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To describe the full-stage creep behavior of layered rock accurately, a new elastic-
viscoplastic creep model is proposed based on fractional order theory in this
manuscript, which consists of a Hooke elastomer, a fractional Abel dashpot, a
Kelvin body, and a new non-linear visco-plastic component. The non-linear creep
model can not only describe the changes in three creep stages (primary creep,
steady-state creep and accelerating creep) but also reflect the influence of
different bedding angles of rock. The constitutive equations of the non-linear
creep model are deduced by the empirical model method and plastic theory
method, respectively. The parameters of the non-linear creepmodel are identified
using the Levenberg-Marquardt algorithm from Origin. It shows that the creep
model in this paper are highly consistent with the experimental data under
different load levels, creep stages and bedding angles, and the accuracy and
rationality of themodel are verified. Moreover, the creep constitutive equations for
layered rock derived by the two methods have the same fitting effect on the same
set of experimental data.
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1 Introduction

Rock rheology refers to the continuous adjustment and recombination of rock and
mineral fabric (skeleton) with the growth of time, resulting in the continuous increase and
change of its stress and strain state with time (Sun, 2007a). The rheology of rock includes
creep, stress relaxation and elastic aftereffects. Especially, the creep characteristics of rock
are of great significance to the stability of rock engineering, and the research on this aspect
is also of great significance and engineering application value. The study of creep
characteristics of rock began in the 1930s, Griggs (Griggs, 1939) carried out a series of
creep tests on rocks such as limestone, shale and sandstone in 1939, and concluded that
rock creep occurs when the load reaches 12.5%–80.0% of its compressive strength. Several
elasto-viscoplastic creep models have been proposed that can well describe the time-
dependent behavior of rock under certain conditions (Wu et al., 2018; Brantut et al., 2013;
Sone et al., 2014; Xia et al., 2009). In general, the classical rock rheological model theory is
mainly limited to linear rheological problems, and there are two main methods to describe
non-linear rheological problems of rock. The first method is to replace the linear model
theory with a new non-linear rheological theory completely, such as internal time theory,
fracture and damage mechanics theory, etc. The other method is to improve the classical
model theory by using non-linear components (non-linear spring or non-linear dashpot)
instead of linear elements.
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The component model is widely used because of its intuitive
concept and clear meaning. Classical component combination
models include the Maxwell model, Kelvin model, Poyting-
Thomson model, Burgers model and Nishihara model. However,
the basic element of the classical model is linear, it is still linear
whether connection in series or parallel, and can not describe the
non-linear creep characteristics of the rock in the accelerating stage.
Therefore, establishing a creep model which can describe the non-
linear characteristics of the rock creep process has always been a hot
and difficult point in the theoretical research of rock mechanics. In
the present research, scholars (Cheng et al., 2020; Shan et al., 2020;
Wang and Wan, 2016; Yang and Jiang, 2022) having been
established different non-linear creep models by introducing
creep damage theory (Shen et al., 2023a; Zhang et al., 2022a) and
fractional calculus theory. The constitutive model based on
fractional calculus theory with fewer parameters and better fitting
effect has been widely applied in rock rheological mechanics. A
classical example is Koeller (Koeller, 1984) used Riemann–Liouville
(R-L) fractional dashpot to replace the traditional Newtonian
dashpot in the component model in 1978. The R-L type (Zhou
et al., 2018) or Caputo type (Liu et al., 2020) fractional order calculus
theory is used to construct fractional dashpot to replace the
traditional Newtonian dashpot in the element model, and to
establish a creep model that can describe the three stages
(primary creep, steady-state creep and accelerating creep) of rock
creep. However, it lacks physical significance in the accelerating
creep, and it can not well characterize the internal mechanism of
accelerating creep of rock. Therefore, damage factors were
introduced to describe the accelerating creep of rock, and
establish an elasto-viscoplastic creep model reflecting the
complete creep process of rock by combining fractional calculus
theory and damage theory (Deng et al., 2022; Shen et al., 2022; Wu
et al., 2018) becoming a relatively popular study method. In
addition, scholars have study the mechanical characteristics about
the concrete-rock combination (Shen et al., 2022; Zhang et al., 2019)
and other interface (Shen et al., 2023b; Zhang et al., 2023). By
comparing the creep model established by fractional calculus theory,
it is based on the assumption that there are two stages (hardening
and damage) in the creep of rock, and with clear physical
significance for describing the accelerating creep stage. However,
due to various ways of defining damage factors and increasing model
parameters, the calculation is inconvenient.

There are abundant of achievements on creep characteristics for
common rock, but few studies on creep characteristics for layered rock.
In the basic mechanics study area, Ramamurthy (Ramamurthy, 1993)
carried out a study on the physical and mechanical properties of rock
with different bedding angles, explored the anisotropy law of strength
and deformation. Yong (Yong Tsao, 2000; Yong, 2001) studied the
effect of the bedding angle on the strength and elastic modulus for
layered rock, proposed corresponding damage guidelines. Fortsakis
(Fortsakis et al., 2012) modeled the bedding as separate units and
the rock masses as anisotropic materials to investigate the differences in
the analysis of isotropic, anisotropic and transverse isotropic analysis
methods. Studies has also shown the influence of bedding angles in the
basic mechanical properties for layered rock (Celleri et al., 2018; Chang
et al., 2020; Hb et al., 2003; Saeidi et al., 2014;Wu et al., 2015; Yang et al.,
2021). In the experimental creep study, Dubey (Dubey and Gairola,
2008) investigated the creep properties of salt rocks containing

horizontal, vertical and diagonal laminations at different stress levels
by uniaxial compression creep tests, and noted that the higher the stress
level, the less the laminations affected the anisotropy of the creep
properties of salt rocks. In recent years, some scholars (Hu et al., 2019;
Liu et al., 2015; Xu et al., 2019; Zhang et al., 2021) have also studied the
anisotropic creep law of layered rock by uniaxial compression creep
tests and triaxial compression creep tests. In addition, the creep
properties of layered rock under the coupling of multiple factors
have been studied (Tang et al., 2018). In the study of creep
constitutive model for layered rock, an approach is to inductively
derive an empirical model from experimental phenomena (Park
et al., 2016; Zhang et al., 2022b). It is based on the assumption of
constant volume modulus, then to establish a creep constitutive model
by identifying the creep parameters in different directions as different
mutually independent values. Another approach is the plasticity theory
model by assumption of Poisson’s ratio constant (Aravas et al., 1995;
Kou et al., 2023; Wang et al., 2018), which to establish the three-
dimensional creep constitutive model for transverse isotropic rock by
using the transverse isotropic flexibility matrix replace the isotropic
flexibility matrix.

