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Abstract: We discuss the problem of event-triggered sliding mode control for a class of uncertain
switched systems. First, through the pre-designed sliding mode surface, the corresponding sliding
mode dynamics of the switched system are obtained. Second, based on the Lyapunov function
technique and average dwell time strategy, the exponential stability of the correlated sliding mode
dynamics is analyzed. Then, a sliding mode control law is designed by using the event-triggered
mechanism, which can drive the state trajectories of the uncertain switched system to the bounded
sliding mode region and maintain it there for subsequent time. Finally, a simulation example is given
to verify the effectiveness of the proposed method.
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R: the set of real numbers; N+: the set of positive integers; Rn: the real n-dimensional space; Rm×n: the
real matrix space; ∥·∥: the Euclidean norm; XT : the transpose of matrix X; P > 0: P is positive definite
symmetric matrix; I: an identity matrix of appropriate dimensions; ∗: an ellipsis for terms induced
for symmetry; rank (·): the rank of a matrix; λmax (·): the maximum eigenvalue of a symmetric matrix;
λmin (·): the minimum eigenvalue of a symmetric matrix

1. Introduction

Switched systems belong to an essential class of hybrid dynamical systems, which can be
composed of a series of continuous-time or discrete-time dynamic subsystems and switched rules that
coordinate the switching between several subsystems. Due to its wide application in different fields
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such as flight control systems, underwater vehicle systems, multi-agent vehicle formation planning
systems and mechanical systems, it has attracted great attention from researchers [1–7]. Switched
signal has a significant influence on the stability analysis of the switched system. For many systems,
such as unmanned vehicles and robots, as the operating environment changes, such as road
conditions, applied loads and communication structures, the entire system will experience different
dynamic characteristics, which can be called switched between different subsystems. With the
development of the switched system theory, the stability analysis and control of the switched system
have become a research hotspot. Based on the public Lyapunov functional method, zhang et al.
propose a robust integral sliding mode control for uncertain switched systems [8]. Fei et al. adopted
the average dwell time (ADT) method to study the stability of the switched systems [9].

It is well known that the sliding mode control (SMC) method has strong robustness to the
disturbance of unknown boundary and it has the advantages of simple structure, fast response and
good transient response. However, in the actual system, there are often external disturbances,
modeling errors and other uncertainties, such as input channel interference and external
environmental interference. Therefore, the SMC strategy has attracted a lot of attention and has been
applied to different systems, including switched systems, fuzzy systems, Markov jump systems and
stochastic systems [10–18]. Among them, the main idea of SMC is to utilize a discontinuous control
to drive the system state enter into the bounded sliding mode region and keep in there in the
subsequent time so that the expected performance such as stability, disturbance suppression and
robustness can be achieved.

The design method of SMC is generally divided into two steps: (1) Designing the sliding mode
surface function that meets the relevant performance requirements; (2) The approach law method is
used to design the sliding mode controller to drive the system state to the sliding mode surface or
quasi-sliding mode band. It is worth noting that unlike the design process of SMC for general linear
systems, the SMC of switched systems is more complicated due to the presence of switching signals.
In [19], a layered SMC scheme for all signals with arbitrary switching is studied. In [20], the SMC
problem of a class of continuous-time switched systems with stochastic perturbation was studied.

From these studies, it can be found that the SMC of switched systems is mostly carried out in a time-
triggered manner, which leads to resource depletion. Therefore, the event-triggered mechanism has
been peoposed and developed rapidly. In the event-triggered mechanism, only when the sampling point
meets the event-triggered conditions, is the transmission carried out. Different from traditional time-
triggered control, event-triggered control is more convenient and effective in reducing unnecessary data
sampling, which can reduce unnecessary resource waste [21, 22]. Due to the superiority of the event-
triggered control in saving resources, the event-triggered control strategy has been gradually applied
in many practical systems, such as linear systems [23], nonlinear systems [13, 17, 24, 25], uncertain
systems [26, 27] and stochastic systems [28–30].

