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1. Introduction 

Algebraic coding theory is a subset of coding theory that uses algebraic structures, especially 

finite fields, and linear algebra to make error-correcting codes and study how they work. The theory 

is based on linear codes, in which code words are shown as linear combinations of a given set of 

vectors called “basis vectors”. These codes' minimal distance and error correction capabilities may 

be studied and enhanced using algebraic methods. The field is important for telephony, data storage 

and information security, which makes it a key part of current code theory. “Algebraic Codes for 

Data Transmission” by Richard [1] is a complete introduction to algebraic coding theory. It covers 

the basics of finite fields, linear codes and decoding methods. It is good for both newbies and more 



29454 

AIMS Mathematics  Volume 8, Issue 12, 29453–29473. 

experiencecoders who want to learn more about algebra. “Modern Coding Theory” by Tom and 

Urbanke [2] is a book about advanced topics in coding theory, such as algebraic codes and iterative 

decoding methods. It shows how mathematical methods and current ways of coding are related, 

which makes it an important resource for experts in the field. Algebraic coding theory is a key part of 

designing and analyzing error-correcting codes, which makes it possible to make communication 

systems that work well and are reliable. Using algebraic structures, researchers can come up with 

strong coding schemes and build the theoretical frameworks needed for error correction in channels 

that are busy and not very reliable. 

Ring-linear coding theory employs finite rings or modules as the basic alphabet. This field has 

grown tremendously. Assmus and Mattson (1963) [3] were among the first to suggest using ring 

elements for linear codes in their landmark book. An excellent starting point for learning about linear 

and cyclic codes-based fields is Augot et al. [4]. The Ring-linear coding theory was advanced by Blake [5, 6]. 

He started linear codes based on some special rings and moved on to the main integer residue rings. 

Blake also introduced Hamming, Reed-Solomon and BCH code analogs. Using group algebra, 

Spiegel [7, 8] linear codes over the integer ring modulo n. With the use of the Chinese Remainder 

Theorem, Blake was able to use these rings for BCH. In 1958, BCH codes over Galois fields existed. 

Shah et al. [9] utilized the semigroup ring to encode. In [10–12], the authors introduced DNA cyclic 

codes over 𝐹2[𝑢]/(𝑢
4 − 1). Kim et al. In [13], the authors defined quasi-cyclic self-orthogonal codes 

that can go on forever. Recently, Zullo [14] developed another type of cyclic code. The fundamental 

binary and ternary BCH code hulls were investigated by Lei et al. [15]. In [16], Liu et al. constructed 

2𝑚 + 1 binary BCH codes. 

Eisenstein integers, named after the German mathematician Ferdinand Eisenstein [17], are a 

special subset of complex numbers that have a significant impact on algebraic number theory. They 

are expressed as 𝑎 +  𝑏𝜔, where 𝑎 and 𝑏 are integers, and ω is a complex number known as the cube 

root of unity. The cube root of unity, ω, satisfies the equation 𝜔3 = 1. Eisenstein integers exhibit 

intriguing properties, including a hexagonal lattice structure when represented on the complex plane. 

They are closely related to triangular numbers and have applications in various mathematical areas, 

such as elliptic curves and modular forms. The unique factorization of Eisenstein integers is also of 

great interest in algebraic number theory, making them a crucial element in studying and 

understanding number theory concepts. 

Error-correcting codes are an essential component of today's sophisticated communication 

systems because they enable the detection and correction of errors that may occur while data is being 

sent. BCH codes, which are circular codes, have been studied extensively and are used in real life. 

BCH codes are made to handle random errors, which makes them good for busy lines of 

communication. Research on BCH codes has usually been about making and studying codes over 

limited Galois fields [18]. The authors have created codes using Vectorial Algebra and have also 

utilized these codes in cryptography [19–23]. Huber [24] presented a two-dimensional modular 

distance and associated codes. These codes, known as consta-cyclic codes, feature simple 

constructions and can be classified as a subset of I-cyclic (Ideal cyclic) codes. Notably, I-cyclic 

codes include error-correcting Mannheim codes. In addition, Eisenstein fields offer a generalized 

concept of finite Galois fields with a more intricate structure. Eisenstein's fields have numerous 

applications, including cryptography, error-correcting codes, communications, etc. 

BCH codes are extremely valuable for securing data and providing efficient error correction 

capabilities. Important ideas for decoding BCH codes center on the polynomials used to find errors 

and evaluate their severity, as well as the critical key equation that these polynomials meet. There are 

numerous methods for solving the key equation, each of which provides a decoding algorithm. The 
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Euclidean algorithm [25], BMA [26] and Sugiyama's algorithm (SA) [27] are three of the most 

effective algorithms. Authors in [28–31] defined some algebraic structures and its applications in 

algebraic coding theory and algebraic cryptography. Sajjad et al. [32], constructed Gaussian field-

based BCH codes decoding. In this situation, we will use a tweaked version of the Berlekamp-

Massey method to fix errors in BCH codes. Due to their superior performance, the EF-based BCH is 

an area of study. 

We have dual objectives. To answer the question, what is Eisenstein's field? To construct BCH 

codes that operate over the Eisenstein field. BMA-modified BCH codes decoding over the Eisenstein 

field. Then, we compare the BCH codes' Eisenstein and Galois field findings. 

2. Eisenstein field and the extensions of Eisenstein field 

2.1. Eisenstein field 

Let 𝜔 be the cube root of unity(𝜔3 = 1) and 1 + 𝜔 + 𝜔2 = 0. Let ℤ[𝜔] = {𝑢 + 𝑣𝜔: 𝑢, 𝑣 ∈ ℤ} 
be the Euclidean domain (ED) of the Eisenstein integers (EI) [17, Section 1]. Accordingly, ℤ𝑝[𝜔] =

{𝑢 + 𝑣𝜔: 𝑢, 𝑣 ∈ ℤ𝑝} is a commutative ring with identity. ℤ𝑝[𝜔] is the Eisenstein field (EF) if 𝑝 ≡

2(𝑚𝑜𝑑 3) [17, Corollary 14]. 

Illustration 1. Let ℤ2[𝜔] = {0,1, 𝜔, 1 + 𝜔} be the Eisenstein field because every nonzero element of 

ℤ2[𝜔] is a unit element and the cardinality of ℤ2[𝜔] is 22 = 4.  Elements of ℤ2[𝜔]  are given in 

Figure 1. 

 

Figure 1. Eisenstein field ℤ2[𝜔]. 

Illustration 2. Let 

ℤ5[𝜔] = {0, 1, 2, 3, 4, 4𝜔, 4 + 𝜔,𝜔, 2𝜔, 3𝜔, 1 + 2𝜔, 1 + 3𝜔, 1 + 𝜔, 1 + 4𝜔, 2 + 𝜔, 2 + 2𝜔, 2

+ 4𝜔, 2 + 3𝜔, 3 + 𝜔, 3 + 2𝜔, 3 + 3𝜔, 3 + 4𝜔, 4 + 2𝜔, 4 + 3𝜔, 4 + 4𝜔} 
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be an Eisenstein field, because every nonzero element of ℤ5[𝜔] is unit element and the cardinality of 

ℤ5[𝜔] is 52 = 25. Elements of ℤ5[𝜔] are shown in Figure 2. 

 

Figure 2. Eisenstein field ℤ5[ω]. 

Remark 1. ℤ𝑝[𝜔] has 𝑝2 elements if 𝑝 ≡ 2(𝑚𝑜𝑑 3). 

Remark 2. Let ℤ𝑝[𝜔]
∗ denote the units in ℤ𝑝[𝜔] if 𝑝 ≡ 2(𝑚𝑜𝑑 3) with cardinality 𝑝2 − 1. 

2.2. Eisenstein field extension 

Let ℤ2[𝜔] be the Eisenstein field. While ℤ2[𝜔][𝑥] is an ED. 