Based on the above analysis, the creep mechanics properties of
rock has been widely studied, but less for layered rock. Therefore, a
non-linear fractional creep model for layered rock was established in
this manuscript by introducing a non-linear Abel dashpot. The
model connected the Hooke body, non-linear Abel dashpot body,
linear Kelvin body and non-linear viscoplastic body in series.
Further more, the non-linear elastic-viscoplastic creep
constitutive equations for layered rock were derived. A practical
method for model parameters identification is proposed, and finally
the accuracy and applicability of the model is verified by using
different rock compression creep test data from relevant literature.

2 Rock creep processes and basic
mechanical models

The typical creep curve of rock is shown in Figure 1. The ABCD
is strain curve, and the A′B′C′D′ is strain rate curve, stage I, II, III is

FIGURE 1
Three stages of the typical creep curve.
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the primary creep, steady-state creep and accelerating creep,
respectively.

When a load is applied, the rock then undergoes a transient
elastic creep in section OA. Continuing to loading, the rock enters
primary creep in the AB section, which exhibits a non-linear
viscoelastic character. With increasing loading stress, the rock
then undergoes steady-state creep in the BC section, which
exhibits an approximately linear viscoelastic-viscoplastic
character. When the loading stress level exceeds the long-term
strength of the rock, the rock undergoes primary creep, steady-
state creep and then enters the accelerating creep phase in the CD
section until creep damage. Thus, the basic equation for the
variation of rock creep strain with time can be expressed as

ε t( ) � εe t( ) + εve t( ) + εvp t( ) (1)

Where εe(t), εve(t), εvp(t) are elastic strain, viscoelastic strain
and viscoplastic strain, respectively.

In rheological theory, a rock creep model should be able to
characterise the processes of decay creep, steady-state creep and
accelerating creep, and reflect the creep characteristics of the rock
at different stress levels. The basic units of the rheological model
are generally divided into elastic, plastic and viscous elements,
and the mechanical model of the three basic units is shown in
Table 1.

As the intrinsic relationships of the basic components are linear,
the various classical rheological models, such as the Maxwell, Kelvin,
Burgers and Nishihara models (Behbahani et al., 2016; Feng, 2021),
which consist of basic components connected in series or parallel,
are also linear in nature.

3 Establishment of elastic-viscoplastic
creep model

3.1 Plastic body elements based on
fractional order derivatives

3.1.1 Definition of fractional calculus
Fractional order calculus is an extension of integer order

calculus. Since the 1990s, the theory and methods of fractional
order calculus have been widely applied to various fields of the
natural and social sciences. In the area of viscous fluid
mechanics, the introduction of fractional order calculus
theory allows for more realistic theoretical models to be
developed in the study of mechanical physical problems
associated with real fluids, leading to accurate conclusions.
The Riemann–Liouville (R-L) type fractional order calculus is
commonly used in the theory of rock rheology studies (Zhou

TABLE 1 The basic mechanical components.

Name Diagram Constitutive equation

Hooke elastomer ε � σ
E

Plastic body ε� 0,σ < σ
s

ε → ∞, σ ≥ σ
s }

Newtonian dashpot σ � η dε
dt

FIGURE 2
0< β≤ 1.

FIGURE 3
β> 1.
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et al., 2018), but its fractional order derivatives are hyper-
singular and limited in applications in engineering and
technology and in physical modeling. In this paper, we use a
theory of fractional order derivatives with weak singular
properties proposed by the Italian geophysicist Caputo. The
Caputo fractional order derivative solves the fractional order
initial value problem in the definition of R-L type fractional
order calculus and has been widely used in the modeling process
of many practical application problems (Liu et al., 2021). The
definition of Caputo fractional order derivative is

C
0D

β
t f t( ) � 0D

β−n
t Dnf t( ) � 1

Γ n − β( )∫
t

0
t − ξ( )n−β−1f n( ) ξ( )dξ, β> 0( )

(2)
where n is the smallest integer greater than or equal to β; ξ is an
integral variable of [0, t]; f(n)(ξ) is the n th order derivative of
function f(ξ); Γ is Gamma function, defined as

FIGURE 5
Diagram of bedding angle.

FIGURE 6
Creep equation fitting curves (ω� 0%).

FIGURE 7
Creep equation fitting curves (ω� 4.56%).

FIGURE 4
The six-element non-linear elastic-viscoplastic creep model.
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Γ z( ) � ∫∞

0
tz−1e−tdt� 2∫∞

0
t2z−1e−t

2
dt (3)

Γ 1 + z( ) � zΓ z( ) z ∈ N*( ),Re z( )> 0. (4)
The Caputo fractional operator is shown in Eq. 5:

C
0D

−β
t f t( ) � 0D

−β
t f t( ) � 1

Γ β( )∫
t

0
t − ξ( )β−1f ξ( )dξ, β> 0( ) (5)

The Laplace transform formula for the Caputo fractional order
derivative is

L C
0D

β
t f t( )( ) � sβU s( ) −∑n−1

j�0
u j( ) 0( )sβ−j−1, n−1< u≤ n( ) (6)

where U(s) is the Laplace transform operator of the function f(t).

