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Abstract: In this paper, the asynchronous control problem is investigated and a multiple convex
Lyapunov functions (MCLF) approach is introduced for a class of discrete-time switched linear
systems under the Φ-dependent integrated dwell time (ΦDIDT) switching strategy. For the problem of
asynchronous switching, this paper considers that Lyapunov functions may jump when the subsystem
switches or the controller changes. Thus, the constructed MCLF is dependent on both the asynchronous
interval and the synchronous interval, and the synchronous interval is divided into the convex interval
and non-convex interval parts. Some sufficient conditions of stability with Linear matrix inequality
(LMI) forms are obtained, and the asynchronous controller is designed to guarantee the globally
uniform exponential stability of the system under study. In addition, the proposed method can
degenerate to the existing methods to deal with the asynchronous control problem. Finally, a numerical
example illustrates the superiority of the proposed method.
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1. Introduction

A switched system usually consists of a set of state-space models and a switching signal. The
problem of stability/stabilization for switched systems has drawn a great deal of attention and interest
in the field of automation [1–6]. Without a doubt, the stability analysis of switched systems is very
important and is closely related to various switching strategies, such as average dwell time (ADT)
switching [7–15]. The authors point out that there is incorrect thinking about the relationship between
mode-dependent ADT (MDADT) and ADT in many existing related studies, where ADT is seen as a
special case of MDADT. In fact, the ADT strategy mainly focuses on the compensation effect among
subsystems without considering the subsystems’ differences. Instead, the MDADT strategy takes
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these subsystems’ differences into account but misses the compensation among subsystems. In the
stability study of switched systems, as we know, both the switching strategies and other supported
methods are quite important. Therefore, in recent decades, various stability analysis tools have
been proposed, mainly including the common Lyapunov function [16–18], the multiple Lyapunov
functions [19–22], the multiple discontinuous Lyapunov function [23,24], and the multiple convex
Lyapunov function [25,26].

The switching strategies and supported methods above are mainly applied to the system under
synchronous switching. However, a class of asynchronously switched systems has become a research
hotspot. The literature [27], in both continuous-time and discrete-time contexts, studies the problem
of asynchronous switching control for a class of switched linear systems under the ADT strategy
by further relaxing the demand of the Lyapunov-like function decreasing during the whole running
time of each active subsystem. The literature [28] studies the problem of asynchronous switching
control for discrete-time switched systems with MDADT strategy and considers that the lag time of
the controllers of different subsystems may be different. The paper [29] investigates the stability of
a class of asynchronously switched linear systems by using a mode-dependent integrated dwell time
(MDIDT) strategy. It is worth noting that all the above-mentioned works of literature assume that the
Lyapunov function may be discontinuous when the controller changes, but it is still continuous when
the subsystem switches. Thus, the designed Lyapunov function may be deduced as greatly conservative
due to neglecting the jump of the Lyapunov function caused by the subsystem switching. Then, seeking
a less conservative result has become an important problem in the stability analysis and asynchronous
control of switched systems.

Inspired by the aforementioned works and issues, this article investigates more general stability and
stabilization criteria for a class of asynchronously switched linear systems. The main contributions are
as follows: (1) A novel MCLF is constructed that considers the jump of the Lyapunov function caused
by the subsystem switching. (2) A switching strategy named ΦDIDT is proposed that covers the IDT
and MDIDT strategies. (3) Based on the proposed ΦDIDT strategy with the constructed MCLF, some
new stability criteria and controller designs of the system under study are obtained, which are more
flexible than the existing results [29–31].

The remaining structure is organized as follows: In Section 2, the problem statement and necessary
definitions for stability analysis of discrete-time switched linear systems are provided. In Section 3,
the stability analysis for the asynchronous switching control of the considered system with ΦDIDT
switching is deduced by the MCLF approach. Moreover, the design of the asynchronous controller
for the system is obtained. In addition, the proposed method can degenerate into that of Vu and
Liberzon [30]. A numerical example illustrates the superiority of the asynchronous control strategy
in Section 4. Lastly, it is summarized in Section 5.

For the convenience of reviewing the meanings of abbreviations, the following Table 1 is provided.

Table 1. List of abbreviations.

DT Dwell Time MCLF Multiple Convex Lyapunov Functions
ADT Average Dwell Time IDT Integrated Dwell Time
MDADT Mode Dependent ADT MDIDT Mode Dependent IDT
ΦDADT Φ Dependent ADT ΦDIDT Φ Dependent IDT
LMI Linear Matrix Inequalities GUES Globally Uniformly Exponentially Stable
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2. Problem formulation and preliminaries

Some fairly standard notations are used in this paper. Z∗ (R) stands for the set of positive integers
(real numbers). Rn represents the space of n-dimensional real Euclidean and Rn×n refers to the space of
n×n matrix with all entries being real. P > 0 (P ≥ 0) implies that P is positive definite (semi-definite).
Meanwhile, AT stands for the transpose of a matrix A, and A−1 stands for the inverse of a matrix A. For
x ∈ Rn, ∥x∥ stands for the Euclidean vector norm of x. The notation ∀ (∈, <) denotes “for all” (“in”,
“not in”). The “⋆” notation denotes the elements above the main diagonal of a symmetric matrix.