In addition, there are attempts to combine SMC with the event-triggered mechanism, ensuring the
robustness of the system with a smaller event execution time. At present, the event-triggered SMC
approach has made great progress. Wu and Gao et al. discussed the strategy of combining the
event-triggered scheme with SMC to obtain the stability of the closed-loop system [17]. In [23], a
class of event-triggered control schemes for switched systems based on data sampling was
considered. Wen et al. studied the event-triggered SMC method for a class of fuzzy systems with
induced delay [31]. However, it should be pointed out that the issue of event-triggered control of
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uncertain switched systems needed to be improved.
Motivated by the above discussions, we aim to solve the SMC problem of uncertain switching

systems by an event-triggered mechanism. Unlike most existing results, we propose an event-triggered
mechanism by combining the switched properties and reachability of switched sliding mode dynamics.
The major contributions of this paper can be listed as follows:

(1) The sliding mode control problem of a class of discrete-time uncertain switching systems with
matching disturbance is considered, and the purpose of saving resources is realized based on the event-
triggered strategy.

(2) A linear sliding mode surface is designed. Based on Lyapunov function theory and ADT method,
sufficient conditions for the exponential stability of the switching sliding mode dynamics equation are
provided.

(3) Based on the characteristics of sliding mode control of switching system, a new sliding mode
control law is proposed using event triggering mechanisms, and a triggering rule is established to
realize the event-triggered sliding mode control of switching system. This reduces the conservative
nature of the control strategy.

2. System description and problem statement

Consider the following uncertain discrete switched systems with disturbances:

x(k + 1) = (Aσ(k) + ∆Aσ(k))x(k) + Bσ(k)(u(k) + fσ(k)(x(k))), (2.1)

where x(k) ∈ Rn represents the state, u(k) ∈ Rn represents the control input.
{
Aσ(k), Bσ(k) : σ∈ N

}
represents a family of known constant matrices that depends on the index set N = {1, 2, · · · ,N}. σ(k):
N+ → N represents the switching signal, which is a piecewise constant function of time k.

In addition, σ(k) = i means that the ith subsystem is activated. For simplicity, we denote

Aσ(k)
∆
= Ai, Bσ(k)

∆
= Bi, ∆Aσ(k)

∆
= ∆Ai, fσ(k)x(k) ∆= fi(k).

In this paper, it is assumed that the admissible uncertainty ∆Ai, σ ∈ N satisfies ∆Ai = EiMi(k)Hi, where
Ei and Hi represent known constant matrices, Mi(k) represents an unknown time-varying function
matrix satisfying Mi

T (k)Mi(k) ≤ I. Furthermore, fi(k) represents the external disturbances function
and satisfies ∥ fi(k)∥ ≤ di, where di > 0 is a known scalar. Thus, system (2.1) can be rewritten as

x(k + 1) = (Ai + ∆Ai)x(k) + Bi(u(k) + fi(k)). (2.2)

Assumption 1. The matrix Bi is full column rank.

Lemma 1. Let D,H be real constant matrix with appropriate dimensions and G(t) satisfies that
GT (t)G(t) ≤ I. Then, for any ε > 0, we have the following inequality

DG(t)H + HTGT (t)DT ≤ ε−1DDT + εHT H.

Next, we will give the concepts of ADT and exponential stability of switched systems.

Definition 1. The sliding trajectory of switched system (2.2) is known as in quasi-sliding mode band
(QSMB) if there exist positive constant δ > 0 and k̃ > 0 satisfy ∥s(k)∥ ≤ δ for any k > k̃ . In this case,
the constant δ is called a QSMB.

AIMS Mathematics Volume 8, Issue 12, 29424–29439.



29427

Definition 2. For any k2 > k1 > 0, let Nσ(k)(k1, k2) denote the number of the switching signals of σ(k)
over (k1, k2). If

Nσ(k)(k1, k2) ≤ N0 +
k2 − k1

Tσ

holds for Tσ > 0 and N0 ≥ 0, then, Tσ is called an ADT. We choose N0 = 0, which is also commonly
used in previous literature.

Definition 3. [2] The switched sliding mode dynamics (2.1) is said to be exponential stability under
the switching signal σ(k), if there are scalar ρ > 0, 0 < β < 1 such that the state x(k) of the system
satisfies

∥x(k)∥ ≤ ρβk−k0 ∥x(k0)∥ , ∀k ≥ k0.