3.1.2 Establishment of fractional order viscoelastic
and viscoplastic bodies

The theory of fractional order calculus is applied to the
traditional Newtonian dashpot to construct a fractional dashpot,
called the Abel dashpot. As shown in Figure 4:

Define the stress-strain equation for the Abel dashpot as

σ t( ) � η0
dβε t( )
dtβ

(7)

Where η is the viscosity coefficient; σ(t) is the axial stress and
ε(t) is the axial strain.

When β� 0,η0 � E, σ � Eε, representing linear elastomer,
namely, Hooke elastomer; When β� 1, σ � η0dε/dt,
corresponding to Newtonian dashpot and satisfying the ideal

TABLE 2 Parameters of the one-dimensional creep model.

ω% Loading stress E0 (MPa) η0 (MPa) p E1 (MPa) η1 (MPa) η2 (MPa) k R2

0 60 271.49 3.5 × 1019 1 4533.69 7792.56 0.872

70 258.30 2.6 × 1019 1 3769.68 6155.71 0.955

80 264.90 2.21 × 105 1 4783.74 5480.30 200892.84 0.805 0.989

90 268.66 1.37 × 1019 1 2767.25 6797.60 257095.94 1.737 0.988

100 254.45 1.25 × 1021 1 2619.23 8715.35 9.43×1011 17.45 0.983

TABLE 3 Graded loading scheme.

ω/% Confining pressure (MPa) S1/MPa S2/MPa S3/MPa S4/MPa

4.56 1 0.88 1.68 2.48 3.26

8.47 1 0.88 1.28 1.68

12.38 1 0.88 1.28

FIGURE 8
Creep equation fitting curves (ω� 8.47%,ω� 12.38%).

FIGURE 9
Creep equation fitting curve (ω� 8.47%).
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fluid. So, the physical meaning of Abel dashpot can be defined as a
fluid element between Hooke elastomer and Newtonian body.

In the study of rock creep mechanics, σ(t) � σ � const, Eq. 7 is
integrated with Caputo fractional operator, and the creep equation
of fractional Abel dashpot can be expressed as

ε t( ) � σ

η0
· tβ

Γ 1 + β( ), m≤ β≤m+1 (8)

For Eq. 8, if σ/η0 is a constant, select 0< β≤ 1 and β> 1 to draw
the figure of strain time as follows:

As shown in Figures 2, 3, the growth rate of ε is variate non-
linear follow β. Combining with Figure 1, the constitutive
relationship curves of Abel dashpot can be used to describe
the typical creep properties of the rock. When the stress level

is below the long-term strength of the rock, the decay creep stage
can be characterized by Abel daspot with 0 < β< 1. When the
stress level exceed the long-term strength of the rock, the
accelerating creep stage can be characterized by Abel despot
with β> 1. Therefore, the Abel dashpot body is introduced by
paralleling with the friction plate to construct a fractional order
viscoplastic body, as shown in Figure 4. The stress relationship of
fractional order plastic body as:

σ � σs + σAbel (9)
Substituting Eq. 7 into Eq. 9, the fractional order viscoplastic

body creep constitutive relationship as:

εvp t( ) � σ − σs
η2

· tk

Γ 1 + k( ), k> 1( ) (10)

where η2 is the viscosity coefficient of the viscoplastic body, and σs is
the long-term strength of the rock.

3.2 Elastic-viscoplastic creep model

3.2.1 The elastic-viscoplastic creep model and
one-dimensional creep equation

Based on fractional order calculus theory and Boltzmann
superposition principle, a six-element non-linear elastic-
viscoplastic creep model is proposed as shown in Figure 4 in this
paper. The model consists of a Hooke elastomer, an Abel dashpot
body, a Kelvin body, and a fractional order viscoplastic body in
series. In this case, the instantaneous creep of the rock is
characterized by Hooke elastomer. The non-linear decay creep is
characterized by the Abel dashpot body. The steady-state creep is
approximated by a constant strain with time, as t → ∞, the slope of
the strain-time curve k � dε(t)/dt � const, and the constitutive
relationship for this stage is described by the conventional linear

FIGURE 10
Creep equation fitting curve (ω� 12.38%).

FIGURE 11
Creep equation fitting curves (ω� 0%).

FIGURE 12
Creep equation fitting curves of different bedding angles (β �
0°, 30°,45°).
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Kelvin body. Finally, the accelerating creep stage is described by the
fractional order viscoplastic body.

According to the series-parallel law for the combined element
model, when the stress is a constant, the stress-strain relationship for

the six-element non-linear elastic-viscoplastic creep model as the
following equation shows:

σ � σe � σve0 � σvel � σvp
ε t( ) � εe t( ) + εve0 t( ) + εvel t( ) + εvp t( )} (11)

TABLE 4 Parameters of the three-dimensional creep model.

ω% Confining stress G0 (MPa) K0 (MPa) η0 (MPa) p G1 (MPa) η1 (MPa) η2 (MPa) k R2

4.56 0.88 2.12 1.65 2.11 0.15 110.75 0.08 0.983

1.68 1.41 1.44 20.22 0.21 41.54 102.22 0.995

2.48 1.44 1.60 20.74 0.23 61.06 26.46 0.968

3.28 1.36 1.59 26.63 0.74 14.32 3.30 1.37 × 10−11 40.94 0.997

8.47 0.88 1.27 1.19 0.77 0.04 9.70 25.92 0.987

1.28 1.13 1.14 0.70 0.06 17.61 15.29 0.995

1.68 0.63 0.61 1.16 0.52 6.12 0.07 1.63 × 10−18 15.40 0.996

12.38 0.88 0.96 1.02 0.28 0.04 1.06 0.001 0.994

1.28 0.50 0.53 0.51 0.03 3.26 39.65 214.95 10.25 0.992

TABLE 5 Parameters of the creep model.

