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Introduction 

Mitochondria are double membrane-bound intracellular 

organelles essential for energy production in most eukary-

otic cells [1]. Besides adenosine triphosphate (ATP) pro-

duction, mitochondria also participate in various cellular 

processes such as redox homeostasis, intracellular calcium 

handling, cell differentiation, proliferation, and death [2]. 

A healthy and well-functioning mitochondrial population, 

Most eukaryotic cells have mitochondrial networks that can change in shape, distribution, and size depending on cellular metabolic 
demands and environments. Mitochondrial quality control is critical for various mitochondrial functions including energy production, 
redox homeostasis, intracellular calcium handling, cell differentiation, proliferation, and cell death. Quality control mechanisms within 
mitochondria consist of antioxidant defenses, protein quality control, DNA damage repair systems, mitochondrial fusion and fission, 
mitophagy, and mitochondrial biogenesis. Defects in mitochondrial quality control and disruption of mitochondrial homeostasis are 
common characteristics of various kidney cell types under hyperglycemic conditions. Such defects contribute to diabetes-induced pa-
thologies in renal tubular cells, podocytes, endothelial cells, and immune cells. In this review, we focus on the roles of mitochondrial 
quality control in diabetic kidney disease pathogenesis and discuss current research evidence and future directions. 
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achieved by so-called mitochondrial quality control, is 

therefore vital for cellular health [3]. Biogenesis, proteosta-

sis, and mitophagy are critical components of mitochon-

drial quality control, and failure of mitochondrial quality 

control failure has been implicated in several human dis-

eases [2,4]. 

Diabetes mellitus alters available energy substrates and 

results in excessive oxidative stress, followed by increased 

levels of inflammatory and profibrotic cytokines and cell 
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death [5]. Abnormal mitochondria have been observed in 

renal biopsy specimens from diabetes patients [6–9]. Urine 

metabolomic analysis has revealed universal depression of 

mitochondrial activity in patients with diabetic kidney dis-

ease (DKD) compared to diabetic patients without kidney 

disease [6]. Importantly, recent studies have demonstrated 

that mitochondrial dysfunction or abnormalities can medi-

ate the initiation or aggravation of kidney injury in patients 

with diabetes [2,4]. In this review, we focus on the roles of 

mitochondrial quality control in DKD pathogenesis and 

discuss current research evidence and future directions. 

Mitochondrial quality control 

Mitochondrial quality control mechanisms comprise mo-

lecular and organelle quality control mechanisms that in-

teract to maintain a healthy mitochondrial population [2,4]. 

Molecular-level mechanisms are composed of antioxidant 

defenses, protein quality control, and a DNA damage re-

pair system (Fig. 1). Organelle-level mechanisms consist of 

mitochondrial fusion, fission, mitophagy, and mitochon-

drial biogenesis (Fig. 2). 

Mitochondria are major sources of reactive oxygen spe-

cies (ROS) due to oxidative phosphorylation, which is the 

metabolic process that results in ATP synthesis. In this 

context, mitochondria contain are enriched in antioxidants 

for redox homeostasis. When the balance between mito-

chondrial ROS production and the antioxidant system is 

disrupted, an oxidative stress situation develops with dele-

terious effects on organisms [10]. Mitochondria function as 

ROS amplifiers due to mitochondria-to-mitochondria and 

mitochondria-to-different ROS sources crosstalk with pos-

itive feedback [11]. Excessive ROS can lead to impairment 

of the electron transport chain (ETC) and low ATP produc-

tion as a result of reduced cytochrome c oxidase activity 

[10]. In addition, defects in the ETC across the mitochon-

drial inner membrane can induce the loss of mitochondrial 

membrane potential and leakage of proapoptotic proteins 

into the cytosol [12]. Accumulation and decompartmen-

talization of mitochondrial ROS can result in oxidation of 

proteins, lipids, and DNA, leading to cellular dysfunction 

and disruption of crucial cellular signaling pathways [2,10]. 