Consider the following discrete-time switched linear system

x(k + 1) = Aς(k)x(k) + Bς(k)u(k), x(k0) = x0, k ≥ k0, (2.1)

where x(k) is the system state, x(k0) ∈ Rn stands for initial state, u(k) ∈ Rn is control input, ς(k) :
[k0,+∞) 7→ Fm = {1, 2, · · · ,m}, is a piecewise constant function from the right, called the switching
law. Let k1 < k2 < · · · < kl < · · · , l ∈ Z∗ be the switching instants of ς(k). Aν, Bν, ∀ν ∈ Fm are constant
matrices of appropriate dimensions. Letting O = {1, 2, · · · , s}, s ∈ Z∗, s ≤ m. Define the mapping
ΦI : Fm 7→ O as an epimorphism operator. Set ΦIγ = {ν ∈ Fm | ΦI(ν) = γ}.
Definition 2.1. ( [10]) The equilibrium x = 0 of system (2.1) with u(k) ≡ 0 is globally uniformly
exponentially stable (GUES), if, for a given switching signals ς, there exist constants ϵ > 0 and 0 <
λ < 1 such that the system satisfies ∥x(k)∥ ≤ ϵλ(k−k0)∥x(k0)∥, ∀k ≥ k0 with initial condition x(k0).
Definition 2.2. For k ∈ [kl, kl+1), l ∈ Z∗, and ΦI(ν) = γ ∈ O, if there are a ΦI-dependent dwell time
τdΦIγ > 0 and a ΦI-dependent average dwell time τaΦIγ > τdΦIγ with some scalar N0ΦIγ > 0, such that

kl+1 − kl ≥ τdΦIγ , (2.2)

NςΦIγ(k0, k) ≤ N0ΦIγ +
KΦIγ(k0, k)
τaΦIγ

,∀k ≥ k0 ≥ 0, (2.3)

hold, then we say the switching signal ς(k) has a Φ-dependent integrated dwell time (ΦDIDT) τaΦIγ

with the minimum dwell time τdΦIγ . When there is no ambiguity, it is briefly described as ς(k) having
a ΦDIDT τaΦIγ . Here, N0ΦIγ stands for the chatter bound, NςΦIγ(k, k0) is the sum of switching numbers
of subsystems ΦIγ being activated over [k0, k], and KΦIγ(k, k0) represents the total running time of
subsystems ΦIγ over [k0, k].

LetO = {1} andO = Fm, we can get the following integrated dwell time (IDT) and mode-dependent
integrated dwell time (MDIDT) from Definition 2.2.
Definition 2.3. ( [30]) For k ∈ [kl, kl+1), l ∈ Z∗, if there exist a dwell time τd > 0 and ADT τa > τd with
some scalar N0ς > 0, such that

kl+1 − kl ≥ τd, (2.4)

Nς(k0, k) ≤ N0ς +
K(k0, k)
τa

,∀k ≥ k0 ≥ 0, (2.5)

hold, then the switching signal ς(k) is called to have an integrated dwell time (IDT) τa with the
minimum dwell time τd (briefly described as IDT τa with no ambiguity). Here, N0ς stands for the
chatter bound, Nς(k, k0) is the sum of switching numbers of all subsystems being activated over [k0, k],
and Kς(k, k0) represents the total running time of all subsystems over [k0, k].
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Definition 2.4. ( [31]) For k ∈ [kl, kl+1), l ∈ Z∗ and ς(k) = ν ∈ Fm, if there exist a mode-dependent
dwell time τdν > 0 and an MDADT τaν > τdν with some scalar N0ςν > 0, such that

kl+1 − kl ≥ τdν, (2.6)

Nςν(k0, k) ≤ N0ςν +
Kν(k0, k)
τaν

,∀k ≥ k0 ≥ 0, (2.7)

hold, then we say ς(k) has an mode-dependent integrated dwell time (MDIDT) τaν with the minimum
dwell time τdν (briefly described as MDIDT τaν with no ambiguity). Here, N0ςν stands for the chatter
bound, Nςν(k, k0) is the sum of switching numbers of the νth subsystem being activated over [k0, k], and
Kν(k, k0) represents the total running time of the νth subsystem over [k0, k].
Remark 2.1. In essence, ΦDIDT (resp., IDT/MDIDT) is the hybrid between DT and ΦDADT (resp.,
ADT/MDADT).
Lemma 2.1. ( [32]) Given X ∈ Rn and ZT = Z ∈ Rn×n and D ∈ Rm×n meeting rank(D) < n. The
following two expressions are equivalent:
1) XZXT < 0, ∀X ∈ {X ∈ Rn|X , 0,DX = 0};
2) ∃Y ∈ Rn×m,Z + YD +DTYT < 0.