Stress/MPa Model parameters R2

E0/MPa η0/MPa p E1/MPa η1/MPa

2.2 32.16 5.41 × 1017 1 105.24 42.04 0.963

4.4 34.11 3775.19 0.77 138.57 23.34 0.893

6.6 31.28 8261.98 1 264.86 60.38 0.933

7.7 25.93 1306.20 0.50 341.93 767.04 0.995

8.8 22.22 1198.97 0.34 338.98 779.09 0.978

FIGURE 13
Creep equation fitting curves of different bedding angles (β �
60°,90°).

FIGURE 14
Shear modulus vs. elastic modulus.
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where σe, σve0, σvel, σvp is the stress of Hooke elastomer, Abel
dashpot body, Kelvin body and fractional order viscoplastic body,
respectively. ε(t)e, ε(t)ve0, ε(t)vel, ε(t)vp is the strain of Hooke
elastomer, Abel dashpot body, Kelvin body and fractional order
viscoplastic body, respectively.

(i) When σ < σs, there is only transient elastic creep, decay creep
and steady-state creep in the rock, no accelerating creep has
occurred, and only Hooke elastomer, Abel dashpot, kelvin
body at work, the stress-strain relationship of the model
equation is

σ � σe � σve0 � σvel
ε t( ) � εe t( ) + εve0 t( ) + εvel t( )} (12)

The creep equation of the Hooke elastomer and Abel dashpot
body is

εe t( ) � σ

E0

εve0 t( ) � σ

η0

tp

Γ 1 + p( )

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(13)

For kelvin body, according to the parallel law, there is

σ � σE1 + ση1
ε � εE1 + εη1
σE1 � E1ε
ση1 � η1 _ε

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (14)

So, the creep constitutive equation of kelvin body is

σ � E1ε + η1
dε

dt
(15)

Solve Eq. 15, obtain the creep equation of the linear kelvin
body is

εvel t( ) � σ

E1
1 − exp −E1

η1
t( )[ ] (16)

where σ is strain, E1, η1 is elastic modulus and viscosity coefficient,
respectively.

Substituting Eqs 13, 16 into Eq. 12, access the equation of ε(t) as

ε t( ) � σ

E0
+ σ

η0

tp

Γ 1 + p( ) +
σ

E1
1 − exp −E1

η1
t( )[ ], σ < σs, 0<p< 1( )

(17)

(ii) When σ ≥ σs, the rock undergoes accelerating creep and the
fractional order viscoplastic body is added to the work, the
stress-strain relationship of the model is given by

σ � σe � σve0 � σvel � σvp
ε t( ) � εe t( ) + εve0 t( ) + εvel t( ) + εvp t( )} (18)

Combining Eq. 10, Eq. 13 and Eq.16 and substituting them into
Eq. 18, access the equation of ε(t) as

FIGURE 15
Steady-state creep rate.

TABLE 6 Parameters of creep model.

Bedding angles Confining stress G0 (MPa) K0 (MPa) η0 (MPa) p G1 (MPa) η1 (MPa) η2 (MPa) k R2

0° 112.05 26.91 1.09 × 1018 418.07 0.20 2.33 × 1026 3.12 × 1026 3.12 × 10−10 24.14 0.947

30° 112.05 22.43 9.69 × 1017 448.66 0.20 807.03 214.28 2.43 × 10−14 18.67 0.981

45° 81.49 22.64 8.77 × 1016 968.18 0.48 1284.48 234.23 6.69 × 10−13 24.06 0.998

60° 61.12 16.42 2.24 × 1014 68.91 0.42 8.06 × 1016 8.05 × 1014 5.40 × 10−5 9.54 0.989

90° 112.05 22.64 1.00 × 1018 1708.78 0.08 547.43 139.69 2.59 × 10−15 20.02 0.998

TABLE 7 Creep parameters of plasticity theory model and empirical model.

θ Model η0/MPa p E1/MPa η1/MPa η2/MPa k R2

0 Theoritical model 2393.96 0.15 3.33 × 1016 2.54 × 1018 1.17 × 1019 61.28 0.918

Empirical model 851.83 0.15 3.53 × 1016 2.78 × 1018 4.38 × 107 61.18 0.918

90 Theoritical model 13338.32 0.81 1752.24 825.82 100469.59 20.53 0.999

Empirical model 4246.85 0.81 557.90 262.94 111.87 20.53 0.999
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ε t( ) � σ

E0
+ σ

η0

tp

Γ 1 + p( ) +
σ

E1
1 − exp −E1

η1
t( )[ ]

+ σ − σs
η2

tk

Γ 1 + k( ), σ ≥ σs, k> 1( ) (19)

In summary, the non-linear creep equation for rock in a one-
dimensional stress state is as follows:

ε t( ) �

σ

E0
+ σ

η0

tp

Γ 1 + p( ) +
σ

E1
1 − exp −E1

η1
t( )[ ], σ < σs, 0<p< 1( )

σ

E0
+ σ

η0

tp

Γ 1 + p( ) +
σ

E1
1 − exp −E1

η1
t( )[ ] + σ − σs

η2

tk

Γ 1 + k( ), σ ≥ σs , k> 1( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(20)

3.2.2 Three-dimensional creep equation
In geotechnical engineering, rocks are often in a complex three-

dimensional stress state. Therefore, in order to reflect the creep
properties of rocks in geotechnical engineering more accurately, the
three-dimensional creep constitutive equation should be adopted.
According to the theory of elasticity, the internal stress tensor σ ij of
rock can be decomposed into a spherical stress tensor σm and
deviatoric stress tensor sij under the condition of the three-
dimensional stress. Similarly, the total strain tensor εij of rock
can be decomposed into a spherical strain tensor εm and a
deviatoric strain tensor eij, and their constitutive relationship can
be expressed, respectively, as follow:

σ ij � sij + σ ijδij
εij � eij + εmδij

{ (21)

where σ ij is the Kronecker delta. The relationship between different
stress tensors and strain tensors is as follows:

σm � 1
3

σ1 + σ2 + σ3( ) � 1
3
σkk

εm � 1
3

ε1 + ε2 + ε3( ) � 1
3
εkk

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (22)

Under the condition of the three dimensional stress, assuming
the total strain of the non-linear creep model is εij(t). ε0ij(t), εve0ij (t),
εvelij (t), εvpij (t) is the strain of Hooke elastomer, Abel dashpot body,
Kelvin body and fractional order viscoplastic body, respectively.
Based on the theoretical superposition principle of the component
combination model, the relationship of strain is

εij t( ) � εeij t( ) + εve0ij t( ) + εvelij t( ) + εvpij t( ) (23)

In rock creep tests, when the first order stress level applied is less
than the long-term strength of the rock, the rock develops transient
strain rapidly, and the constitutive relationship at this stage can be
described by a Hooke elastomer.