2.2.1. The Eisenstein field extension ℤ2[ω]
2 

For the extension of EF ℤ2[𝜔]
2, the quotient ring (QR) 

ℤ2[𝜔][𝑥]/< 𝐻(𝑥) >≅ 𝐺𝐹(2
4), 

where < 𝐻(𝑥) > is the maximal ideal generated by an irreducible polynomial (IP) 𝐻(𝑥) of degree 2 

in ℤ2[𝜔][𝑥]. Let 𝛾 is the coset 𝑥 + (𝐻(𝑥)), then 𝐻(𝛾) = 0 and 

ℤ2[𝜔]
2 = {𝑢0 + 𝑢1𝛾: ∀𝑢0, 𝑢1 ∈ ℤ2[𝜔]}. 

Hence ℤ2[𝜔]
2 is a 2-degree extension field of the EF ℤ2[𝜔], and ℤ2[𝜔]

∗2 = ℤ2[𝜔]
2\{0} is a cyclic 

group (CG) of order 24 − 1 = 15. 

Illustration 3. Let the ideal 
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ℤ2[𝜔][𝑥]/< 𝑥
2 + 𝑥 + 𝜔 >= {𝑢0 + 𝑢1𝑥: ∀𝑢0, 𝑢1 ∈ ℤ2[𝜔]} 

generated by the primitive IP 𝐻(𝑥) = 𝑥2 + 𝑥 + 𝜔 over ℤ2[𝜔] and 𝛾 be the root of 𝐻(𝑥) in extension 

field ℤ2[𝜔][𝑥], then 𝐻(𝛾) = 0 as 𝛾2 + 𝛾 + 𝜔 = 0. Thus, 𝛾2 = 𝛾 + 𝜔 and ℤ2[𝜔]
∗2 = ℤ2[𝜔]

2\{0} is 

a CG of order 22(2) − 1 = 15 in Table 1. 

Table 1. Cyclic group ℤ2[𝜔]
∗2. 

𝑖 𝛾𝑖 
1 𝛾 

2 𝛾 + 𝜔 

3 𝛾 + 𝜔 + 𝛾𝜔 

4 𝛾 + 1 

5 𝜔 

6 𝛾𝜔 

7 𝛾𝜔 + 1 + 𝜔 

8 1 + 𝛾 + 𝜔 

9 𝜔 + 𝛾𝜔 

10 1 + 𝜔 

11 𝛾 + 𝛾𝜔 

12 1 + 𝛾 + 𝛾𝜔 

13 1 + 𝛾𝜔 

14 1 + 𝛾 + 𝜔 + 𝛾𝜔 

15 1 

2.2.2. The Eisenstein field extension ℤ𝟐[𝝎]
𝟑 

For the extension of EF ℤ2[𝜔]
3, the QR 

ℤ2[𝜔][𝑥]/< 𝐻(𝑥) >≅ 𝐺𝐹(2
6), 

where < 𝐻(𝑥) > is the maximal ideal generated by an IP 𝐻(𝑥) of degree 3 in ℤ2[𝜔][𝑥]. Let 𝛾 is the 

coset 𝑥 + (𝐻(𝑥)), then 𝐻(𝛾) = 0 and 

ℤ2[𝜔]
3 = {𝑢0 + 𝑢1𝛾 + 𝑢2𝛾

2: ∀𝑢0, 𝑢1, 𝑢2 ∈ ℤ2[𝜔]}. 

Hence ℤ2[𝜔]
3 is a 3-degree extension field of the EF ℤ2[𝜔], and ℤ2[𝜔]

∗3 = ℤ2[𝜔]
3\{0} is a 

CG of order 26 − 1 = 63. 

Illustration 4. Let the ideal 

ℤ2[𝜔][𝑥]/< 𝑥
3 + 𝑥2 + 𝑥 + 𝜔 >= {𝑢0 + 𝑢1𝑥 + 𝑢2𝑥

2: ∀𝑢0, 𝑢1, 𝑢2 ∈ ℤ2[𝜔]} 

generated by the primitive IP 𝐻(𝑥) = 𝑥3 + 𝑥2 + 𝑥 + 𝜔  over ℤ2[𝜔] and 𝛾  be the root of 𝐻(𝑥) in 

extension field  ℤ2[𝜔][𝑥] , then 𝐻(𝛾) = 0  as 𝛾3 + 𝛾2 + 𝛾 + 𝜔 = 0.  Thus,  𝛾3 = 𝛾2 + 𝛾 + 𝜔 

and ℤ2[𝜔]
∗3 = ℤ2[𝜔]

3\{0} is a CG of order 26 − 1 = 63 in Table 2. 
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Table 2. Cyclic group ℤ2[𝜔]
∗3. 

𝑠 𝛾𝑠 𝑠 𝛾𝑠 
1 𝛾 33 𝜔𝛾2 + 1 + 𝛾 + 𝛾2 
2 𝛾2 34 𝜔𝛾2 + 𝜔𝛾 + 1 

3 𝛾2 + 𝜔 + 𝛾 35 𝜔𝛾 + 1 + 𝜔 + 𝛾 

4 𝜔 + 𝛾 + 𝜔𝛾 36 𝜔𝛾2 + 𝜔𝛾 + 𝛾 + 𝛾2 
5 𝛾2 + 𝜔𝛾 + 𝛾2𝜔 37 𝜔𝛾 + 1 + 𝛾 

6 𝛾2 + 𝜔𝛾 + 𝛾 + 1 38 𝜔𝛾2 + 𝛾 + 𝛾2 
7 𝜔 + 𝜔𝛾2 39 𝜔𝛾2 + 𝜔𝛾 + 1 + 𝛾 

8 𝜔𝛾2 + 𝜔 + 1 40 𝜔𝛾 + 1 + 𝜔 + 𝛾 + 𝛾2 

9 𝜔𝛾2 + 𝜔 + 𝛾 + 1 41 𝜔𝛾2 + 𝜔𝛾 + 𝜔 

10 𝜔 + 𝛾 + 1 + 𝜔𝛾2 + 𝛾2 42 𝜔 + 1 

11 1 + 𝛾2𝜔 43 𝜔𝛾 + 𝛾 

12 𝛾 + 1 + 𝜔𝛾2 + 𝜔 + 𝜔𝛾 44 𝜔𝛾2 + 𝛾2 

13 𝛾2 +𝜔 + 1 + 𝛾 45 𝜔𝛾 + 1 + 𝜔𝛾2 + 𝛾 + 𝛾2 

14 𝜔𝛾 + 𝜔 46 𝜔𝛾 + 1 

15 𝜔𝛾 + 𝜔𝛾2 47 𝜔𝛾2 + 𝛾 

16 𝜔𝛾 + 1 + 𝜔 48 𝛾2 + 𝜔𝛾2 + 𝜔𝛾 + 1 + 𝜔 

17 𝜔𝛾2 + 𝜔𝛾 + 𝛾 49 𝛾2 + 1 

18 𝜔𝛾 + 1 + 𝜔 + 𝛾2 50 𝛾2 + 𝜔 

19 𝜔𝛾2 +𝜔𝛾 + 𝛾2 + 𝜔 51 𝜔𝛾 + 𝜔 + 𝛾 + 𝛾2 

20 𝛾2 + 𝛾 + 1 52 𝜔 + 𝛾 + 𝜔𝛾 + 𝜔𝛾2 

21 𝜔 53 𝛾2 + 1 + 𝜔 

22 𝜔𝛾 54 𝜔𝛾 + 𝜔 + 𝛾2 
23 𝜔𝛾2 55 𝛾2 + 𝜔 + 𝛾 + 𝜔𝛾 + 𝜔𝛾2 
24 𝜔𝛾2 + 𝜔𝛾 + 1 + 𝜔 56 1 + 𝛾 

