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The efficient utilization of waste heat resources plays a pivotal role in enhancing
energy efficiency and curbing carbon emissions. To address this, effective
planning for waste heat recovery (WHR) utilization becomes imperative,
guiding consumers in device installation and capacity allocation. This paper
introduces a novel approach to WHR utilization planning, tailored specifically
for steel factories, with the goal of achieving optimalWHR solutions. The approach
automates device selection, capacity allocation, and operational strategies while
considering their impact on the regular manufacturing processes of the factories
to maximize overall benefits. Unlike existing methods, this approach introduces
discrete capacity selection modeling, considering the constraints of the limited
product range during device selection. A numerical study illustrates the
effectiveness of the proposed model in delivering optimal WHR device
selection, capacity allocation, and operational strategies under various
economic conditions. These enhancements contribute to the increased
practicality and realism of the proposed method in comparison to existing
approaches.
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1 Introduction

The utilization of waste heat resources is a commonmethod to enhance energy efficiency
in various industries (Guo et al., 2013; Pan et al., 2020). It plays a crucial role in national
strategies to reduce carbon emissions by reducing the reliance on high-carbon or polluting
resources such as natural gas or coal-generated electricity (Mago et al., 2007; Brown and
Valentina, 2021). Over the past decade, significant advancements and research have been
made in waste heat recovery (WHR) technologies across different sectors (Brückner et al.,
2015; Xia et al., 2019). For instance, Zhao et al. implemented distributed heat pump
technology in district heating systems to regulate the heat in secondary substation
networks, effectively reducing the return water temperature of the primary network
(Zhao et al., 2017).

To maximize the benefits of WHR utilization, consumers require an optimal planning
method that considers the characteristics of various potential utilization devices, the
economic aspects of different energy quality utilization methods, and the operational
implications of WHR utilization. To identify an appropriate planning approach, an
extensive review of existing literature on optimal WHR planning methods was
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undertaken, revealing three typical categories of studies in this
domain. The first type primarily focuses on predefined WHR
physical utilization systems and aims to determine their optimal
operation (Gu et al., 2010; Amin et al., 2017). For example, Dehghani
et al. (Javad Dehghani and Chang, 2020) designed a system forWHR
and biofuel extractability from effluents in the textile industry. The
study optimized seven key parameters to determine the most
efficient operational strategy, demonstrating the system’s high
energetic and thermodynamic performance with a payback time
of 5 years. Kim et al. (Kim and Nam, 2016) evaluated the heating and
cooling coefficient of performance (COP) of a system by considering
different groundwater levels, flow rates, groundwater temperatures,
and heat exchanger (HE) characteristics. Similarly, Mohammadi
et al. (Amin et al., 2017) proposed a hybrid power system consisting
of a gas turbine, an Organic Rankine Cycle (ORC) unit, and an
absorption refrigerator (AR), which resulted in an increased total
system efficiency of 67.6%. The study evaluated several key
parameters to identify further means of enhancing system
performance. Gu et al. (Gu et al., 2010) pre-defined a
cogeneration system, including a waste heat boiler, to achieve
optimal system operation while considering the output of
renewable energy. In summary, this type of research offers
potential solutions for consumers who already possess WHR
utilization systems but require optimization of their operations.
However, these predefined systems do not provide an optimal
solution for consumers who seek to upgrade their systems with
additional utilization dimensions or install entirely new systems.

The second type of research involves providing multiple
predefined WHR candidate installation solutions. The capacity of
devices in each candidate solution is determined through physical
analysis to maximize WHR utilization. A comparison is then
performed among these solutions to identify the optimal
candidate (Hassan, 2015; Pantaleo et al., 2018; Yu et al., 2018).
For instance, Yu et al. (Yu et al., 2018) defined three scenarios for
WHR utilization from exhaust gas in the aluminum industry and
compared the exergy efficiency and energy output power of these
schemes. Their findings demonstrated that two of these scenarios
adequately met the local basic space-heating load. Similarly,
Pantaleo et al. (Pantaleo et al., 2018) predefined three schemes
for flue gas WHR utilization in a coffee roasting plant. They
discovered that the optimal solution varied based on the
production capacity and electricity price, sometimes resulting in
unprofitable investments. Hajabdollahi (Hassan, 2015) predefined a
Combined Cooling, Heating, and Power (CCHP) system and
proposed a model to determine the optimum type and nominal
power of prime movers for various cooling, heating, and electrical
load demands. The results indicated that selecting the prime mover
type according to the load condition yielded better economic
benefits. However, this type of research may overlook optimal
solutions as the practical candidates for WHR solutions often
exceed those for predefined solutions. Additionally, an optimal
solution may require different device capacity levels, which are
often neglected in predefined capacity settings.

The third type of research involves a minimal number of
predefined factors and in-stead constructs an optimization model
that considers various potential WHR utilization methods. It
allows an optimization algorithm to determine the device
selection, installation capacity, and optimal operation. The

results obtained through this type of research are generally
more realistic due to their objectivity and a more
comprehensive solution space that avoids unreliable
transcendental knowledge. However, such models often face
challenges in terms of modelling and solving algorithms,
resulting in limited quantities of research in this area. For
example, Wang et al. (Wang et al., 2018) proposed a detailed
mixed-integer linear programming optimization model for WHR
utilization in a district-scale microgrid. The model incorporated
operation models of seven types of WHR utilization technologies
and prioritized economic considerations as the optimization
objective. The optimization algorithm automatically generated
optimal solutions for WHR utilization in a district-scale
microgrid.

While research in the third category holds substantial
promise, it tends to overlook critical factors affecting WHR
utilization. The first issue relates to the impact of WHR
utilization on consumers’ regular manufacturing operations
and the consequent increase in operational costs, a dimension
unaddressed in existing studies of this type. For instance, the
harnessing of waste heat from low-temperature flue gas in a steel
factory necessitates the installation of a heat-exchange device
within the flue gas pipeline. However, this device leads to
heightened pressure loss in the pipeline, necessitating
additional power from the air pump. Such augmented power
consumption can significantly disrupt the optimal solution,
particularly when electricity prices are elevated.

The second issue lies in the assumption prevalent in current
research, where device capacity installation is treated as a continuous
variable. This allows the model to install devices of any capacity
within defined constraints. In practice, however, device capacity is
discrete since device sellers offer only a limited range of product
options. Consequently, models that permit continuous capacity
allocation may grapple with difficulties in identifying practical
devices.

