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Ribonucleic acids are gradually becoming relevant players among putative drug
targets, thanks to the increasing amount of structural data exploitable for the
rational design of selective and potent binders that can modulate their activity.
Mainly, this information allows employing different computational techniques for
predicting howwell would a ribonucleic-targeting agent fit within the active site of
its target macromolecule. Due to some intrinsic peculiarities of complexes
involving nucleic acids, such as structural plasticity, surface charge distribution,
and solvent-mediated interactions, the application of routinely adopted
methodologies like molecular docking is challenged by scoring inaccuracies,
while more physically rigorous methods such as molecular dynamics require
long simulation times which hamper their conformational sampling capabilities. In
the present work, we present the first application of Thermal Titration Molecular
Dynamics (TTMD), a recently developed method for the qualitative estimation of
unbinding kinetics, to characterize RNA-ligand complexes. In this article, we
explored its applicability as a post-docking refinement tool on RNA in complex
with small molecules, highlighting the capability of this method to identify the
native binding mode among a set of decoys across various pharmaceutically
relevant test cases.
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1 Introduction

Following the “Central Dogma” of molecular biology, RNA has been historically
perceived as a bridging element between DNA genetic information and protein
biosynthesis (Bissaro et al., 2020; Pavan et al., 2022a). However, this paradigm shifted in
the last decades due to discoveries that showcased RNA’s strikingly complex genetic and
catalytic functions (Sponer et al., 2018; Childs-Disney et al., 2022). Therefore, this
biomolecule is no longer considered just a carrier of information. Instead, it is perceived
as one of the most pluripotent actors in molecular biology (Sponer et al., 2018).

Considering that only a fraction (3%) of the genome is translated into proteins (Zafferani
and Hargrove, 2021) non-coding RNAs (ncRNAs) are under the spotlight as they are
involved in epigenetics (Falese et al., 2021; Childs-Disney et al., 2022), playing a pivotal role
in the etiopathogenesis of both cancer and neurodegenerative diseases (Falese et al., 2021).
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The identification of RNAs as possible therapeutic targets and
the increased availability of experimentally solved three-
dimensional structures of RNA complexes paves the way for the

application of structure-based drug design (SBDD) techniques to
characterize the interaction between small molecules and RNA,
allowing the possibility of rationally discover new hits and steer

TABLE 2 Crystal structures of the six test-cases reported in the article.

HIV-1 TAR RNA HIV-1 TAR RNA Influenza A virus RNA Promoter

PDB ID 1UUD PDB ID 1UUI PDB ID 2LWK

PreQ1 Riboswitch Aptamer PreQ1 Riboswitch Aptamer Corn RNA Aptamer

PDB ID 3Q5O PDB ID 6E1U PDB ID 5BJO

TABLE 1 Summary of the six test-cases investigated in the present study.

PDB code Ligand PDB ID Receptor type

1UUD Davis et al. (2004) P14 HIV-1 TAR RNA (29 bases)

1UUI Davis et al. (2004) P12 HIV-1 TAR RNA (29 bases)

2LWK Lee et al. (2013) 0EC influenza A virus RNA promoter (32 bases)

3Q50 Jenkins et al. (2011) PRF PreQ1 riboswitch aptamer (33 bases)

5BJO Warner et al. (2017) 747 Corn RNA aptamer (36 bases)

6E1U Connelly et al. (2019) HMJ PreQ1 riboswitch (33 bases)
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their development into mature leads (Pavan et al., 2022a; Childs-
Disney et al., 2022). Although it is an appealing perspective, applying
routinely adopted molecular modeling protocols to RNA systems is
not trivial. Historically, these techniques have been optimized to
study the recognition process between small organic molecules as
ligands and proteins as receptors (Salmaso and Moro, 2018; Bassani
and Moro, 2023; Pavan and Moro, 2023). Nevertheless, structural
differences between proteins and RNAs, such as the peculiar surface
charge properties portrayed by the polyanionic phosphate backbone,
the ions’ role in the structural stability and folding of RNA, the role
of the solvent in mediating structural stability and forming bridged
interactions, other than the intrinsic structural flexibility of
ribonucleic acids, limited so far the possibility to repurpose these
methodologies to the study of RNA complexes (Bissaro et al., 2020).

So far, different computational techniques have been developed
to tackle the study of RNA-small molecule complexes from different
perspectives, from binding site identification to binding mode
prediction, scoring, and characterization of time-dependent
properties (Zhou et al., 2022).

One of the most successful approaches in structure-based drug
design is molecular docking, a fast and reliable protocol that
provides possible binding hypotheses generated through a

conformational search algorithm and ranked through a scoring
function (Meng et al., 2012; Ferreira et al., 2015). Albeit relatively
fast to perform and computationally effortless when compared to
other techniques like molecular dynamics, pose scoring can suffer
from inaccuracies (Chaput and Mouawad, 2017). Moreover,
docking neglects the role of the solvent and RNA’s plasticity,
preventing the exploration of its conformational landscape
(Bissaro et al., 2020; Pavan et al., 2022a).

To overcome the limitations of a docking approach, molecular
dynamics simulations can be theoretically exploited to characterize
RNA-ligand interactions with a more physically rigorous
methodology. However, the computational effort required to
spontaneously sample both binding and unbinding processes
during unbiased MD simulations makes this technique
incompatible with the timings of modern-day drug discovery
campaigns (Bernardi et al., 2015).

Enhanced sampling algorithms are thus exploited to cut
simulation times without altering the technique’s validity. These
protocols rely on energetically biasing the system to increase the
frequency of observation of the desired event and have been
successfully applied to the study of unbinding processes in
protein-ligand complexes (Do et al., 2013).

TABLE 3 This panel encompasses all binding modes (experimental + docking poses) investigated in this work for complex deposited in the PDB with accession
code 1UUD. For each pose, the ChemPLP docking score and RMSD to the experimental pose are reported.

HIV-1 TAR RNA Pose 1 RMSD 5.84 Å Pose 2 RMSD 6.78 Å

PDB ID 1UUD ChemPLP −86.34 ChemPLP −84.98

Pose 3 RMSD 10.05 Å Pose 4 RMSD 8.16 Å Pose 5 RMSD 5.76 Å

ChemPLP −83.74 ChemPLP −83.71 ChemPLP −82.96
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Many popular methods, including Steered Molecular Dynamics
(Izrailev et al., 1999), Random Accelerated Molecular Dynamics
(Lüdemann et al., 2000), and Umbrella Sampling (Torrie and
Valleau, 1977), depend on the definition of so-called “collective
variables” (CV), i.e., a set of descriptors that can be used to monitor
the simulation and appropriately biasing the potential energy landscape.
These CVs are difficult to identify since they are heavily system-
dependent and rarely generally applicable (Salmaso and Moro,
2018). On the contrary, other tempering methods like Replica
Exchange (Sugita and Okamoto, 1999), and Temperature
Accelerated Molecular Dynamics (So/rensen and Voter, 2000), do
not rely on collective variables but still require some tinkering for
optimal sampling (Zamora et al., 2016).