For asynchronous switching, we generally assume that the time lags of switching controllers to their
corresponding subsystems are ∆l ≤ kl+1 − kl. As a matter of convenience, it is assumed that maximal
delay of asynchronous switching, ∆L = maxl∈Z∗{∆l}, is known a prior without loss of generality. Let
ς(kl−1) = ω, ς(kl) = ν, ∀ν, ω ∈ Fm. From the notation of above these symbols, the closed-loop system
can be described as:
(a) when k is on the asynchronous interval [kl, kl + ∆l), ∀ν, ω ∈ Fm,

x(k + 1) = A′′ν,ωx(k), (A′′ν,ω = Aν + BνKω), (2.8)

(b) when k is on the synchronous interval [kl + ∆l, kl+1), ∀ν ∈ Fm,

x(k + 1) = A′νx(k), (A′ν = Aν + BνKν). (2.9)

3. Main results

In this section, an MCLF is firstly improved, which is expressed in the form of a convex combination
of positive definite matrices. For the study of the system (2.8)–(2.9) under ΦDIDT switching, consider
that Lyapunov functions may jump when the subsystem switches or the controller changes. Thus,
the constructed MCLF is dependent on both the asynchronous interval and the synchronous interval.
As a matter of fact, we can not find accurately the moment of subsystems switching because of the
influence of the asynchronous problem. Therefore, it’s hard to construct a convex function over the
entire synchronous interval. To solve this problem, [29] came up with a new idea that the synchronous
interval [kla, kl+1) is divided into convex interval [kla, klb) and non-convex interval [klb, kl+1) by τdν,
where kla and klb (kla = kl +∆L and klb = kl + τdν) are the starting and ending points of the synchronous
convex interval, respectively. In the research of asynchronous switching, it is often required that the
asynchronous delay should not exceed a certain dwell time. Moreover, the existence of convex interval
[kla, klb) plays a crucial role in the paper. Therefore, it is both natural and necessary to require kla < klb.
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Without causing ambiguity, we use klb to denote kl + τdΦIγ in the paper. Then it is assumed that ∆L <
τdΦIγ .

Similar to the literature [24] and [26], the multiple convex Lyapunov function approach is employed
as follows: ∀n ∈ N ≜ {1, 2, · · · ,N} where the positive integer N refers to the number of matrices
Uνωn > 0 (Uνn > 0); nonlinear continuous functions ℏνωn[kla − (k − 1)] = ℏνωn(kla − k + 1) (ℏνn(k − kla))
are satisfying

ℏνωn(kla − k + 1) ≥ 0,
N∑

n=1

ℏνωn(kla − k + 1) = 1, (3.1)

ℏνωn(0) = aνωn,

N∑
n=1

ℏνωn(kla − k + 1) = bνωn, (3.2)

ℏνωn(kla − k + 1) =
bνωn − aνωn

∆L
(kla − k + 1) + aνωn.

Then, we have

ℏνωn(kla + 1 − k + 1) − ℏνωn(kla − k + 1) =
bνωn − aνωn

∆L
. (3.3)

Next, the constructed Lyapunov functions are dependent on both the subsystem and controller.
Namely, the Lyapunov function on the asynchronous interval [kl, kla) takes the different one on the
convex interval [k(l−1)a, k(l−1)b) and the Lyapunov function on the non-convex interval [klb, kl+1) uses the
same one on the convex interval [kla, klb) with k = klb, which is more consistent with the engineering
reality.

Further, for ∀ν, ω ∈ Fm, we construct an MCLF candidate as follows:
(a) when k ∈ [kl, kla),

Vνω = xT (k)Uνω(kla − k + 1)x(k)

= xT (k)
N∑

n=1

ℏνωn(kla − k + 1)Uνωnx(k),
(3.4)

(b) when k ∈ [kla, klb),

Vν = xT (k)Uν(k)x(k)

= xT (k)
N∑

n=1

ℏνn(k − kla)Uνnx(k),
(3.5)

(c) when k ∈ [klb, kl+1),

Vν = xT (k)Uν(k)x(k) = xT (k)Uν(klb − kla)x(k)

= xT (k)
N∑

n=1

ℏνn(klb − kla)Uνnx(k).
(3.6)

It can be seen from (3.4) that the taken Lyapunov function on the synchronous interval [kl+∆l, kla) is
the one on the asynchronous interval [kl, kl+∆l), which is inconsistent with the one on the synchronous
interval [kla, klb). As we know, it is unrealistic and unreasonable to predict the asynchronous duration
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∆l after each switching in advance. To solve this problem, this paper uses the fixed asynchronous
duration ∆L instead of the actual asynchronous duration ∆l. Although this brings some conservatism,
it provides us with solutions to difficult problems.

Now, we are in a position to deduce the condition of the exponential stability of the system (2.8)–
(2.9).
Theorem 3.1. For given scalar 0 < αγ < 1, βγ > 1, µ1γ > 0, µ2γ > 1 with α−∆L

γ β
∆L
γ µ1γµ2γ > 1, ∀γ ∈ O,

∀ν, ω ∈ Fm, ν , ω and ΦI(ν) = γ, suppose there exist positive matrices Uνn and matrices Q, ∀n, r ∈ N ,
such that [

−αγUνn ⋆

QA′ν Uνn + ΣN
r=1πνrUνr − Q − QT

]
< 0, (3.7)[

−αγ
∑N

n=1 bνnUνn ⋆

QA′ν
∑N

n=1(bνn + πνn)Uνn − Q − QT

]
< 0, (3.8)[

−βγ
∑N

n=1 bωnUνωn ⋆

QA′′νω
∑N

n=1(bωn + πνωn)Uνωn − Q − QT

]
< 0, (3.9)

