, solving it can be a fascinating challenge
and attract the focus of scientists. Several methods are devoted to solving this equation. Interpolating
scaling functions are applied to solve the problem via the collocation method [1]. Yang et al. [2] used
orthogonal spline collocation method to solve the sub-diffusion equation. In [3], the authors proposed
the collocation method for the desired equation using Chebyshev cardinal functions. Dehghan et al. [4]
proposed a collocation method based on splines radial basis function. In [5], authors applied meshfree
collocation method to solve Telegraph equation. The numerical results raised of the collocation
method, taking the B-spline functions, are investigated in [6]. We list several numerical methods
proposed to solve this equation, including shifted Jacobi collocation [7], multi-wavelet Galerkin
method [8], Tchebyshev-Galerkin method [9], tau method [10] and so on.

In recent years, fractional calculations in modeling various physical phenomena have attracted the
attention of engineers and specialists. Moreover, many types of equations with fractional derivatives
have been considered, and many numerical schemes have been introduced to solve them, including
the implementation of the Galerkin method for the fractional Riccati equation where biorthogonal
Hermite cubic Spline is considered [11]. The application of the Tau method for a solution of space-time
fractional PDEs has been considered based on interpolating scaling functions [12]. The multiwavelet
method for solving the Cauchy-type problem is considered in [13]. In [14], the authors introduced
the hybrid clique functions and applied them via the collocation method for fractional Schrödinger
equation. A predictor-corrector compact difference scheme for a nonlinear fractional differential
equation is applied in [15]. A nonlinear finite volume method is used to solve multi-term fractional
sub-diffusion equation on polygonal meshes [16]. Zhang et al. [17] utilized collocation method based
on Spline functions to solve the nonlinear fourth-order reaction sub-diffusion equation. In [18], the
authors used the collocation method based on cubic B-spline functions to solve the time-fractional
cable model. In [19], the authors applied a novel numerical technique to solve the time fractional
reaction-diffusion model with a non-singular kernel, etc.

Among fractional PDEs, the fractional Telegraph equation, due to its application, has been
considered as a challenging problem by many scientists. Hosseini et al. [20] applied a hybrid method
based on finite differences and radial basis functions to solve the Eq (1.1). In [21], the spectral Galerkin
method based on Legendre polynomials is studied for solving the problem. Mollahasani et al. [22]
utilized a hybrid function scheme based on Block-Pulse-Functions and Legendre polynomials for
solving (1.1). There is another form of time-fractional Telegraph equation

∂2ηw(x, t)
∂tη

+ s1
∂ηw(x, t)
∂tη

= s2
∂2w(x, t)
∂x2 + q(x, t), (1.4)

along with the initial conditions

w(x, 0) = p0(x), w′(x, 1) = p1(x), x ∈ [0, 1], (1.5)

and boundary conditions

w(1, t) + a2wx(1, t) = f1(t), w(0, t) + a1wx(0, t) = f0(t), t ∈ [0, 1]. (1.6)
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For solving this equation, Saadatmandi et al. [23] used the Legendre polynomials and Tau method.
In [24], the separable variable method is considered such as an analytical method to solve Eq (1.4).
In [25], the authors solved (1.4) via the bireproducing kernel theorem. Akram et al. [19] used
modified extended cubic B-spline functions to solve the Non-Linear Time-Fractional Telegraph
Equation. The 2D time-fractional Telegraph equation is solved using modified fractional group iterative
scheme [26].

The Chebyshev cardinal functions are applied as attractive bases for solving various kinds of
equations. Owing to their abilities, they can be used in the pseudospectral and Galerkin methods.
Recently, Shahriari et al. [27] studied the fractional Dirac problem using these bases. These bases are
applied for solving the fractional Sturm-Liouville problem in [28]. Bin Jebreen et al. solved a family
of time-fractional partial differential equation by these bases.

In this paper, for the first time, the Hyperbolic fractional Telegraph equation is solved using
Cardinal Chebyshev functions. As you know, existing fractional derivatives and the nature of the
hyperbolic partial differential equations are two factors that cause problems in the numerical solution.
To overcome these issues, we apply the pseudospectral method based on Chebyshev cardinal functions.
In this study, a matrix representation of the Caputo fractional derivative is introduced via an indirect
method (using the relation between the Caputo fractional derivative and fractional integration) which
plays a key role in our algorithm. An analysis of convergence is investigated to show the effectiveness
and efficiency of the method.