Within the CV-free category, Thermal Titration Molecular
Dynamics (TTMD) (Pavan et al., 2022c) is a recently developed
method that addresses the increasing interest in the prediction of
drug-target residence time, since kinetic properties such as the
dissociation rate (koff) better correlate to in vivo ligand efficacy
compared to thermodynamic properties like the equilibrium
dissociation constant (Kd) (Copeland et al., 2006).

Contrary to the aforementioned techniques, the biggest perk of
TTMD is its simplicity concerning simulation setup and trajectory
analyses, making it more accessible to medicinal chemists without a
strong modeling background. Initially developed for the comparison of
protein-ligand complexes based on the persistence of their native

intermolecular interaction, TTMD provides a simple and robust
platform for ranking binding poses upon a defined receptor binding
site (Menin et al., 2023) or classifying ligands based on their dissociation
rate (Pavan et al., 2022c). Specifically, TTMD operates through a series
of short classicmolecular dynamics simulations performed at increasing
temperatures whilemonitoring the persistence of native receptor-ligand
interactions through an interaction fingerprints-based scoring function
(Pavan et al., 2022b).

Due to the encouraging success observed in the characterization
of protein-ligand complex stability with TTMD and based on the
successful repurposing of various computational tools designed to
work on proteins to the study of RNA targets (Mlýnský and Bussi,
2018), in the present work we aim to extend the applicability domain
of the technique to the world of RNA-ligand complexes. In detail, we
tried to understand if TTMD can be used as a post-docking filter to
steer the identification of a native-like binding pose for small organic
ligands onto RNA receptor binding sites.

2 Materials and methods

2.1 Hardware overview

Modeling tasks such as the structure preparation of RNA targets
and respective ligands, docking, system setup for molecular

TABLE 4 This panel encompasses all binding modes (experimental + docking poses) investigated in this work for complex deposited in the PDB with accession
code 1UUI. For each pose, the ChemPLP docking score and RMSD to the experimental pose are reported.

HIV-1 TAR RNA PDB ID 1UUI Pose 1 RMSD 7.05 Å ChemPLP −82.64 Pose 2 RMSD 6.00 Å ChemPLP −79.30

Pose 3 RMSD 7.46 Å ChemPLP −79.12 Pose 4 RMSD 6.86 Å ChemPLP −78.30 Pose 5 RMSD 7.07 Å ChemPLP −77.83
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dynamics (MD) simulations, and subsequent trajectory analysis
were carried out on a Linux workstation running Ubuntu
20.04 as its operating system equipped with a 20 cores Intel Core
i9-9820 × 3.3 Ghz processor. MD simulations were performed
exploiting an in-house GPU cluster composed of 20 NVIDIA
devices ranging from GTX1080Ti to RTX3090.

2.2 Structure preparation

The three-dimensional structures of the targets presented in
this work were retrieved from the Protein Data Bank (PDB
(Berman et al., 2000)), and successfully processed through
different built-in modules of the Molecular Operating
Environment (Molecular Operating Environment MOE,
2022.02, 2022). At first, each inconsistency between the
primary sequence and the tertiary structure was fixed through
the “Structure preparation” module. Then, the “Protonate3D″
tool was exploited for adding missing hydrogens according to the
most probable tautomeric and protonation state of titratable
groups at pH = 7.4. Finally, every non-RNA and non-ligand
residue was removed, except for K+ ions in the G-quadruplex
portion of 5BJO complex, which were retained as they play a
pivotal role in the stabilization of these non-canonical structures

that shape the binding site at the monomer-monomer interface
(Bhattacharyya et al., 2016).

To avoid any bias in the docking calculation that may favor a
crystal-like pose, the ligands have been prepared starting from their
SMILES, exploiting Open Babel (O’Boyle et al., 2011) and various
QUACPAC OpenEye tools (Cadence Molecular Sciences, 2023).
Open Babel was used to generate two-dimensional and three-
dimensional coordinates, while “Tautomers” and “Fixpka”
assigned the correct protomeric and tautomeric state at pH 7.00.
Afterwards “Molcharge” set the partial charges according to the
MMFF94 force field. Both the RNA and ligand were stored for
docking calculations.

2.3 Docking calculation

A self-docking calculation was conducted through the
Protein-Ligand ANT System (PLANTS (Korb et al., 2006;
Korb et al., 2007; Korb et al., 2009) program, one of the
state-of-the-art docking tools for nucleic acids-ligand
docking (Jiang et al., 2023). The binding site was defined as a
sphere of radius 10.5 Å centered around the center of mass of
the crystal ligand in the experimentally solved complex. The
first 5 poses according to the ChemPLP scoring function were

TABLE 5 This panel encompasses all binding modes (experimental + docking poses) investigated in this work for complex deposited in the PDB with accession
code 2LWK. For each pose, the ChemPLP docking score and RMSD to the experimental pose are reported.

Influenza A virus RNA Promoter PDB ID 2LWK Pose 1 RMSD 7.16 Å ChemPLP −59.84 Pose 2 RMSD 4.56 Å ChemPLP −58.85

Pose 3 RMSD 7.95 Å ChemPLP −57.09 Pose 4 RMSD 4.29 Å ChemPLP −56.60 Pose 5 RMSD 6.93 Å ChemPLP −56.37
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stored for refinement through the Thermal Titration Molecular
Dynamics protocol.

2.4 System setup for MD simulations and
equilibration protocol

Several packages of Visual Molecular Dynamics (VMD
(Humphrey et al., 1996)) 1.9.3 and AmberTools22 (Case et al.,
2005; Case, 2022) were used to prepare each RNA-ligand complex
for MD simulations.

Each nucleic atom was parametrized according to ff14SB force
with χ modification tuned for RNA (χOL3) field (Pérez et al., 2007;
Zgarbová et al., 2011; Maier et al., 2015), while ligands parameters
were assigned according to General Amber Force Field (GAFF
(Wang et al., 2004)). Since the Corn Aptamer (PDB ID: 5BJO)
presents a modified Uracil (I5-U17), a custom preparation was
exploited following Amber’s workflow to create modified residues
employing the antechamber and parmcheck2 tools, assigning
parameters from ff14SB and GAFF force field.

Each RNA-ligand complex was solvated within a rectangular
base prism box, with a 15 Å padding between the box border and
the nearest solute atom, using the TIP3P water model (Jorgensen
et al., 1983).

Sodium and chlorine monovalent ions were added to
neutralize the net charge of the box, reaching the
physiological salt concentration of 0.154 M. Before
equilibration, each system was then subjected to 500 steps of
energy minimization with the conjugate-gradient method to
remove clashes and bad contacts.

Following this preparation phase, a two-step equilibration
process was performed. The first phase consisted of a 0.5 ns
simulation in canonical ensemble (NVT) imposing a
5 kcal mol−1 Å−2 harmonic positional restraint to each RNA
and ligand atom, leaving water and ions unconstrained. In
the second equilibration run, a 0.5 ns simulation was
conducted in the isothermal-isobaric ensemble (NPT)
constraining only the ligand and the backbone atoms of RNA
through the same force field constant used in the first stage. For
each equilibration stage, the temperature was kept constant at
the lowest value indicated in the temperature range through a
Langevin thermostat (Davidchack et al., 2009), and for the
second NPT simulation, the pressure was fixed at 1 atm
through a Monte Carlo barostat (Faller and de Pablo, 2002).

