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Abstract: We introduce this work by studying the non-Newtonian fluids, which have huge applications 

in different science fields. We decided to concentrate on taking the time-dependent Casson fluid, which 

is non-Newtonian, compressed between two flat plates. in fractional form and the 

magnetohydrodynamic and Darcian flow effects in consideration using the semi-analytical iterative 

method created by Temimi and Ansari, known as TAM, this method is carefully selected to be suitable 

for studying the Navier-Stokes model in the modified form to express the studied case mathematically. 

To simplify the partial differential equations of the system to the nonlinear ordinary differential 

equation of order four the similarity transformations suggested by Wang (1976) are used. The TAM 

approach demonstrates a high degree of accuracy, efficiency, and convergence when applied to the 

resolution of both linear and nonlinear problems, and the results in this article are used to study the 

effect of the related factors like squeeze number 𝑆𝑞, Casson parameter𝛽, magnetohydrodynamic 

parameter 𝑀𝑔 and permeability constant 𝑀𝑝 and examining the skin friction coefficient effect. The 

velocity profile is studied numerically, which is tabulated and graphically represented to show and 

confirm the theoretical study. We can conclude that the success of the proposed method in studying 

time-dependent Casson fluid, which is non-Newtonian, compressed between two flat plates provides 

opportunities for additional study and advancements in fluid mechanics using the techniques. 
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1. Introduction 

Non-Newtonian fluids have attracted considerable interest due to their wide array of applications 

that can be found across many industries. Topics of interest include the structural properties of robust 

lattice heat, the transfer of atomic waste, the utilization of synthetic synergist reactors, the generation 

of geothermal energy, the study of groundwater hydrology, the phenomenon of transpiration cooling, 

and the availability of oil supplies. Numerous models have investigated non-Newtonian liquids but 

there is not even a prototype that has been constructed that depicts the properties of non-Newtonian 

fluids. The Casson fluid model is among the various non-Newtonian fluid models, which simulate a 

variety of fluids, including fruit juices, jelly, honey, soup, and blood. The Casson fluid is a type of non-

Newtonian fluid that exhibits shear-thinning behavior and possesses a yielding stress. At infinitely high 

shear rates, the substance exhibits a viscosity of zero, while at a significantly low shear rate, it 

demonstrates an infinite viscosity [1]. Numerous scholarly inquiries have been undertaken to 

investigate the characteristics and behavior of Casson fluid flow such as [2]. Later, Ibrahim and 

Anbessa [3] examined the characteristics of the three-dimensional magnetohydrodynamic combination 

convection flow of Casson nanofluid across exponentially stretched sheets. Manvi et al. [4] investigate the 

flow behavior of non-Newtonian Casson fluids with heat and mass conduction towards extended surfaces. 

Magnetohydrodynamics MHD plays a crucial and indispensable function in the domains of 

engineering and industrial applications. The study of magnetohydrodynamics fluid flow is of 

significant interest due to its relevance in various applications such as MHD generators, liquid metal 

cooling system design, MHD pump accelerators, and flow meters. The utilization of magnetic field 

effects has notable implications in the realms of science and engineering, encompassing various 

applications such as MHD pumps, geothermal energy extraction, MHD generators, and numerous 

more. The book by Moreau [5] provides a thorough analysis of magnetohydrodynamics theory and its 

application in real-world situations. Krupalakshmi et al. [6] a simulation was performed to explore the 

impact of nonlinear thermal radiation and magnetic fields on the flow of a higher convective Maxwell 

fluid. The flow was induced by a convectively heated stretched sheet, while dust particles were present. 

Das et al. [7] investigated the influence of entropy generation on the MHD slip flow of a non-

Newtonian Cu-Casson nanofluid while taking heat radiation into consideration. Rashidi et al. [8] 

analyzed the mass and heat transfer on MHD blood flow of the Casson fluid simulation due to 

peristaltic motion waves. Recently, Hamarsheh et al. [9] studied MHD and the natural convection effect 

on the flow of oxide of graphite, carbon nanotubes and methanol-based Casson nanofluids that pass a 

horizontal circular cylinder. Unsteady Magnetohydrodynamics (MHD) combined convection flow of 

Non-Newtonian Casson nanofluid with hybrid properties in the stagnation zone of spheres subjected 

to impulsive spinning was investigated by El-Zahar et al. [10]. 