Considering the aforementioned issues, this study introduces a
Type 3 WHR utilization planning model specifically designed for
steel manufacturing consumers. This model enables the
optimization algorithm to select optimal WHR utilization
devices, determine their capacity, and provide guidance for
optimal operation. The proposed model makes three key
contributions:

1. In addressing the concern of overlooking the impact of WHR
utilization on regular manufacturing operations, the proposed
model incorporates an assessment of the pressure loss in the flue
gas pipeline resulting from WHR utilization. Furthermore, it
takes into consideration the supplementary electricity costs
associated with the operation of the air pump.

2. To tackle the challenge of discrete device capacity, the proposed
model introduces a novel structural approach, which effectively
represents discrete capacity. This innovation yields more
practical and realistic outcomes when compared to models
that only allow for continuous capacity allocations.

3. Building upon the two aforementioned contributions, this study
introduces a comprehensive WHR utilization plan featuring a
nested optimization model. Within this framework, device
selection, capacity, and operational behaviors are seamlessly
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integrated as variables. Through a numerical study, it is
demonstrated that this model has the capability to
automatically account for environmental factors and device
capabilities tailored to individual consumers, thereby
generating adaptive optimal solutions customized for a steel
factory.

The remainder of this paper is organized as follows: Section 2
describes the WHR planning structure. Furthermore, Section 3
presents the formulation of the proposed nested optimization
model of WHR utilization. In Section 4, the results of the
numerical analysis are presented. Finally, the conclusion is given
in Section 5.

2 WHR planning structure

In the industrial sector, various fluids like flue gas, dry-hot air,
steam, circulating cooling water, and process wastewater transport
significant quantities of waste heat. Established recovery
technologies such as AR, the Rankine Cycle, and heat pumps are
capable of efficiently capturing waste heat from these fluids. Another
approach involves the direct utilization of waste heat resources for
heating hot water or air by employing a HE. It is important to note
that the temperature and physical properties of different waste heat
sources may vary, necessitating the use of different applicable
recovery technologies. For example, the low temperature of
circulating cooling water renders it unsuitable for utilization in
the Rankine Cycle.

This study primarily focuses on optimizing low-temperature
WHR utilization in steel factories based on four commonly used
WHR technologies: AR (absorption refrigeration), ORC (organic

Rankine cycle), EHP (electric heat pumps), and HE (heat
exchangers). However, the framework can easily accommodate
other technologies as well.

In WHR systems, there can be multiple types of WHS. Figure 1
illustrates the structure of a typical WHR system in a steel factory.
The waste heat in electric furnace is continuously carried away by
flue gases and circulating cooling water. Therefore, the flue gases and
circulating cooling water, which are rich in waste heat energy, is
regarded as WHS in this study. The flue gases and circulating
cooling water are propelled through pipelines using fans or
pumps. When these fluids flow through the heat exchange

FIGURE 1
Typical structure of a WHR system in the steel plant.

FIGURE 2
Economic evaluation of the WHR system.

Frontiers in Energy Research frontiersin.org03

Wang et al. 10.3389/fenrg.2023.1257344

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1257344


components of WHR devices, some of the waste heat is converted
into energy in the form of electricity, heat or cold and output to the
energy system to meet load demand. The remaining waste heat is
discharged to the environment or recirculated with the fluid. The
installment of WHR devices inevitably leads to fluid pressure loss.
Without external intervention, the fluid flow velocity will decrease
significantly. Fans and pumps must consume more power to ensure
an acceptable flow velocity. This negative effect of WHR introduces
additional operational costs for fans and pumps. This study
considers this detrimental effect during both the planning and
operation stages of WHR utilization.

Figure 2 illustrates the economic benefits associated with
WHR utilization, comprising three components: positive
benefits from energy generation and negative benefits from
energy consumption and device installation. To maximize
overall benefits, the optimization process should focus on
maximizing positive benefits while minimizing negative ones.
WHR utilization technologies vary in terms of energy
conversion efficiency, investment cost, and energy input-
output ratios. Thus, an optimal selection of recovery
technology, device capacity, and operational strategy is
crucial. This study presents a novel nested optimization
model for WHR utilization planning. The main optimization
model considers the number of devices of each type as
independent variables and incorporates device investment
cost into the objective function. In the sub-optimization
model, an operational model is developed for WHR devices,
fans, and pumps, where the output power of the devices is
treated as an independent variable. The objective function
integrates energy costs and output benefits of the devices. The
subsequent section provides detailed information on the
proposed model.

It is crucial to emphasize that the proposed model takes into
consideration the operational characteristics of four specific
WHR devices. However, the decision regarding which devices
to invest in should be guided by the optimization solutions. The
optimization process may indicate that investing in just one or

two of these devices is the most cost-effective strategy. In
situations where none of the devices demonstrate profitability,
it might be prudent to refrain from investing in any WHR device
at all.

3 Nested optimization model for WHR
system planning and operation

The system planning process is influenced by various scenarios,
and it is closely linked to system operation. The outcomes of system
planning serve as the boundary conditions for operation. Only when
the system planning is determined can the optimal system operation
be further solved. Taking into account the interplay between
planning and operation in the optimization process, this study
formulates the system optimization model as a nested
optimization model. The flowchart of the overall modelling
process is summarized in Figure 3. The nested optimization
model effectively captures the solution space to obtain the
most realistic and comprehensive solution, enabling
simultaneous decision-making on recovery methods, device
capacity planning, and optimal system operation. As
mentioned earlier, the model considers four commonly used
WHR devices, but it can be readily extended to incorporate
additional devices.

As depicted in Figure 4, within the feasible region of the main
optimization model, each feasible solution can be linked to a
unique sub-optimization problem. To determine the objective
function value for a given feasible solution, it is imperative to
solve its associated sub-optimization problem. Upon solving this
sub-optimization, the daily operational economic benefits and
the optimal operational strategy of the system are derived as
output. Ultimately, the optimization algorithm is used to
identify the solution set that maximizes the primary
optimization objective function. The optimal operational
strategy is then computed based on the sub-optimization
problem corresponding to the optimal solution set.