For each MD simulation, an integration timestep of 2 fs was
used. The simulations were performed exploiting the proprietary
ACEMD 3.5 engine (Harvey et al., 2009), which is based on the
open-source library for molecular simulations OpenMM (Eastman

TABLE 6 This panel encompasses all binding modes (experimental + docking poses) investigated in this work for complex deposited in the PDB with accession
code 3Q50. For each pose, the ChemPLP docking score and RMSD to the experimental pose are reported.

PreQ1 Riboswitch Aptamer PDB ID 3Q50 Pose 1 RMSD 0.69 Å ChemPLP −84.96 Pose 2 RMSD 4.58 Å ChemPLP −77.76

Pose 3 RMSD 4.14 Å ChemPLP −73.68 Pose 4 RMSD 2.82 Å ChemPLP −71.95 Pose 5 RMSD 4.17 Å ChemPLP −67.95
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et al., 2017). The M-SHAKE algorithm was used to constrain the
length of bonds involving hydrogen atoms, the particle-mesh Ewald
(PME (Essmann et al., 1995)) method was exploited to compute
electrostatic interactions using cubic spline interpolation, and
finally, a 9.0 Å cutoff was used for calculating Lennard–Jones
interactions.

2.5 Thermal titration molecular dynamics
(TTMD) simulations

Thermal Titration Molecular Dynamics (TTMD (Pavan et al.,
2022c; Menin et al., 2023)) is an enhanced sampling molecular
dynamics approach originally developed for the estimation of
protein-ligand unbinding kinetics. This method consists of a
series of short MD simulations (TTMD-steps) performed at
progressively increasing temperatures. The length and the
temperature for each step, defining the temperature ramp for the
TTMD simulation, are defined by the user based on the knowledge
of the system of interest, especially concerning the conservation of
the native receptor fold throughout the whole simulation. In this
work, two different temperature ramps were used: the first one,
defined as “standard”, is the same ramp described in the original
publication (starting temperature 300 K, final temperature 450 K,

temperature increase 10 K, step length 10 ns), and a second one
defined as “alternative” (starting temperature 73 K, final
temperature 223 K, temperature increase 10 K, step length 10 ns).
An interaction fingerprint-based scoring function (Pavan et al.,
2022b) is exploited to monitor the conservation of the native
binding mode. Specifically, the IFPCS scoring function (Pavan
et al., 2022b) is used to compare each of the binding features of
each trajectory frame (encoded as protein-ligand interaction
fingerprints) to the last frame of the second equilibration stage.
In the context of this work, two different PLIFs were employed,
specifically the InteractionFingerprint function of the Open Drug
Discovery Toolkit (ODDT (Wójcikowski et al., 2015)) and the one
provided by the ProLIF package (Bouysset and Fiorucci, 2021), while
the cosine similarity metrics was used for the comparison, as
implemented in the Scikit-learn Python library. The calculated
value is then multiplied by −1 to comply with the scale of most
scoring functions. In the end, the resulting score can range
from −1 to 0, where −1 indicates total congruence of the PLIFs
(total conservation of the binding mode) and 0 indicates that all
native binding features are lost.

The simulation continues until the end of the temperature ramp
is reached, or an early termination criterion is reached. Specifically,
at the end of each TTMD step, the average IFPcs score is calculated
for the last 10% of the step: if this value is above −0.05, the

TABLE 7 This panel encompasses all binding modes (experimental + docking poses) investigated in this work for complex deposited in the PDB with accession
code 5BJO. For each pose, the ChemPLP docking score and RMSD to the experimental pose are reported.

Corn RNA Aptamer PDB ID 5BJO Pose 1 RMSD 0.29 Å ChemPLP −107.30 Pose 2 RMSD 6.66 Å ChemPLP −104.95

Pose 3 RMSD 3.23 Å ChemPLP −85.03 Pose 4 RMSD 1.93 Å ChemPLP −83.33 Pose 5 RMSD 8.13 Å ChemPLP −81.20
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simulation is stopped as the ligand lost its original binding mode.
The code for running TTMD simulations is open-source and
available through the MIT license at github.com/
molecularmodelingsection/TTMD.

2.6 Trajectory analysis, MS and IFF
coefficients determination

TTMD trajectories were analyzed partially through the same
Python code described in the previous paragraph and partially
through the SuMD-analyzer (Pavan et al., 2022a) script available at
github.com/molecularmodelingsection/SuMD-analyzer. Specifically,
the MDAnalysis package (Michaud-Agrawal et al., 2011; Gowers
et al., 2016) was exploited to calculate the RMSD of the receptor
backbone, the ligand, and a defined set of binding site residues.

The “titration timeline” plot reports the time-dependent
evolution of both the ligand, binding site and receptor backbone
RMSD and of the IFPCS score.

The “titration profile” plots the average IFPCS score for each TTMD
step against the temperature at which the step was executed. In this plot,
the slope of the straight line linking the first and last point of the
simulation (theMS coefficient) is extracted and used as a proxymeasure
for the estimation of the overall complex stability. The mathematical
formulation of the MS coefficient is reported in Eq. (1).

MS � mean IFPTend
CS − −1( )

Tend − Tstart
(1)

MS formula.
The MS coefficient can range from zero (indicative of a tight and

persistent binding/high conservation of the native binding mode) to
1 (indicative of high volatility of the native pose). For each
investigated receptor-ligand complex, five independent TTMD
simulations were performed, with the average MS coefficient
being calculated across three different replicates, after discarding
the highest and the lowest value.

Furthermore, to complement the MS coefficient, a second one
defined as IFF was calculated as defined in Eq. (2).

IFF �
��������������������∑T

t IFPCS t − 〈IFPCS〉( )2
T

√
(2)

IFF formula.
The IFF coefficient is calculated as the root mean square

fluctuation of the IFPCS value across the simulation to the
whole run mean IFPCS value. As the MS coefficient only
considers the initial and the final state of the simulation,
neglecting even significant fingerprint fluctuations that
may suggest poor complex stability, the IFF coefficient
can overcome this issue, further improving the protocol
accuracy.

TABLE 8 This panel encompasses all binding modes (experimental + docking poses) investigated in this work for complex deposited in the PDB with accession
code 6E1U. For each pose, the ChemPLP docking score and RMSD to the experimental pose are reported.

PreQ1 Riboswitch Aptamer PDB ID 6E1U Pose 1 RMSD 2.73 Å ChemPLP −99.21 Pose 2 RMSD 7.99 Å ChemPLP −93.30

Pose 3 RMSD 0.74 Å ChemPLP −92.00 Pose 4 RMSD 5.43 Å ChemPLP −88.21 Pose 5 RMSD 2.77 Å ChemPLP −88.19
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TABLE 9 This table summarizes results for TTMD simulations carried out under the protocol 1 simulation and analysis conditions. For each investigated system, the
individual MS coefficient for each TTMD replicate and the average MS value are reported. The closest value to the mean is highlighted in bold.