The flow of Viscous fluid between two parallel disks or plates is of great interest in modern 

technologies. Polymer processing, metal liquid lubrication, compression, power transfer through 

squeezed films, and injection modeling are among their many technological and industrial applications. 

Squeezing flows are prevalent in polymer processing, including thin sheets, paper, plastic, and metal 

sheet manufacture. Jackson [11] presented a study of squeezing flow in 1962. Researchers in the 

literature [12–14] have examined squeeze films. The study of Casson fluid in MHD squeezing flow 

between a pair of parallel plates is important due to its numerous practical applications in the fields of 

engineering and science. For example, it can be used to model the flow of blood in arteries, which is 

important for understanding cardiovascular diseases. It can also be used to model the flow of paints 
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and other materials in manufacturing processes, so studies have been focused on this phenomenon. 

Naveed et al. [15] studied the effects of the magnetic field in squeezing the flow of a Casson fluid 

between parallel plates using a variation of parameters method (VPM). Al-Saif and Jasim [16] studied 

the same fluid using a novel algorithm. Noor et al. [17] investigated the heat and mass transport 

characteristics within an unstable squeezing flow of a magnetohydrodynamic Casson nanofluid. Divya 

et al. [18] analyzed the influence of temperature characteristics of peristaltic Casson MHD fluid flow within 

an irregular channel. The influence of the energy of activation and chemical reactions on the dynamics of 

unsteady magnetohydrodynamic (MHD) dissipative processes. The study focused on the investigation of 

the Darcy-Forchheimer squeezing flow of a Casson fluid within a horizontal channel in [19]. 

In previous studies, the equations governing flow were solved using numerical or analytical 

methods, but recently, these equations have been solved using fractional calculus. The field of 

fractional calculus began in 1965. Fractional-order derivatives and integrals are being studied [20]. 

Researchers like fractional calculus because it includes non-local derivatives and integrals. Fractional 

calculus effectively explains memory effects [21]. The cognitive capacity helps observe historical 

events and processes. Because of these advantages, fractional calculus has largely replaced standard 

calculus. Existing studies on fractional-order partial differential equations show that their results are 

more precise and comprehensive than integer-order ones [22]. Fractional-order derivatives and 

integrals are widely used in research and technology, making them a popular and growing calculus 

subject. Numerous fields use this area [23–26], such as bioengineering, mathematics, finance, and 

disease dynamics use fractional calculus [27–28]. Ali et al. [29] analyzed nanofluid heat transfer under 

escalating wall temperatures using fractional derivatives. Thermal radiation effects are included in this 

research [30] on magnetohydrodynamic Casson fluid-free convection across an oscillating plate. The 

Caputo fractional derivative showed that fractional parameter values enhance velocity, while thermal 

radiation and Prandtl number values decrease velocity. Several recent articles have addressed fractional 

derivatives [31–39]. 

A review of the literature finds that no attempt has yet been made to investigate the MHD 

squeezed flow of a Casson fluid via TAM. Thus, the current investigation involves the usage of a 

fractional transformation to the unsteady Casson fluid model, leading to the development of a more 

detailed simulation of fluids that incorporates fractional order. The complex model is solved with a 

semi-analytical iterative methodology. The TAM a method developed by Temimi and Ansari has 

emerged as a viable approach for solving linear and nonlinear ordinary differential equations (ODEs) 

as well as partial differential equations (PDEs) [40–42]. The iterative approach has been recently 

utilized to derive precise as well as approximation solutions for numerous scenarios. As a result, the 

Technology Acceptance Model (TAM) eliminates the necessity for computationally demanding 

processes and does not necessitate the use of additional parameters. 

The studied case description of this work will be studied in section 2, the full demonstrations and 

fundamental mechanisms of the used method, TAM, are considered in section 3, while the results and 

discussion of their numerical examples and the effect of the essential parameters are presented in 

section 4. 