FIGURE 3
Modelling process of the proposed nested optimization model.
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3.1 Main optimization model

This model takes into account both the installation and operational
costs associated with a WHR system. The overarching aim of the
optimization is to maximize operational benefits while simultaneously
minimizing the discounted present value of the installation costs. In a
system comprising N WHS and offering a selection of 4 types of
potential WHR devices, the objective function can be defined as the
optimal operational benefits minus the discounted present value of the
total installation cost for the specific system configuration. Within the
main model, for every defined system, a dispatch optimization process
is essential to compute the optimal operational benefits. This dispatch
optimization ensures that the system operates at its most efficient
capacity, contributing to the determination of the objective function’s
value for each specific system setup. Eq. 3.2 reflects how the optimal
operational benefits changes with the system components. Additionally,
Eq. 3.3 describes the constraints on the independent variables, which
ensures that a choice is made within the limited capacity of devices.

Max : Obj 1 bi,j( ) � Benefitopt−Costcon
� Benefitopt − α ·∑N

i�1
∑4
j�1

βi,j · λi,j( )
� Benefitopt − α ·∑N

i�1
∑4
j�1

bi,j · Λi,j · λi,j( )
(3.1)

Benefitopt � Of bi,j,Φ( ) (3.2)
Const1.1: bi,j ∈ 0, 1, · · ·, bi,j,max{ },∀i ∈ 1, 2, · · ·, N[ ]andj ∈ 1, · · ·, 4[ ]

(3.3)
The details of Eq. 3.1 are introduced in the next section. Eq. 3.2 is

the optimization objective.

3.2 Sub-optimization model

3.2.1 Modelling of objective function and
constraints

The model presented in this section provides a detailed
explanation of how changes in device planning capacity impact
the system’s operation.

Eq. 3.4 is the objective function indicating the operational
economic benefits of a WHR system. It quantifies the net
operating revenue of cold, heat, and electricity during the
dispatch period. Constraint Eq. 3.5 denotes that the system must
satisfy the total amount of waste heat energy recovered by WHR
equipment.

Max : Obj 2 �Bcold + Bheat + Bpower (3.4)
Const2.1: 0≤Qi,AR,t + Qi,EHP,t + Qi,ORC,t

+ Qi,HE,t ≤Qi,max ,t,∀i ∈ 1, 2, · · ·, N[ ] (3.5)

3.2.2 Modelling of key devices operation
Operation models of typical WHR utilization technologies have

been used in many other studies. Most of these studies regard the
conversion efficiency of the devices as constant (Wang et al., 2010;
Jin et al., 2017). The following describes the operation models of the
four types of commonly used WHR devices in detail. In addition,
models of the fluid machinery are included. It is used to calculate the
extra energy cost brought about byWHR utilization in Pt, serving as
the foundation for analyzing the impact of WHR utilization on
normal manufacturing operations.

(1) Modelling of AR Operation

FIGURE 4
The structure of the proposed nested optimization model.
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The AR is composed of a generator, condenser, evaporator,
absorber, and working-fluid pump. It can convert the heat energy in
the waste heat into cold energy, and the working medium pump
consumes electric energy during its operation. The model can be
expressed as (Wang et al., 2018):

Ci,AR,t � COPi,AR · Qi,AR,t

Ci,AR,min ≤Ci,AR,t ≤Ci,AR,max

Pi,AR,t � Ci,AR,t

ηi,AR

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(3.6)

(2) Modelling of EHP Operation

An EHP can complete the transfer of heat energy by consuming a
small amount of electricity. The COP of the electric heat pump can reach
more than four, whichmeans that the transfer of four units of heat energy
consumes only one unit of electric energy, effectively reducing the use of
conventional energy. Its model can be expressed as (Jin et al., 2017):

Hi,EHP,t � COPi,EHP · Pi,EHP,t

Hi,EHP,min ≤Hi,EHP,t ≤Hi,EHP,max
{ (3.7)

According to the principle of energy conservation, the
expression for the heat energy recovered from the waste heat by
the EHP is as follows:

Qi,EHP,t � 1 − 1
COPi,EHP

( ) ·Hi,EHP,t (3.8)

(3) Modelling of ORC Power Generation Unit Operation

The ORC operates according to the principle of the Clausius-
Rankine (C-R) cycle. It uses organic substances as the working fluid
to generate electricity, which is suitable for heat recovery from low-
temperature heat sources such as geothermal, biomass, and solar
energy. The climbing rate of the device is considered in the model
and can be expressed as (Wang et al., 2018):

Pi,ORC,t � ηi,ORC · Qi,ORC,t

Pi,ORC,min ≤Pi,ORC,t ≤Pi,ORC,max

−ΔPi,ORC,max ≤Pi,ORC,t+1 − Pi,ORC,t ≤ΔPi,ORC,max

⎧⎪⎨⎪⎩ (3.9)

(4) Modelling of HE Operation

HE is used to transfer heat from a hot fluid to a cold fluid and is
the most direct and common device for WHR. There are many types
of HE, and the general model can be expressed as (Wang et al., 2018):

Hi,HE,t � ηi,HE · Qi,HE,t

Hi,HE,min ≤Hi,HE,t ≤Hi,HE,max
{ (3.10)

(5) Modelling of Fans and Pumps Operation

The fluids require fans and pumps to supply sufficient power.
WHR utilization significantly increases the resistance of the pipeline.
This resistance may result in 40% of the output energy of WHR
devices that must be used to compensate for the extra energy
consumption of fans and pumps, and it may even make WHR
projects less profitable (Aranguren et al., 2018; Tian et al., 2022).

This significantly affects the operational costs of the WHR system.
However, many scholars have ignored this point when optimizing
WHR utilization (Wang et al., 2018). Considering the influence of
WHR devices on the power of the fans and pumps in the
optimization model is one of the innovations of this study.

Calculating the pressure loss caused by the WHR devices is the
premise for calculating the power increments of the fans and water
pumps. In general, the flow of flue gas and water is considered a steady
state-incompressible-three-dimensional flow (Yuan et al., 2019).
Thermophysical parameters such as density (ρ), humidity, and
specific heat capacity showed little difference between the flue gas
and saturated moist air (Zhu et al., 2016). To facilitate this study, the
density of the flue gas in the numerical analysis was taken as a fixed
value of 0.6 kg/m3, and the actual measured value should be used in
practical application (Tsilingiris, 2018). The additional pressure loss is
related to the local resistance coefficient (ζ) of the device, the velocity
(v), and the density of the fluid. The specific mathematical relationship
is shown in Eq. 3.11, (Filis et al., 2021; Dvořák and Tomáš, 2015). To
obtain a more accurate ζ , experiments are typically required to obtain
accurate calculations.