In this paper, the stability of the sliding mode dynamics is analyzed first. Then, the SMC law is
designed to ensure that the state trajectory of the system reaches the specified sliding mode surface
in a finite time. For the discrete-time switched system in (2.2), we design the following sliding mode
surface function:

s(k) = Gix(k), (2.3)

where matrix Gi is chosen so that GiBi is nonsingular.
Obviously, when the system state arrive at the sliding surface (2.3), the ideal sliding surface function

satisfies
s(k + 1) = s(k) = 0, (2.4)

From (2.3) and (2.4), it can be concluded that

Gi(Ai + ∆Ai)x(k) +GiBi(u(k) + fi(k)) = 0. (2.5)

From this, the equivalent control can be obtained as

ueq(k) = −(GiBi)−1Gi(Ai + ∆Ai)x(k) − fi(k). (2.6)

Substituting (2.6) into (2.2) yields

x(k + 1) = (I − Bi(GiBi)−1Gi)(Ai + ∆Ai)x(k). (2.7)

3. Exponential stability analysis

In this section, we use the ADT method to analyze the exponential stability of sliding mode
dynamics (2.7).

Theorem 1. Consider the discrete-time switched system (2.1) with a sliding mode surface as shown
in (2.3) and the system satisfies Assumption 1. For any scalar 0 < γ < 1, if the parameters εi1 > 0,
εi2 > 0, i ∈ N and matrix Pi > 0 exist, satisfing the following linear matrix inequalities (LMIs):[

θi1 θi2

∗ −εi1I

]
< 0, (3.1)

[
−Pi θi3

∗ −εi2I

]
< 0, (3.2)
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where

θi1 =
[
(I − Bi(GiBi)−1Gi)Ai

]T
Pi(I − Bi(GiBi)−1Gi)Ai + εi1HT H + εi2HT H − γPi,

θi2 =
[
(I − Bi(GiBi)−1Gi)Ai

]T
Pi(I − Bi(GiBi)−1Gi)Ei,

θi3 = Pi(I − Bi(GiBi)−1Gi)Ei.

Then, with the parameter

µ = max
i, j∈N ,i, j

λmax(Pi)
λmin(P j)

(3.3)

and the average dwell time Tσ satisfies

Tσ ≥ Tσ
∗ > −

ln µ
ln γ

, (3.4)

the system (2.7) is exponential stability. Furthermore, the state is estimated by

∥x(k)∥ ⩽ ρβk−k0 ∥x(k0)∥ (3.5)

and the parameters satisfy

a = min
i∈N

λmin(Pi), b = max
i∈N

λmax(Pi),

β =

√
γµ

1
Tσ , ρ =

√
b
a
≥ 1. (3.6)

Proof. For system (2.7), construct the following Lyapunov function

Vi (k) = xT (k)Pix(k), (3.7)

where Pi is the positive-definite matrix to be determined later. From Eq (2.7), we obtain

Vi (k + 1) − γVi (k)

= xT (k)
[(

I − Bi(GiBi)−1Gi

)
(Ai + ∆Ai)

]T
Pi

(
I − Bi(GiBi)−1Gi

)
× (Ai + ∆Ai) x (k) − γxT (k) Pix (k)

= xT (k)
[(

I − Bi(GiBi)−1Gi

)
Ai

]T
Pi

(
I − Bi(GiBi)−1Gi

)
Aix (k)

+ xT (k)
[(

I − Bi(GiBi)−1Gi

)
∆Ai

]T
Pi

(
I − Bi(GiBi)−1Gi

)
Aix (k)

+ xT (k)
[(

I − Bi(GiBi)−1Gi

)
Ai

]T
Pi

(
I − Bi(GiBi)−1Gi

)
∆Aix (k)

+ xT (k)
[(

I − Bi(GiBi)−1Gi

)
∆Ai

]T
Pi

(
I − Bi(GiBi)−1Gi

)
∆Aix (k)

≤ xT (k)
[(

I − Bi(GiBi)−1Gi

)
Ai

]T
Pi

(
I − Bi(GiBi)−1Gi

)
Aix (k)

+ εi1xT (k) HT
i Hix (k) + ε−1

i1 xT (k)
[(

I − Bi(GiBi)−1Gi

)
Ai

]T
Pi

×
(
I − Bi(GiBi)−1Gi

)
Ei

[
Pi

(
I − Bi(GiBi)−1Gi

)
Ei

]T
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×
(
I − Bi(GiBi)−1Gi

)
Aix (k) + xT (k)