The mitochondrial protein quality control system con-

sists of two parts: the ubiquitin-proteosome system and 

chaperones [2,13]. Phosphatase and tensin homolog-in-

duced putative kinase 1 (PINK1)-parkin signaling also 

contributes to mitochondrial protein quality control by in-

ducing the formation of mitochondrial-derived vesicles or 

mitophagy [14]. Mitochondrial unfolded protein response 

(mtUPR) refers to the upregulation of mitochondrial pro-

teases and chaperone gene transcription. This response 

is activated when the amount of unfolded or misfolded 

mitochondrial proteins overwhelms the capacity of the mi-

tochondrial protein quality control system. Therefore, any 

defects in the mitochondrial protein quality control system 

are associated with failure of the mtUPR, and result in mi-

tochondrial dysfunction and cell death [15]. 

Mitochondrial genome encodes 13 polypeptides essen-

tial for oxidative phosphorylation and ATP synthase; failure 

to repair damaged mitochondrial DNA can therefore result 

in insufficient ATP production and jeopardize cell survival 

[16]. Mitochondrial DNA has a 10- to 20-fold higher rate of 

mutagenesis than nuclear DNA because of its susceptibility 

to oxidative stress [17]. Absence of histone proteins, prox-

imity to ROS production sites, and specific DNA replication 

through asymmetric patterns are possible explanations for 

the vulnerability of mitochondrial DNA to mutagenesis [2]. 

Mitochondrial DNA is repaired in the same manner as nu-

clear DNA [18]. 

Mitochondria maintain their abundance and functions 

through constant fusion and fission of the mitochondrial 

network [2]. Mitochondrial fusion allows the exchange 

of metabolites and DNA between mitochondria for their 

health, especially under metabolic and environmental 

stress [2,19]. In contrast, mitochondrial fission separates 

damaged and dysfunctional mitochondria from the mito-

chondrial network as a defense mechanism essential for 

mitochondrial regeneration, redistribution, and prolifera-

tion [2,20]. These dynamic mitochondrial morphological 

changes are controlled by expression of associated modu-

lators and their posttranslational modification [2,3,19,20]. 

Mitochondrial fusion results in elongation of the mito-

chondrial network, which is associated with higher ATP 

production and maintenance of cell viability, whereas 

mitochondrial fission leads to short mitochondria, mito-

chondrial depolarization, and ROS overproduction with 

low ATP synthesis [3].  

Mitophagy can selectively remove defective or surplus 

mitochondria from the mitochondrial network [21]. Several 

pathways are involved in labeling mitochondria and trans-
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Figure 1. Molecular-level mechanisms of mitochondrial quality control. (A) Under normal physiological conditions, superoxide (O2-) 
is produced by mitochondrial ETC complexes, particularly complexes I and III, during ATP production. Subsequently, superoxide is trans-
formed by antioxidant enzymes into less-damaging reactive oxygen species such as hydrogen peroxide (H2O2). Superoxide dismutase 2 
(SOD2) catalyzes the conversion of superoxide into oxygen and hydrogen peroxide. Subsequently, GPx and Prx further reduce hydrogen 
peroxide to water (H2O). (B) The mitochondrial protein quality control system consists of two parts: the ubiquitin-proteosome system 
and chaperones. Heat-shock protein (HSP) 70 and HSP60 chaperone systems are localized to the matrix. They can aid in mitochondrial 
protein transport, folding, and clearance. Damaged or mistargeted mitochondrial proteins are eliminated by several proteases, includ-
ing Lon protease in the matrix, ATP-dependent proteases in the inner mitochondrial membrane, and high-temperature requirement 
protein A2 in the intermembrane spaces. (C) Mitochondrial DNA integrity is maintained in the same manner as that of nuclear DNA, 
namely base excision repair, mismatch repair, homologous recombination, and non-homologous end-joining.
ATP, adenosine triphosphate; CoQ, coenzyme Q; Cyt c, cytochrome c; ETC, electron transport chain; GPx, glutathione peroxidases; mtD-
NA, mitochondrial DNA; Prx, peroxiredoxin.

ferring them to autophagosomes [22]. The ubiquitin-me-

diated pathway is regulated by PINK1 and the E3-ubiquitin 

ligase parkin [2]. In the ubiquitin-independent recep-

tor-mediated mitophagy pathway, autophagy receptor pro-

teins can directly bridge with outer mitochondrial mem-

brane proteins and microtubule-associated protein 1A/1B-

light chain 3 (LC3B) [21,22]. 