For the Hooke elastomer, the elastic constitutive relation can be
expressed by Hooke’s Law as

sij� 2Geij
σ ij� 3Kεij

} (24)

where G, K is the shear modulus and bulk modulus, respectively.
The relationship between the shear modulus G, bulk modulus K,
elastic modulus E, and Poisson`s ratio μ of soil is

G � E

2 1 + μ( )
K � E

3 1 − 2μ( )

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(25)

Hence, the strain of the Hooke elastomer can be written as

εeij t( ) � 1
2G0

Sij + 1
3K0

σmδij (26)

When the stress keep loading, the rock enters a non-linear decay
creep phase, which is described by the Abel dashpot in this paper,
and the three-dimensional creep constitutive equation as:

εve0ij � 1
2η0

Sij
tp

Γ 1 + p( ) (27)

FIGURE 16
Fitting curves of creep equation by empirical model and plastic theory model [(A,B) is the bedding angle of 0°,90° respectively].

Frontiers in Materials frontiersin.org09

Li et al. 10.3389/fmats.2023.1286197

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1286197


Then, the rock will undergo steady-state creep, use the
conventional linear Kelvin body to describe this phase of the
rock creep process in this paper. Assuming that the volume
change is elastic and the rheological properties are mainly in
terms of shear deformation (Sun, 2007b), the three-dimensional
creep constitutive equation is

εve1ij � 1
2G1

Sij 1 − exp −G1

η1
t( )[ ] (28)

where G1 and η1 are the shear modulus and viscosity coefficient of
the Kelvin body, respectively.

When the stress deviator tensor s≥ σs, significant plastic
deformation occurs, and the rock enters a phase of accelerating
creep until it breaks down.

In a three-dimensional stress state, when stress exceeds the
viscoplastic yield surface, a viscoplastic strain will be generated.
Based on Perzyna’s limit stress flow law (Perzyna, 1966; Aydan,
2016), the three-dimensional creep equation for fractional order
viscoplastic body in the accelerating creep phase can be obtained as

εvpij t( ) � 1
η2

〈Φ F

F0
( )〉 ∂Q

∂σ ij
tk

Γ 1 + k( ), k> 1( ) (29)

where Φ( F
F0
) is the power function, Φ( F

F0
) � ( F

F0
)m. Q is the plastic

potential function. 〈•〉 is switch function, expressed as:

〈Φ F

F0
( )〉 �

0, F< 0
F

F0
( ), F≥ 0

⎧⎪⎪⎨⎪⎪⎩ (30)

F is the rock yield function. F0 is the initial value of the rock yield
function, generally taken as F0� 1 (Al-Rub et al., 2013). The
exponent m is a constant and generally taken as m� 1.

Combining Eqs 26–30 into Eq. 23, obtain the three-dimensional
creep equation as follow

εij t( ) �

1
2G0

Sij + 1
3K0

σmδij + 1
2η0

Sij
tp

Γ 1 + p( ) +
1

2G1
Sij 1 − exp −G1

η1
t( )[ ]

F< 0( )
1

2G0
Sij + 1

3K0
σmδij + 1

2η0
Sij

tp

Γ 1 + p( ) +
1

2G1
Sij 1 − exp −G1

η1
t( )[ ]

+ 1
η2

F

F0
( )m ∂Q

∂σ ij
tk

Γ 1 + k( )
F≥ 0( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(31)

The classical rock strength criterion includes Mohr-coulomb
criterion, Tresca criterion, Von-Mises criterion and Drucker-Prager
criterion, et al. However, the Mohr-coulomb and Tresca criterion
considers only the maximum and minimum principal stress of the
three principal stresses and does not consider the effect of
intermediate principal stresses in the material. The Von-Mises
criterion does not consider the effect of hydrostatic pressure on
yielding and damage. The Drucker-Prager yield criterion improves
the corner singularity problem of the Mohr-Coulomb criterion, and
is also suitable for describing the yield behavior of rock materials.
Therefore, the Drucker-Prager criterion is chosen as the yield

criterion for rock creep analysis in this paper. In creep
deformation, the creep yield deformation of rock materials
mainly results from the deviator stress tensor, and the spherical
stress tensor has little effect on yield deformation (Zheng and Kong,
2006), which is defined by

F � ��
J2

√ − σs/ �
3

√
(32)

where J2 is the second deviatoric stress tensor invariant. The tested
material is suitable for the associated flow rule when F � Q
(Moghadam et al., 2013).

In the true triaxial stress environment, the rock is stressed from
three directions, and there is

σ1 > σ2 > σ3

σm � σ1 + σ2 + σ3
3

S11 � σ1 − σm � 2σ1 − σ2 − σ3
3

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(33)

Considering the triaxial creep experiment in the normal triaxial
stress status, i.e., σ1 >σ2 = σ3, we can obtain

σm � σ1+2σ3
3

S11 � 2 σ1 − σ3( )
3��

J2
√ � 1�

3
√ σ1 − σ3( )

F
∂F
∂σ11

� σ1 − σ3 − σs
3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(34)

Substituting Eqs 32–34 into Eq. 31, the full-stage creep strain
under the three-dimensional stress state is obtained as follows:

ε11 t( ) �

σ1 − σ3
3G0

+ σ1+2σ3
9K0

+ 1
η0

σ1 − σ3( )
3

tp

Γ 1 + p( ) +
σ1 − σ3
3G1

1 − exp −G1

η1
t( )[ ]

σ1 − σ3 < σs( )
σ1 − σ3
3G0

+ σ1+2σ3
9K0

+ 1
η0

σ1 − σ3( )
3

tp

Γ 1 + p( )
+σ1 − σ3

3G1
1 − exp −G1

η1
t( )[ ] + 1

η2

σ1 − σ3 − σs
3

tk

Γ 1 + k( )
σ1 − σ3 ≥ σs( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(35)

Where ε11(t) represents the vertical strain of the sample under
constant stress.