[(
I − Bi(GiBi)−1Gi

)
∆Ai

]T
× Pi

(
I − Bi(GiBi)−1Gi

)
∆Aix (k) − γxT (k) Pix (k) . (3.8)

From (3.8) and Schur’s complement lemma, we know that

Vi (k + 1) − γVi (k) < 0. (3.9)

We only have to do is 
θi4 θi2 θi5

∗ −εi1I 0
∗ ∗ −Pi

 < 0, (3.10)

where
θi4=
[(

I − Bi(GiBi)−1Gi

)
Ai

]T
Pi

(
I − Bi(GiBi)−1Gi

)
Ai + εi1HT

i Hi − γP,

θi2=
[(

I − Bi(GiBi)−1Gi

)
Ai

]T
Pi

(
I − Bi(GiBi)−1Gi

)
Ei,

θi5=
[(

I − Bi(GiBi)−1Gi

)
∆Ai

]T
Pi.

From (3.10), it can be concluded that
θi4 θi2 0
∗ −εi1I 0
∗ ∗ −Pi

 + θÑΠ + ΠT ÑTθT < 0, (3.11)

where
θ =
[

Hi 0 0
]T
, Ñ = MT (k) ,

Π =

[
0 0

((
I − Bi(GiBi)−1Gi

)
Ei

)T
Pi

]
.

From Eqs (3.1) and (3.2) and Schur’s complement, (3.11) can be obtained. It can be shown from (3.11)
that

Vi (k + 1) ≤ γVi (k) . (3.12)

Therefore, for any k ∈ [kl, kl+1), it can be derived by (3.12)

Vσ(k) (k) ≤ γk−klVσ(kl) (kl) . (3.13)

According to (3.3) and (3.13), the following inequation

Vσ(k) (k) ≤ γk−klµVσ(kl−1) (kl)

· · ·

≤ γk−k0µ
k−k0
Tσ Vσ(k0) (k0)

≤
(
γµ

1
Tσ

)k−k0

Vσ(k0) (k0) (3.14)

holds.
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Considering (3.6), we have
a∥x (k)∥2 ≤ Vσ(k) (k) (3.15)

and
Vσ(k0) (k0) ≤ b∥x (k0)∥2. (3.16)

By (11)
γµ

1
Tσ ≤ γµ−

ln γ
ln µ ≤ 1. (3.17)

Combining (3.14)–(3.17), we yield

∥x (k)∥2 ≤
1
a

Vσ(k) (k) ≤
b
a
β2(k−k0)

∥x (k0)∥2. (3.18)

Then (2.7) is exponential stability. □

4. Event-triggered SMC law analysis

Next, an event-triggered SMC law is designed to ensure the reachability of the state trajectories
of the switching system in a finite time. To realize the control objectives, the following reaching law
approach is considered for the system in Eq (2.2):

s (k + 1) − s(k) = −risgns (k) + f̄ (i, x, k) , i ∈ N , (4.1)

where
f̄ (i, x, k) = GiBi fi(k),

∥∥∥ f̄ (i, x, k)
∥∥∥ ≤ f̄id,

ri is the given switching gain scalar. Based on the sliding mode surface (2.3) and the switched
system (2.2), as well as the constant reaching law (4.1), the following SMC law can be obtained:

u(k) = −(GiBi)−1 {Gi (Ai − I) x(k) + risgns (k)
}
− ũ(k), (4.2)

where
ũ(k) = (GiBi)−1Gi∆Aix(k).

Since the controller (4.2) contains the uncertain ũ(k), it is not suitable for practical. Therefore, the
SMC law is recommended to be formulated as

u(k) = −(GiBi)−1 {Gi (Ai − I) x(k) + risgns (k)
}
− û(k), (4.3)

where

û(k) =

(
(GiBi)−1

∥GiEi∥ ∥Hix(k)∥ + (GiBi)−1
∥GiBi∥ ηi

)
s(k)
∥s(k)∥ , i f ∥s(k)∥ , 0,

0, i f ∥s(k)∥ = 0,

and ηi is a positive scalar.
Since GiBi is invertible, the SMC law (4.2) can be easily obtained from the above equation.
On the result above, the event-triggered sliding mode controller design method will be developed.