25 𝜔 + 𝛾 + 1 57 𝛾2 + 𝛾 

26 𝜔𝛾 + 𝛾2 + 𝛾 58 𝜔 + 𝛾 

27 𝜔𝛾2 + 𝜔 + 𝛾 59 𝜔𝛾 + 𝛾2 
28 𝜔𝛾2 + 1 + 𝜔 + 𝛾2 60 𝛾2 + 𝛾 + 𝜔 + 𝜔𝛾2 

29 𝜔𝛾2 + 1 + 𝛾2 61 𝛾 + 𝜔𝛾2 + 1 

30 𝜔𝛾 + 𝜔𝛾2 + 1 + 𝛾2 62 𝛾2 + 𝜔𝛾2 + 𝜔𝛾 + 1 + 𝜔 + 𝛾 

31 𝜔𝛾 + 1 + 𝛾2 63 1 

32 𝜔𝛾2 + 𝜔 + 𝛾2   

2.2.3. The Eisenstein field extension ℤ2[ω]
m 

For the extension of EF ℤ2[𝜔]
𝑚, the QR 

ℤ2[𝜔][𝑥]/< 𝐻(𝑥) >≅ 𝐺𝐹(2
2𝑚), 

where < 𝐻(𝑥) > is the maximal ideal generated by an IP 𝐻(𝑥) of degree 𝑚 in ℤ2[𝜔][𝑥]. Let 𝛾 is the 

coset 𝑥 + (𝐻(𝑥)), then 𝐻(𝛾) = 0 and 

ℤ2[𝜔]
𝑚 = {𝑢0 + 𝑢1𝛾 + 𝑢2𝛾

2 +⋯+ 𝑢𝑚−1𝛾
𝑚−1: ∀𝑢0, 𝑢1, 𝑢2, … , 𝑢𝑚−1 ∈ ℤ2[𝜔]}. 

ℤ2[𝜔]
𝑚 is a 𝑚  degree extension field of the EF ℤ2[𝜔],  and ℤ2[𝜔]

∗𝑚 = ℤ2[𝜔]
𝑚\{0}  is a cyclic 

group of order 22𝑚 − 1. 
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Furthermore, let ℤ5[𝜔] be an Eisenstein field. In fact, ℤ5[𝜔][𝑥] is an ED and the EF extension 

is given below. 

2.2.4. The Eisenstein field extension ℤ5[ω]
2 

For the extension of EF ℤ5[𝜔]
2, the QR 

ℤ5[𝜔][𝑥]/< 𝐻(𝑥) >≅ 𝐺𝐹(5
4), 

where < 𝐻(𝑥) > is the maximal ideal generated by an IP 𝐻(𝑥) of degree 2 in ℤ5[𝜔][𝑥]. Let 𝛾 is the 

coset 𝑥 + (𝐻(𝑥)), then 𝐻(𝛾) = 0 and ℤ5[𝜔]
2 = {𝑢0 + 𝑢1𝛾: ∀𝑢0, 𝑢1 ∈ ℤ5[𝜔]}. Hence ℤ5[𝜔]

2 is a 2-

degree extension field of the EF ℤ5[𝜔], and ℤ5[𝜔]
∗2 = ℤ5[𝜔]

2\{0} is a CG of order 54 − 1 = 624. 

2.2.5. The Eisenstein field extension ℤ5[ω]
3 

For the extension of EF ℤ5[𝜔]
3, the QR 

ℤ5[𝜔][𝑥]/< 𝐻(𝑥) >≅ 𝐺𝐹(5
6) 

where < 𝐻(𝑥) > is the maximal ideal generated by an IP 𝐻(𝑥) of degree 3 in ℤ5[𝜔][𝑥]. Let 𝛾 is the 

coset 𝑥 + (𝐻(𝑥)), then 𝐻(𝛾) = 0 and 

ℤ5[𝜔]
3 = {𝑢0 + 𝑢1𝛾 + 𝑢2𝛾

2: ∀𝑢0, 𝑢1, 𝑢2 ∈ ℤ5[𝜔]}. 

Hence, ℤ5[𝜔]
3 is a 3-degree extension field of the EF ℤ5[𝜔], and ℤ5[𝜔]

∗3 = ℤ5[𝜔]
3\{0} is a CG of 

order 56 − 1 = 15625. 

2.2.6. The Eisenstein field extension ℤ5[ω]
m 

For the extension of EF ℤ5[𝜔]
𝑚, the QR 

ℤ5[𝜔][𝑥]/< 𝐻(𝑥) >≅ 𝐺𝐹(5
2𝑚) 

where < 𝐻(𝑥) > is the maximal ideal generated by an IP 𝐻(𝑥) of degree 𝑚 in ℤ5[𝜔][𝑥]. Let 𝛾 is the 

coset 𝑥 + (𝐻(𝑥)), then 𝐻(𝛾) = 0 and 

ℤ5[𝜔]
𝑚 = {𝑢0 + 𝑢1𝛾 + 𝑢2𝛾

2 +⋯+ 𝑢𝑚−1𝛾
𝑚−1: ∀𝑢0, 𝑢1, 𝑢2, … , 𝑢𝑚−1 ∈ ℤ5[𝜔]}. 

Hence, ℤ5[𝜔]
𝑚 is a m-degree extension field of the EF ℤ5[𝜔], and ℤ5[𝜔]

∗𝑚 = ℤ5[𝜔]
𝑚\{0} is a CG 

of order 52𝑚 − 1. 
In a similar way, Eisenstein field extension ℤ𝑝[𝜔], if 𝑝 ≡ 2(𝑚𝑜𝑑 3) is given below. 

2.2.7. The Eisenstein field extension ℤp[ω]
2 if p ≡ 2(mod 3) 

For the extension of EF ℤ𝑝[𝜔]
2, the QR 

ℤ𝑝[𝜔][𝑥]/< 𝐻(𝑥) >≅ 𝐺𝐹(𝑝
4) 
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where < 𝐻(𝑥) > is the maximal ideal generated by an IP 𝐻(𝑥) of degree 2 in ℤ𝑝[𝜔][𝑥]. Let 𝛾 is the 

coset 𝑥 + (𝐻(𝑥)), then 𝐻(𝛾) = 0 and 

ℤ𝑝[𝜔]
2 = {𝑢0 + 𝑢1𝛾: ∀𝑢0, 𝑢1 ∈ ℤ𝑝[𝜔]}. 

Hence, ℤ𝑝[𝜔]
2 is a 2-degree extension field of the EF ℤ𝑝[𝜔], and ℤ𝑝[𝜔]

∗2 = ℤ𝑝[𝜔]
2\{0} is a CG of 

order 𝑝4 − 1. 

2.2.8. The Eisenstein field extension ℤp[ω]
3 if p ≡ 2(mod 3) 

For the extension of EF ℤ𝑝[𝜔]
3, the QR 

ℤ𝑝[𝜔][𝑥]/< 𝐻(𝑥) >≅ 𝐺𝐹(𝑝
6), 

where < 𝐻(𝑥) > is the maximal ideal generated by an IP 𝐻(𝑥) of degree 3 in ℤ𝑝[𝜔][𝑥]. Let 𝛾 is the 

coset 𝑥 + (𝐻(𝑥)), then 𝐻(𝛾) = 0 and 

ℤ𝑝[𝜔]
3 = {𝑢0 + 𝑢1𝛾 + 𝑢2𝛾

2: ∀𝑢0, 𝑢1, 𝑢2 ∈ ℤ𝑝[𝜔]}. 

Hence, ℤ𝑝[𝜔]
3 is a 3-degree extension field of the EF ℤ𝑝[𝜔], and ℤ𝑝[𝜔]

∗3 = ℤ𝑝[𝜔]
3\{0} is a CG of 

order 𝑝6 − 1. 

2.2.9. The Eisenstein field extension ℤp[ω]
m if p ≡ 2(mod 3) 

For the extension of EF ℤ𝑝[𝜔]
𝑚, the QR 

ℤ𝑝[𝜔][𝑥]/< 𝐻(𝑥) >≅ 𝐺𝐹(𝑝
2𝑚) 

where < 𝐻(𝑥) > is the maximal ideal generated by an IP 𝐻(𝑥) of degree 𝑚 in ℤ𝑝[𝜔][𝑥]. Let 𝛾 be 

the coset 𝑥 + (𝐻(𝑥)), then 𝐻(𝛾) = 0 and 

ℤ𝑝[𝜔]
𝑚 = {𝑢0 + 𝑢1𝛾 + 𝑢2𝛾

2 +⋯+ 𝑢𝑚−1𝛾
𝑚−1: ∀𝑢0, 𝑢1, 𝑢2, … , 𝑢𝑚−1 ∈ ℤ𝑝[𝜔]}. 