The paper is organized as follows. The CCFs along with their properties are briefly described in
Section 2. In Section 3, the pseudospectral method implements for approximating the solution of the
problem. In this section, also, convergence analysis is investigated for the presented method. Some
numerical examples are considered to give an affirmation of the method’s efficiency.

2. Chebyshev cardinal functions (CCFs)

Consider the Chebyshev nodes as a set of numbers

Y := {y j : Tn+1(y j) = 0, j ∈ Ω}, Ω := {1, 2, . . . , n + 1},

in which Tn+1 is Tchebyshev polynomial of order n + 1, n is a positive integer number, and {y j} j∈Ω are
the roots of Tn+1 on [−1, 1]. As we know, the roots of this polynomial are obtained via

y j := cos
(

2 j − 1
2n + 2

π

)
, ∀ j ∈ Ω. (2.1)

It is so easy to verify that the Tchebyshev polynomials can be shifted on any arbitrary interval
using a proper change of variables. The generated polynomials are known as the shifted Chebyshev
polynomials, given by

T ∗n+1(x) := Tn+1

(
2(x − a)

b − a
− 1

)
, x ∈ [a, b]. (2.2)

Due to the change of variable y =
(

2(x−a)
b−a − 1

)
, the roots of the Chebyshev polynomials are also shifted

to interval [a,b] and are given by x j =
(y j+1)(b−a)

2 + a.
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The CCFs are the momentous type of cardinal functions that use orthogonal polynomials. These
polynomials are defined via

ψ j(x) =
T ∗n+1(x)

T ∗n+1,x(x j)(x − x j)
, j ∈ Ω, (2.3)

in which the subscript x demonstrates differentiation with respect to x (T ∗n+1,x(x j) := d
dxT ∗ω+1(x)|x=x j).

For simplicity and computational demands, these polynomials can be demonstrated as

ψ j(x) = ρ

n+1∏
k=1,k, j

(x − xk), (2.4)

where ρ = 22n+1/((b − a)n+1T ∗n+1,x(x j)). These types of functions have significant property so that make
them powerful tools for solving differential equations. According to Eq (2.3), It is obvious that

ψ j(xi) = δ ji =

{
1, j = i,
0, j , i,

i ∈ Ω, (2.5)

where δ ji determines the Kronecker δ-function. This property is sufficient to demonstrate that any
function p(x) can be easily represented as an expansion based on Chebyshev cardinal functions, i.e.,

p(x) ≈ pn(x) =

n+1∑
j=1

p(x j)ψ j(x). (2.6)

LetD be the derivative operator. Given ω ∈ N, the Sobolev space Hω([0, 1]) is specified by

Hω([0, 1]) = {p ∈ L2([0, 1]) : ∀n′ ≤ ω,Dn′ p ∈ L2([0, 1])}.

This space is equipped with norm

‖p‖2Hω([0,1]) =

ω∑
k=0

‖p(k)‖2L2([0,1]), (2.7)

and semi-norm

|p|2Hω,n([0,1]) =

n∑
k=min{ω,n}

‖p(k)‖2L2([0,1]). (2.8)

Lemma 1. [29] Assuming the set of points {x j} j∈Ω as the shifted Gauss-Chebyshev points, we say that
the bound of error for (2.6) can be approximated by

‖p − pn‖L2([0,1]) ≤ C0n−ω|p|Hω,n([0,1]), (2.9)

where ω ∈ N and C0 is a constant and independent of ω.

Putting the Chebyshev cardinal functions ψ j(x) into an (n + 1)-dimensional vector, we introduce the
vector function Ψ(x) whose j-th entry is ψ j(x).
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Lemma 2. The derivative operatorD can be represented by a square matrix D as

D(Ψ)(x) ≈ DΨ(x), (2.10)

whose entries are given by

D j,i = D(ψ j)(xi) =


n+1∑
l=1
l,i

1
(xi−xl)

, j = i,

ρ
n+1∏
l=1
l,i, j

(xi − xl), j , i.
(2.11)

Proof. Using (2.6) and (2.10), we can easily verify that the elements of matrix D are computed by