Δpi,t � ζ i · vi,t
2

2
· ρi,t (3.11)

After the installation of WHR devices, the pressure loss in the
pipeline increased significantly. Fans and pumps had to work harder
to provide a higher pressure to the fluid in order to maintain its
velocity. The power of fans and pumps is influenced by the efficiency
(ηdy), volume flow (q) of the fluid and pressure loss (Amiri Rad and
Mohammadi, 2018; Dong et al., 2020). Therefore, after WHR
utilization, the additional power consumption of the fans and
pumps can be calculated as:

Pi,add,t � qi,t·Δpi,t

3600 · ηi,dy
(3.12)

3.2.3 Reorganize the objective function and
constraints with independent variables

As shown in Figure 1 and 2, the energy consumed by the system
includes the additional electric energy consumed by the fans and
pumps. This study assumed that the resistance coefficient of the
devices was proportional to their capacity. Therefore, the influence
of WHR utilization on the power of the fans and pumps can be
expressed using Eq. 3.13. Therefore, based on the model of key
devices, the details of net output power, thermal energy and cold
energy can be expressed by Eqs. 3.14–3.16.

Pi,add,t �
∑4
j�1

bi,j · Λi,j · ζ i,j( ) · qi,t · vi,t22 · ρi,t
3600 · ηi,dy

(3.13)

Ct � ∑N
i�1
Ci,AR,t (3.14)

Ht � ∑N
i�1

Hi,EHP,t +Hi,HE,t( ) (3.15)

Pt � ∑N
i�1

Pi,ORC,t − Ci,AR,t

εi,AR
− Hi,EHP,t

COPi,EHP
− Pi,add,t( ) (3.16)
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It can be observed from the operation model of the devices that
there is a certain mathematical relationship between the input and
output power of the devices. The system operation boundary shown
in the constraint Eq. 3.5 can be described by the independent
variables. Therefore, considering the operational constraints of
the devices, the sub-optimization model can be reorganize using
Eqs. 3.18–3.21. where, T is the number of time intervals in a
typical day.

Max : Obj 2 Ci,AR,t, Hi,EHP,t, Pi,ORC,t, Hi,HE,t( )
� Bcold + Bheat + Bpower � ∑T

t�1
PrCt·Ct·Δt +∑T

t�1
PrHt ·Ht·Δt

+∑T
t�1
PrEt · Pt·Δt (3.18)

Const2.1: 0≤
Ci,AR,t

COPi,AR
+ 1 − 1

COPi,EHP
( ) ·Hi,EHP,t + Pi,ORC,t

εi,ORC

+Hi,HE,t

ηi,HE

≤Qi,max ,t, ∀i ∈ 1, 2, · · ·, N[ ]and∀t ∈ 1, 2, · · ·, T[ ]
(3.19)

Const2.2:

Ci,AR,min ≤Ci,AR,t ≤Ci,AR,max

Hi,EHP,min ≤Hi,EHP,t ≤Hi,EHP,max

Pi,ORC,min ≤Pi,ORC,t ≤Pi,ORC,max

Hi,HE,min ≤Hi,HE,t ≤Hi,HE,max

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ,∀i ∈ 1, 2, · · ·, N[ ]

(3.20)
Const2.3: − ΔPi,ORC,max ≤Pi,ORC,t+1

− Pi,ORC,t ≤ΔPi,ORC,max,∀i ∈ 1, 2, · · ·, N[ ] (3.21)

3.3 Parameter transfer model

The boundary conditions of the sub-optimization problem
are related to the capacity of the WHR system, which is the
independent variable of the main optimization. The parameter
transfer model is the key to determining these two parts of the
parameters, which enables the sub-optimization problem to be
solved and returns the optimal solution. It can be expressed
specifically in Eq. 3.22.

Ci,AR,max � bi,AR · Λi,AR, Ci,AR,min � ki,AR · bi,AR · Λi,AR

Hi,EHP,max � bi,EHP · Λi,EHP,Hi,EHP,min � ki,EHP · bi,EHP · Λi,EHP

Pi,ORC,max � bi,ORC · Λi,ORC, Pi,ORC,min � ki,ORC · bi,ORC · Λi,ORC

Hi,HE,max � bi,HE · Λi,HE,Hi,HE,min � ki,HE · bi,HE · Λi,HE

ΔPi,ORC,max � μi,ORC · bi,ORC · Λi,ORC

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
,∀i ∈ 1, 2, · · ·, N[ ]

(3.22)

3.4 A complete description of the nested
optimization model

Reviewing the sub-optimization model in this section, we can
see that the function Of() in Eq. 3.2 is a sub-optimization of the
main optimization problem, and Eq. 3.23 can review this logic. It
means that the influencing path from the planning capacity of
devices of the WHR system to final economic benefit is
constructed by changing the boundary conditions of sub-
optimization.

Benefitopt � Of bi,j ,Φ( )
Benefitopt � Obj 2 argminObj 2

Ci,AR,t ,Hi,EHP,t ,Pi,ORC,t ,Hi,HE,t
bi,j ,Φ( )( )

⎧⎨⎩

0
Max : Obj 1 bi,j( ) � Obj 2 argminObj 2

Ci,AR,t ,Hi,EHP,t ,Pi,ORC,t ,Hi,HE,t
bi,j ,Φ( )( ) − α ·∑N

i�1
∑4
j�1

bi,j · Λi,j · λi,j( )
Const1.1: bi,j ∈ 0, 1, · · ·, bi,j,max{ }, ∀i ∈ 1, 2, · · ·, N[ ]and j ∈ 1, · · ·, 4[ ]

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(3.23)

3.5 Solving algorithm

Calculating the objective function with the candidate parameters in
Obj_1 must solve the sub-optimization problem. This mathematical
structure is called nested optimization. The nested optimization model
in this study was solved using a genetic algorithm that does not require
the gradient of the optimization object to the parameters. Sub-
optimization is a typical linear programming problem, and many
effective solving tools are available. The basic idea of the
optimization solution in this study was to use the capacity of each
WHR device in the system as the individual gene, the total objective
function Obj_1 (Eq. 3.2) as the individual fitness function, and to find
the optimal solution through the evolution of the population. It must be
stated that each time the fitness value of the individual is calculated, it is
necessary to optimize the sub-optimization. The process of solving the
model is shown in Figure 5.