Mitochondrial biogenesis is a complex process in which 

mitochondria increase in size and number to meet cellular 

energy demands [2]. Both mitochondrial DNA and nuclear 

DNA encode mitochondrial proteins. Therefore, elaborate 

coordination of cytoplasmic and mitochondrial protein syn-

thesis is necessary [23]. Peroxisome proliferator-activated 

receptor-γ coactivator 1α (PGC1α) plays an important role 
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Figure 2. Organelle-level mechanisms of mitochondrial quality control. Mitochondrial fusion involves three GTPases. (A) MFN1 and 
MFN2 bind to OMM. OMM then binds to two different mitochondria. OPA1 protein plays an important role in the fusion and remodeling 
of IMM and cristae. Mitochondrial fragmentation is a multistep process regulated by Drp1. First, mtDNA marks the site for endoplasmic 
reticulum (ER) contact and contractile sites. Second, several outer membrane-anchoring proteins such as Fis1, Mff, MiD49, and MiD51 
recruit Drp1 to participate in ER-mediated contraction. (B) In damaged or depolarized mitochondria, PINK1 aggregates on the OMM 
where PINK1 recruits and phosphorylates parkin and Ub for mitophagy initiation. Once activated, the PINK1-parkin signaling pathway 
results in poly-ubiquitination of the OMM protein, which subsequently recruits autophagy receptor proteins and links to LC3B to form 
mitophagosomes. In the Ub-independent receptor-mediated mitophagy pathway, the autophagy receptor protein directly connects 
OMM with LC3B. Various receptor proteins such as BNIP3 and FUNDC1 have been identified. (C) PGC1α is a key regulator of mitochon-
drial biogenesis. PGC1α coactivates NRF1, NRF2, PPARα, PPARγ, and ERRs. NRF and ERR then induce transcription of TFAM, a direct 
transcription factor of the mitochondrial genome. AMPK promotes mitochondrial biosynthesis through PGC1α phosphorylation. NAD-de-
pendent deacetylase SIRT1 or cGMP acts as a positive regulator of PGC1α through deacetylation.
AMPK, AMP-activated protein kinase; BNIP3, BCL-2/adenovirus E1B 19 kDa protein-interacting protein 3; cGMP, cyclic guanosine mo-
nophosphate; Drp1, dynamin-related protein 1; ERR, estrogen-related receptor; Fis1, mitochondrial fission 1 protein; FUNDC1, FUN14 
domain containing 1; IMM, inner mitochondrial membrane; LC3B, autophagosome microtubule-associated protein 1A/1B light chain 
3B; Mff, mitochondrial fission factor; MFN, mitofusin; MiD, mitochondrial dynamics protein; mtDNA, mitochondrial DNA; NAD, nicotin-
amide adenine dinucleotide; NRF1, nuclear respiratory factor 1; NRF2, nuclear factor erythroid 2-related factor 2; OMM, outer mito-
chondrial membrane; OPA1, optic atrophy 1; P, phosphorylation; PGC1α, peroxisome proliferator-activated receptor-γ coactivator 1α; 
PINK1, phosphatase and tensin homolog-induced putative kinase 1; PPAR, peroxisome proliferator-activated receptor; SIRT1, sirtuin 1; 
TFAM, mitochondrial transcription factor A; Ub, ubiquitin.

in directing this process [2,23]. PGC1α activity is controlled 

at both transcriptional and posttranslational levels [24]. 

Roles of mitochondrial quality control in diabetic 
kidney disease 

After the heart, the kidneys, which function to remove 

waste products from blood, regulate fluid and electrolyte 

balance, and maintain blood pressure, contain the second 

largest number of mitochondria [3,23]. More than 20 types 

of specialized cells in mammalian kidney fulfill these im-

portant roles in the human body [25]. The nephron is the 

microscopic, functional unit of the kidney. Normally about 

1 to 1.5 million nephrons are found in one kidney [25]. A 
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nephron comprises a renal corpuscle (where urine forma-

tion begins by ultrafiltration) and a renal tubule responsi-

ble for absorption and excretion of various substances. In 

the renal corpuscle, fenestrated endothelium, glomerular 

basement membrane, and the foot process of podocytes 

comprise the filtration barrier and confer the nephron 

with charge and size-permselectivity. Renal tubules consti-

tute approximately 90% of renal cortical cells and link the 

glomerulus to a collecting system. Defects in the filtration 

barrier and loss of nephrons result in proteinuria and a 

decreased glomerular filtration rate [26]. DKD is associated 

with a spectrum of characteristic morphologic changes of 

the glomeruli, tubules, interstitium, and vasculature [1]. 