ℤ𝑝[𝜔]
𝑚 is an m-degree extension field of the EF ℤ𝑝[𝜔], and ℤ𝑝[𝜔]

∗𝑚 = ℤ𝑝[𝜔]
𝑚\{0} is a CG of 

order 𝑝2𝑚 − 1. 

Remark 3. The cardinality of ℤ𝑝[𝜔]
𝑚 𝑖𝑠 𝑝2𝑚. 

Theorem 1. Let  𝛾  be the element of the extension field ℤ𝑝[𝜔]
𝑚  if 𝑝 ≡ 2(𝑚𝑜𝑑 3), then 

𝛾, 𝛾𝑝
2
, 𝛾𝑝4, …, have the same minimal polynomial over the EF ℤ𝑝[𝜔]. 

Proof. Straightforward [18, Theorem 4.4.2]. 

In this section, we will construct BCH codes over the EF by following [16, Section 4.4]. 
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3. Encoding of BCH codes over Eisenstein field 

Let 𝑐, 𝑛, 𝑞, 𝑑 > 0, such that 𝑞 is a some prime power, 2 ≤ 𝑑 ≤ 𝑛 − 1, and 𝑔𝑐𝑑(𝑛, 𝑞) = 1. Let a 

least positive integer 𝑚 such that 𝑝2𝑚 ≡ 1(𝑚𝑜𝑑 𝑛) [By Euler's theorem, 𝑝2𝜑(𝑛) ≡ 1(𝑚𝑜𝑑 𝑛), then 

𝑚 divides 𝜑(𝑛)]. Thus 𝑛 divides 𝑝2𝑚 − 1. 

Let 𝛾 be the element of the extension field ℤ𝑝[𝜔]
𝑚. Consider the minimal polynomials 𝑚𝑖(𝑋) ∈

ℤ𝑝[𝜔][𝑋] of 𝛾𝑖. The least common multiple (𝑙𝑐𝑚) of all distinict minimal polynomials 𝑚𝑖(𝑋), 𝑖 =

𝑐, 𝑐 + 1, . . . , 𝑐 + 𝑑 − 2 is known as the generator polynomial 𝑔(𝑋) that is, 

𝑔(𝑋) = 𝑙𝑐𝑚{𝑚𝑖(𝑋)|𝑖 = 𝑐, 𝑐 + 1,… , 𝑐 + 𝑑 − 2}. 

Since all minimal polynomials divides 𝑋𝑛 −  1, So generator polynomial divides 𝑋𝑛 − 1. Let 𝐶 be 

the cyclic code generated by 𝑔(𝑋) in the ring ℤ𝑝[𝜔][𝑋]𝑛. Then 𝐶 is called a BCH code of length 𝑛 

over EF ℤ𝑝[𝜔] with designed distance 𝑑. 

Remark 4. If the code is full length 𝑛 = 𝑝2𝑚 − 1 then it is primitive. 

Remark 5. If the code is narrow sense, then 𝑐 = 1. 

Remark 6. The cardinality of the code 𝐶 over EF is 𝑝2𝑘. 

Illustration 5. Construct a (15, 𝑘, 3) BCH code over the EF ℤ2[ω]. 

Let 𝛾 ∈ ℤ2[𝜔]
2 then by Theorem 1, 𝛾, 𝛾2

2
 have the same minimal polynomial 

𝑚1(𝑋) = 𝑋
2 + 𝑋 + 𝜔 = 𝑓(𝑋). 

Let 𝛾2 ∈ ℤ2[𝜔]
2 then 𝑚2(𝑋) can be found by 𝛾2, 𝛾8, 

𝑚2(𝑋) = (𝑋 − 𝛾
2)(𝑋 − 𝛾8) = 𝑋2 − (𝛾2 + 𝛾8)𝑋 + 𝛾10 = 𝑋2 + 𝑋 + (1 + 𝜔). 

The generator polynomial 𝑔(𝑋) is, 

𝑔(𝑋) = 𝑚1(𝑋).𝑚2(𝑋) = (𝑋
2 + 𝑋 + 𝜔)(𝑋2 + 𝑋 + (1 + 𝜔)) = 𝑋4 + 𝑋 + 1. 

The degree of 𝑔(𝑋) is 4, and the dimension 𝑘  is 11. Hence, we get (15, 11, 3) BCH code over 

EF ℤ2[𝜔]. 

Illustration 6. Construct a (15, 𝑘, 5) BCH code over the EF ℤ2[ω]. 

Let 𝛾 ∈ ℤ2[𝜔]
2 then by Theorem 1, 𝛾, 𝛾2

2
 have the same minimal polynomial 

𝑚1(𝑋) = 𝑋
2 + 𝑋 + 𝜔 = 𝑓(𝑋). 

Let 𝛾2 ∈ ℤ2[𝜔]
2 then 𝑚2(𝑋) can be found by 𝛾2 and 𝛾8, 

𝑚2(𝑋) = (𝑋 − 𝛾
2)(𝑋 − 𝛾8) = 𝑋2 − (𝛾2 + 𝛾8)𝑋 + 𝛾10 = 𝑋2 + 𝑋 + (1 + 𝜔). 

Let 𝛾3 ∈ ℤ2[𝜔]
2 then 𝑚3(𝑋) can be found by 𝛾3 and 𝛾12, 

𝑚3(𝑋) = (𝑋 − 𝛾
3)(𝑋 − 𝛾12) = 𝑋2 − (𝛾3 + 𝛾12)𝑋 + 𝛼15 = 𝑋2 + (1 + 𝜔)𝑋 + 1. 

Let 𝛾4 ∈ ℤ2[𝜔]
2 then 𝑚4(𝑋) can be found by 𝛾4 and 𝛾1, 

𝑚4(𝑋) = (𝑋 − 𝛾
4)(𝑋 − 𝛾) = 𝑋2 + 𝑋 + 𝜔 = 𝑚1(𝑋). 
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The generator polynomial 𝑔(𝑋) is, 

𝑔(𝑋) = 𝑚1(𝑋).𝑚2(𝑋).𝑚3(𝑋) 

= (𝑋2 + 𝑋 + 𝜔)(𝑋2 + 𝑋 + (1 + 𝜔))(𝑋2 + (1 + 𝜔)𝑋 + 1) 

= 𝑋6 + (1 + 𝜔)𝑋5 + 𝑋4 + 𝑋3 + 𝜔𝑋2 + 𝜔𝑋 + 1. 

The degree of 𝑔(𝑋)  is 6, and the dimension 𝑘  is 9.  Hence, we get (15, 9, 5) BCH codes over 

EF ℤ2[𝜔]. 

Illustration 7. Construct a (15, 𝑘, 7) BCH code over the EF ℤ2[ω]. 

Let 𝛾 ∈ ℤ2[𝜔]
2 then by Theorem 1, 𝛾, 𝛾2

2
 have the same minimal polynomial 

𝑚1(𝑋) = 𝑋
2 + 𝑋 + 𝜔 = 𝑓(𝑋). 

Let 𝛾2 ∈ ℤ2[𝜔]
2 then 𝑚2(𝑋) can be found by 𝛾2 and 𝛾8, 

𝑚2(𝑋) = (𝑋 − 𝛾
2)(𝑋 − 𝛾8) = 𝑋2 − (𝛾2 + 𝛾8)𝑋 + 𝛾10 = 𝑋2 + 𝑋 + (1 + 𝜔). 

Let 𝛾3 ∈ ℤ2[𝜔]
2 then 𝑚3(𝑋) can be found by 𝛾3 and 𝛾12, 

𝑚3(𝑋) = (𝑋 − 𝛾
3)(𝑋 − 𝛾12) = 𝑋2 − (𝛾3 + 𝛾12)𝑋 + 𝛼15 = 𝑋2 + (1 + 𝜔)𝑋 + 1. 