Assuming that {sl, l ∈ N, s0 = 0} is a triggering sequence generated by an event-triggered scheme.
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Therefore, the sliding mode controller will be updated at every sl instant and remain unchanged until
the next triggered instant sl+1. Define the state error as

e(k) ∆= x(k) − x(sl)

for all k ∈ [sl, sl+1) and the sliding surface function based on event-triggered scheme can be represented
as

s(k) = Gix (sl) , i ∈ N . (4.4)

Moreover, the following event-triggered sliding mode controller can be obtained as

u(k) = −(GiBi)−1 {Gi (Ai − I) x(sl) + risgns (sl)
}
− û(sl), k ∈ [sl, sl+1) . (4.5)

Then, the following theorem is given to ensure the effectiveness of the event-triggered sliding mode
controller in (4.5).

Theorem 2. Considering the switched system (2.2), sliding surface function (2.3) and event-triggered
SMC law (4.5), we assume that the event-triggered SMC law (4.2) is updated at the triggered instants

{sl}l∈N. For a given parameter vi > 0 and the switching gain ri > vi + f̄id + ηi, if the following equation

∥Gi∥ · ∥Ai∥ · ∥e(k)∥ ≤ vi, i ∈ N (4.6)

holds for all k. Then, the state trajectory of the switched system (2.2) under the event-triggered SMC
law (4.5) converges to the sliding mode surface (2.3) in a finite time and maintaines it there all the
time. Further, the practical QSMB is expressed as

δ = max
i∈N

δi, (4.7)

where
δi = max

{ √
ψi

2 + 2ζiψi, vi∥Ai∥
−1
}
,

ζi = ri − vi − f̄id − ηi, ψi =
(ri+vi+ f̄id+ηi)2

2(ri−vi− f̄id−ηi) .

Proof. From the switched system (2.2) and the sliding mode surface function(2.3), we have

∆s(k) = s(k + 1) − s(sl)
= Gix(k + 1) −Gix(sl)
= Gi (Ai + ∆Ai) x(k) +GiBi

[
u(k) + fi(k)

]
−Gix(sl).

From (4.5), we obtain

∆s(k) = Gi (Ai + ∆Ai) x(k) +GiBi
[
u(k) + fi(k)

]
−Gix(sl)

= GiAix(k) +Gi∆Aix(k) −Gi (Ai − I) x(sl) − risgns (sl)

−GiBiû(sl) +GiBi fi(k) −Gix(sl)
= GiAix(k) +Gi∆Aix(k) −GiAix(sl) +Gix(sl) − risgns (sl)

−GiBiû(sl) +GiBi fi(k) −Gix(sl)
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= GiAie(k) +Gi∆Aix(k) − risgns (sl) −GiBiû(sl) + f̄ (i, x, k)
= GiAie(k) +GiBi (ũ(sl) − û(sl)) − risgns (sl) + f̄ (i, x, k). (4.8)

Choose the following Lyapunov function

Vs(k) =
1
2

sT (k)s(k). (4.9)

Therefore, according to (4.8), it can be concluded

∆Vs (k) = sT (k)∆s (k) +
1
2
∆sT (k)∆s (k)

= sT (k)
[
GiAie(k) +GiBi (ũ(sl) − û(sl)) − risgns (sl) + f̄ (i, x, k)

]
+

1
2

[
GiAie(k) +GiBi (ũ(sl) − û(sl)) − risgns (sl) + f̄ (i, x, k)

]T
×
[
GiAie(k) +GiBi (ũ(sl) − û(sl)) − risgns (sl) + f̄ (i, x, k)

]
= sT (k)

[
GiAie(k) +GiBi (ũ(sl) − û(sl)) − risgns (sl) + f̄ (i, x, k)

]
+

1
2

{[
GiAie(k) − risgns (sl)

]T [GiAie(k) − risgns (sl)
]
+ f̄ 2(i, x, k)

+[GiBi (ũ(sl) − û(sl))]T [GiBi (ũ(sl) − û(sl))]
}

+
1
2

{
2
[
GiAie(k) − risgns (sl)

]
× f̄ (i, x, k) + 2

[
GiAie(k) − risgns (sl)

]
× [GiBi (ũ(sl) − û(sl))] + 2 [GiBi (ũ(sl) − û(sl))] × f̄ (i, x, k)

}
.