Model Pose MD1 MD2 MD3 MD4 MD5 TrimMean TrimError

1UUD crystal 0.00759 0.00909 0.01960 0.01667 0.00514 0.01112 0.00554

1UUD 1 0.00905 0.00628 0.01200 0.00506 0.01000 0.00844 0.00251

1UUD 2 0.01595 0.03264 0.00612 0.00665 0.02471 0.01577 0.01030

1UUD 3 0.00701 0.00648 0.01990 0.01661 0.01111 0.01157 0.00528

1UUD 4 1.00000 1.00000 1.00000 1.00000 0.09940 1.00000 0.36024

1UUD 5 0.00456 0.00612 0.00421 1.00000 1.00000 0.33689 0.48747

1UUI crystal 0.01000 0.01363 0.01000 0.01111 0.00347 0.01037 0.00336

1UUI 1 0.01419 0.01246 1.00000 1.00000 1.00000 0.67140 0.48337

1UUI 2 0.01429 0.09650 0.10000 0.01664 0.01991 0.04435 0.03989

1UUI 3 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

1UUI 4 1.00000 0.04945 0.03333 1.00000 0.03249 0.36093 0.47111

1UUI 5 1.00000 1.00000 0.09894 1.00000 0.10000 0.70000 0.44117

2LWK crystal 1.00000 N/A 1.00000 1.00000 0.03330 1.00000 0.41859

2LWK 1 1.00000 1.00000 1.00000 1.00000 0.01906 1.00000 0.39238

2LWK 2 1.00000 1.00000 0.00833 1.00000 N/A 1.00000 0.42941

2LWK 3 0.05000 1.00000 1.00000 0.02500 1.00000 0.68333 0.47159

2LWK 4 1.00000 0.00598 1.00000 N/A 1.00000 1.00000 0.43042

2LWK 5 0.02000 0.09918 0.00714 1.00000 0.03333 0.05084 0.38534

3Q50 crystal 0.00326 0.00237 0.00323 0.00212 0.00168 0.00257 0.00063

3Q50 1 0.00231 0.00154 0.00271 0.00311 0.00216 0.00239 0.00053

3Q50 2 0.00225 0.00137 0.00210 0.00207 0.00198 0.00205 0.00031

3Q50 3 0.00524 0.00480 0.00430 0.00540 0.00233 0.00478 0.00111

3Q50 4 0.00517 0.00404 0.00368 0.00437 0.00353 0.00403 0.00058

3Q50 5 0.00348 0.00440 0.00314 0.00398 0.00351 0.00366 0.00044

5BJO crystal 0.00318 0.00463 0.00433 0.00305 0.00455 0.00402 0.00069

5BJO 1 0.00273 0.00457 0.00385 0.00471 0.00279 0.00374 0.00085

5BJO 2 0.00391 0.00511 0.00473 0.00431 0.00472 0.00459 0.00041

5BJO 3 0.00368 0.00474 0.00469 0.00444 0.00430 0.00448 0.00038

5BJO 4 0.00337 0.00346 0.00415 0.00257 0.00256 0.00313 0.00060

5BJO 5 0.00371 0.00392 0.00520 0.00601 0.00503 0.00472 0.00085

6EIU crystal 0.00207 0.00073 0.00241 0.00063 0.00653 0.00174 0.00215

6EIU 1 0.00182 0.09966 0.02446 0.03333 0.00064 0.01987 0.03614

6EIU 2 0.00650 0.00667 0.00382 0.00461 0.00390 0.00500 0.00124

6EIU 3 0.00071 0.00139 0.00113 0.00040 0.00055 0.00080 0.00037

6EIU 4 0.09758 0.04980 1.00000 0.05000 0.04929 0.06579 0.37579

6EIU 5 0.09838 1.00000 0.00250 0.04971 0.00427 0.05079 0.38612
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TABLE 10 This table summarizes results for TTMD simulations carried out under the protocol 2 simulation and analysis conditions. For each investigated system,
the individual MS coefficient for each TTMD replicate and the average MS value are reported. The closest value to the mean is highlighted in bold.