Let 𝛾4 ∈ ℤ2[𝜔]
2 then 𝑚4(𝑋) can be found by 𝛾4 and 𝛾1, 

𝑚4(𝑋) = (𝑋 − 𝛾
4)(𝑋 − 𝛾) = 𝑋2 + 𝑋 + 𝜔 = 𝑚1(𝑋). 

Let 𝛾5 ∈ ℤ2[𝜔]
2 then 𝑚5(𝑋) can be found by 𝛾5, 

𝑚5(𝑋) = 𝑋 − 𝛾
5 = 𝑋 + 𝜔. 

Let 𝛾6 ∈ ℤ2[𝜔]
2 then 𝑚6(𝑋) can be found by 𝛾6 and 𝛾9, 

𝑚6(𝑋) = (𝑋 − 𝛾
6)(𝑋 − 𝛾9) = 𝑋2 − (𝛾6 + 𝛾9)𝑋 + 𝛼15 = 𝑋2 +𝜔𝑋 + 1. 

The generator polynomial 𝑔(𝑋) is, 

𝑔(𝑋) = 𝑚1(𝑋).𝑚2(𝑋).𝑚3(𝑋).𝑚5(𝑋).𝑚6(𝑋) 

= (𝑋2 + 𝑋 + 𝜔)(𝑋2 + 𝑋 + (1 + 𝜔))(𝑋2 + (1 + 𝜔)𝑋 + 1)(𝑋 + 𝜔)(𝑋2 + 𝜔𝑋 + 1) 

= 𝑋9 + (1 +  𝜔)𝑋8 + 𝜔2𝑋7 + 𝜔𝑋6 + 𝑋5 + 𝜔𝑋4 + 𝑋 + 𝜔. 

The degree of 𝑔(𝑋)  is 9, and the dimension 𝑘  is 6.  Hence, we get (15, 6, 7) BCH codes over 

EF ℤ2[𝜔]. 

Illustration 8. Construct a (15, 𝑘, 9) BCH code over the EF ℤ2[ω]. 

Let 𝛾 ∈ ℤ2[𝜔]
2 then by Theorem 1, 𝛾, 𝛾2

2
 have the same minimal polynomial 

𝑚1(𝑋) = 𝑋
2 + 𝑋 + 𝜔 = 𝑓(𝑋). 

Let 𝛾2 ∈ ℤ2[𝜔]
2 then 𝑚2(𝑋) can be found by 𝛾2 and 𝛾8, 



29463 

AIMS Mathematics  Volume 8, Issue 12, 29453–29473. 

𝑚2(𝑋) = (𝑋 − 𝛾
2)(𝑋 − 𝛾8) = 𝑋2 − (𝛾2 + 𝛾8)𝑋 + 𝛾10 = 𝑋2 + 𝑋 + (1 + 𝜔). 

Let 𝛾3 ∈ ℤ2[𝜔]
2 then 𝑚3(𝑋) can be found by 𝛾3 and 𝛾12, 

𝑚3(𝑋) = (𝑋 − 𝛾
3)(𝑋 − 𝛾12) = 𝑋2 − (𝛾3 + 𝛾12)𝑋 + 𝛼15 = 𝑋2 + (1 + 𝜔)𝑋 + 1. 

Let 𝛾4 ∈ ℤ2[𝜔]
2 then 𝑚4(𝑋) can be found by 𝛾4 and 𝛾1, 

𝑚4(𝑋) = (𝑋 − 𝛾
4)(𝑋 − 𝛾) = 𝑋2 + 𝑋 + 𝜔 = 𝑚1(𝑋). 

Let 𝛾5 ∈ ℤ2[𝜔]
2 then 𝑚5(𝑋) can be found by 𝛾5, 

𝑚5(𝑋) = 𝑋 − 𝛾
5 = 𝑋 + 𝜔. 

Let 𝛾6 ∈ ℤ2[𝜔]
2 then 𝑚6(𝑋) can be found by 𝛾6 and 𝛾9, 

𝑚6(𝑋) = (𝑋 − 𝛾
6)(𝑋 − 𝛾9) = 𝑋2 − (𝛾6 + 𝛾9)𝑋 + 𝛼15 = 𝑋2 +𝜔𝑋 + 1. 

Let 𝛾7 ∈ ℤ2[𝜔]
2 then 𝑚7(𝑋) can be found by 𝛾7 and 𝛾13, 

𝑚7(𝑋) = (𝑥 − 𝛾
7)(𝑥 − 𝛾13) = 𝑥2 − (𝛾7 + 𝛾13)𝑥 + 𝛾20 = 𝑥2 + 𝛾𝑥 + 𝜔. 

Let 𝛾8 ∈ ℤ2[𝜔]
2 then 𝑚8(𝑋) can be found by 𝛾8 and 𝛾2, 

𝑚8(𝑋) = (𝑋 − 𝛾
2)(𝑋 − 𝛾8) = 𝑋2 − (𝛾2 + 𝛾8)𝑋 + 𝛾10 = 𝑋2 + 𝑋 + (1 + 𝜔) = 𝑚2(𝑋). 

The generator polynomial 𝑔(𝑋) is, 

𝑔(𝑋) = 𝑚1(𝑋).𝑚2(𝑋).𝑚3(𝑋).𝑚5(𝑋).𝑚6(𝑋).𝑚7(𝑋) 

= (𝑥2 + 𝑥 + 𝜔)(𝑥2 + 𝑥 + (1 + 𝜔))(𝑥2 + (1 + 𝜔)𝑥 + 1)(𝑥 + 𝜔)(𝑥2 + 𝜔𝑥 + 1)(𝑥2 + 𝛾𝑥 + 𝜔) 

= 𝑥11 + (1 + 𝛾 + 𝜔)𝑥10 + (1 + 𝛾 + 𝛾𝜔)𝑥9 + (1 + 𝛾 + 𝜔 + 𝛾𝜔)𝑥8 + 𝛾𝜔𝑥7 + (1 + 𝛾)𝑥6

+ (𝜔 + 𝛾𝜔)𝑥5 + (1 + 𝜔)𝑥4 + 𝑥3 + (𝛾 + 𝜔)𝑥2 + (𝜔 + 𝛾𝜔)𝑥 + (1 + 𝜔). 

The degree of 𝑔(𝑋)  is 11, and the dimension 𝑘  is 4.  Hence, we get (15, 4, 9) BCH codes over 

EF ℤ2[𝜔]. 

4. Decoding algorithm-based EF 

This section is for the comprehensive decoding procedure of BCH codes based that are 

superimposed on an EF with length 𝑛 using modified BMA. 

The subsequent theorem is a merely restatement of [27, Section V, Theorem 2]. 

Theorem 2. Let 𝐶  be a 𝑛  length BCH code that is superimposed over a GF ℤ𝑝[𝜔] if  (𝑝 ≡

2)(𝑚𝑜𝑑 3) with a distance d that has been created. Then the code 𝐶 is the null space of the matrix 𝐻. 

𝐻 = (
1 𝛾c             𝛾2𝑐          ⋯ 𝛾(𝑛−1)c

⋮                                   ⋱ ⋮
1 𝛾𝑐+𝑑−2  𝛾2(𝑐+𝑑−2)   ⋯ 𝛾(𝑛−1)(𝑐+𝑑−2)

).     (1) 

Proof. Straightforward [28]. 

Let 𝑐 be a code word of the (𝑛, 𝑘, 𝑑) narrow sense BCH code, received word 𝑟  and design 
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distance 𝑑. Then the error corrections of the BCH codes have the following steps. 

Step 1: Let 𝑆𝑖 for 𝑖 = 𝑐, 𝑐 + 1,… , 𝑐 + 𝑑 − 2 be the syndromes with the help of 𝐻 and 𝑟 as; 

𝑆𝑖 = 𝑟𝐻
T(mod 𝑝) = (𝑆𝑐  𝑆𝑐+1  .  .  .  𝑆𝑐+𝑑−2). 