4 Numerical study and analysis

4.1 Background

The numerical study was carried out inMATLAB (version R2019a)
on a computer with an AMD Ryzen 71,700 Eight-Core Processor,
3.00 GHz, and 8.0 GB of RAM. For the numerical study, a
representative steel factory was selected, which exhibited substantial
waste heat in the form of flue gas and circulating cooling water. The
factory had three WHS with potential for recovery, and their basic
structures are depicted in Figure 6. Both waste heat source 1 (WHS1)
and waste heat source 2 (WHS2) utilized flue gas as the medium, with
temperatures ranging from 100°C to 220°C. Previous research has
indicated that the waste heat energy from these two sources can
primarily be recovered using AR, EHP, ORC, and HE. Waste heat
source 3 (WHS3) employed circulating cooling water as the medium,
with temperatures ranging from 30°C to 40°C. The waste heat energy in
WHS3 can be mainly recovered using EHP. In the numerical study, it
was assumed that the steel factory had sufficient demand for electricity,
heat, and cold energy. The energy generated from WHR would be
utilized for the production and operation of the factory.

Table 1 provides information on the maximum recoverable
waste heat power from the three WHS and the corresponding
local resistance coefficients. The factory operated continuously
for 24 h, and it was assumed that the local resistance coefficients
of the various WHR devices within the same WHS were consistent.
Notably, the maximum available waste heat energy is definite and
finite. The amount of waste heat energy recovered by a device
depends on its conversion efficiency. Higher conversion efficiency
results in lower consumption of waste heat energy to achieve the
same output power.
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The time-of-use (TOU) tariff for a typical city in China was
employed (DRC, 2021), as shown in Figure 7, with electricity prices
set at 1.1008 CNY/(kW-h), 0.6475 CNY/(kW-h), and 0.2461 CNY/

(kW-h) for different periods. The discrete capacity of the devices was set
at 200 kW. The parameters utilized in this study are listed in Tables A1,
A2 of the Appendix, which are based on typical conditions in China.

FIGURE 5
Model’s solving process.

FIGURE 6
The structure of WHR system in the steel factory.
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This section encompasses four numerical studies. Numerical
Study 1 examined the optimization results under different
boundary conditions, demonstrating that the proposed model
can automatically consider environmental and device capability
factors specific to a steel factory and produce adaptive optimal
solutions. Numerical Study 2 compared the optimization results
with and without considering the pressure loss, illustrating the
significance and necessity of incorporating pressure loss in the
evaluation of the operational economy. Numerical Study
3 compared discrete device capacity with continuous device
capacity, affirming the practicality of using discrete capacity.
Throughout the experiments, strict control was maintained over
the values of these parameters. Numerical Study 4 analyzed the
impact of two uncertainties, the amount of waste heat energy that
can be recovered and the probability of equipment failure, on the
outcome at the system operation level. All parameters were held
constant, except for the parameter being investigated for its
effect.

4.2 Numerical study 1: sensitivity analysis of
equipment parameters

This study demonstrates the effectiveness of the proposed model
in providing optimal solutions for various device capability factors
and consumer environments. Figure 2 illustrates the impact of three
factors on the economic benefits of recovering 1 kW-h of waste heat
energy from the WHS. Changes in these factors influence the
optimal solutions. By successively examining the optimal
solutions generated by the model with variations in device
efficiency, resistance coefficient, and investment cost, the adjusted

values of these parameters were compared and analyzed. Ultimately,
the validity of the proposed model was established.

4.2.1 Influence of efficiency on optimal solutions
The efficiency coefficients of AR, ORC, EHP, and HE were

increased from their preset values to 1.5, 0.6, 9, and 0.85,
respectively, while keeping other parameters unchanged. The
resulting optimal solutions for the model are presented in Table 2.

Under the preset parameters, the economic benefit of recovering
1 kWh of waste heat energy from the WHS was approximately
0.187 CNY for the ORC unit, 0.052 CNY for AR, 0.124 CNY for
EHP, and 0.176 CNY for HE. The ORC unit exhibited the highest
economic benefit, followed by HE, while AR had the lowest economic
benefit, less than half the value of the other three devices. When the
efficiencies of the four devices increased, four dis-tinct scenarios emerged.
Despite an increase in its efficiency coefficient, ARmaintained the lowest
economic benefit. Meanwhile, the economic benefit of the ORC unit
remained the highest and the gap widened compared to other devices.
The economic benefits of EHP and ORC were only slightly different but
noticeably higher than those of the other two de-vice types when the
efficiency coefficient of EHP increased. Finally, when the efficiency
coefficient of HE increased, it yielded the highest economic benefit.

Table 2 reveals that an increase in the efficiency coefficient of AR
did not alter its position of inferior economic benefit. The optimal
solutions remained the same as those obtained with the preset
parameters. On the other hand, an increase in the efficiency
coefficients of EHP, ORC, and HE significantly impacted the
optimization results. Firstly, the improvement in efficiency
coefficients enhanced the utilization rate of waste heat, leading to
improved output power and increased device capacity. Secondly, the
device capacity was adjusted, allocating it to devices with substantial
economic benefits. Based on the analysis above, it can be concluded that
the proposed model and algorithm accurately perceive changes in the
economic benefits of devices and provide optimal solutions. The device
efficiency coefficient affects the optimization solutions, but under these
conditions, the solutions consistently remain optimal.

4.2.2 Influence of resistance coefficient on optimal
solutions

In addition to the device’s efficiency coefficient, the resistance
coefficient also has a significant impact on its economic benefits. By
increasing and decreasing the resistance coefficients of the ORC
units, we observed changes in the economic benefits of these units.
The optimal solutions for device capacity are presented in Table 3.

When the resistance coefficient of the ORC unit was increased
by a factor of 1.5, its economic benefit became significantly lower
than that of the HE unit. Under these conditions, the capacity of the
ORC unit in WHS1 and WHS2 decreased to 0, while the capacity of
the HE unit increased to 1,400 kW and 1,200 kW, respectively. With
an ORC unit operating at its maximum power capacity of
approximately 700 kW, the available waste heat energy from

TABLE 1 Maximum waste heat power and local resistance coefficient of 1 kW device capacity for each WHS.

Items WHS 1 WHS 2 WHS 3

Qi,max, maximum waste heat power (kW) 1852 1,620 1,157

ζ i , local resistance coefficient of 1 kW device capacity 0.0089 0.0044 0.306

FIGURE 7
TOU tariff used in the numerical study.
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WHS2 can be fully utilized. Therefore, investing in an ORC unit with
a capacity of 800 kW for WHS2 would result in approximately
100 kW of capacity redundancy. Such redundancy brings no
economic benefits and only increases investment costs and
pressure losses. In contrast, constructing an HE unit would be
more cost-effective. Only when the resistance coefficient of the
ORC unit is reduced to 0.3 times its pre-set value, does the
model recommend building an 800 kW ORC unit for WHS2.