2. Problem formulation 

An incompressible fluid flows between parallel plates where the separation distance y =

∓L√1 − 𝑎 t = ∓ℎ(t), and L is the distance between two plates (time t=0). For 𝑎 greater than zero 
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the plates decrease where the plates contact (t = 1 𝑎⁄ ), while for 𝑎 less than zero they recede and 

dilate as shown in Figure 1. In order to analyse the heat creation owing to shear friction caused by the 

flow, viscous dissipation impacts are also used. Casson fluid rheological expressed by the constitutive 

equation (the stress tensor and strain rate relation) of the model is described as follows [15]: 

τij = {
2 (μb +

Py

√2π
) eij,   π > πc

2 (μb +
Py

√2πc
) eij,   π < πc

,        (1) 

where τij is the  i, j-th are the stress tensor components, π = eijeij and eij are the tensor strain rate 

components, where linear, volumetric, and shear strain are combined in tensor form Py =
μb√2π

γ
 is 

fluid stress, μb is plastic viscosity of Casson fluid, π is the deformation rate component multiplied 

by itself, and πc  is π  critical value. In the non-Newtonian flow, π is greater than πc , μ = μb +
Py

√2π
, then the non-Newtonian kinematics viscosity depend on the values of μb, ρ and γ as [43]: 

ν =
μb

ρ
(1 +

1

γ
).          (2) 

 

Figure 1. Schematic diagram for the flow problem. 

The magnetic field is acting in the y-axis as: 

(i) We can ignore the effects of induced magnetic and electric fields from electrically conducting fluid. 

(ii) We can neglect any other electric field. 

The equations for maintaining flow under the above constraints are [15]: 

∂xu + ∂yv = 0,          (3) 

∂tu + u ∂xu + v ∂yu = −
1

ρ
∂xP + ν (1 +

1

γ
) (2 ∂xxu + ∂yyu + 2 ∂yxv) −

σβ2

ρ
u,  (4) 

∂tv + u ∂xv + v ∂yv = −
1

ρ
∂xP + ν (1 +

1

γ
) (2 ∂xxv + ∂yyv + 2 ∂yxu),   (5) 

where u is the x direction component of the velocity v is the x direction component of the velocity, 

γ is the parameter of Casson fluid parameter, and β is the magnitude of the imposed magnetic field, 

σ is fluid electrical conductivity. 

Eliminating pressure P  from (4), (5) and using the vorticity function ω = ∂xv − ∂
y
u , then we 
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have a single momentum equation [15]: 

∂tω + u ∂xω + v ∂yω = ν (1 +
1

γ
) (2 ∂xxω + ∂yyω) −

σβ2

ρ
∂yu.    (6) 

The boundary conditions on the u and v are [15]: 

u = 0, v = vw(t)       at  y = ℎ(t)

∂yv = 0 , v = 0        at   y = 0
}        (7) 

where vw(t) = dℎ(t) dt⁄  is the velocity of the plates. 

In Wang [1], the transform for the flow in two-dimensions is: 

η =
y

L√1−𝑎t
 , u =

𝑎x

2(1−𝑎t)
𝜛′(𝜂), v =

−L𝑎

2√1−𝑎t
𝜛(𝜂).      (8) 

Applying similarity transforms (8) in (3), (6), and (7), to an ordinary differential equation that describes 

the system with boundary conditions is: 

(1 +
1

γ
) 𝜛(4) − S(η𝜛′′′ + 3𝜛′′ + 𝜛′𝜛′′ − 𝜛𝜛′′′) + M2𝜛′′ = 0,   (9) 

𝜛′ = 0, 𝜛 = ∓1               at  η = ∓1

𝜛′′ = 0, 𝜛 = 0                 at    η = 0
}.       (10) 

The constants S =
L2𝑎

2ν
  and M =

Lσβℎ(t)

νρ
  are the squeeze number, and magnetic number, 

respectively, where the primes denote differentiation with respect to η. 

Squeezing number S specifies how the plates move (S > 0 indicates that the distance between 

plates is increasing, and S < 0 indicates a decreasing distance). Here our investigation is reported for 

M = 0 and γ → ∞. The definition of skin friction coefficient is: 

(1 +
1

γ
) 𝜛′′(1) =

L2

x2(1−at)
RexCf,       (11) 

where Cf =
ν

vw
2  ∂tu|

y=ℎ(t)
, Rex =

2Lvw
2

νx√1−𝑎t
. 

3. The fundamental mechanisms of the TAM 

The general fractional differential equation (DE) is a mathematical equation that may be used to 

represent the essential concepts of the suggested technique as follows: 

Θ(𝜛(𝜂)) + Ψ(𝜛(𝜂)) = 𝐻(𝜂), 𝑛 − 1 < 𝛼 ≤ 𝑛. 