D j,i = D(ψ j)(xi). (2.12)

Motivated by (2.4), to derive the entries of matrix D, the following results can be obtained by taking
the derivative with respect to the variable x from both sides of (2.4), viz,

D(ψ j)(x) = ρD

n+1∏
k=1
k, j

(x − xk) = ρ

n+1∑
l=1
l, j

n+1∏
k=1
k, j,l

(x − xk)

=

n+1∑
l=1
l, j

T ∗n+1(x)
(x − x j)(x − xl)T ∗n+1,x(x j)

=

n+1∑
l=1
l, j

1
(x − xl)

ψ j(x). (2.13)

Thus, this gives rise to (2.11) and we have

D(ψ j)(xi) =

n+1∑
l=1
l,i

1
(xi − xl)

, i = j,

D(ψ j)(xi) = ρ

n+1∏
l=1
l,i, j

(xi − xl), i , j.

�

The matrix D can be considered instead of the derivative from bases in the numerical method. This
matrix is used to reduce and simplify the calculations. It is worthwhile to mention that when we utilize
the spectral methods, it is no longer a need to find the derivative of the bases. Instead, we can use the
matrix D.

Before introducing a matrix such as the operational matrix Iη for the fractional integral operator Iη0
of order η > 0, let us make some preliminaries about the fractional integral.
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Definition 1. Given η ∈ R+. Assuming the local integrable function p : [0, 1]→ R, the operator of the
fractional integral Iη0 of order η > 0 is specified by

I
η
0(p)(x) :=

1
Γ(η)

∫ x

0
(x − z)η−1 p(z)dz, x ∈ [0, 1], p ∈ L1[0, 1]. (2.14)

With simple calculations, it can be shown that acting this operator on a power function is also a
power function

I
η
0(xβ) =

Γ(β + 1)
Γ(β + η + 1)

xβ+η. (2.15)

Motivated by [30], the fractional integral can be bounded. To specify this bound, one can refer to the
following Lemma.

Lemma 3. The operator Iη0 is bounded in Lp([0, 1]), i.e.,

‖I
η
0(p)‖q ≤

1
Γ(η + 1)

‖p‖q, 1 ≤ q ≤ ∞. (2.16)

Lemma 4. Given η ∈ R+, one can approximate acting the fractional integral operator on Ψ as follows

I
η
0(Ψ)(x) ≈ IηΨ(x), (2.17)

in which Iη is a square matrix of order (n + 1) whose entries are obtained by

[Iη] j,i = ρ

n∑
k=0

z j,k
Γ(n − k + 1)

Γ(n − k + η + 1)
xn−k+η

i . (2.18)

Proof. It is convenient to verify that

n+1∏
k=1
k,i

(x − xk) =

n∑
k=0

zi,kxn−k, (2.19)

where

zi,0 = 1, zi,k =
1
k

k∑
l=0

ci,lzi,k−l, k = 1, 2, . . . , n, i = 1, 2, . . . , n + 1,

and

ci,k =

n+1∑
j=1
j,i

xk
j, k = 1, 2, . . . , n, i = 1, 2, . . . , n + 1.

Using the aforementioned changes, Chebyshev cardinal functions can be rewritten as

ψ j(x) = ρ

n∑
k=0

z j,kxn−k. (2.20)

Putting (2.20) back into (2.14) and using Eq (2.15), one can write

I
η
0ψ j(x) = ρI

η
0(

n∑
k=0

z j,kxn−k)

AIMS Mathematics Volume 8, Issue 12, 29221–29238.
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= ρ

n∑
k=0

z j,kI
η
0(xη−k)

= ρ

n∑
k=0

z j,k
Γ(n − k + 1)

Γ(n − k + η + 1)
xn−k+η.

This gives rise to reaching the desired result. �

2.1. Matrix representation of Caputo fractional derivative operator

Before introducing the operational matrix Dη for the fractional derivative operator cD
η
0, it is

necessary to state some preliminaries about the CFD. Let ACη([0, 1]) is a space of functions such that

ACη[0, 1] = {p : [0, 1]→ C, & D(η−1)(p) ∈ AC[0, 1]}.