4.2.3 Influence of investment cost on optimal
solutions

During the planning process, consumers encounter various
environmental factors, including changes in device investment costs
and rising energy prices. In this study, we examine the change in device
investment costs, while the investigation of increasing natural gas prices
is addressed in numerical study 3. We adjusted the investment cost of
the ORC device from its pre-set value of 13,000 CNY/kW to
21,000 CNY/kW, while retaining the preset values for other
parameters. The optimal solutions are listed in Table 4.

Increasing the investment cost of the ORC unit leads to a
decrease in its economic benefits. When the investment cost of
the ORC unit reached 17,000 CNY/kW, the economic benefit of the
HE unit surpassed that of the ORC unit. According to the results in
Table 4, when the investment cost of the ORC unit exceeds
17,000 CNY/kW, the HE unit recovers most of the waste heat
energy from WHS1 and WHS2. This change maximizes the
economic benefits of WHR utilization.

Based on the aforementioned observations, it is evident that the
proposed model can automatically determine the optimal solution
when various key factors change. This reflects the effectiveness and
feasibility of the proposed model.

4.3 Numerical study 2: sensitivity analysis of
resistance coefficient

This study highlights the importance of considering the impact
of WHR device installation on pressure loss in the normal steel
manufacturing process. By gradually increasing the resistance
coefficients of the devices, we obtained the optimal solutions
from the model for different resistance coefficient values, as
presented in Table 5. It is worth noting that a zero-resistance
coefficient implies neglecting the additional pressure loss caused
by WHR devices, which is the case in traditional WHR utilization
methods.

When the values of ζ′ are low, the device capacities exhibit
significant redundancy. This is due to the higher economic benefit of
the EHP during the valley and flat periods of TOU pricing, while the
ORC unit offers the highest economic benefit during peak periods.
Figure 8 provides insight into this observation, where the EHP
operates at high power during valley and flat periods, while the ORC
unit operates at high power during peak periods. Constructing an
excessive number of devices would lead to higher investment costs.
However, this additional investment can be recovered through the
devices’ flexible response to TOU tariff.

Conversely, when ζ′ is normal or higher, the situation changes
significantly. The device capacity becomes precisely adequate for
maximizing the utilization of waste heat energy. This is because the
devices substantially increase the power of fans or pumps. Investing
in redundant devices to respond to TOU pricing becomes
uneconomical. During this time, the device power on a typical
day remains stable and close to the maximum power capacity.
Figure 9 displays the optimal operation solutions provided by the
model for a typical day when ζ′ is set to its pre-determined value.

TABLE 2 Optimal solution as the efficiency coefficient of the device changes.

Parameters WHS1 WHS2 WHS3

AR (kW) EHP (kW) ORC (kW) HE (kW) AR (kW) EHP (kW) ORC (kW) HE (kW) EHP (kW)

Pre-setting parameter 0 0 800 0 0 0 600 200 1,400

COPAR� 1.5 0 0 800 0 0 0 600 200 1,400

COPEHP� 9 0 600 600 0 0 800 400 0 1,400

εORC� 0.6 0 0 1,200 0 0 0 1,000 0 1,400

ηHE� 0.85 0 0 0 1,600 0 0 0 1,400 1,400

TABLE 3 Optimal solution as the resistance coefficient of the ORC unit changes.

Parameters WHS1 WHS2 WHS3

AR (kW) EHP (kW) ORC (kW) HE (kW) AR (kW) EHP (kW) ORC (kW) HE (kW) EHP (kW)

ζORC′� 0.3ζORC 0 0 800 0 0 0 800 0 1,400

ζORC′� 0.5ζORC 0 0 800 0 0 0 600 200 1,400

Pre-setting parameter 0 0 800 0 0 0 600 200 1,400

ζORC′� 1.5ζORC 0 0 0 1,400 0 0 0 1,200 1,400
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4.4 Numerical study 3: contrast experiment
on discrete and continuous device capacity

In this study, we conducted a comparison between discrete device
capacity and continuous device capacity to establish the practicality of
using discrete capacity. Complete data forWHRutilization are essential.
When dealing with real-world scenarios, the data should reflect the
actual performance of the candidate devices. These devices can be
standardized or customized. Standardized devices are more prevalent,
simpler, and widely adopted, while customization tends to be costlier
and time-consuming. The WHR planning and operation optimization

model proposed in (Wang et al., 2018) assumes continuous device
capacity, making it applicable only to customized WHR devices.
However, this approach lacks practicality as standardized devices are
more commonly employed. A standardized device implies a discrete
capacity. For instance, an EHPmay have standardized devices available
with output powers of 200 kW and 400 kW but finding a standardized
device with an output power of 333 kW can be challenging.

To compare the influences of discrete and continuous device
capacities on the optimization results, we increased the price of
natural gas from 3.0 CNY/Nm3 to 4.0 CNY/Nm3. The optimization
results are presented in Tables 6, 7. With discrete device capacity, waste

TABLE 4 Optimal solution as the investment cost of the ORC unit changes.

Investment cost (CNY/kW) WHS1 WHS2 WHS3

AR (kW) EHP (kW) ORC (kW) HE (kW) AR (kW) EHP (kW) ORC (kW) HE (kW) EHP (kW)

Pre-setting parameter 0 0 800 0 0 0 600 200 1,400

17,000 0 0 200 1,000 0 0 0 1,200 1,400

21,000 0 0 200 1,000 0 0 0 1,200 1,400

TABLE 5 Optimal solution as the resistance coefficient of the device changes.

Parameters WHS1 WHS2 WHS3

AR (kW) EHP (kW) ORC (kW) HE (kW) AR (kW) EHP (kW) ORC (kW) HE (kW) EHP (kW)

ζ′� 0 0 2000 600 200 0 1800 600 0 1,600

ζ ′� 0.1ζ 0 2000 600 200 0 1800 600 0 1,600

Pre-setting parameter 0 0 800 0 0 0 600 200 1,400

ζ ′� 1.5ζ 0 0 800 0 0 0 600 200 0

ζ ′� 4.5ζ 0 0 0 0 0 0 0 0 0

FIGURE 8
Optimal operating solution without considering the pressure loss caused by the device.
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heat can be recovered using one or two different types of devices. As the
natural gas price increases, the type of device with the highest capacity in
WHS1 and WHS2 transitions from the ORC unit to the HE, and
ultimately to the EHP. This trend aligns with the economic benefits of
the devices.