Model Pose MD1 MD2 MD3 MD4 MD5 TrimMean TrimError

1UUD crystal 0.00553 0.00895 0.01250 0.01404 0.00518 0.00899 0.00358

1UUD 1 0.00833 0.00538 0.00752 0.00612 0.00991 0.00732 0.00160

1UUD 2 0.00596 0.03247 0.00752 0.00666 0.01096 0.00838 0.01002

1UUD 3 0.00706 0.00585 0.00392 0.01102 0.01111 0.00798 0.00285

1UUD 4 0.01429 0.00961 0.09604 0.01193 0.09968 0.04075 0.04213

1UUD 5 0.00470 0.00731 0.00420 0.00694 1.00000 0.00632 0.39769

1UUI crystal 0.00769 0.01427 0.01000 0.00958 0.00336 0.00909 0.00354

1UUI 1 0.00534 0.00553 1.00000 0.01363 0.05000 0.02305 0.39290

1UUI 2 0.01603 0.00627 0.10000 0.00865 0.01954 0.01474 0.03528

1UUI 3 0.00692 0.00414 1.00000 0.00894 0.09760 0.03782 0.38984

1UUI 4 1.00000 0.00709 0.02424 0.00442 0.00602 0.01245 0.39589

1UUI 5 1.00000 0.10000 0.03278 0.00587 0.01250 0.04843 0.38632

2LWK crystal 1.00000 0.03235 0.10000 0.00529 0.02500 0.05245 0.38506

2LWK 1 1.00000 1.00000 1.00000 1.00000 0.00833 1.00000 0.39667

2LWK 2 0.00887 0.00448 0.00833 0.00566 0.00533 0.00644 0.00174

2LWK 3 0.00909 0.01588 0.01246 0.02438 1.00000 0.01757 0.39385

2LWK 4 1.00000 0.00406 0.01111 0.01374 0.10000 0.04162 0.38870

2LWK 5 0.02000 0.03268 0.00694 0.02424 0.03307 0.02564 0.00962

3Q50 crystal 0.00053 0.00035 0.00045 0.00068 0.00090 0.00055 0.00019

3Q50 1 0.00060 0.00109 0.00070 0.00067 0.00038 0.00065 0.00023

3Q50 2 0.00049 0.00054 0.00038 0.00041 0.00049 0.00047 0.00006

3Q50 3 0.00335 0.00340 0.00342 0.00202 0.00080 0.00292 0.00105

3Q50 4 0.00154 0.00086 0.00249 0.00220 0.00277 0.00208 0.00069

3Q50 5 0.00191 0.00090 0.00115 0.00054 0.00085 0.00096 0.00046

5BJO crystal 0.00075 0.00048 0.00053 0.00041 0.00051 0.00051 0.00012

5BJO 1 0.00069 0.00083 0.00043 0.00057 0.00524 0.00070 0.00185

5BJO 2 0.00293 0.00319 0.00164 0.00397 0.00211 0.00274 0.00082

5BJO 3 0.00226 0.00141 0.00078 0.00229 0.00509 0.00199 0.00147

5BJO 4 0.00089 0.00085 0.00083 0.00075 0.00083 0.00084 0.00004

5BJO 5 0.00206 0.00139 0.00320 0.00627 0.00596 0.00374 0.00200

6EIU crystal 0.00114 0.00039 0.00043 0.00050 0.00140 0.00069 0.00042

6EIU 1 0.00035 0.00071 0.00077 0.00124 0.00048 0.00066 0.00030

6EIU 2 0.00224 0.00663 0.00054 0.00052 0.00464 0.00247 0.00239

6EIU 3 0.00034 0.00046 0.00033 0.00037 0.00059 0.00039 0.00010

6EIU 4 0.00185 0.00298 0.00213 0.00193 0.00351 0.00235 0.00065

6EIU 5 0.00172 0.00076 0.00068 0.00119 0.00199 0.00122 0.00052
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TABLE 11 This table summarizes results for TTMD simulations carried out under the protocol 3 simulation and analysis conditions. For each investigated system,
the individual MS coefficient for each TTMD replicate and the average MS value are reported. The closest value to the mean is highlighted in bold.

Model Pose MD1 MD2 MD3 MD4 MD5 TrimMean TrimError

1UUD crystal 0.00442 0.00314 0.00493 0.00436 0.00494 0.00457 0.00065

1UUD 1 0.00476 0.00090 0.00089 0.00125 0.00353 0.00189 0.00159

1UUD 2 0.00461 0.00397 0.00324 0.00279 0.00336 0.00352 0.00063

1UUD 3 0.00534 0.00159 0.00318 0.00144 0.00159 0.00212 0.00150

1UUD 4 0.00068 0.00221 0.00686 0.00239 0.00280 0.00247 0.00206

1UUD 5 0.00449 0.00189 0.00282 0.00440 0.00299 0.00340 0.00099

1UUI crystal 0.00402 0.00353 0.00321 0.00191 0.00329 0.00335 0.00070

1UUI 1 0.00192 0.00175 0.00167 0.00200 0.00198 0.00188 0.00013

1UUI 2 0.00054 0.00073 0.00058 0.00109 0.00555 0.00080 0.00193

1UUI 3 0.00282 0.00349 0.00135 0.00323 0.00302 0.00302 0.00075

1UUI 4 0.00355 0.00157 0.00302 0.00255 0.00230 0.00262 0.00067

1UUI 5 0.00205 0.00437 0.00182 0.00308 0.00266 0.00259 0.00090

2LWK crystal 0.00334 0.00336 0.00327 0.00371 0.00279 0.00332 0.00029

2LWK 1 0.00448 0.00452 0.00489 0.00118 0.00500 0.00463 0.00143

2LWK 2 0.00203 0.00170 0.00506 0.00349 0.00234 0.00262 0.00123

2LWK 3 0.00042 0.00087 0.00437 0.00571 0.00273 0.00266 0.00202

2LWK 4 0.00133 0.00142 0.00089 0.00112 0.00091 0.00112 0.00021

2LWK 5 0.00381 0.00343 0.00445 0.00199 0.00517 0.00390 0.00107

3Q50 crystal 0.00072 0.00026 0.00015 0.00060 0.00024 0.00037 0.00022

3Q50 1 0.00016 0.00017 0.00065 0.00016 0.00012 0.00016 0.00020

3Q50 2 0.00024 0.00041 0.00045 0.00033 0.00023 0.00032 0.00009

3Q50 3 0.00029 0.00037 0.00041 0.00046 0.00051 0.00041 0.00008

3Q50 4 0.00131 0.00143 0.00139 0.00164 0.00127 0.00138 0.00013

3Q50 5 0.00037 0.00049 0.00060 0.00055 0.00043 0.00049 0.00008

5BJO crystal 0.00028 0.00020 0.00015 0.00021 0.00017 0.00019 0.00004

5BJO 1 0.00019 0.00021 0.00022 0.00016 0.00017 0.00019 0.00002

5BJO 2 0.00150 0.00290 0.00221 0.00175 0.00156 0.00184 0.00052

5BJO 3 0.00061 0.00038 0.00047 0.00051 0.00047 0.00049 0.00007

5BJO 4 0.00099 0.00099 0.00044 0.00071 0.00067 0.00079 0.00021

5BJO 5 0.00095 0.00141 0.00037 0.00161 0.00358 0.00133 0.00108

6EIU crystal 0.00037 0.00032 0.00022 0.00016 0.00027 0.00027 0.00008

6EIU 1 0.00020 0.00055 0.00028 0.00023 0.00032 0.00028 0.00012

6EIU 2 0.00019 0.00053 0.00032 0.00042 0.00039 0.00038 0.00011

6EIU 3 0.00016 0.00016 0.00224 0.00015 0.00039 0.00024 0.00082

6EIU 4 0.00103 0.00086 0.00175 0.00167 0.00191 0.00149 0.00042

6EIU 5 0.00059 0.00049 0.00076 0.00044 0.00054 0.00054 0.00011
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TABLE 12 This table summarizes results for TTMD simulations carried out under the protocol 4 simulation and analysis conditions. For each investigated system,
the individual IFF coefficient for each TTMD replicate and the average IFF value are reported. The closest value to the mean is highlighted in bold.