N∑
n=1

aνωnUνωn < µ1γ

N∑
n=1

bωnUωn, (3.10)

N∑
n=1

aνnUνn < µ2γ

N∑
n=1

aνωnUνωn, (3.11)

hold, where πνn = bνn−aνn
τdΦIγ−∆L

. Then, the system (2.8)–(2.9) is GUES for any ς(k) having ΦDIDT

τaΦIγ > τ
∗
aΦIγ
≥ max{τdΦIγ ,

ln(α−∆L
γ β

∆L
γ µ1γµ2γ)

− lnαγ
},∀γ ∈ O,∀ν ∈ Fm. (3.12)

Proof: From (3.4), we have
Vνω(k + 1) − βγVνω(k)

=

[
x(k)

x(k + 1)

]T [
−βγUνω(kla − k + 1) 0

0 Uνω(kla − k + 2)

] [
x(k)

x(k + 1)

]
= XTZX < 0,

(3.13)

where k ∈ [kl, kla), ∀ν, ω ∈ Fm, ∀γ ∈ O. Let Y = [0 QT ]T , Dνω = [A′′νω − I]. By (3.1), (3.3), and
Lemma 2.1, (3.9) indicates that

Z + YDνω +D
T
νωY

T

=

[
−βγUνω(kla − k + 1) 0

0 Uνω(kla − k + 2)

]
+

[
0
Q

] [
A′′νω −I

]
+

[
A′′Tνω
−I

] [
0 QT

]
=

[
−βγUνω(kla − k + 1) ⋆

QA′′νω Uνω(kla − k + 2) − Q − QT

]
< 0.

(3.14)
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Further, it follows from (3.13) and (3.14) that

Vνω(k + 1) ≤ βγVνω(k),∀k ∈ [kl, kla). (3.15)

In a similar way, if (3.7) and (3.8) hold, we immediately get

Vν(k + 1) ≤ αγVν(k),∀k ∈ [kla, klb), (3.16)

Vν(k + 1) ≤ αγVν(k),∀k ∈ [klb, kl+1). (3.17)

At the switching point kl, l ∈ Z∗, suppose ς(kl−1) = ω, ς(kl) = ν, ∀ν, ω ∈ Fm, ν , ω, we have

Vνω(kl) − µ1γVω(kl) = xT (kl)[Uνω(kl) − µ1γUω(k(l−1)a)]x(kl). (3.18)

Similariy, at point kla, it is clear that

Vν(kla) − µ2γVνω(kla) = xT (kla)[Uν(kla) − µ2γUω(k(l)b)]x(kla). (3.19)

According to (3.10) and (3.11), ∀γ ∈ O, ∀ν, ω ∈ Fm, ν , ω, one can obtain

Vνω(kl) ≤ µ1γVω(kl), (3.20)

Vν(kla) ≤ µ2γVνω(kla). (3.21)

From (3.15)–(3.21), one has

Vς(k)(k) ≤ αk−klb
ς(kl)

Vς(kl)(klb)

≤ αk−kla
ς(kl)

Vς(kl)(kla)

≤ αk−kla
ς(kl)
µς(kl)2γVς(kl)(kla)

≤ αk−kla
ς(kl)
β∆L
ς(kl)µς(kl)2γVς(kl)(kl)

≤ αk−kla
ς(kl)
β∆L
ς(kl)µς(kl)1γµς(kl)2γVς(kl−1)(kl).

(3.22)

Then, one can further get

Vς(k) ≤ α
k−kla
ς(kl)
α

kl−k(l−1)a

ς(kl−1) · · ·α
k1−k0
ς(k0) β

∆L
ς(kl)β

∆L
ς(kl−1) · · · β

∆L
ς(k1)

× µς(kl)1γµς(kl−1)1γ · · · µς(k1)1γµς(kl)2γµς(kl−1)2γ · · · µς(k1)2γVς(k0)(k0)

= α∆L
ς(k0)β

−∆L
ς(k0)µ

−1
ς(k0)1γ
µ−1
ς(k0)2γ

s∏
γ=1

[(α−∆L
γ β

∆L
γ µ1γµ2γ)NΦγ (k,k0)α

KΦγ (k,k0)
γ ]

× Vς(k0)(k0).

(3.23)

Moreover, if (2.3) and α−∆L
γ β

∆L
γ µ1γµ2γ > 1 hold, (3.23) can be rewritten as

Vς(k)(k) ≤ α∆L
ς(k0)β

−∆L
ς(k0)µ

−1
ς(k0)1γ
µ−1
ς(k0)2γ

s∏
γ=1

[(α−∆L
γ β

∆L
γ µγ1γµγ2γ)

N0ΦIγ+
KΦIγ

(k,k0)

τaΦIγ

× α
KΦIγ (k,k0)
γ ]Vς(k0)(k0)
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= α∆L
ς(k0)β

−∆L
ς(k0)µ

−1
ς(k0)1γ
µ−1
ς(k0)2γ

s∏
γ=1

{(α−∆L
γ β

∆L
γ µγ1γµγ2γ)

N0ΦIγ

× [(α−∆L
γ β

∆L
γ µ1γµ2γ)

1
τaΦIγ αγ]

KΦIγ (k,k0)
}Vς(k0)(k0).