When the device capacity is continuous, all three WHS utilize a
single recovery device, with waste heat energy being recovered by
the device offering the highest economic benefits. Initially, an ORC
unit recovers the waste heat in WHS1 and WHS2. However, as the
price of natural gas reaches 3.2 CNY/Nm³, the HE device recovers all

FIGURE 9
Optimal operating solution under pre-setting parameter.

TABLE 6 Optimization solutions for a discrete device capacity.

Price of natural gas
(CNY/Nm3)

WHS1 WHS2 WHS3

AR (kW) EHP
(kW)

ORC
(kW)

HE (kW) AR (kW) EHP
(kW)

ORC
(kW)

HE (kW) EHP
(kW)

3.0 0 0 800 0 0 0 600 200 1,400

3.2 0 0 200 1,000 0 0 0 1,200 1,400

3.4 0 0 0 1,400 0 0 0 1,200 1,400

3.6 0 600 0 1,000 0 0 0 1,200 1,400

3.8 0 1,000 0 800 0 1,600 0 400 1,600

4.0 0 2,400 0 0 0 1800 0 200 1,600

TABLE 7 Optimization solutions for a continuous device capacity.

Price of natural gas
(CNY/Nm3)

WHS1 WHS2 WHS3

AR (kW) EHP
(kW)

ORC
(kW)

HE (kW) AR (kW) EHP
(kW)

ORC
(kW)

HE (kW) EHP
(kW)

3.0 0 0 811 0 0 0 710 0 1,488

3.2 0 0 0 1,334 0 0 0 1,167 1,488

3.4 0 0 0 1,334 0 0 0 1,167 1,488

3.6 0 0 0 1,334 0 0 0 1,167 1,488

3.8 0 2,381 0 0 0 2083 0 0 1,488

4.0 0 2,381 0 0 0 2083 0 0 1,488
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waste heat. Furthermore, when the price of natural gas exceeds
3.8 CNY/Nm³, the EHP device becomes the sole means of WHR
utilization. This pattern aligns with the observations made when the
device capacity is discrete. Nevertheless, if the capacity of a
standardized device is determined based on the optimization
solutions provided in Table 7, it may result in reduced waste heat
utilization or significant capacity redundancy. For instance, the
optimal capacity suggested by the results is 710 kW, but if the
available device capacities are only 600 kW or 800 kW, choosing
either option leads to drawbacks. Opting for 600 kW decreases the
waste heat utilization rate, while selecting 800 kW introduces
unnecessary redundancy, both resulting in reduced economic
efficiency.

The practicality of the proposed model is evidenced in two
aspects. First, it is common practice to use standardized devices
with discrete capacities for WHR utilization, emphasizing the
importance of using discrete device capacity. Second, if the
proposed model allows for small capacity intervals, it becomes
suitable for cases involving customized devices. As a result, our
model accommodates the planning of both standardized and
customized devices simultaneously, thereby establishing its
universal significance.

4.4 Numerical study 4: uncertainty analysis

After the system is put into operation, uncertainty mainly comes
from two aspects. On one hand, the fluctuations of fluid temperature
and volume flow rate in the WHS will affect the quantity of

recoverable waste heat energy and thus affect the operational
profitability of the system. On the other hand, the uncertainty of
equipment failure status will reduce the overall profitability of
the system. Based on the optimal device planning capacity
obtained from preset data, we have separately analyzed the
impact of these two factors through a large number of
repeated random experiments. The experiment was repeated
100,000 and 10,000 times respectively. Table 8 shows the
optimal device planning capacity of numerical study. Table 9
shows the distribution of daily operational benefit under random
fluctuations in the original baseline value of recoverable waste
heat at uncertainties of 5%, 10%, and 20%.

The relationship between the failure rate of conventional
power equipment and the operating time in its life cycle can be
known as the ‘‘bathtub curve’‘. In the situation of ignoring the
influence of weather conditions (or other conditions) on failure
rate and the debugging period. Set the failure probability δ1 of a
single device to 0.015 + 0.0315 ×year1.1 (Su et al., 2019).
Equipment maintenance time is set to 1 week. Table 10 shows
the distribution of accumulated system operational benefits during
a 20-year device service life under conditions of device failure
probabilities of δ1, 2 ×δ1, and 4 ×δ1.

Table 9 shows that when the amount of recoverable heat is
fluctuating within a range of ± 5% from the preset value,
97,713 experiments resulted in a degree of deviation of less than
3.0%. However, as the fluctuation range increases, this number will
decrease. When the fluctuation range expands to ± 20%, the
number will drop to 38,431. The number is only 84,236 even
with a deviation value of 10%. Therefore, as the fluctuation range
of the amount of recoverable heat increases, the result is more
likely to significantly deviate. But even with a fluctuation range of
± 20%, there is still a high probability of up to 84% that the
deviation of the result will not exceed 10%.

Table 10 shows that as the failure probabilities change, for a specific
failure probability value, the range of deviations remains relatively
constant. In these 10,000 repeated experiments, when the failure
probability is δ1, the degree of deviation of the results falls within the
range of 0%–0.8%. When the failure probability is 2 ×δ1, the results fall
within the range of 0.4%–1.2%. Furthermore, as the failure probabilities
increase, the degree of deviation will gradually increase. However, even

TABLE 9 The distribution of daily operational benefit under recoverable waste
heat uncertainties.

Uncertainty Degree of deviation

0.1% 0.5% 1.5% 3.0% 5.0% 10.0%

± 5% 5,063 25,203 79,314 97,713 100,000 100,000

± 10% 2,702 13,624 48,118 68,912 90,864 100,000

± 20% 1,098 5,417 28,256 38,431 53,554 84,236

TABLE 8 The optimal device planning capacity of numerical study.

WHS1 WHS2 WHS3

AR (kW) EHP (kW) ORC (kW) HE (kW) AR (kW) EHP (kW) ORC (kW) HE (kW) EHP (kW)

0 0 800 0 0 0 600 200 1,400

TABLE 10 The distribution of accumulated system operational benefits under different conditions of device failure probabilities.