Model Pose MD1 MD2 MD3 MD4 MD5 TrimMean TrimError

1UUD crystal 0.08170 0.10090 0.13150 0.09300 0.10040 0.09810 0.01653

1UUD 1 0.06440 0.02760 0.04400 0.04900 0.04240 0.04513 0.01185

1UUD 2 0.20300 0.13680 0.14390 0.08850 0.15780 0.14617 0.03683

1UUD 3 0.12670 0.07270 0.09660 0.05810 0.05610 0.07580 0.02661

1UUD 4 0.09040 0.16830 0.20920 0.10370 0.15340 0.14180 0.04341

1UUD 5 0.22860 0.07600 0.11650 0.25030 0.12610 0.15707 0.06776

1UUI crystal 0.14520 0.13290 0.10620 0.18700 0.10570 0.12810 0.03000

1UUI 1 0.07680 0.07460 0.06880 0.07180 0.06380 0.07173 0.00456

1UUI 2 0.04520 0.03630 0.08390 0.05670 0.26680 0.06193 0.08601

1UUI 3 0.12960 0.10450 0.09530 0.09370 0.15250 0.10980 0.02268

1UUI 4 0.12010 0.07550 0.06420 0.11970 0.12710 0.10510 0.02608

1UUI 5 0.10760 0.11910 0.08610 0.10380 0.11110 0.10750 0.01095

2LWK crystal 0.10880 0.08440 0.14570 0.10430 0.23220 0.11960 0.05244

2LWK 1 0.20760 0.17670 0.16880 0.06800 0.24650 0.18437 0.05942

2LWK 2 0.09790 0.09620 0.21300 0.16450 0.10550 0.12263 0.04627

2LWK 3 0.03890 0.06550 0.24620 0.27600 0.13130 0.14767 0.09482

2LWK 4 0.07100 0.05820 0.08010 0.07680 0.06400 0.07060 0.00806

2LWK 5 0.19820 0.16620 0.19210 0.11030 0.23790 0.18550 0.04213

3Q50 crystal 0.03240 0.01460 0.01350 0.02740 0.01560 0.01920 0.00771

3Q50 1 0.01830 0.01940 0.03700 0.01800 0.02800 0.02190 0.00741

3Q50 2 0.01190 0.02160 0.01500 0.01570 0.01470 0.01513 0.00318

3Q50 3 0.01540 0.02380 0.02470 0.01890 0.02420 0.02230 0.00365

3Q50 4 0.03980 0.06500 0.06080 0.07390 0.06200 0.06260 0.01123

3Q50 5 0.03190 0.02640 0.03390 0.02570 0.02420 0.02800 0.00378

5BJO crystal 0.01500 0.01070 0.01290 0.01690 0.01200 0.01330 0.00220

5BJO 1 0.01250 0.01070 0.01530 0.01210 0.01180 0.01213 0.00153

5BJO 2 0.05420 0.08590 0.06550 0.08580 0.05420 0.06850 0.01427

5BJO 3 0.02340 0.01610 0.02170 0.02030 0.01890 0.02030 0.00249

5BJO 4 0.03760 0.03790 0.01630 0.04140 0.02980 0.03510 0.00899

5BJO 5 0.08020 0.08120 0.05140 0.07380 0.16150 0.07840 0.03752

6EIU crystal 0.02510 0.02530 0.02400 0.01210 0.01150 0.02040 0.00639

6EIU 1 0.02380 0.01820 0.01500 0.03590 0.01400 0.01900 0.00802

6EIU 2 0.02140 0.03310 0.01610 0.02880 0.02040 0.02353 0.00613

6EIU 3 0.00740 0.01510 0.11340 0.00900 0.01950 0.01453 0.04049

6EIU 4 0.05210 0.04850 0.08180 0.12690 0.05890 0.06427 0.02904

6EIU 5 0.02720 0.02240 0.03100 0.03700 0.02890 0.02903 0.00478
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3 Results

To extend the applicability domain of Thermal Titration
Molecular Dynamics to the characterization of RNA-ligand
complexes, six different test cases were chosen based on the
chemical diversity of the ligand and structural diversity of the
receptor among the experimental complexes deposited in the
Protein Data Bank. Four out of the six test cases were drawn out
from the work of Bissaro et al. (Bissaro et al., 2020), specifically
2LWK, 3Q50, 5BJO, and 6E1U, while 1UUD and 1UUI were added
because of the challenge provided by the high conformational
freedom of the P12 and P14 ligands.

Hereafter a brief overview of the six test cases.

3.1 Influenza A virus RNA promoter

Influenza A virus RNA promoter has a significant role in the
modulation of transcription and replication of this group of viruses
belonging to the Orthomyxoviridae family. Therefore, it is considered
an interesting target for the development of antiviral drugs (Lee et al.,
2013). Through a fragment screening approach, 6,7-dimethoxy-2-(1-
piperazinyl)-4-quinazolinamine (DPQ) was identified by Varani’s
group (Lee et al., 2013). This compound has a micromolar affinity
for the promoter region (KD of 50.5 μM), and consequently, it is a
scaffold for further development of antivirals targeting the Influenza A
promoter region (PDB ID: 2LWK).

3.2 Corn Aptamer

The Corn aptamer is an in vitro selected aptamer that binds a
fluorophore ligand (DFHO), with a nanomolar binding affinity (KD =
70 nM) (Warner et al., 2017). Thanks to its limited cytotoxicity, the
Corn-DFHO could represent a valuable imaging tool. Despite being
therapeutically less interesting than the other RNA structures selected
for this study, its peculiar three-dimensional organization in a quasi-
symmetric dimer with a non-cationic ligand buried at the monomer-
monomer interface between two G-quadruplex structures stabilized by
K+ ions makes it an appealing target to apply TTMD protocol, since its
stability in molecular dynamics, and the low structural flexibility of the
fluorophore ligand (3,5-difluoro-4-hydroxybenzylidene imidazolinone-
2-oxime) led Bissaro et al. to optimal results when applying SuMD
protocol to this system (Bissaro et al., 2020).

3.3 Pre-queuosine 1 riboswitch

PreQ1 (Pre-queosine 1, 7-aminomethyl-7-deazaguanine) is a
precursor of the hypermodified guanine nucleotide Queuosine Q), a
modified nucleoside that influences anticodon-codon stability in
tRNAs, hence increasing translational fidelity. Prokaryotes can
synthesize PreQ1 molecules from a multienzyme pathway
starting from GTP. By contrast, eukaryotes do not synthesize
PreQ1 de novo and need to retrieve queuoine from the diet
(Eichhorn et al., 2014). For this reason, PreQ1 riboswitches are
only found in prokaryotes, where, by binding PreQ1, they play a
fundamental role in the biosynthesis and transport of this molecule.

Therefore, riboswitches are an appealing target for antibacterial drug
development. Two PreQ1 riboswitch complexes have been selected,
the first one (PDB ID: 3Q50) is bound to a PreQ1 precursor with a
nanomolar binding affinity (KD = 2 nM), the second one (PDB
ID6E1U) is a hybrid riboswitch aptamer bound to a synthetic
compound (HMJ) that presents a sub-micromolar affinity (KD =
0.5 μM). This complex has been obtained through the deletion of
nucleobase A14 and the two vicinal ones, as a direct consequence,
the binding site lacks important nucleotides and, congruently to the
work of Bissaro et al. (Bissaro et al., 2020), before running TTMD
simulations, only the ligand was retained from this complex, and the
aptamer structure was retrieved from 3Q50 crystal.

3.4 Tar

Tat-Tar interaction modulates the transcription process in HIV-
1. Therefore, targeting Tar RNA could be an appealing pathway to
follow for the development of HIV-1 therapeutics. Although
combination antiretroviral therapy (cART) can significantly
suppress viral load, the eradication of this virus is still
challenging. Moreover, chronic long-term comorbidities can arise
since viral reservoirs are not eliminated by cART. In this scenario
blocking HIV transcription could be beneficial (Alanazi et al., 2021).
Several efforts have been made in the characterization of this target
and various small-molecule complexes have been reported in the
PDB. In this work, two Tar complexes have been reported,
specifically selected to assay TTMD behavior with challenging
flexible ligands (P12, P14) with high conformational freedom.

The investigated cases are summarized in Table 1 and their
crystal structures are reported in Table 2 to showcase the structural
differences of these targets.

For each complex, at first, a self-docking experiment was
conducted using the PLANTS docking program, since it has
recently been reported as one of the best docking tools for RNA-
ligand complexes (Jiang et al., 2023) and it is also free for academics.
The results of the self-docking calculations are summarized in
Tables 3–8.

For each complex, the top five scoring poses and the
experimentally determined one were subjected to TTMD
refinement using the same conditions described in the original
publications (Pavan et al., 2022c; Menin et al., 2023).
Furthermore, another run of TTMD calculations was conducted
using an alternative temperature ramp. Two different sets of
protein-ligand fingerprints were used for monitoring the binding
mode’s evolution and two different metrics for the qualitative
estimation of pose stability, namely, the MS and IFF coefficient.
Every methodological detail is reported in the Materials and
Methods section. Hereafter, each TTMD experiment is discussed
separately based on execution conditions, while aggregated
considerations are reported in the Discussion.