It can be obtained from the above formula

∆Vs (k) ⩽
∥∥∥sT (k)

∥∥∥ ∥GiAie(k)∥ − ri

∥∥∥sT (k)
∥∥∥ + ∥∥∥sT (k)

∥∥∥ ∥∥∥ f̄ (i, x, k)
∥∥∥

+
∥∥∥sT (k)

∥∥∥ ∥GiBi (ũ(sl) − û(sl))∥ +
1
2

{
∥GiAie(k)∥2 + ri

2

+2ri ∥GiAie(k)∥ +
∥∥∥ f̄ (i, x, k)

∥∥∥2 + ∥GiBi (ũ(sl) − û(sl))∥2
}

+
1
2

{
2 ∥GiAie(k)∥

∥∥∥ f̄ (i, x, k)
∥∥∥ + 2ri

∥∥∥ f̄ (i, x, k)
∥∥∥ + 2 ∥GiAie(k)∥

× ∥GiBi (ũ(sl) − û(sl))∥ + 2ri ∥GiBi (ũ(sl) − û(sl))∥

+ 2 ∥GiBi (ũ(sl) − û(sl))∥
∥∥∥ f̄ (i, x, k)

∥∥∥}
⩽ ∥s(k)∥ · vi − ri ∥s(k)∥ + ∥s(k)∥ · f̄id + ∥s(k)∥ · ηi +

1
2

{
vi

2 + ri
2

+2rivi + f̄ 2
id + ηi

2 + 2vi f̄id + 2ri f̄id + 2viηi + 2riηi + 2ηi f̄id

}
= −
(
ri − vi − f̄id − ηi

) ∥s(k)∥ −

(
ri + vi + f̄id + ηi

)2
2
(
ri − vi − f̄id − ηi

)


= −ζi (∥s(k)∥ − ψi) . (4.10)
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Therefore, it can be concluded from (4.10) that when ∥s(k)∥ > ψi, ∆Vs (k) < 0 can be obtained by
selecting ri > vi + f̄id + ηi, ensuring the reachability of sliding mode dynamics in a finite time.

However, if ∥s(k)∥ ≤ ψi, ∆Vs (k) < 0 can not be guaranteed, but it can be determined that the
trajectory of the sliding surface function s(k) is bounded. Next, we calculate the value of the sliding
surface function at the next time instant s(k + 1), according to ∥s(k)∥ ≤ ψi and (4.10), we have

∥s(k + 1)∥ ≤
√
∥s(k)∥2 − 2ζi {∥s(k)∥ − ψi}

≤

√
∥s(k)∥2 + 2ζiψi

≤

√
ψi

2 + 2ζiψi.

Then, the maximum deviation of the s(k) can be calculated as

∥s(k) − s(sl)∥ = ∥Gie(k)∥ ≤ ∥Gi∥ · ∥e(k)∥ ≤ vi∥Ai∥
−1.

In summary, we obtain the QSMB in (4.7), which completes the proof. □

Based on the above research, the stability of the switched system (2.2) with external disturbances
can be guaranteed by designing the event-triggered SMC law (4.5). According to the condition (4.6),
the next event trigger time sl+1 can be determined as follows:

sl+1 = inf {k > sl |∥Gi∥ · ∥Ai∥ · ∥e(k)∥ > vi } . (4.11)

Thus, we can obtain the sequence of triggering instants {sl, l ∈ N, s0 = 0} for the SMC law (4.5). In
addition, it can be seen from (4.11) that for triggering conditions, there is always an interval between
events, so Zeno phenomenon is excluded.

In particular, the triggering condition is established based on the reachability of the switched SMC
system, which reduces conservative of the switched system.

5. Simulation example

Consider the switched system (2.1), which has two modes and parameters as follows.
Subsystem 1:

A1 =

[
0.3 −0.4
−0.1 −0.2

]
, B1 =

[
−0.1
−0.12

]
, E1 =

[
0.1
0.2

]
, M1(k) = cos(0.3k),

H1 =
[

0.2 0.1
]
, f1(k) = 0.5

√
x2

1 (k) + x2
1 (k).