Considering τaΦIγ > τ
∗
aΦIγ

≥ max{τdΦIγ ,
lnα−∆L

γ β∆L
γ µ1γµ2γ

− lnαγ
}, ∀γ ∈ O, ∀ν ∈ Fm, we have 0 <

(α−∆L
γ β

∆L
γ µ1γµ2γ)

1
τaΦIγ αγ < 1, and it follows that

Vς(k)(k) ≤ max
γ∈O
{α∆L
γ }max

γ∈O
{β−∆L
γ }max

γ∈O
{µ−1

1γ }max
γ∈O
{µ−1

2γ }

×

s∏
γ=1

{(α−∆L
γ β

∆L
γ µ1γµ2γ)

N0ΦIγ

×max
γ∈O

[(α−∆L
γ β

∆L
γ µ1γµ2γ)

1
τaΦIγ αγ]}

KΦIγ (k,k0)Vς(k0)(k0).

Therefore, we conclude that the system (2.8)–(2.9) is GUES. It is proven.
Next, we give the design of the asynchronous controller to guarantee the GUES of the

asynchronously switched control system (2.8)–(2.9).
Theorem 3.2. For given scalars 0 < αγ < 1, βγ > 1, µ1γ > 0, µ2γ > 1 with α−∆L

γ β
∆L
γ µ1γµ2γ > 1, ∀γ ∈ O,

∀ν, ω ∈ Fm, ν , ω, suppose there exist positive matrices Hνn, matrices Yν, and symmetric invertible
matrix X, ∀r, n ∈ N , such that[

−αγHνn ⋆

AνX + BνYν Hνn +
∑N

r=1 πνrHνr − 2X

]
< 0, (3.24)

[
−αγ
∑N

n=1 bνnHνn ⋆

AνX + BνYν
∑N

n=1(bνn + πνn)Hνn − 2X

]
< 0, (3.25)[

−βγ
∑N

n=1 bωnHνωn ⋆

AνX + BνYω
∑N

n=1(bωn + πωn)Hνωn − 2X

]
< 0, (3.26)

N∑
n=1

aνωnHνωn < µ1γ

N∑
n=1

bωnHωn, (3.27)

N∑
n=1

aνnHνn < µ2γ

N∑
n=1

aνωnHνωn, (3.28)

hold, where πνn = bνn−aνn
τdΦIγ−∆L

. Then there is a state feedback controller such that the resulting closed-loop
system of (2.8)–(2.9) is GUES for any switching signal satisfying (3.12), and the feedback gain can be
given by

Kν = YνX−1. (3.29)

Proof: For k ∈ [kl, kla), let

Hνωn = XT UνωnX,Yω = KωX, X = Q−1.
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From (3.26), we have[
−βγ
∑N

n=1 bωnQ−1T
HνωnQ−1 ⋆

AνQ−1 + BνKωQ−1 Q−1T
[
∑N

n=1(bωn + πωn)Hνωn]Q−1 − 2Q−1

]
< 0. (3.30)

Pre- and post-multiplying both sides of the inequality in (3.30) by diag {Q,Q} yields[
−βγ
∑N

n=1 bωnHνωn ⋆

Q(Aν + BνKω)
∑N

n=1(bωn + πωn)Hνωn − 2Q

]
< 0, (3.31)

which it can ensure (3.9). We omit the same part here, the conditions (3.7), (3.8) and (3.11) also can be
guaranteed by (3.24), (3.25) and (3.28). According to Theorem 3.1, the switched system (2.8)–(2.9) is
GUES.
Remark 3.1. The ΦDIDT strategy covers the IDT and MDIDT ones. On the one hand, let O = {1},
and replace αγ, βγ, µ1γ and µ2γ in Theorems 3.1 and 3.2 with α, β, µ1 and µ2, and we can obtain
the corresponding results of stability based on the IDT strategy. On the other hand, let O = Fm and
ΦI(ν) = ν (∀ν ∈ Fm), and replace αγ, βγ, µ1γ and µ2γ in Theorems 3.1 and 3.2 with αν, βν, µ1ν and µ2ν,
and we can obtain the corresponding stability criterion under the MDIDT strategy. We have omitted
these easily obtained results because of spatial limitations. So the ΦDIDT strategy can unify the IDT
and MDIDT strategies.
Remark 3.2. As we know, the IDT strategy only focuses on the compensation effect between
subsystems but does not take into account the difference between subsystems. Contrariwise, the
MDIDT strategy mainly concerns the difference between subsystems but does not consider the
compensation between subsystems. For some given (ΦI ,O), O , {1} and O , Fm, it takes into
account both the compensation effect between the ν and the ω subsystems (ν , ω, ν, ω ∈ ΦIγ) and
the difference between ΦIγ and ΦIι (γ , ι). The fact is that some different stability results with their
own advantages can be obtained by choosing different (ΦI ,O). So we can’t decide which one is better.
It is easy to know that when the number of subsystems is limited, we can give all the possibilities of
(ΦI ,O). For instance, take Fm = {1, 2, 3}, theoretically, function Φ has 13 forms, including 1 form
for O = {1}, 6 forms for O = {1, 2} and 6 forms for O = {1, 2, 3}. Nevertheless, some forms can be
classified as the same type; for example, ΦI1 = {2, 3}, ΦI2 = {1} and ΦI1 = {1}, ΦI2 = {2, 3}. Therefore,
the function Φ is finally categorized into 5 types as follows:
(i) for O = {1}, then ΦI1 = {1, 2, 3}, which corresponds the IDT results.
(ii) if O = {1, 2}, then there are 3 classification forms: ① ΦI1 = {1, 2}, ΦI2 = {3}; ② ΦI1 = {1, 3},
ΦI2 = {2}; ③ ΦI1 = {2, 3}, ΦI2 = {1}.
(iii) when O = {1, 2, 3}, then ΦI1 = {1}, ΦI2 = {2}, ΦI3 = {3}, which corresponds the MDIDT results.
Remark 3.3. For O = {1, 2, 3} case, if we take the special value µ1γ = 1 in Theorems 3.1 and 3.2, then
our results in this paper will degenerate to the results of in [29], which implies that [29] is a special
case of the new conclusion.
Remark 3.4. There is the problem of how to properly select design parameters αγ, βγ, µ1γ and µ2γ in
the implementation of Theorems 3.1 and 3.2. These parameters are coupled with the decision matrices
Uνn, Q and matrices Hνn, Yν, X in Theorems 3.1 and 3.2, respectively, making it difficult to solve them
simultaneously. An effective algorithm for selecting appropriate design parameters is proposed here.