3.5 TTMD protocol 1: standard temperature
ramp, ODDT fingerprints, MS coefficient

As a first attempt, we tried repurposing the same TTMD
workflow described in the original publications (Pavan et al.,
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2022c; Menin et al., 2023) without any modifications. We therefore
used a standard temperature ramp, setting up the starting simulation
temperature at 300 K, the end temperature at 450 K, the temperature
increase between each TTMD-step to 10 K, and the duration of each
TTMD-step at 10 ns. Poses were then ranked according to the MS
coefficient, using ODDT interaction fingerprints for monitoring the
evolution of the binding mode. Results for this first round of TTMD
simulations are summarized in Table 9.

As can be seen in Table 9, the standard TTMD protocol that was
successfully applied to the characterization of protein-ligand
complexes’ residence time cannot be readily repurposed to RNA-
ligand complexes. What we noticed immediately, indeed, was that
several replicates presented remarkably high MS values (1, for
example), implying that the ligands lose most or even all the
native interaction features in the first TTMD step. By visually
inspecting the trajectory and subsequent analyses, we noticed
that this was not true, as the ligands were still in place and in a
conformation within the binding site that was compatible with a
similar interaction pattern as the one of the reference frame. We
carefully checked the fingerprint calculation step, and we noticed
that ODDT interaction fingerprints cannot capture most of the
interactions that exist between the ligand and the RNA receptor,
especially concerning hydrogen bonds and pi stacking, which are
dominant in this kind of system and captured just a fraction of the
hydrophobic contacts. We tried manually modifying the cutoffs for
the calculation of such interactions, to see if they were too strict, but
the results did not dramatically change.We therefore concluded that
it was an atom-typing issue, with ODDT not being able to rightfully
classify all RNA atoms and depict the intermolecular interactions
involving them. For this reason, we modified the TTMD code to use
a different protein-ligand interaction fingerprint, provided by the
ProLIF package (Bouysset and Fiorucci, 2021), since it supports
DNA and RNA molecules as well.

3.6 TTMD protocol 2: standard temperature
ramp, PROLIF fingerprints, MS coefficient

As a second attempt, we re-analyzed existing TTMD trajectories
monitoring the evolution of the receptor-ligand interaction
fingerprint through the ProLIF package instead of the ODDT
one. The result of this analysis is reported in Table 10.

As can be observed in Table 10, although the sensitivity of the
fingerprint-based scoring function improved compared to the
traditional TTMD protocol thanks to the change of the package
used for the PLIF calculation, the results of the TTMD simulations
are still not satisfactory. Taking aside the first three test cases,
i.e., 1UUD, 1UUI, and 2LWK for which the docking itself was
not reliable thus justifying the challenging nature of the task, in the
other three cases the results were promising but showed a margin of
improvement. Indeed, in all these three cases, the TTMD refinement
would have at best excluded a couple of wrong poses from the
equation but would have attributed some other wrong poses with
similar scores to the experimentally determined binding mode,
resulting in an inconclusive post-docking refinement procedure.
On the other hand, in the case of complex 3Q50, where the closest
poses to the crystal reference are pose 1 and 4, respectively, the MS
coefficient would have awarded pose 1 and 2, giving them scores

similar to the experimentally determined binding pose, and higher
scores to the other ones. Intriguingly, the pose ranking capabilities
would have been very good in the case of complexes 5BJO and 6E1U,
which were the closest poses to the experimental data (1, 4 and 3 for
5BJO, and 3, 1, and 5 for 6E1U, respectively) would have been
correctly distinguished by the MS coefficient from the more
incorrect ones, other than being close in MS score to the crystal
reference and being correctly ranked based on the RMSD to the
native binding mode. Based on the visual inspection of TTMD
trajectories, and on previous experience accumulated working on
similar targets (Bissaro et al., 2020; Pavan et al., 2022a), we thought
that a possible solution for improving the accuracy of the prediction
could be to use a different temperature ramp, specifically a less
aggressive one, to reduce the amplitude of the conformational
movements of the RNA receptors to favorably decouple the
evolution of the three-dimensional structure of the receptor from
the diffusion of the ligand from the binding site.

3.7 TTMD protocol 3: alternative
temperature ramp, PROLIF fingerprints, MS
coefficient

To further improve the predictive capabilities of the method, we
decided to test out an alternative, less aggressive, temperature
ramp. Specifically, we set up a starting temperature of 73 K and
an end temperature of 223 K, while maintaining the same
temperature increase and step duration. The ramp was
purposefully chosen within a temperature interval that could be
considered “extreme cold” based on a pair of assumptions: first, with
highly thermostable macromolecules such as protein receptors
investigated in previous TTMD works, working within a
temperature interval that is way outside the realistic
representation of the system did not impair the ability to extract
meaningful data out of the simulation (i.e., a qualitative estimation
of the residence time), second lowering the temperature of the
simulated system will reduce the atomic velocities, thus resulting
in a decreased flexibility of the RNA receptor. Although
temperatures in Molecular Dynamics are not directly equivalent
to the real-world ones, a similar concept of extracting meaningful
data at non-physiological temperatures is commonly applied in
Molecular Biology, for example, while determining
crystallographic structures with X-ray spectroscopy and cryo-EM
techniques. The results of this set of TTMD simulations are
encompassed in Table 11.

As can be deducted from Table 11, the use of an alternative
temperature ramp that operates at lower temperature values did not
necessarily improve the quality of the TTMD post-docking
refinement. First, the quality of the prediction decreased in those
cases (1UUD, 1UUI, and 2LWK) where docking was not able to
generate a good docking pose: indeed, while protocol 2 was at least
able to assign the lowest scores to a pool of poses that included the
experimentally determined ones, here it can be noticed how the
native binding mode is always among the ones with the worst scores
in term of MS coefficient. Speaking of the other three cases, instead,
where protocol 2 performed quite decently, here the pose ranking
capabilities of TTMD stay identical, with the only difference being
that the MS score difference between various poses is decreased,
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flattening the difference in score between native-like poses and
wrong ones. Looking at the fingerprint profile, though, we
noticed how lowering the temperature ranges not only reduced
the amplitude of conformational shifts in the nucleic receptor but
also decreased the tendency of the ligand to diffuse from the binding
site, thus making the protocol less efficient. Practically speaking,
although the “titration timeline” profile clearly showed a difference
in the amplitude of the changes in the fingerprint-based score
throughout the TTMD simulation, the difference between the
end and starting point of the simulation was not so marked. This
observation led us to conclude that, maybe, the MS coefficient in its
original formulation could not be the most sensitive metric to
capture the subtle rearrangements of the ligand within the
binding site and the conservation of the binding features, thus
inducing us to introduce a different metric defined as IFF
coefficient (see Materials and Methods for a detailed explanation
on how the IFF coefficient is computed).