Subsystem 2:

A2 =

[
0.1 −0.3
−0.1 −0.2

]
, B2 =

[
−0.4
0.2

]
, E2 =

[
0.3
−0.5

]
, M2(k) = sin(2k),

H2 =
[

0.1 0.2
]
, f2(k) = 0.3

√
x2

1 (k) + x2
1 (k).
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Select G1 = G2 =
[
−3.9002 0.6240

]
and scalar γ = 0.9, solving LMIs (3.1) and (3.2) yields

ε11 = 136.2037, ε12 = 135.9712, ε21 = 114.5577, ε22 = 109.8347,

P1 =

[
201.5647 −0.3130
−0.3130 199.6581

]
, P2 =

[
122.6677 −1.8653
−1.8653 111.3075

]
.

Therefore, the event-triggered sliding surface function (4.4) can be expressed by

S (t) =
[
−3.9002 0.6240

]
x(sl).

According to Theorem 1, the parameters µ and Tσ are designed as follows:

µ = max
i, j∈N ,i, j

λmax(Pi)
λmin(P j)

, Tσ ⩾ Tσ
∗ > −

ln µ
ln γ

.

Therefore, it can be concluded
µ = 1.1678, Tσ = 1.5.

Select the event-triggered parameters as v1 = v2 = 0.05. According to (4.11), the triggering instants
sl is determined by

sl =

{
inf {k > sl−1| 2.0210 ∥e (k)∥ > 0.05} , i = 1,
inf {k > sl−1| 1.4291 ∥e (k)∥ > 0.05} , i = 2.

Select the parameter η1 = η2 = 0.8, we get

f̄1d = 0.1576, f̄2d = 0.3370,
r1 = 0.04 + v1 + f̄1d + η1 = 1.0476,
r2 = 0.06 + v2 + f̄2d + η2 = 1.2470.

Therefore, the event-triggered SMC law can be calculated as

u(k) =



[
−8.4653 −2.5743

]
x(sl) − 3.3242 sgn(S (sl)),

i f i = 1 and ∥S (sl)∥ = 0,[
−2.0463 −0.2500

]
x(sl) − 0.7401 sgn(S (sl)),

i f i = 2 and ∥S (sl)∥ = 0,[
−8.4653 −2.5743

]
x(sl) − 3.3242 sgn(S (sl))

−(0.8416 ×
∥∥∥∥[ 0.2 0.1

]
x(sl)
∥∥∥∥ + 8.0553)

S (sl)
∥S (sl)∥

,

i f i = 1 and ∥S (sl)∥ , 0,[
−2.0463 −0.2500

]
x(sl) − 0.7401 sgn(S (sl))

−(0.8796 ×
∥∥∥∥[ 0.1 0.2

]
x(sl)
∥∥∥∥ + 0.2818)

S (sl)
∥S (sl)∥

,

i f i = 2 and ∥S (sl)∥ , 0.

AIMS Mathematics Volume 8, Issue 12, 29424–29439.



29435

To reduce the chattering phenomenon, the sign function sgn(S (k)) is replaced by S (k)
∥S (k)∥+0.1 . For the

initial state

x(0) =
[

3 −1
]T
,

the switched signal is shown in Figure 1. Figure 2 shows the trigger instants and intervals of the
event-triggered mechanism. It can be seen that the event-triggered scheme can reduce the number of
control task execution. Figure 3 shows the state trajectory of the system, indicating that asymptotically
converges to zero in a finite time. Figure 4 describes the event-triggered sliding surface and the event-
triggered SMC law is shown in Figure 5.

Figure 1. Switching signal σ(k).

Figure 2. Trigger instants and intervals.
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Figure 3. State trajectories x(k).

Figure 4. Sliding surface s(k).

Figure 5. Control input u(k).
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6. Conclusions

In this paper, we have investigated the problem of the event-triggered SMC for a class of
discrete-time switched systems. Based on the Lyapunov function technique and the ADT strategy, the
exponential stability of the correlated sliding mode dynamics is analyzed by linear matrix inequalities.
In addition, the event-triggered SMC law is designed using the event-triggered mechanism, which can
guarantee that the state trajectory of the system reaches the bounded sliding mode region in a finite
time. Furthermore, a sequence of triggering instants are generated by establishing triggering
conditions, which can effectively improve the execution efficiency of control tasks. However,
chattering decrease is a challenge problem of sliding mode control, and the gain scheduling using
fuzzy rules is an effective approach [32]. These may be further considered in the future research.
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