Step 1: Select sufficiently small αγ and sufficiently large βγ, µ1γ and µ2γ to ensure a large feasible
range of decision variables in Theorems 3.1 and 3.2.
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Step 2: If there are the solutions of α@
γ , β@

γ , µ@
1γ and µ@

2γ in Step 1, proceed to the next step, otherwise
terminate.

Step 3: Fix α@
γ , and gradually reduce βγ, µ1γ and µ2γ in sequence while ensuring the feasibility of

Theorems 3.1 and 3.2. Then one can obtain βγ = β∗γ, µ1γ = µ
∗
1γ and µ2γ = µ

∗
2γ.

Step 4: Fix β∗γ, µ
∗
1γ and µ∗2γ, and gradually increase αγ while ensuring the feasibility of Theorems 3.1

and 3.2. Then one can get αγ = α∗γ.
Step 5: Obtain a set of relatively ideal design parameters (α∗γ β

∗
γ, µ

∗
1γ, µ

∗
2γ).

Remark 3.5. Consider that Lyapunov functions may not jump when the subsystem switches or the
controller changes. Then, we look for the relationship of the constructed Lyapunov functions on the
interval [kl, kla].

Let V(k) be a function defined on the interval [kl, kla], suppose that there are m − 1 points on the
interval [kl, kla], which are

k − 1 = k(0)
l < k(1)

l < k(2)
l < · · · < k(i−1)

l < k(i)
l = kla.

They divide [kl, kla) into m cells ∆k(i)
l = [k(i)

l , k
(i−1)
l ], i = 1, 2, · · ·m. Denote

∥ K ∥= max
1≤i≤m
{∆k(i)

l }.

Take any point ξi ∈ ∆k(i)
l , we have

V(ξ1)∆k(1)
l + V(ξ2)∆k(2)

l + · · · + V(ξi−1)∆k(i−1)
l + V(ξi)∆k(i)

l =

m∑
i=1

V(ξi)∆k(i)
l .

Let

J = lim
∥K∥→0

m∑
i=1

V(ξi)∆k(i)
l =

∫ kla

k−1
V(k)dk.

Further, one can know

Vm(k) =
J
∆L

k + Vω(k − 1),

Vω(k − 1) = xT (k)Uω(k(l−1)b − k(l−1)a)x(k).

It satisfies at point kla that

Vν(kla) = xT (k)Uν(k − kla)x(k) + Vω(k − 1) =
J
∆L

kla + Vω(k − 1). (3.32)

From the functional relation of the above, we can obtain the following Corollaries 3.1 and 3.2.
Corollary 3.1. For given scalars 0 < αγ < 1, µγ > 1, ∀γ ∈ O, with α−∆L

γ µγ > 1, suppose there exist
matrices P∗νn > 0 and matrices Q∗, ∀ν ∈ Fm, ∀r, n ∈ N such that[

−αγU∗νn ⋆

Q∗A′ν U∗νn + Σ
N
r=1πνrU

∗
νr − Q∗ − Q∗T

]
< 0, (3.33)

[
−αγ
∑N

n=1 bνnU∗νn ⋆

Q∗A′ν
∑N

n=1(bνn + πνn)U∗νn − Q∗ − Q∗T

]
< 0, (3.34)

AIMS Mathematics Volume 8, Issue 12, 29332–29351.