OR 𝑆𝑖 = 𝑟(𝛾
𝑖) = 𝑎0 + 𝑎1𝛾

𝑖 +⋯+ 𝑎𝑛−1𝛾
(𝑛−1)𝑖 for 𝑖 = 𝑐, 𝑐 + 1,… , 𝑐 + 𝑑 − 2. 

If all 𝑆𝑖 are zeros then 𝑐 = 𝑟. However, if at least one 𝑆𝑖 is nonzero then the error occurs. So, we 

will move to the next step. 

Step 2: Apply modified BMP to find ∆𝑛(𝑦). 

Table 3. Modified BMA. 

Iterations ∆𝑛(𝑦) 𝜗𝑛 𝑢𝑛 𝑛 − 𝑢𝑛 

−1 1 1 0 −1 
0 1 First non-zero 

syndrome 
0 0 

1     
⋮     

2t     

Where 𝜗𝑛 is the discrepancy, degree ( ∆𝑛(𝑦)) = 𝑢𝑛 and 𝑡 is the upper bound of the number of 

errors. There are two cases for ∆𝑛(y); 

Case 1: If 𝜗𝑛 = 0, then ∆𝑛+1(y) = ∆𝑛(y) and 𝑢𝑛 = 𝑢𝑛+1. 

Case 2: If 𝜗𝑛 ≠ 0, then for 𝑚 ≤ 𝑛 − 1 and 𝑛 − 𝑢𝑚  have the largest value in 𝑛 − 𝑢𝑛. So, from 𝜗𝑛 −
𝑧𝜗𝑚 = 0, we get 𝑧. Thus, ∆𝑛+1(𝑦) = ∆𝑛(𝑦) − 𝑧𝑦𝑛−𝑚 ∆𝑚(𝑦). Then, 

𝜗𝑛+1 = S𝑛+2 + ∆1
(𝑛+1)(y)S𝑛+1 + ∆2

(𝑛+1)(y)S𝑛+. . . +∆𝑢𝑛+1
(𝑛+1)(y)S𝑛+2−𝑢𝑛+1 . 

Step 3: Find the reciprocal function 𝑔(y) of ∆𝑛(y), then 𝑦𝑗 represents the roots of 𝑔(y). Let 𝑥𝑗 = 𝜌
𝑗  

are error locations if it satisfies the (𝑥𝑗 − 𝑦𝑗) = 0, where 1 ≤ 𝑗 ≤ 𝑛 − 1. 

Step 4: Find an elementary symmetric function (ESF) for the possible errors that occur in the 

received word. 

(𝑦 − 𝑥1)(𝑦 − 𝑥2). . . (𝑦 − 𝑥𝑣) = ∆0𝑦
𝑣 + ∆1𝑦

𝑣−1 +⋯+ ∆𝑣, 

where 𝑥j, 𝑗 = 1,2, … , 𝑣 and 𝑣 is the total number of the roots of 𝑔(𝑦). 

Step 5: The magnitude of the errors can be found by Forney’s procedure [29] as; 

𝑧𝑖 =
∑ ∆𝑖,𝑗𝑆𝑣−𝑙
𝑣−1
𝑙=0

∑ 𝛿𝑖,𝑗𝑥𝑖
𝑣−𝑙𝑣−1

𝑙=0

. 

Start with ∆0= ∆𝑖,0= 1. Where ∆𝑖,𝑗= ∆𝑗 + 𝑥𝑖 . ∆𝑖,𝑗−1; 𝑗 = 1, 2, 3, … , 𝑣 − 1 and 𝑖 = 1, 2, … , 𝑣. 

Step 6: The cord word 𝑐 can be corrected by 𝑐 = 𝑟 − 𝑒, where 𝑒 is the error vector. 

Illustration 9. Let (15, 11, 3)  BCH code over the EF ℤ2[𝜔]  and the received vector 𝑟 =
(0,0, 𝜔,… ,0)1×15. Find the corrected cord word if possible. 

Let 
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𝑆 = 𝑟𝐻𝑇 = (0  0  𝜔 … 0) (
1 𝛾  𝛾2  ⋯ 𝛾14

1 𝛾2 𝛾4  ⋯ 𝛾28
)
𝑇

= (
𝜔𝛾2

𝜔𝛾4
) = (

1 + 𝜔 + 𝛾𝜔
𝜔 + 𝛾𝜔

) = (
𝛾7

𝛾9
). 

Where 𝑆1 = 𝛾
7 and 𝑆2 = 𝛾

9  are two syndromes. Find ∆2(𝑦) by modified BMA by the following 

iterations. 

Iteration 1. The first nonzero syndrome is 1 + 𝜔 + 𝛾𝜔. Apply step 2 (case II) of the BMA because 

𝜗0 ≠ 0, −1 = −1, and 0 − 𝑢−1 = 0 is the higher value of the last column. Then, 𝜗0 − 𝑧𝜗−1 = 0, 
then 

𝑧 =
𝜗0

𝜗−1
=
1+𝜔+𝛾𝜔

1
= 1 + 𝜔 + 𝛾𝜔. 

So the polynomial 

∆1(𝑦) = ∆0(𝑦) − (1 + 𝜔 + 𝛾𝜔)𝑦0+1∆−1(𝑦) 

= 1 + (1 + 𝜔 + 𝛾𝜔)𝑦 = 1 + (1 + 𝜔 + 𝛾𝜔)y = 1 + 𝛾7𝑦. 

𝜗1 = 𝑆2 + ∆1
(1)(y)S1 = 𝜔 + 𝛾𝜔 + (1 + 𝜔 + 𝛾𝜔)(1 + 𝜔 + 𝛾𝜔) = 1 + 𝛾 = 𝛾

4. 

Iteration 2. 𝜗1 ≠ 0 in Iteration 1, 0 = 1 − 1 and 1 − 𝑢0 = 1 − 0 = 1 is the higher value of the last 

column. Thus, 𝜗1 − 𝑧𝜗0 = 0, then 

𝑧 =
𝜗1
𝜗0
=

1 + 𝛾

1 + 𝜔 + 𝛾𝜔
= 1 + 𝛾 + 𝛾𝜔 = 𝛾12. 

So, the polynomial 

∆2(𝑦) = ∆1(𝑦) − (1 + 𝛾 + 𝛾𝜔)𝑦1−0∆0(𝑦) 

= 1 + 𝛾7𝑦 + (1 + 𝛾 + 𝛾𝜔)𝑦(1) 

= 1 + (𝛾 + 𝜔)y = 1 + 𝛾2𝑦. 

The results of the iterations are given in Table 4. 

Table 4. Linear polynomial by modified BMA. 

Iterations ∆𝑛(𝑦) 𝜗𝑛 𝑢𝑛 𝑛 − 𝑢𝑛 

−1 1 1 0 −1 

0 1 𝛾7 = 1 + 𝜔 + 𝛾𝜔 0 0 

1 1 + 𝛾7𝑦 𝛾4 = 1 + 𝛾 1 0 

2 1 + 𝛾2𝑦    

The reciprocal function of ∆2(𝑦) = 1 + 𝛾2𝑦  is 𝑔(𝑦) = 𝛾2 + 𝑦. 𝛾2  is the root of 𝑔(𝑦). 
Hence 𝑦1 = 𝛾

2, so an error occurred in second place of 𝑟. ∆0y
𝑣 + ∆1= y − 𝛾

2 is an ESF. The error 

magnitude is 

𝑧1 =
∆1,0𝑆1

∆1,0𝑥1
=
𝑆1

𝑥1
=
1+𝜔+𝛾𝜔

𝜔+𝛾
=
𝛾7

𝛾2
= 𝛾5 = 𝜔, 

where  ∆0= 1, ∆1= γ
2  and  𝑣 = 1. Corrected code word  𝑐 = 𝑎 − 𝑒 = (0, 0, 0, … , 0)1×15. Hence 𝑐  is 
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the corrected code word of the (15, 11, 3) BCH code 𝐶. 

Illustration 10. Let (15, 11, 3)  BCH code over the EF ℤ2[𝜔]  and the received vector 𝑟 = 𝑟 =
(1,1, 𝜔, 0,1,0, … ,0)1×15. Find the corrected cord word if possible. 