3.3 Non-linear creep model for layered rock

Due to the existence of weak bedding planes, layered rock often
shows obvious anisotropy characteristic, specifically transverse
isotropic characteristics. According to the results of tests in the
available literature (Hu et al., 2019; Liu et al., 2015; Xu et al., 2019;
Zhang et al., 2021), the angle of the laminae has a large influence
on the creep properties of the rock. For transverse isotropic
material creep models, the research literature (Wang et al., 2018)
is divided into two main types, namely, empirical models
generalized by experiment and theoretical models resolved by
plasticity theory. Based on the viscoelastic-plastic creep model
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established in this paper, the empirical model method and the
plasticity theory analytical method are used to derive the intrinsic
constitutive equations of the creep model for layered rock, and
the relevant experimental data are used for comparative analysis
and verification.

3.3.1 Creep equation of empirical model
The establishment method of the empirical model for layered

rock creep is based on the model of isotropic materials. The creep
equation of layered rock is derived by introducing the influence of
laminae on the mechanical properties of rock creep. For example,
Tang (Tang et al., 2018) gave the relationship between the elastic
modulus, creep rate and bedding angle at the same moisture content
by uniaxial compression creep test as

E � A e
Bβ

1
η
� D e

mβ

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (36)

where A, B, C, D, m is a fitting coefficient, β is the bedding angle.
The paper introduces functional expressions of elastic

modulus and creep rate, and proposes a one-dimensional
creep constitutive equation for layered shale based on the
Burgers model. However, the creep model for the accelerating
creep stage was not given in that paper. Wang (Wang, 2020)
obtained the anisotropic characteristics of long-term strength,
peak strength and elastic modulus of sandstones with different
bedding angles by triaxial creep tests.

In this paper, based on the research, the non-linear elastic-
viscoplastic whole process creep equation for layered rock is
derived analogously from the isotropic rock material creep model
constitutive equation. The one-dimensional creep equation of the
elastic-viscoplastic creep of layered rock is

ε t( ) �

σ

E0 β( ) +
σ

η0 β( )
tp

Γ 1 + p( ) +
σ

E1
1 − exp −E1

η1
t( )[ ], σ < σs , 0<p< 1( )

σ

E0 β( ) +
σ

η0 β( )
tp

Γ 1 + p( ) +
σ

E1
1 − exp −E1

η1
t( )[ ] + σ − σs β( )

η2

tk

Γ 1 + k( ), σ ≥ σs , k> 1( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(37)

where β is bedding angle, and the diagram of bedding angle is shown
in Figure 5. E0(β), η0(β), σs(β) is the functions of the effect of
changes in bedding angle on the elastic modulus, viscosity coefficient
and long-term strength of rock, respectively.

Accordingly, with reference to the derivation of the three-
dimensional creep equation for isotropic rock materials, the
three-dimensional creep equation of the elastic-viscoplastic creep
of layered rock is

ε11 t( ) �

σ1 − σ3
3G0 β( ) +

σ1+2σ3
9K0 β( ) +

1
η0 β( )

σ1 − σ3( )
3

tp

Γ 1 + p( ) +
σ1 − σ3
3G1

1 − exp −G1

η1
t( )[ ]

σ1 − σ3 < σs β( )( )
σ1 − σ3
3G0 β( ) +

σ1+2σ3
9K0 β( ) +

1
η0 β( )

σ1 − σ3( )
3

tp

Γ 1 + p( )
+σ1 − σ3

3G1
1 − exp −G1

η1
t( )[ ] + 1

η2

σ1 − σ3 − σs β( )
3

tk

Γ 1 + k( )
σ1 − σ3 ≥ σs β( )( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(38)

3.3.2 Creep equation based on plastic theory
The plasticity theory analytical method based on the assumption

of constant Poisson’s ratio (Dathe et al., 2001). It is assumed that
Poisson’s ratio does not change with time and stress, and is
equivalent to the value of elastic stage, μ(σ, t) � μ. Based on the
creep constitutive equation established under one-dimensional
condition, the equation can be extended from one-dimensional
stress state to three-dimensional. Let the creep compliance J(t)
in Eq. 20 is given as:

J t( ) �

1
E0

+ 1
η0

tp

Γ 1 + p( ) +
1
E1

1 − exp −E1

η1
t( )[ ], σ < σs( )

1
E0

+ 1
η0

tp

Γ 1 + p( ) +
1
E1

1 − exp −E1

η1
t( )[ ] + 1 − σs/σ

η2

tk

Γ 1 + k( ), σ ≥ σs( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(39)

Then, Eq. 20 can be described as

ε � J t( )σ (40)
For isotropic rock, the creep compliance substitution method

can be used to obtain the basic form of the three-dimensional creep
equation of rock as follows (Li et al., 2021):

ε{ } � J t( ) A[ ] σ{ } (41)
where [A] is Poisson’s ratio matrix for isotropic material; ε{ } and σ{ }
are strain tensor and stress tensor, respectively.