Renal tubular cells 

Renal tubular cells are rich in mitochondria, which are re-

quired to generate ATP and power tasks such as active re-

absorption of sodium, glucose, and other metabolites from 

urine [5]. Diabetic milieu can promote renal tubular cells 

to utilize more ATP than usual to increase active reuptake 

of urinary metabolites, particularly glucose reabsorption 

via the sodium-glucose cotransporter 2 (SGLT2). Due to 

the increased intracellular energy requirement, transport 

of fuel substrates such as free fatty acids to renal tubular 

cells is significantly increased in patients with diabetes [27]. 

Thus, any cellular event that decreases the fuel supply or 

increases oxygen demand (i.e., supply-demand imbalance) 

is an important pathophysiological contributor to diabetic 

tubulopathy in DKD [28]. Interestingly, the properties of 

mitochondria in proximal and distal tubules differ [29]. 

Studies using multiphoton live imaging of rat kidneys have 

shown that mitochondria in proximal tubules are more nu-

merous but have lower membrane potentials and greater 

alterations in ROS generation upon ETC inhibition than 

those in distal tubules [29]. These properties may account 

for the clinical fragility of proximal tubules when mito-

chondrial homeostasis is disrupted. Fig. 3 shows how mi-

tochondrial quality control in renal tubule cells is altered 

under high glucose conditions. 

Excessive mitochondrial ROS can be induced by hy-

perglycemic stimuli, and these can contribute to diabetic 

tubulopathy [30]. An experimental study using rat renal 

proximal tubular cells demonstrated that high glucose 

media can induce the overproduction of mitochondrial su-

peroxide, change the mitochondrial membrane potential, 

and decrease ATP generation with complex III dysfunction, 

culminating in tubular cell death [30]. It has been suggest-

ed that renal mitochondrial oxidative stress is exacerbated 

by reduced sirtuin 3 activity in Zucker diabetic fat rats 

(ZDFRs) [31]. Conversely, a CD38 (cluster of differentiation 

38) inhibitor was shown to restore the intracellular NAD+/

NADH ratio and sirtuin 3-mediated mitochondrial antioxi-

dative enzyme activity in the kidneys of ZDFRs [32]. Sirtuin 

3 functions as an antioxidant in mitochondria by activating 

isocitrate dehydrogenase 2 and superoxide dismutase 2 

[32]. A recent study reported that hypoxia-inducible factor 

1 (HIF1) is involved in mitochondrial redox homeostasis 

in diabetes [33]. Zheng et al. [33] showed that HIF1 activity 

was suppressed and that blood ROS levels increased in 

response to hypoxic exposure in patients with type 1 dia-

betes. They also demonstrated that hyperglycemia could 

diminish the HIF1 response in renal tubular cells under 

hypoxia and in kidneys from diabetic animals. Low HIF1 

levels are associated with mitochondrial oxidative stress 

through increased mitochondrial respiration. In addition, 

it has been suggested that HIF1 can improve mitochondrial 

homeostasis via heme oxygenase 1 in renal tubules in dia-

betic environments [34]. 

Mitochondrial dynamics are profoundly altered in DKD. 

An increase in mitochondrial fragmentation has been 

shown to be an early phenomenon in renal tubules of 

experimental diabetes models [35]. Mitofusin (MFN) 1, 

a mitochondrial fusion-related protein, has been shown 

to be downregulated whereas dynamin-related protein 1 

(Drp1), a pro-fission protein, has been shown to be upreg-

ulated in human renal proximal cells (HKC8) under high 

glucose conditions as well as in the kidneys of diabetic 

mice [36]. Several mechanisms have been suggested to 

mediate mitochondrial fragmentation in diabetic tubular 

injury [37–39]. Liu et al. [37] demonstrated that hypergly-

cemia can inhibit AMP-activated protein kinase (AMPK) 

phosphorylation and induce an increase in SP1 (specificity 

protein 1) followed by PGAM5 (phosphoglycerate mutase 

family member 5) upregulation, resulting in Drp1-depen-

dent mitochondrial fission in diabetic renal tubular injury. 