Let 

𝑆 = 𝑟𝐻𝑇 = (1,1, 𝜔, 0,1,0, … ,0) (
1 𝛾  𝛾2  ⋯ 𝛾14

1 𝛾2 𝛾4  ⋯ 𝛾28
)
𝑇

= (
𝜔𝛾2

𝜔𝛾4
) = (

1 + 𝜔 + 𝛾𝜔
𝜔 + 𝛾𝜔

) = (
𝛾7

𝛾9
). 

Where 𝑆1 = 𝛾
7 and 𝑆2 = 𝛾

9  are two syndromes. Find ∆2(𝑦) by modified BMA by the following 

iterations. 

Iteration 1. The first nonzero syndrome is 1 + 𝜔 + 𝛾𝜔. Apply step 2 (case II) of the BMA because 

𝜗0 ≠ 0, −1 = −1 and 0 − 𝑢−1 = 0 is the higher value of the last column. Thus, 𝜗0 − 𝑧𝜗−1 = 0, then 

𝑧 =
𝜗0
𝜗−1

=
1 + 𝜔 + 𝛾𝜔

1
= 1 + 𝜔 + 𝛾𝜔. 

So, the polynomial 

∆1(𝑦) = ∆0(𝑦) − (1 + 𝜔 + 𝛾𝜔)𝑦0+1∆−1(𝑦) 

= 1 + (1 + 𝜔 + 𝛾𝜔)𝑦 = 1 + (1 + 𝜔 + 𝛾𝜔)y = 1 + 𝛾7𝑦. 

𝜗1 = 𝑆2 + ∆1
(1)(y)S1 = 𝜔 + 𝛾𝜔 + (1 + 𝜔 + 𝛾𝜔)(1 + 𝜔 + 𝛾𝜔) = 1 + 𝛾 = 𝛾

4. 

Iteration 2. 𝜗1 ≠ 0 in Iteration 1, 0 = 1 − 1 and 1 − 𝑢0 = 1 − 0 = 1 is the higher value of the last 

column. Thus, 𝜗1 − 𝑧𝜗0 = 0, then 𝑧 =
𝜗1

𝜗0 
=

1+𝛾

1+𝜔+𝛾𝜔
= 1 + 𝛾 + 𝛾𝜔 = 𝛾12. So, the polynomial 

∆2(𝑦) = ∆1(𝑦) − (1 + 𝛾 + 𝛾𝜔)𝑦1−0∆0(𝑦) 

= 1 + 𝛾7𝑦 + (1 + 𝛾 + 𝛾𝜔)𝑦(1) = 1 + (𝛾 + 𝜔)y = 1 + 𝛾2𝑦. 

The results of the iterations are given in Table 5. 

Table 5. Linear polynomial by modified BMA. 

Iterations ∆𝑛(𝑦) 𝜗𝑛 𝑢𝑛 𝑛 − 𝑢𝑛 

−1 1 1 0 −1 
0 1 𝛾7 = 1 + 𝜔 + 𝛾𝜔 0 0 
1 1 + 𝛾7𝑦 𝛾4 = 1 + 𝛾 1 0 
2 1 + 𝛾2𝑦    

The reciprocal function of ∆2(𝑦) = 1 + 𝛾2𝑦  is 𝑔(𝑦) = 𝛾2 + 𝑦. 𝛾2  is the root of 𝑔(𝑦). 
Hence 𝑦1 = 𝛾

2, so an error occurred in second place of 𝑟. ∆0y
𝑣 + ∆1= y − 𝛾

2 is an ESF. The error 

magnitude is 

𝑧1 =
∆1,0𝑆1

∆1,0𝑥1
=
𝑆1

𝑥1
=
1+𝜔+𝛾𝜔

𝜔+𝛾
=
𝛾7

𝛾2
= 𝛾5 = 𝜔, 
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where  ∆0= 1, ∆1= γ
2  and 𝑣 = 1. Corrected code word  𝑐 = 𝑎 − 𝑒 = (0, 0, 0, … , 0)1×15. Hence 𝑐  is 

the corrected code word of the (15, 11, 3) BCH code 𝐶. 

Illustration 10. Let (15, 11, 5)  BCH code over the EF ℤ2[𝜔]  and the received vector 𝑟 =
(1 𝜔 𝜔 1 1 0 0…0)1×15. Find the corrected cord word if possible. 

Let 

𝑆 = 𝑟𝐻𝑇 = (1  𝜔   𝜔   1   1   0    0…0)

(

 
 
1 γ  γ2  ⋯ γ14

1 γ2  γ4  ⋯ γ28

1 γ3  γ6  ⋯ γ42

1 γ4 γ8  ⋯ γ56)

 
 

𝑇

 

= (

1 + γ + γ𝜔
1 + γ + 𝜔 + γ𝜔
1 + γ + γ𝜔
1 + 𝜔 + γ𝜔

) =

(

 
 
γ12

γ14

γ12

γ7 )

 
 
= (

𝑆1
𝑆2
𝑆3
𝑆4

). 

Let𝑆1 = 1 + γ + γ𝜔 = γ
12, 𝑆2 = 1 + γ + 𝜔 + γ𝜔 = γ

14, 𝑆3 = 1 + γ + γ𝜔 = γ
12 and  𝑆4 = 1 +

𝜔 + γ𝜔 = γ7. Find ∆4(𝑦) by modified BMA by the following iterations. 

Iteration 1. The first nonzero syndrome is 1 + γ + γ𝜔. Apply step 2 (case II) of the BMA because 

𝜗0 ≠ 0, −1 = −1 and 0 − 𝑢−1 = 0 is the higher value of the last column. Thus, 𝜗0 − 𝑧𝜗−1 = 0, then 

𝑧 =
𝜗0
𝜗−1

=
1 + γ + γ𝜔

1
= 1 + γ + γ𝜔 = γ12. 

So, the polynomial 

∆1(𝑦) = ∆0(𝑦) − (1 + γ + γ𝜔)𝑦0+1∆−1(𝑦) = 1 + (1 + γ + γ𝜔)𝑦 = 1 + 𝛾12𝑦. 

𝜗1 = 𝑆2 + ∆1
(1)(y)S1 = (1 + γ + 𝜔 + γ𝜔) + (1 + 𝛾 + 𝛾𝜔)(1 + 𝛾 + 𝛾𝜔) = 1 + 𝛾 = 𝛾

4. 

Iteration 2. 𝜗1 ≠ 0 in Iteration 1, 0 = 1 − 1 and 1 − 𝑢0 = 1 − 0 = 1 is the higher value of the last 

column. Thus, 𝜗1 − 𝑧𝜗0 = 0, then 

𝑧 =
𝜗1
𝜗0
=

1 + 𝛾

1 + 𝛾 + 𝛾𝜔
= 𝛾𝜔 + 1 + 𝜔 = 𝛾7. 

So, the polynomial 

∆2(𝑦) = ∆1(𝑦) − (𝛾𝜔 + 1 + 𝜔)𝑦1−0 ∆0(𝑦) 

= 1 + 𝛾7𝑦 + (1 + 𝛾 + 𝛾𝜔)𝑦(1) = 1 + (𝛾 + 𝜔)y = 1 + 𝛾2𝑦. 

𝜗2 = 𝑆3 + 𝑆2∆1
(2)(y) + ∆2

(2)(y)S1 

= (1 + γ + γ𝜔) + (𝛾 + 𝜔)(1 + γ + 𝜔 + γ𝜔) + 0 = 1 + γ𝜔 = 𝛾13. 

Iteration 3. 𝜗2 ≠ 0 in Iteration 2, 1 = 2 − 1 and 2 − 𝑢1 = 2 − 1 = 1 is the higher value of the last 

column. Thus, 𝜗2 − 𝑧𝜗1 = 0, then 
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𝑧 =
𝜗2
𝜗1
=
1 + 𝛾𝜔

1 + 𝛾
= 𝛾𝜔 + 𝜔 = 𝛾9. 