29342

N∑
n=1

aνnU∗νn < µγ
N∑

n=1

bωnU∗ωn, (3.35)

hold, where πνn = bνn−aνn
τdΦIγ−∆L

. Then, the system (2.8)–(2.9) is GUES for any ς(k) having ΦDIDT

τaΦIγ > τ
∗
aΦIγ
≥ max{τdΦIγ ,

lnα−∆L
γ µγ

− lnαγ
},∀γ ∈ O. (3.36)

Proof: Integrating the proof of Theorem 3.1 with (3.32), it can be concluded.
Corollary 3.2. For given scalars 0 < αγ <1, µγ > 1, ∀γ ∈ O, with α−∆L

γ µγ > 1, suppose there exist
matrices H∗νn > 0, matrices Y∗ν , and symmetric invertible matrix X∗, ∀ν ∈ Fm, ∀r, n ∈ N , such that[

−αγH∗νn ⋆

AνX + BνY∗ν H∗νn +
∑N

r=1 πνrH
∗
νr − 2X∗

]
< 0, (3.37)

[
−αγ
∑N

n=1 bνnH∗νn ⋆

AνX + BνY∗ν
∑N

n=1(bνn + πνn)H∗νn − 2X∗

]
< 0, (3.38)

N∑
n=1

aνnH∗νn < µγ
N∑

n=1

bωnH∗ωn, (3.39)

hold, where πνn = bνn−aνn
τdΦIγ−∆L

, then there is the state feedback controller such that the resulting closed-loop
system of (2.8)–(2.9) is GUES for any switching signal satisfying

τaΦIγ > τ
∗
aΦIγ
≥ max{τdΦIγ ,

lnα−∆L
γ µγ

− lnαγ
},∀γ ∈ O. (3.40)

Moreover, the feedback gain is given by

K∗ν = Y∗νX
∗−1
ν .

Proof: Integrating the proof of Theorem 3.2 with (3.32), it can be concluded.

4. Numerical example

In this section, a simple numerical example in the discrete-time domain will be provided to verify
the effectiveness of the theoretical results.

Consider the switched linear system (2.8)–(2.9) with subsystem matrices

A1 =

[
−0.40 0.23
0.16 −6.71

]
, A2 =

[
−0.60 0
0.42 −48.12

]
, A3 =

[
−3.16 −0.44
−3.43 −1.19

]
,

B1 =

[
−0.2
−0.3

]
, B2 =

[
0

1.0

]
, B3 =

[
−0.1
0.5

]
.
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By using the Matlab LMI Toolbox to solve the conditions in Theorem 3.2 with ΦI1 = {1, 2}, ΦI2 = {3}
(no loss of generality) and other parameters referring to the corresponding columns in Table 2, the
feasible solutions are obtained

X =
[
−0.2020 ∗

0.3483 0.3390

]
, X−1 =

[
−1.7862 ∗

1.8352 0.3390

]
,

and
Y1 =

[
3.9980 2.6600

]
,Y2 =

[
0.4018 2.2180

]
,Y3 =

[
5.178 3.885

]
,

and switching signals satisfy τ∗aΦI1
= 3.0200 and τ∗aΦI2

= 2.4393, then the controller-gain matrices can
be given as follows:

K1 = Y1X−1 =
[
−2.2418 10.1498

]
,K2 = Y2X−1 =

[
3.3528 2.3606

]
,

K3 = Y3X−1 =
[
−2.1191 13.6375

]
.

Thus, the closed-loop systems are obtained with matrices A′ν = Aν + BνKν

A′1 =
[

0.0484 −1.7999
0.8328 −3.7049

]
, A′2 =

[
−0.6000 0
33.9480 24.6060

]
,

A′3 =
[
−3.3629 −1.8037
−4.4896 5.6288

]
.

It is worth noting that the larger parameter N will incur an additional computational burden. To
reduce the complexity of the calculation, we take N = 2 in the example. When applying Theorem 3.2,
different controller designs are generally obtained for different ΦI , resulting in different closed-loop
subsystems. In this situation, it is difficult to compare IDT, MDIDT and ΦDIDT switching strategies.
To verify the comprehensiveness and comparison of the presented results, the switching strategies in
the following tables are all based on the same controllers mentioned above.

The following facts can be obtained from Tables 2 and 3:
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(I) For O = {1} (ΦI1 = {1, 2, 3}) and O = {1, 2, 3} (ΦI1 = {1},ΦI2 = {2},ΦI3 = {3}) cases, we can
obtain the IDT and MDIDT strategies, respectively.

(II) For different ΦI , the ΦDIDT method provides the different results of admissible signals with
their own merits. Let O = {1, 2}, for case (i): ΦI1 = {1, 2}, ΦI2 = {3}, the 1st and 2nd modes have IDT
≥ 3.0200 and the 3rd mode has IDT ≥ 2.4393; for case (ii): ΦI1 = {1, 3}, ΦI2 = {2}, the 1st and 3rd
modes have IDT ≥ 3.4085, and the 2nd mode has IDT ≥ 2.5516; for case (iii): ΦI1 = {2, 3}, ΦI2 = {1},
the 2nd and 3rd modes have IDT ≥ 3.1672, and the 1st mode has IDT ≥ 2.3124.

(III) A fact can be shown from Table 2, and some different stability results with their own advantages
can be obtained by choosing different (ΦI ,O). So we can’t decide which is better.