Assuming p(x) ∈ ACη[0, 1], the Caputo fractional derivative, characterized by

(cD
η
0 p)(x) =

1
Γ(κ − η)

∫ x

0

p(κ)(t)dt
(x − t)η−κ+1 =: Iκ−η0 D

κ(p)(x), (2.21)

exists for almost every x ∈ [0, 1]. As a consequence of this definition, it is convenient to verify that [30]

(cD
η
0(x)α−1)(x) =

Γ(α)
Γ(α − η)

xα−η, (α > κ). (2.22)

Here, our objective is to introduce a square matrix Dη so that it satisfies
cD

η
0(Ψ(x)) ≈ DηΨ(x). (2.23)

However, to gain the entries of the matrix Dη, we avoid finding them directly in a manner that is
proposed for fractional integral. Instead, motivated by (2.21), matrix Iη can be used to obtain Dη, viz

cD
η
0(Ψ(x)) = I

κ−η
0 D

κ(Ψ(x)) ≈ Iκ−η0 (DκΨ(x))
= DκI

κ−η
0 (Ψ(x)) ≈ DκIκ−η(Ψ(x)).

Consequently, operational matrix Dη obtain by

Dη := DκIκ−η. (2.24)

Therefore, to obtain the operational matrix for the fractional derivative Dη, it is enough to obtain
the operational matrix of the fractional integral of order κ − η and multiply it by the κ power of the
operational matrix of the derivative.

3. Method description

We emphasize that our objective is to approximate the solution of the Telegraph equation (1.1) by
implementing the pseudospectral method. To develop the pseudospectral method for solving (1.1), the
process begins by considering the unknown solution as an expansion based on CCFs

w(x, t) ≈ wn(x, t) =

n+1∑
i=1

n+1∑
j=1

Wi, jΨi(x)Ψ j(t) = ΨT (x)WΨ(t), (3.1)
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in which W is a square matrix of order n + 1 whose elements should be found. Here and throughout
the text, the superscript “T” denotes transpose.

Putting (3.1) back into (1.1) gives rise to

∂ηwn(x, t)
∂tη

+ s1
∂η−1wn(x, t)

∂tη−1 + s2wn(x, t) = s3
∂2wn(x, t)
∂x2 + q(x, t). (3.2)

Using operational matrices D and Dη, one can introduce the residual in the approximation as

r(x, t) = ΨT (x)
(
WDη + s1WDη−1 + s2W − s3D2T

W − Q
)
Ψ(t), (3.3)

where Q is an n + 1-dimensional matrix and obtain by

Qi, j = q(xi, x j).

Let WDη + s1WDη−1 + s2W − s3D2T W = UW (this is always applicable), then Eq (3.3) may be
rewritten as

r(x, t) = ΨT (x) (UW − Q) Ψ(t). (3.4)

Pick distinct collocation points {x j : j ∈ Ω}, the pseudospectral method requires

r(xi, x j) = 0, i, j ∈ Ω. (3.5)

This leads to specifying U as the solution of the linear system

UW = Q. (3.6)

To solve this system, we convert U and Q to Ũ and Q̃, respectively. So we have a new system

AŨ = Q̃. (3.7)

3.1. Convergence analysis

Considering p as a polynomial that interpolates the given sufficiently smooth function q at the points

qi, j = q(xi, t j), i, j = 1, 2, . . . , n + 1,

the reminder formula is obtained by [31]

|q(x, t) − p(x, t)| =
∂n

∂xn q(ξ, t)
Πn

i=1(x − xi)
n!

+
∂n

∂tn q(x, τ)
Πn

j=1(t − t j)

n!

−
∂2n

∂xntn q(ξ′, τ′)
Πn

i=1(x − xi)Πn
j=1(t − t j)

n!n!
, τ, ξ, τ′, ξ′ ∈ [0, 1]. (3.8)

Selecting the Chebyshev polynomials zeros as the interpolation nodes, (3.8) can be written as follows

|q(x, t) − p(x, t)| ≤
(
1
2

)n 1
2n−1n!

sup
ξ∈[0,1)

|
∂n

∂xn q(ξ, t)| +
(
1
2

)n 1
2n−1n!

sup
τ∈[0,1)

|
∂n

∂tn q(x, τ)|
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+

(
1
2

)2n 1
4n−1(n!)2 sup

ξ′,τ′∈[0,1)
|
∂2n

∂xn∂tn q(ξ′, τ′)|

≤ Mq

(
1
2

)m 1
2m−1m!