Uncertainty Degree of deviation

0.2% 0.4% 0.6% 0.8% 1.0% 1.2% 1.4% 1.6% 1.8%

δ1 5 6,335 9,975 10,000 10,000 10,000 10,000 10,000 10,000

2 ×δ1 0 0 310 6,991 9,950 10,000 10,000 10,000 10,000

4 ×δ1 0 0 0 0 0 65 2,505 8,394 9,959
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under high failure probabilities 4 ×δ1 and a long maintenance cycle of
1 week, more than 99% of the experiments have deviations no greater
than 1.8%.

5 Conclusion

Waste heat recovery (WHR) plays a critical role in enhancing energy
efficiency and reducing carbon emissions. Unfortunately, prior studies
often neglected the impact on regular manufacturing operations and
assumed continuous device capacity, limiting their practicality and
authenticity. In response, we’ve introduced an innovative WHR
utilization planning method that factors in how WHR devices affect
manufacturing processes. Additionally, we’ve incorporated a discrete
capacity selection model for device selection, recognizing the constraints
of limited product options.

Our numerical study underscores the importance of considering
the influence of WHR utilization on regular manufacturing
operations. Overlooking this aspect may lead to an excessive
investment in redundant devices, especially in scenarios requiring
demand-side response to time-of-use (TOU) tariffs. Such device
selection can result in a significant increase in pressure loss,
ultimately compromising the investment’s profitability.

Furthermore, our research suggests that continuous device capacity
is preferable in customized scenarios where finding devices with precise
capacities is challenging, and compromises are necessary. However, it is
important to note that our proposed model is not confined to
standardized devices but also adaptable to situations with customized
devices, particularly when the capacity interval is small. Additionally, our
uncertainty experiments reveal that the actual performance deviation
from the model’s predictions remains relatively small, even under highly
uncertain conditions. Consequently, our model holds broad applicability
and can be tailored to diverse scenarios.

The proposed model optimizes device selection, capacity
configuration, and operational behavior for WHR in steel
factories. Our numerical study affirms its capacity to generate
adaptive optimal solutions, considering consumer-specific
environmental factors and device capabilities.
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Appendix

TABLE A1 Equipment parameters.

Items Installation cost (CNY/kW) Efficiency coefficient

AR 1,029 0.9

EHP 800 4.5

ORC 13,000 0.438

HE 300 0.72

Gas Boiler 0.8

Electric Refrigerator 3

TABLE A2 Other key parameters.

Items Value

J, calorific value of natural gas J) 3.6×106

ηdy , efficiency of fan and pump 0.85

v1, flow velocity of WHS1 (m/s) 18.77

v2, flow velocity of WHS2 (m/s) 17.54

v3, flow velocity of WHS3 (m/s) 2.00

ρ1 and ρ2, density of WHS1 and WHS2 (kg/m3) 0.6

ρ3, density of WHS3 (kg/m3) 1,000

q1, volume flow of WHS1 (m3/h) 650,000

q2, volume flow of WHS2 (m3/h) 1,500,000

q3, volume flow of WHS3 (m3/h) 1,000

α, discount factor 1
6000
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Nomenclature

α discount factor

Φ other operational parameters

N the number of WHS

Δt the dispatch time interval

Benef itopt the optimal operational benefits of the system with the given device capacity

C o stcon the discounted daily value of the cost of installation of devices

Bcold the net revenue from cold energy recovery by WHR devices

Bheat the net revenue from heat energy recovery by WHR devices

Bpower the net revenue from power recovery by WHR devices

Ct the net cold energy recovered by WHR devices in the WHR system

Ht the net heat energy recovered by WHR devices in the WHR system

Pt the net power recovered by WHR devices in the WHR system

COPi,AR the COP of the AR of the ith WHS

ηi,AR the electric power consumption coefficient of the AR of the ith WHS

COPi,EHP the COP of the EHP of the ith WHS

ηi,ORC the efficiency of the ORC unit of the ith WHS

ηi,HE the efficiency of the HE of the ith WHS

βi,j the planning capacity of the j-type device in the ith WHS

λi,j the unit installation cost of the j-type device in the ith WHS

Λi,j the discrete capacity of the j-type device in the ith WHS

bi,j the number of j-type device allowed to install in the ith WHS

ki,j the ratio between the lower limit of output power and planning capacity of j-type device in the ith WHS

μi,ORC the ratio between the upper limit ramp rate and planning capacity of the ORC in the ith WHS

Ci,AR,t the output cold power of AR in the ith WHS at time slot t

Pi,AR,t the electrical power consumption of AR in the ith WHS at time slot slot t

Hi,EHP,t the output heat power of EHP in the ith WHS at time slot t

Pi,EHP,t the electrical power consumption of EHP in the ith WHS at time slot t

Pi,ORC,t the output power of ORC unit in the ith WHS at time slot t

ΔPi,ORC,max the maximum ramp rate of ORC unit in the ith WHS

Hi,HE,t the output heat power of HE in the ith WHS at time slot t

Qi,j,t the waste heat power consumption of j-type device in the ith WHS at time slot t

Parameter of the Fluid

vi,t the velocity of the fluid in the ith WHS at time slot t

qi,t the volume of the fluid in the ith WHS at time slot t

ρi,t the density of the fluid in the ith WHS at time slot t

ζ i the total local resistance coefficient of the WHR devices in the ith WHS

ζ i,j the local resistance coefficient of the j-type device in the ith WHS

Δpi,t the pressure loss of the fluid in the ith WHS at time slot t

ηi,dy the efficiency of fans or pumps in ith WHS
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Pi,add,t the additional power consumption of the fans or pumps in the ith WHS at time slot t

Subscript

i the serial number of WHS, i ∈ 1, 2, · · ·, N{ }

j the type of devices, j ∈ AR, EHP,ORC,HE{ }

t tth period of the dispatch cycle

min lower limit of parameter

max upper limit of parameter

Other Function

Of () output the optimal operational benefits of WHR system according to βi,j and Φ

Obj() output the optimal solution according to its independent variables

argminObj
Χ () Output the optimal solution ‘x’ of the optimization problem whose objective function is ‘Obj’ and the boundary condition set is ϒ

Acronyms

WHR Waste Heat Recovery

WHS Waste Heat Source

COP Coefficient of Performance

AR Absorption Refrigeration

EHP Electric Heat Pump

ORC Organic Rankine Cycle

HE Heat Exchanger

CCHP Combined Cooling, Heating, and Power

TOU Time-of-Use
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