For Eq. 41, scholars (Aravas et al., 1995; Kou et al., 2023) have
carried out a detailed solution, which is not repeated in this paper.
Based on the creep constitutive model established in this paper, the
three-dimensional creep constitutive equation for layered rock is
derived as

ε11 t( ) � 1
E0

+ 1
η0

tp

Γ 1 + p( ) +
1
E1

1 − exp −E1

η1
t( )[ ] + 1 − σs/σ

η2

tk

Γ 1 + k( ){ }

× −μ′
n

sin 4 θ + cos 4 θ + sin 2 2θ
2

( )σx + sin 4 θ + cos 4 θ
n

+ sin 2 2θ
4

[{
1 + 1

n
( )]σy − μsin 2 θ

μ′
n
cos 2 θ( )σz} (42)

where μ, μ′ is Poisson’s ratio parallel to and perpendicular to foliation
plane, respectively. θ is the bedding angle, defined as the angle with the
horizontal plane. Defining n � Eθ�90°/Eθ�0°, Eθ�90°、Eθ�0° is elastic
modulus perpendicular to and parallel to foliation plane, individually.
σx, σy, σz are the three axes of positive pressure in the direction of the
overall orthogonal coordinate axes, respectively.

4 Parameter identification and model
validation

4.1 Parameter identification of non-layered
rock creep model

4.1.1 The one-dimensional non-linear creep model
The uniaxial compression non-linear creep model is shown in

Eq. 20, and parameters of the model to be determined
are E0, η0, p, E1, σs, η2, k.
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(i) The parameters of E0, σs

In the transient elastic creep stage, E0 could be calculated from
E � σ/ε. σs could be obtained from experimental data.

(ii) The parameters of η0, p, E1, η1

σ, E0 already known. Selecting the corresponding creep test data
of σ(σ < σs) to establish the non-linear function of Eq. 17, fitted by
Origin using the Levenberg-Marquardt iterative method, then
η0, p, E, η1 were obtained.

(iii) The parameters of η2, k

Selecting the corresponding creep test data of σ(σ ≥ σs) to
perform step-by-step fitting, the operation process as follows:
the first step is to take the test data from the decay creep and
steady creep stages and follow the operation of (i) and (ii) in turn
to obtain E0, η0, p, E1, η1, σs, the second step is to take the test
data of σ(σ ≥ σs) to perform the non-linear fitting, then η2, k
obtained.

4.1.2 Three-dimensional non-linear creep model
The triaxial compression non-linear creep model is shown in Eq.

35, and the model parameters to be determined are
G0, K0, η0, G1, η1, p, σs, η2, k. Let the constant as

M � σ1 − σ3
3G0

+ σ1+2σ3
9K0

N � σ1 − σ3
3

R � σ1 − σ3 − σs
3

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(43)

then Eq. 35 can be described as

ε11 t( ) �

M + 1
η0

N
tp

Γ 1 + p( ) +
N

G1
1 − exp −G1

η1
t( )[ ]

σ1 − σ3 < σs( )

M + 1
η0

N
tp

Γ 1 + p( ) +
N

G1
1 − exp −G1

η1
t( )[ ] + 1

η2
R

tk

Γ 1 + k( )
σ1 − σ3 ≥ σs( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(44)

The process of parameter identification is:

(i) The parameters of G0, K0, η0, G1, η1, p

Based on the elastic modulus E and Poisson’s ratio μ from
conventional triaxial compression tests on rocks under the same
circumferential pressure, G0 and K0 are obtained through Eq. 25.
Then, combiningG0, K0 into Eq. 35 to perform the non-linear fitting
with the creep experimental data from the stress of σ(σ < σs).

(ii) The parameters of σs, η2, k

The parameter of σs could be calculated from triaxial creep
experimental data. Selecting the full process of high-stress creep
experimental data and fitting it to obtain G0, K0, η0, G1, η1, p firstly,

then referring to the step-wise fitting method in Section 4.1.1, we
could obtain η2, k.

4.2 Parameter identification of layered rock
creep model

The non-linear creep model for layered rock is shown in Eqs 37,
38 and Eq. 42, and the parameters identification method is similar to
the non-layered rock creep model. In view of space, do not repeat.

4.3 Parameter identification and model
validation

4.3.1 One-dimensional non-linear creep model
The experimental data used for parameter identification in the

one-dimensional creep equation is chosen from Wang (Wang et al.,
2020). The test was carried out using the
MTS815.02 Multifunctional Servo Test System for uniaxial
compression creep testing of sandstone with graded loading, and
the long-term strength given in the paper is 70 MPa. In this paper,
data from the water content test set ω� 0% is taken for parameter
identification of the creep model. The graded loading scheme of the
uniaxial compression creep test is
60MPa, 70MPa, 80MPa, 90MPa, 100MPa, respectively. The
contrastive analysis of the creep calculation curve and
experimental data are illustrated in Figure 6.

Showing in Figure 7, the proposed creep model can accurately
describe the characteristics of three phases of rock creep, the rationality
is verified. The parameters of the creep model listed in Table 2.

4.3.2 The three-dimensional non-linear creep
model

The experimental data used for parameter identification in the
three-dimensional creep equation is chosen from Ye (Ye et al., 2022).
This test was carried out for triaxial compression creep tests at
different water contents ω at an confining pressure of 1 MPa. The
graded loading scheme of the triaxial compression creep test is
shown in Table 3 and the long-term strength of rock is
2.48MPa, 1.28MPa, 0.88MPa, respectively.

Using the method of the previous Section 4.1.2 for model
parameters identification. When the loading stress level is less
than the yield strength, the first equation of Eq. 35 is used for
nonlinear fitting. The fit of the experimental data to the creep
equation was obtained as shown in Figures 8–10.

When the loading stress level is greater than the yield strength, a
step-wise non-linear fitting is made by the second equation of Eq. 35.
The fitting curve of the moisture content under low-stress level is
shown in Figure 8, and the fitting curve of the moisture content of
ω� 8.47%,ω� 12.38% under high-stress level is shown in Figures 11,
12. The parameters of the creep model listed in Table 4.

Analyzing Figures 7, 10, the creep model not only describes
the viscoelastic behavior in the decay creep and steady-state creep
phases of the rock in uniaxial creep experiment and triaxial creep
experiment well under low stress, but also has a good
representation of the non-linear mechanical behavior in the
accelerating creep phase of the rock under high-stress
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conditions. Furthermore, as seen in Tables 2, 4, the correlation
between experimental data and fitting curves is high. The
reasonableness and applicability of the fractional order creep
model proposed in this paper are verified.