Along with boundary conditions 

𝔹 (𝜛,
∂𝜛

∂𝜂
) = 0, 

where Θ = 𝐷𝜂
𝛼 =

∂𝛼

∂𝜂𝛼  is used to represent the fractional Caputo derivative of 𝜛(𝜂) . The generic 

linear and nonlinear differential operators are represented by the symbol Ψ, 𝜛(𝜂)  refers to the 

unnamed function, the continuous functions are shown as 𝐻(𝜂) and the boundary operator is shown 

by 𝔹. The main request made here is for the differential operator Θ, which is general. However, if 

necessary, we can combine several linear components with nonlinear terms. The following describes 
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how the suggested method operates. The starting condition is obtained by removing the nonlinear 

portion as 

𝐷𝜂
𝛼𝜛0(𝜂) = 𝐻(𝜂),  𝔹 (𝜛0,

∂𝜛0

∂𝜂
) = 0. 

We resolve the following equation to provide the next iteration of the solution 

𝐷𝜂
𝛼𝜛1(𝜂) + Ψ(𝜛0(𝜂)) = 𝐻(𝜂), 𝔹 (𝜛1,

∂𝜛1

∂𝜂
) = 0. 

As a result, we have a simple iterative step 𝜛𝑗+1(𝜂) that successfully resolves a collection of 

problems that are both linear and nonlinear 

𝐷𝜂
𝛼𝜛𝑗(𝜂) + Ψ(𝜛𝑗(𝜂)) = 𝐻(𝜂), 𝔹 (𝜛𝑗+1,

∂𝜛𝑗+1

∂𝜂
) = 0. 

It is crucial to remember that each step 𝜛𝑗+1(𝜂) in this strategy serves as a separate solution for 

the problem. We confirm that these iterative stages are simple and each solution is an improvement 

over the previous iteration. To confirm the convergence of solutions, successive solutions are compared 

to the prior iteration. The analytical solution and the exact solution to the issue converge as more 

iterations are made. This allows for the development of a suitable semi-analytical solution with an 

appropriate agreement with the exact solution as 

𝜛(𝜂) = lim
𝑗→∞

 𝜛𝑗(𝜂). 

4. Results and discussion 

Now, we can present the impact of following parameters S, γ and M effects on radial 𝜛′(η) 

and normal 𝜛(η) components of the velocities. 

Table 1 compares the present TAM technique findings to Wang's numerical results published 

earlier and lately [16,44]. While Table 2 compares the skin friction coefficient using several values of 

parameters, the other tables show convergence of results. 

Table 1. Comparison of 𝜛(𝜂) for γ = 0.4 and 𝑀 = 1. 

𝜂 VPM [44] 𝑅𝐾-4 [44] TAM Numerical [44] NA [16] 

0.0 0 0 0 0 0 

0.1 0.139081 0.139081 0.141674 0.139104 0.139103 

0.2 0.276358 0.276358 0.279408 0.276405 0.276402 

0.3 0.409918 0.409918 0.409604 0.409984 0.409981 

0.4 0.537628 0.537628 0.539322 0.537709 0.537705 

0.5 0.657014 0.657014 0.656559 0.657105 0.657098 

0.6 0.765125 0.765125 0.760464 0.765217 0.765208 

0.7 0.858383 0.858383 0.851463 0.858467 0.858455 

0.8 0.932408 0.932408 0.931282 0.932471 0.932458 

0.9 0.981819 0.981819 0.982841 0.981843 0.981839 

1.0 1 1 1 1 1 
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Table 2. Comparison of the TAM, NA, and VPM for skin friction coefficient (1 + 1/γ)ϖ′′(1). 