(
2 +

(
1
2

)m 1
2m−1m!

)
, (3.9)

in which

Mq = max
{

sup
ξ∈[0,1)

|
∂n

∂xn q(ξ, t)|, sup
τ∈[0,1)

|
∂n

∂tn q(x, τ)|, sup
ξ′,τ′∈[0,1)

|
∂2n

∂xn∂tn q(ξ′, τ′)|
}
.

Given e = w − wn, subtracting (3.2) from

∂ηwn(x, t)
∂tη

+ s1
∂η−1wn(x, t)

∂tη−1 + s2wn(x, t) = s3
∂2wn(x, t)
∂x2 + qn(x, t),

the global error satisfies

∂ηe(x, t)
∂tη

+ s1
∂η−1e(x, t)
∂tη−1 + s2e(x, t) = s3

∂2e(x, t)
∂x2 + q(x, t) − qn(x, t). (3.10)

Let the residual corresponding to (3.10) is

Rn(x, t) =
∂ηe(x, t)
∂tη

+ s1
∂η−1e(x, t)
∂tη−1 + s2e(x, t) − s3

∂2e(x, t)
∂x2 − q(x, t) + qn(x, t). (3.11)

Motivated by Theorem 2.2 [30], we have

|
∂η

∂tη
e(x, t)| = |Iκ−η0

∂κ

∂tκ
e(x, t)| ≤

1
Γ(κ − η)(κ − η + 1)

‖
∂κ

∂tκ
e(x, t)‖C,

|
∂η−1

∂tη−1 e(x, t)| = |Iκ−η0
∂κ−1

∂tκ−1 e(x, t)| ≤
1

Γ(κ − η)(κ − η + 1)
‖
∂κ−1

∂tκ−1 e(x, t)‖C.

Substituting these equations into (3.11) and using triangle inequality, we get

|Rn(x, t)| ≤ |
∂ηe(x, t)
∂tη

| + |s1
∂η−1e(x, t)
∂tη−1 | + |s2e(x, t)| + |s3

∂2e(x, t)
∂x2 | + |q(x, t) − qn(x, t)|

≤
1

Γ(κ − η)(κ − η + 1)

(
‖
∂κ

∂tκ
e(x, t)‖C + |s1|‖

∂κ−1

∂tκ−1 e(x, t)‖C

)
+ |s2|‖e(x, t)‖C + |s3|‖

∂2e(x, t)
∂x2 ‖C + |q(x, t) − qn(x, t)|.

To proceed, using (3.9), it can be found

|Rn(x, t)| ≤
(
1
2

)m 1
2m−1m!

(
2 +

(
1
2

)m 1
2m−1m!

)  M ∂κw
∂tκ

+ |s1|M ∂κ−1w
∂tκ−1

Γ(κ − η)(κ − η + 1)

+|s2|Mw + |s3|M ∂2w
∂x2

+ Mq

)
. (3.12)

Putting Cy =

M ∂κw
∂tκ

+|s1 |M ∂κ−1w
∂tκ−1

Γ(κ−η)(κ−η+1) + |s2|Mw + |s3|M ∂2w
∂x2

+ Mq

 back into (3.12), we have

|Rn(x, t)| ≤ Cy

(
1
2

)m 1
2m−1m!

(
2 +

(
1
2

)m 1
2m−1m!

)
. (3.13)

Thus |Rn(x, t)| → 0 as m→ ∞.

AIMS Mathematics Volume 8, Issue 12, 29221–29238.



29230

4. Illustrative examples

To demonstrate the performance of the proposed method, some examples are provided in this
section. To illustrate the results and make a global view of the present method and its efficiency,
sometimes, the absolute errors

e = |w(xi, t j) − wn(xi, t j)|, i. j = 1, . . . , n,

and L2 error

L2 − error =

(∫ 1

0

∫ 1

0
|w(x, t) − wn(x, t)|2dxdt

)1/2

,

are reported in tables or plotted in figures.