So, the polynomial 

∆3(𝑦) = ∆2(𝑦) − (𝛾𝜔 + 𝜔)𝑦2−1∆1(𝑦) = 1 + 𝛾2𝑦 + (𝜔 + 𝛾𝜔)𝑦(1 + 𝛾12𝑦) 

= 1 + (𝛾 + 𝛾𝜔)𝑦 + (𝛾𝜔)𝑦2 = 1 + 𝛾11𝑦 + 𝛾6𝑦2. 

𝜗3 = 𝑆4 + 𝑆3∆1
(3)(y) + ∆2

(3)(y)S2 + ∆3
(3)(y)S1 

= (1 + 𝜔 + γ𝜔) + (𝛾 + 𝛾𝜔)(1 + γ + γ𝜔) + (𝛾𝜔)(1 + γ + 𝜔 + γ𝜔) + 0 

= 𝛾 + 𝜔 + 𝛾𝜔 = 𝛾3. 

Iteration 4. 𝜗3 ≠ 0 in Iteration 3, 2 = 3 − 1 and 3 − 𝑢2 = 3 − 1 = 2 is the higher value of the last 

column. Thus, 𝜗3 − 𝑧𝜗2 = 0, then 𝑧 =
𝜗3

𝜗2
=
𝛾+𝜔+𝛾𝜔

1+𝛾𝜔
= 𝜔 = 𝛾5. So, the polynomial 

∆4(𝑦) = ∆3(𝑦) − (𝜔)𝑦3−2∆2(𝑦) = 1 + 𝛾11𝑦 + 𝛾6𝑦2 + (𝜔)𝑦(1 + 𝛾2𝑦) 

= 1 + (𝛾 + 𝜔 + 𝛾𝜔)𝑦 + (1 + 𝜔)𝑦2 = 1 + 𝛾3𝑦 + 𝛾10𝑦2. 

The results of the iterations are given in Table 6. 

Table 6. Quadratic polynomial by modified BMA. 

Iterations ∆𝑛(𝑦) 𝜗𝑛 𝑢𝑛 𝑛 − 𝑢𝑛 

−1 1 1 0 −1 

0 1 1 + 𝛾 + 𝛾𝜔 = 𝛾12 0 0 

1 1 + 𝛾12𝑦 𝛾4 = 1 + 𝛾 1 0 

2 1 + 𝛾2𝑦 𝛾13 = 1 + 𝛾𝜔 1 1 

3 1 + 𝛾11𝑦 + 𝛾6𝑦2 𝛾3 = 𝛾 + 𝜔 + 𝛾𝜔 2 1 

4 1 + 𝛾3𝑦 + 𝛾10𝑦2    

The reciprocal function of ∆4(𝑦) = 1 + 𝛾3𝑦 + γ10𝑦2  is 𝑔(𝑦) = 𝑦2 + γ3𝑦 + γ10. γ and 𝛾9  are 

the roots of 𝑔(𝑦). Hence 𝑦1 = γ and 𝑦2 = γ
9, so the errors appeared in first and ninth place in 

𝑟. ∆0y
2 + ∆1y + ∆2= (y − 𝛾)(𝑦 − 𝛾

9) = 𝑦2 + 𝛾3𝑦 + 𝛾10 

is an ESF. The error magnitudes are as; 

z1 =
∆1,0. S2 + ∆1,1. S1

∆1,0. z1
2 + ∆1,1. x1

= 1 + γ = γ4. 

As ∆1,1= ∆1 + ∆1,0. 𝑦1 = γ
9, therefore 

∆2,1= ∆1 + ∆2,0. 𝑦2 = γ. 

z2 =
∆2,0. S2 + ∆2,1. S1

∆2,0. y2
2 + ∆2,1. y2

= γ𝜔 = γ6. 
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Corrected code word 

𝑐 = 𝑎 − 𝑒 = (1, 1 + 𝜔 + γ, 0, 0, 0, 0, 0, 0, 0, γ𝜔, 0, 0, 0, 0, 0)1×15. 

Hence 𝑐 is the corrected code word of the (15, 11, 5) BCH code 𝐶. 

5. Comparison 

We compare the narrow sense BCH code and decoding method on a GF and an EF. BCH-codes 

base 𝐺𝐹(𝑝𝑚) are defined with detail in [7, Section 4.4], including their length (𝑛 = 𝑝𝑚 − 1), design 

distances (𝑑) , dimension (𝑘1) , code rates (𝑅1 = 𝑘1/(𝑝
𝑚 − 1)  and words of 𝐶  (𝑝𝑘1) . Here, the 

authors provide BCH codes of length (𝑛 = 𝑝2𝑚 − 1), design distance (𝑑), dimension 𝑘2, code rate 

(𝑅2 = 𝑘2/(𝑝
2𝑚 − 1) and the words of 𝐶 over the EF ℤ𝑝[𝜔] are 𝑝2𝑘2, and their decoding technique. 

Comparisons between BCH codes based on GF and EF are given in Tables 7 and 8. 

For comparison we take a one GF and one EF. Based on the results of [9, Exercise 4.4 (10)], 

length of the code 𝑛 is 𝑝𝑚 − 1 = 24 − 1, design distance𝑑, dimension 𝑘1 , coding rate 𝑅1  and the 

code words 𝑝𝑘1 are given in Table 7. 

Table 7. Results of BCH codes-based GF. 

𝑛 𝑑 𝑘1 𝑅1  𝑝𝑘1 
15 3 11 0.7333 211 

15 5 7 0.4667 27 

15 7 5 0.3333 25 

15 9 1 0.0667 21 

In a similar way, the length of the code 𝑛 = 𝑝2𝑚 − 1 = 24 − 1 = 15, dimension 𝑘2, designed 

distance 𝑑, code rate 𝑅2 and the words of 𝐶 are 𝑝2𝑘2  over the EF ℤ𝑝[𝜔] = ℤ2[𝜔] given in Table 8. 

Table 8. Results of BCH codes-based EF. 

𝑛 𝑑  𝑘2 𝑅2 𝑞𝑘2 
15 3 11 0.7333 211 

15 5 9 0.6 29 
15 7 6 0.4 26 

15 9 4 0.2667 24 

Figure 3 shows the BCH coding rate 𝑅1 over a Galois field (GF) and 𝑅2 over the Eisenstein 

field with designed distance d from Tables 7 and 8. Figure 4 shows the BCH code dimension 𝑘1 over 

a Galois field and 𝑘2 over an Eisenstein field with designed distance 𝑑. 
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Figure 3. GF and EF code rates and designed distances. 

 

Figure 4. GF and EF dimensions and designed distances. 

6. Discussion for shortcoming 

When the BCH codes-based GF and their decoding algorithm are compared with the EF and their 

decoding method for the same length and designed distance, the following observations are achieved. 

In the Eisenstein field, the code rates and dimensions are greater than in the Galois field. The BCH 

code over the Eisenstein field has a lot number of code words than the Galois field. The decoding 

algorithm over the GF is a specific algorithm for error correction, whereas the Eisenstein field 

decoding algorithm is a general algorithm for error correction.  
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7. Conclusions and future direction 

The Eisenstein field and its extension are covered in this article. Additionally, the construction 

of BCH codes based on the EF ℤ𝑝[𝜔], for 𝑝 ≡ 2(𝑚𝑜𝑑 3) has been provided. Furthermore, a slightly 

modified version of the BMA was used to decode these codes. It has been demonstrated that the 

performance of the BCH codes over the EF ℤ𝑝[𝜔] for 𝑝 ≡ 2(𝑚𝑜𝑑 3) and their decoding technique is 

superior to that of the BCH codes over the 𝐺𝐹(𝑝𝑚). 
In future directions, BCH codes based on EF ℤ𝑝[𝜔] and its decoding technique may extend 

across Eisenstein local rings ℤ𝑝𝑘[𝜔], for 𝑝 ≡ 2(𝑚𝑜𝑑 3), which may improve performance of the 

BCH codes using symbols from ℤ𝑝[𝜔]. 
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