4.3.3 Creep model for layered rock
(i) Creep Equation of Empirical Model

The experimental data used for parameter identification in the
one-dimensional creep equation is chosen from Tang (Tang et al.,
2018). Selecting the data of 600 (ω� 0%), and fitting by Eq. 37. The
fitting curves are shown in Figure 11.

The parameters of the creep model listed in Table 5.
The experimental data used for parameter identification in

the three-dimensional creep equation is chosen from Wang
(J. Wang et al., 2020). The author took the triaxial
compression creep tests on five sets of specimens with bedding
angles of 00, 300, 450, 600 and 900 under the confining pressure
condition of 5 MPa. In this paper, selecting five sets of
experimental data from the accelerating creep phase with
different bedding angles to be fitted to identify the model
parameters. The fitting curve is shown in Figures 12, 13.

The parameters of the creep model are listed in Table 6.
Based on the parameters from Table 6, giving the plotting of G0

and 1/η0 with different bedding angles separately, and comparing
with the experimental data in the original paper. We find that the
parameters have a similar trend to the parameters from the
experiment, verifying the influence of the bedding angle on the
creep properties of the rock. As shown in Figures 14, 15.

(ii) Creep Equation of Plasticity Theory

Experimental data were used from the literature (Kou et al.,
2023). In the literature, step-wise loading triaxial creep tests of
phyllite specimens with three kinds of bedding angles (0°, 45° and
90°) are carried out with the confining pressure of 10 MPa. In this
paper, the last stage accelerating creep test data of 0° and 90° layered
rock is taken to validate the plasticity theory creep equation and
compared with the empirical model creep equation simultaneously.
The elastic mechanical parameters of the rock are shown in Table 7.
For the bedding angle of 0°, the elastic modulus, poission ratio and
long-term strength of rock is 26.25GPa, 0.29, 91MPa, respectively.
For the bedding angle of 90°, the elastic modulus, poission ratio and
long-term strength of rock is 29.31GPa, 0.36, 91MPa, respectively.

For Eq. 42, let

F θ( )� − μ′
n

sin 4 θ + cos 4 θ + sin 2 2θ
2

( )σx + sin 4 θ + cos 4 θ

n
[

+sin
2 2θ
4

1 + 1
n

( )]σy − μsin 2 θ
μ′
n
cos 2 θ( )σz (45)

Then Eq. 42 is expressed as

ε11 t( ) � F θ( ) 1
E0

+ 1
η0

tp

Γ 1 + p( ) +
1
E1

1 − exp −E1

η1
t( )[ ]{

+ 1 − σs/σ
η2

tk

Γ 1 + k( )} (46)

Substituting the elastic parameters from Table 9 into Eq. 45, then

F θ( ) � 76.6305, θ � 0°
85.6391, θ � 90°

{ (47)

Substituting Eq. 47 into Eq. 46, fitting the experimental data as
shown in Figure 16. For the creep equation of the empirical model,
the same set of experimental data was fitted by Eq. 38 using the
method described in Section 4.1.2.

The creep constitutive equations for layered rock derived by the
above twomethods were fitting by the same set of experimental data,
and a curve fit of the experimental data to the creep equation was
obtained as shown in Figure 16.

The parameters of the two models are shown in Table 7.
As seen in Figure 16 and Table 7, the fitting curves of the creep

constitutive equation for layered rock derived by the two methods
are almost identical and have the same fitting correlation
coefficients.

In summary, the non-linear creep model derived in this paper
can not only better characterize the creep properties of layered rock
under low and high-stress conditions, but also better reflect the
influence of different bedding angles on the creep mechanical
properties of rocks. In addition, the empirical creep constitutive
equation derived in this paper and the plastic theory creep
constitutive equation has almost the same fitting results for the
same set of experimental data, which further verifies the accuracy
and applicability of the creep constitutive model for layered rock
established in this paper.

5 Conclusion

Based on fractional-order calculus theory and rheological
element combination model theory, a six-element nonlinear
elastic-viscoplastic creep model is given. The model is used as the
basis for deriving the non-linear elastic-viscoplastic creep
constitutive equation for layered rock, and the accuracy and
applicability of the creep constitutive equation are verified by
selecting creep experimental data for rocks of different
lithologies. The main conclusions are as follows:

(1) Based on fractional calculus theory to introduce the Abel
dashpot body, combined with the classical creep strain-time
curve of rock for analysis, the Hooke elastomer, Abel dashpot
body, Kelvin body and non-linear viscoplastic body are
connected in series, and a six-element non-linear elastic-
viscoplastic creep model is established. Then, the creep
constitutive equation for one-dimensional and three-
dimensional are derived respectively.

(2) Analysing the creep experimental data of layered rock, and
concluding that the effects of different bedding angles on the
creep properties of the rock are mainly the elastic modulus,
creep rate and long-term strength, and deriving the full process
creep constitutive equation for layered rock by empirical model
method and the plastic theory method, respectively.

(3) Based on the Levenberg-Marquardt iterative method of Origin
software, a practical identification method of creep model
parameters is proposed, and parameters are identified by
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using rocks of different lithologies under different stress
conditions from experimental data.

(4) By fitting the creep experimental data of layered rock with
different lithologies to the theoretical curves of the model, it
is shown that the model proposed in this paper can not only
accurately describe the full-stage creep (primary creep,
steady-state creep and accelerating creep) of layered rock,
but also better reflect the influence of different bedding
angles on the creep properties of rocks. As shown in the
tables, the average value of R2 is beyond 0.97, with the
meaning of highly accuracy and applicability for the creep
constitutive equation proposed in this paper. In addition, the
empirical model creep constitutive equation and plastic
theory constitutive equation have almost the same fitting
results for the same set of experimental data.
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