Example 1. We dedicate the first example to the fractional Telegraph equation as

∂ηw(x, t)
∂tη

+
∂η−1w(x, t)
∂tη−1 + w(x, t) = π

∂2w(x, t)
∂x2 + q(x, t), 1 < η ≤ 2,

with initial and boundary conditions

w(0, t) = 0, w(1, t) = t3 sin2(1), w(x, 0) = 0, w′(x, 0) = 0,

in which

q(x, t) =
6t3−η

(
sin2 (x)

)
Γ(4 − η)

+
6t4−η

(
sin2 (x)

)
Γ(5 − η)

+ t3
(
sin2 (x)

)
− π

(
2t3

(
cos2 (x)

)
− 2t3

(
sin2 (x)

))
.

The exact solution for this equation is given by w(x, t) = t3 sin2(x) [20].
To show the algorithm of the proposed method to solve this example, we describe it step by step here.

(1) Chose n;
(2) construct the Chebyshev cardinal functions of order n (refer to (2.3));
(3) compute the Matrices D, Iη and Dη (refer to Lemma 2, Lemma 4 and (2.24), respectively);
(4) approximate w(x, t) using wn(x, t) (refer to (3.1));
(5) put wn(x, t) back into (1.1) (refer to (3.2));
(6) compute the residual r(x, t) (refer to (3.4));
(7) obtain the linear system (3.6) using the shifted Chebyshev nodes x j =

(y j+1)
2 ( j = 1, . . . , n);

(8) solve the linear system (3.8).

For instance, the coefficients’ matrix in the obtained linear system for this example, taking η = 1.75
and n = 3, is equal to

0.08931 0.0 0.0 −0.33333 0.0 0.0 1.2440 0.0 0.0
0.0 0.08931 0.0 0.0 −0.33333 0.0 0.0 1.2440 0.0
0.0 0.0 0.08931 0.0 0.0 −0.33333 0.0 0.0 1.2440
0.0 0.0 0.0 0.08931 −0.33333 1.2440 0.0 0.0 0.0
0.0 −5.3324 0.0 5.5237 2.7602 3.3810 0.0 −5.3324 0.0
0.0 0.0 0.0 −1.5121 5.3333 −3.8215 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.08931 −0.33333 1.2440
0.0 1.2440 0.0 0.0 −0.33333 0.0 0.0 0.089316 0.0
0.0 0.0 1.2440 0.0 0.0 −0.33333 0.0 0.0 0.089316


.
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Recall that the CFD of a function w tends to integer derivative as η→ κ. To demonstrate this effect,
our results illustrated in Figure 1, obviously, demonstrate it. Figure 2 illustrates the effect of parameter
n on L2 error and confirm the convergence analysis. As you see, when n increases, the error decreases
exponentially. Figure 3 demonstrates the approximate solution and corresponding absolute errors.
Absolute error is reported for different values of x and t, taking n = 9 and η = 1.75, respectively,
Table 1. It is worthwhile to mention that the process took a total of 77.390 seconds of CPU time.

Table 1. Absolute errors, taking n = 9 and η = 1.75 for Example 1.

x t=0.2 t=0.4 t=0.6 t=0.8 t=1

0.1 2.409e − 09 1.711e − 09 1.647e − 09 1.903e − 09 6.011e − 10
0.3 7.426e − 09 3.795e − 09 2.722e − 09 4.259e − 09 8.402e − 09
0.5 1.107e − 08 4.569e − 09 1.723e − 09 1.055e − 09 6.911e − 10
0.7 1.033e − 08 4.387e − 09 1.637e − 10 3.377e − 09 1.876e − 08
0.9 4.454e − 09 1.497e − 09 1.348e − 09 4.402e − 10 1.384e − 08
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Figure 1. Approximate solution, taking different η for Example 1.
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Figure 2. The L2-error obtained by different number of n for Example 1.

Figure 3. The plots of approximate and corresponding absolute error, taking n = 9 and
η = 1.75, for Example 1.

Example 2. We devote this example to the fractional Telegraph equation

∂ηw(x, t)
∂tη

+
∂η−1w(x, t)
∂tη−1 + w(x, t) =

∂2w(x, t)
∂x2 +

(
t2 − 2t + 2

) (
x − x2

)
e−t + 2t2e−t

with boundary and initial conditions

w(x, 0) = 0, w′(x, 0) = 0, w(0, t) = 0, w(1, t) = 0.