3.8 TTMD protocol 4: alternative
temperature ramp, PROLIF fingerprints, IFF
coefficient

To test if an alternative metric to the MS coefficient would be
able to improve the sensitivity of the TTMD protocol using an
alternative temperature ramp that operates at sub-freezing
temperature, we re-analyzed those trajectories determining the
IFF coefficient. The results are summarized in Table 12.

By observing Table 12, it can be seen that even the new metric is
not able to improve the results of the TTMD refinement performed
at much lower temperatures. Specifically, the performance of the
method remains like what could be observed with the old-fashioned
MS coefficient. To further prove the point, we re-analyzed those
trajectories performed with the standard temperature ramp (see
Supplementary Table S1) and we found a great level of coherence
between the MS and IFF coefficient regarding their ability to rank
poses based on the persistence of native binding features throughout
the simulation.

4 Discussion

Molecular docking represents the state-of-the-art technique for
the prediction of protein-ligand complexes, thanks to the good
compromise between accuracy and rapidity of execution (Pavan
and Moro, 2023). Although routinely used in various structure-
based drug discovery campaigns, molecular docking has been
specifically designed and optimized with protein-ligand receptor
in mind, due to pharmaceutical relevance and availability of
experimentally determined structures to use as a benchmark for
method development (Salmaso and Moro, 2018). Despite the
growing interest of medicinal chemists in targeting RNA
macromolecules for therapeutic and diagnostic purposes in the
last decade, the field of rational design of RNA-targeting ligands
is still relatively unexplored, due to some intrinsic challenges
portrayed by these molecular entities, such as their structural
plasticity which makes it difficult to obtain their experimentally
determined three-dimensional structure, a pivotal requirement for

modern-days drug discovery campaigns (Bissaro et al., 2020; Pavan
et al., 2022a).

Despite all these challenges, recent works have demonstrated
how, despite some intrinsic limitations, routinely used molecular
docking programs such as PLANTS can be quite efficiently used
for investigating RNA-ligand complexes as well (Jiang et al.,
2023). Furthermore, we previously showcased how Supervised
Molecular Dynamics (SuMD) simulations can be successfully
utilized to flank molecular docking in investigating the
recognition process of complexes involving RNA molecules,
both as ligands (Pavan et al., 2022a) and as receptors (Bissaro
et al., 2020), retrieving useful information about the whole
binding process beyond the final bound state. Critically, one
of the major problems of docking in all its iterations, both classic
and dynamic, is finding a good scoring metric that can
discriminate native-like poses from the wrong ones (Chaput
and Mouawad, 2017). The peculiarities of RNA molecules,
such as the distinctive surface charge distribution, exacerbate
the limitations of classical scoring functions, which have been
developed specifically for protein binding sites. For all these
reasons, introducing new and improved ways of investigating
RNA-ligand complexes is a very pressing issue.

In the present article, we presented the first application of
Thermal Titration Molecular Dynamics (TTMD), a recently
developed MD-based protocol for the qualitative estimation of
protein-ligand unbinding kinetics, to the characterization of
RNA-ligand complexes. We investigated six different
pharmaceutically relevant test cases of different molecular
complexity, both on the ligand and on the receptor side. We
performed two rounds of simulations, one with the standard
temperature ramp already described in the original publications
(Pavan et al., 2022c; Menin et al., 2023), and one with an alternative
ramp operating at sub-freezing temperatures, to investigate the
effect of the temperature ramp on the accuracy of prediction. We
modified the original code to use the ProLIF package (Bouysset and
Fiorucci, 2021) for the calculation of RNA-ligand interaction
fingerprint instead of the ODDT one (Wójcikowski et al., 2015),
since they exhibit a better description of these systems. We also
explored a different metric, the IFF coefficient, to use alongside the
MS coefficient for monitoring the conservation of the native binding
determinants and calculating a proxy measure for the receptor-
ligand residence time.

By analyzing the whole set of simulations and analysis
performed upon them, it seems clear that TTMD can be a
helpful tool to refine docking results in those cases where the
geometry of the binding site is well defined and maintained
throughout the simulation, in a similar way to what was already
observed for protein-ligand systems. 5BJO simulations are proof of
this concept as the binding site remains extremely stable throughout
the simulation (Video V1, Supplementary Table S1, Supplementary
Table S2). In those cases where the perturbation of the receptor
conformation and or the receptor fold overcomes the tendency of
the ligand to diffuse from the binding site, the method accuracy
drops significantly, not improving docking results and even
invalidating successful ones.

Concerning this aspect, the choice of the temperature ramp is
pivotal for the success of the TTMD rescoring process. Despite the
high flexibility of RNA molecules, especially at high simulation

Frontiers in Molecular Biosciences frontiersin.org15

Dodaro et al. 10.3389/fmolb.2023.1294543

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1294543


temperatures, the standard temperature ramp still outperformed the
alternative, sub-freezing one. A plausible explanation for this
evidence is that the electrostatic component dominates the
protein-ligand interaction energy, making it very unlikely for the
ligand to spontaneously detach and unbind without any external aid
in the shape of a temperature increase. Regardless of the choice of
the metric used for estimating the pose residence time (theMS or the
IFF coefficient), the ranking provided by the standard ramp was
more useful than the one provided by the alternative one, due to the
flattening of the score differences between good and bad poses at
lower temperatures. Despite this, the exploration of the alternative
ramp allowed us to determine that simulating in those conditions
will not result in discarding a good pose, at least for those cases
where TTMD (and docking too) perform well. The possibility to
tune the temperature interval with a certain degree of freedom based
on the knowledge of the system makes it quite appealing, since in a
prospective use case one could simply start with a titration in the
low-temperature range, evaluate the separation in score between
different poses, and eventually re-execute the titration at higher
temperatures based on the results provided by the first round of
simulations.

Another useful expediency that the user could implement
would be to carry out a TTMD “dry run” on just the RNA
molecule itself, a functionality that has been introduced
purposefully in the latest version of the TTMD code used for
this article, and evaluate its behavior in terms of structural
plasticity, especially at the binding site level, before running
the titration on systems including the ligand as well. It is
important to stress that probably exists an intermediate ramp
between the two that were utilized in the present work that might
be a better compromise and provide slightly better results, but at
the same time, we firmly believe that to be adopted by the largest
number of user possible a method has to be easy to implement
and setup, without spending too much time on optimizing
parameters for its execution. For this reason, we wanted to
showcase that the method can perform reasonably well almost
regardless of the choice of the ramp, although the original ramp
that has already proven to be successful in the case of protein-
ligand complexes is still the best one in terms of accuracy. Finally,
it is worth mentioning that working with macromolecules that
have an intrinsic conformational flexibility such as RNA strongly
limits the applicability of any given MD technique in a high-
throughput fashion, due to its limited sampling capabilities,
making docking still the most efficient choice for investigating
these systems. On the other hand, the ever-increasing
computational power available for MD simulations will make
and more appealing the use of pipelines like TTMD in the future,
thus justifying the interest in the further development of this and
other MD-based methods for the investigation of systems
involving nucleic acids (Sponer et al., 2018).
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