S 𝛾 M (1 +
1

𝛾
) 𝜛′′(1) VPM [44] NA [16] 

-5 0.4 1 -6.328763 -6.2987080 -6.3949610 

-3 0.4 1 -8.368216 -8.3207270 -8.3207270 

-1 0.4 1 -9.934334 -9.9703760 -9.9705750 

1 0.4 1 -11.396792 -11.376240 -11.375837 

3 0.4 1 -12.629167 -12.610669 -12.604612 

5 0.4 1 -13.690836 -13.718095 -13.697927 

-3 0.1 1 -30.982841 -30.991005 -30.991843 

-3 0.3 1 -10.881282 -10.873387 -10.851771 

-3 0.5 1 -6.7645900 -6.7715490 -6.7896240 

3 0.1 1 -35.251120 -35.260196 -35.260196 

3 0.3 1 -15.152568 -15.149577 -15.145259 

3 0.5 1 -11.072973 -11.078736 -11.071084 

-3 0.4 2 -9.051817 -9.0381960 -9.0435300 

-3 0.4 4 -11.568216 -11.531981 -11.532951 

-3 0.4 6 -14.821282 -14.819321 -14.819321 

3 0.4 2 -13.142841 -13.101572 -13.092241 

3 0.4 4 -14.911463 -14.908219 -14.908219 

3 0.4 6 -17.529322 -17.501183 -17.471534 

The squeeze number effect (in case S > 0) and recede number (in case S < 0) on the flow under 

the magnetic field effect is shown in Figure 2. As in |𝑆| increases, 𝜛(η) increases. The effect of |𝑆| 

decreases as we approach the plane. It can be explained by the adhesion forces that occur between the 

fluid and the plane. The same behavior with the increase in magnetic parameter. However, this increase 

is greater than in the case of increasing |𝑆|, as in Figure 3. Figure 4 represents the small effect of 

increasing the Casson parameter in increasing vertical speed, especially when S < 0, and this is due to 

the inverse relationship that relates kinematics viscosity to the Casson parameter (see Eq 2). Figures 5–7 

depict the impact of S, M, and γ on radial components of velocity 𝜛′(η). Figure 5 shows increases in 

velocity when |𝑆| increases for 0 ≤ η ≤ 0.5, and 𝜛′(η) decreases as we approach the plane with an 

increase of |𝑆|. The impact of M on radial velocity is shown in Figure 6. This effect is similar to the 

effect of M on 𝜛(η), but less. When the Casson parameter is increased, we note decreases in the radial 

velocity for 0 ≤ η ≤ 0.5, and it increases as we approach the plane, as in Figure 7. 

  

Figure 2: Positive and negative values of s effects on 𝜛(𝜂). 
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Figure 3: M effect on 𝜛(𝜂). 

  

Figure 4: 𝛾 effect on 𝜛(𝜂). 

  

Figure 5. Positive and negative values of s effects on 𝜛′(𝜂). 

  

Figure 6. M effect on 𝜛′(𝜂). 
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Figure7. Effects of 𝛾 on 𝜛′(𝜂). 

Physically, the collision occurs between the fluid and the plate's border surface. As a result of the 

flow retardation near the boundary layer, the fluid velocity decreases. The existence of a magnetic field 

causes flow to respond with a force, which is known as the Lorentz force. This force is caused by the 

magnetic field that obstructs fluid flow in the boundary layer when the plates became closer in the 

squeezing prosses. Now, the flow happens while the plats distance is very small, while the squeezing 

flow. Inhibiting the Lorentz force produces an inverse stress gradient if they disappear for an extended 

period of time. As the backflow occurs, there may be a separation point. Furthermore, as M increases, 

the velocity flow of fluids reduces as the plates move apart. Moreover, when the distance between the 

plates is increased, the flow takes place and the magnetic number is increased due to free space 

properties. To avoid the conservation law of mass violation, the fluid is moved at high velocity in that 

area. As a result, an increased fluid flow is noticed. 

5. Conclusions 

In this work, the fractional nun Newtonian condition is studied of Casson fluid where the 

magnetohydrodynamic and Darcian effect is considered, and the mathematical form of this fluid 

system is studied by the superior procedure, which was developed by Temimi and Ansari (TAM) which 

was used for the first time the fluid mechanics. This method is applied in different types of physical 

and engineering problems and solved this studied system efficiently. The results and the emerging 

parameters' effects on flow have been numerically tested and tabulated, and illustrated in figures. The 

validation of this method shows that the results are compared with homotopy perturbation method. 

After the results were acquired with the applying the Temimi and Ansari method in this studied system, 

we recommended to use this method in more complicated fluid systems especially when taking the 

temperature into consideration. Furthermore, we hope it provides the required results when it is used 

for considering different phenomena in physics and engineering. 
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