For this example, the exact solution is given by w(x, t) = (x − x2)e−tt2 [4, 21, 22].
The approximate solution at t = 0.1, taking different values of η, is plotted in Figure 4. In Table 2, we

observe a comparison between the present method and the method proposed in [22]. To demonstrate
the accuracy and ability of the present method, the maximum absolute error at different times is
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tabulated in Table 3. The approximate solution and corresponding absolute errors are illustrated
in Figure 5. For more evidence of accuracy, Figure 6 is reported to show the L2 errors with different
choices of n for this example.

Table 2. The comparison between hybrid functions method and the proposed method for
Example 2.

Proposed method [22]

t n = 6 n = 10 n = 6 n = 10

0.6 5.21 × 10−5 3.67 × 10−10 4.43 × 10−3 2.19 × 10−3

0.7 4.39 × 10−5 2.88 × 10−10 2.67 × 10−3 1.45 × 10−3

0.8 2.92 × 10−5 1.76 × 10−10 2.14 × 10−3 1.62 × 10−3

CPU time 0.156 0.563 − −

Table 3. The L2 errors at different times with different choices of n, taking η = 2 for
Example 2.

t n=3 n=5 n=7 n=9 n=11

0.1 9.67e − 04 9.10e − 05 9.10e − 07 2.70e − 09 5.18e − 13
0.3 6.00e − 03 3.77e − 04 2.48e − 06 6.47e − 09 8.23e − 13
0.5 1.06e − 02 4.20e − 04 2.84e − 06 7.29e − 09 3.27e − 12
0.7 1.08e − 02 2.97e − 04 2.04e − 06 5.23e − 09 8.10e − 12
0.9 4.60e − 03 1.24e − 04 6.41e − 07 1.32e − 09 1.74e − 11

CPU time 0.062 0.141 0.187 0.344 0.672
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Figure 4. Approximate solution at t = 0.1, taking different η for Example 2.
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Figure 5. The plots of approximate and corresponding error, taking n = 8 and η = 2, for
Example 2.
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Figure 6. Effect of n on L2 error, taking n = 8 and η = 2, for Example 2.

Example 3. We devote this example to the fractional Telegraph equation

∂ηw(x, t)
∂tη

+
∂η−1w(x, t)
∂tη−1 + w(x, t) =

∂2w(x, t)
∂x2 + Γ(α + 1) sin(x) +

Γ(α + 1) tα−β sin(x)
Γ(α + 1 − β)

+ 2tα sin(x)

with boundary and initial conditions

w(x, 0) = 0, w′(x, 0) = 0, w(0, t) = 0, w(1, t) = sin(1)tη.

For this example, the exact solution is given by w(x, t) = sin(x)tη.
Table 4 shows the L2-error at different times and different choices of η. In this table, the CPU time

is also reported. It is clear that when the parameter n increases, the error decreases. The approximate
solution and corresponding absolute errors are illustrated in Figure 7.
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Table 4. L2-error at different times for Example 3.

η = 1.75 η = 1.90

t n = 7 n = 10 n = 7 n = 10

0.1 1.32 × 10−3 7.14 × 10−4 4.60 × 10−4 2.94 × 10−4

0.3 2.02 × 10−3 9.89 × 10−4 9.38 × 10−4 2.53 × 10−4

0.5 1.44 × 10−3 6.75 × 10−4 8.78 × 10−4 4.35 × 10−4

0.7 4.04 × 10−4 1.77 × 10−4 5.17 × 10−4 2.08 × 10−4

0.9 4.21 × 10−4 2.27 × 10−4 5.10 × 10−4 3.21 × 10−4

CPU time 2.624 5.215 2.765 6.002

Figure 7. The plots of approximate and corresponding error, taking n = 10 and η = 1.75, for
Example 3.

5. Conclusions

The pseudospectral method based on CCFs can be solved by the fractional Telegraph equation
accurately. The presented method is easy to implement, and it solves problems of this type effectively
and with appropriate accuracy. The convergence analysis also proves the method is convergent, and
numerical examples confirm this investigation. Due to the cardinality property of the bases used, there
is no need for integration to find the coefficients in the expansions, and this reduces the computational
time and computational cost. For future work, we can use the pseudospectral method directly or
apply the finite difference method and collocation method to solve the sophisticated models and the
generalization of the method to two and three dimensions [32].
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