(IV) The IDT strategy only focuses on the compensation effect between subsystems but does not pay
attention to the difference between subsystems. On the contrary, the MDIDT strategy mainly notices
the differences between systems but does not consider the compensation between subsystems. For the
three cases of O = {1, 2}, we think about not only the differences between the 2nd and 3rd subsystems,
the 1st and 3rd subsystems, and the 1st and 2nd subsystems and the rest of the subsystems, but also the
compensation effect between them. Thus, the ΦDIDT results cover the IDT and MDIDT ones, which
can be shown in Table 2.

(V) It follows from Table 3 that the MDIDT has a smaller value of τ∗aΦγ than the MDIDT value
τ∗aν in the literature [29]. Let µ11 = 2, µ21 = 0.3, µ12 = 2, µ22 = 0.6, µ13 = 2, µ23 = 0.6, and
∆L = 2. By solving the conditions in our Theorem 3.1, we can obtain τ∗aΦI1

= 2.0200, τ∗aΦI2
= 3.4085,

and τ∗aΦI3
= 2.5516. Letting µ11 = 2, µ12 = 2, µ13 = 2, and ∆L = 2, we can obtain τ∗a1 = 3.7570,

τ∗a2 = 4.5531, and τ∗a3 = 3.0000 by Theorem 1 in the literature [29]. So the new result has a larger
feasible region than the result in the literature [29].

AIMS Mathematics Volume 8, Issue 12, 29332–29351.



29346

Ta
bl

e
3.

C
om

pa
ri

so
n

be
tw

ee
n

th
e

re
su

lts
in

th
is

pa
pe

ra
nd

th
e

re
su

lts
in

C
ui

et
al

.(
20

21
)[

29
]u

nd
er

M
D

ID
T

(∆
L
=

2)
.

O
M

D
ID

T
M

D
ID

T
in

[2
9]

Φ
I

Φ
I1
=
{1
},
Φ

I2
=
{2
},
Φ

I3
=
{3
}
Φ

I1
=
{1
},
Φ

I2
=
{2
},
Φ

I3
=
{3
}

µ
µ

11
=

2,
µ

12
=

2,
µ

13
=

2
µ

11
=

2,
µ

12
=

2,
µ

13
=

2
µ

21
=

0.
3,
µ

22
=

0.
6,
µ

23
=

0.
6

α
α

1
=

0.
5,
α

2
=

0.
64
,α

3
=

0.
32

α
1
=

0.
5,
α

2
=

0.
64
,α

3
=

0.
32

β
1
=

1.
3,
β

2
=

1.
25
,β

3
=

1.
25

β
1
=

1.
3,
β

2
=

1.
25
,β

3
=

1.
25

H
1

[ 0.
20

88
⋆

−
0.

08
79

0.
26

51

]
[ 0.

33
53

⋆

−
0.

43
69

0.
57

43

]

H
2

[ 0.
28

81
⋆

−
0.

08
52

0.
33

15

]
[ 0.

33
35

⋆

−
0.

27
75

0.
39

93

]

H
3

[ 0.
24

44
⋆

−
0.

09
72

0.
33

59

]
[ 1.

60
78

⋆

−
3.

50
11

7.
62

39

]
Si

gn
al

τ∗ aΦ
I1
=

2.
02

2
τ∗ a1
=

3.
75

70
de

si
gn

τ∗ aΦ
I2
=

3.
40

85
τ∗ a2
=

4.
55

31
τ∗ aΦ

I3
=

2.
55

16
τ∗ a3
=

3.
00

00
Si

gn
al

τ 1
=

2.
1

τ 1
=

3.
8

in
st

an
ce
τ 2
=

3.
6

τ 2
=

4.
6

τ 3
=

2.
6

τ 3
=

3.
1

AIMS Mathematics Volume 8, Issue 12, 29332–29351.



29347

Figure 1(a). The switching signal θ1(k). Figure 1(b). The state response of the
system under θ1(k).

Figure 2(a). The switching signal θ2(k). Figure 2(b). The state response of the
system under θ2(k).

Figure 3(a). The switching signal θ3(k). Figure 3(b). The state response of the
system under θ3(k).
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Figure 4(a). The switching signal θ4(k). Figure 4(b). The state response of the
system under θ4(k).

Figure 5(a). The switching signal θ5(k). Figure 5(b). The state response of the
system under θ5(k).

5. Conclusions

In this paper, a new switching strategy ΦDIDT has been proposed and a new MCLF has been
introduced for the asynchronous control problem of a class of discrete-time switched linear systems.
Different from the existing studies, the paper considers that Lyapunov functions may jump when both
the subsystem switches or the controller changes. A numerical example makes some comparisons
among different switching strategies to demonstrate the effectiveness of the presented techniques.

Although the methods and techniques presented in this paper are applied to discrete-time switched
systems, they are also applicable to continuous-time cases by adjusting the Lyapunov function
appropriately, which is our work at hand. In addition, these methods and technologies are expected to
be extended to T-S fuzzy systems, Markov jump systems, etc., which are some of the future research
directions. On the other hand, some improved forms of ADT/MDADT/ΦDADT, such as persistent
DT [2,33], weighted ADT [15] and binary F-dependent ADT [34] have been proposed. Therefore,

AIMS Mathematics Volume 8, Issue 12, 29332–29351.
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extending the techniques of this paper to the corresponding persistent IDT/weighted IDT/binary F-
dependent IDT forms is another meaningful follow-up work.
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