Zhang et al. [38] demonstrated that stromal cell-derived 

factor-1α (SDF-1α)/CXC chemokine receptor 4 (CXCR4)/

signal transducer and activator of transcription 3 (STAT3) 

signaling is associated with mitochondrial dysfunction in 
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Figure 3. Altered mitochondrial quality control in renal tubule cells under high glucose conditions. Under high glucose conditions, 
the activity of AMPK, the major energy-sensing enzyme, is reduced and phosphorylation of PGC1α, the master regulator of mitochon-
drial gene expression, is suppressed, resulting in impaired mitochondrial biogenesis and low mitochondrial mass. A decrease in SIRT3 
activity after CD38 upregulation is associated with impaired antioxidant capacity and excessive ROS production in mitochondria. Re-
duced HIF1 expression is also associated with mitochondrial ROS overproduction under high glucose conditions. Overexpression of 
MIOX can enhance the effects of high glucose by inhibiting the PINK1/parkin pathway. TXNIP can inhibit autophagy/mitophagy flux via 
mTOR signaling in renal tubular cells under high glucose conditions. The lncRNA NEAT1 inhibits mitophagy via the miR150-5p-Drp1 
axis. Upregulation of TIPE1 in tubular epithelial cells disrupts PHB2-mediated mitophagy. PACS2 downregulation interferes with MAM 
integrity and suppresses mitophagy progression. Upregulation of PGAM5 can promote Drp1-dependent mitochondrial fission. Activa-
tion of SDF-1α/CXCR4/STAT3 signaling by hyperglycemic conditions increases mitochondrial fission through OPA1 inhibition. p66Shc 
mediates hyperglycemia-induced mitochondrial fragmentation and apoptosis signaling.
AMPK, AMP-activated protein kinase; ATP, adenosine triphosphate; CD38, cluster of differentiation 38; CXCR4, CXC chemokine recep-
tor 4; Drp1, dynamin-related protein 1; ETC, electron transport chain; ERR, estrogen-related receptor; Glu, glucose; HIF1, hypoxia-induc-
ible factor 1; lncRNA NEAT1, long noncoding RNA nuclear paraspeckle assembly transcript 1; MAM, mitochondrial-associated endo-
plasmic reticulum membrane; MFN1, mitofusin protein 1; MIOX, myo-inositol oxygenase; miR150, microRNA 150; mTOR, mammalian 
target of rapamycin; NRF1, nuclear respiratory factor 1; NRF2, nuclear factor erythroid 2-related factor 2; OPA1, optic atrophy 1; P, 
phosphorylation; PACS2, phosphofurin acidic cluster sorting protein 2; Parkin, E3 ubiquitin-protein ligase parkin; PGAM5, phosphoglyc-
erate mutase family member 5; PGC1α, peroxisome proliferator-activated receptor γ coactivator 1α; PHB2, prohibitin 2; PINK1, phos-
phatase and tensin homolog-induced putative kinase 1; ROS, reactive oxygen species; SDF-1α, stromal cell-derived factor-1α; SGLT2, 
sodium glucose cotransporter 2; SIRT3, sirtuin 3; STAT3, signal transducer and activator of transcription 3; TFAM, mitochondrial tran-
scription factor A; TIPE, tumor necrosis factor alpha-induced protein 8-like 1; TXNIP, thioredoxin interacting protein.
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diabetic tubulopathy. In this regard, sitagliptin, a DPP4 (di-

peptidyl peptidase 4) inhibitor, can improve mitochondrial 

dynamics in diabetic tubular injury by restoring SDF-1α/

CXCR4/STAT3 signaling and activating OPA1 (optic atro-

phy 1). Increased mitochondrial fragmentation and chang-

es in MFN1 and mitochondrial fission 1 protein (Fis1) ex-

pression have also been observed in proximal tubular cells 

of a DKD patient [39]. It has been suggested that p66Shc (Src 

homologous and collagen) can mediate hyperglycemia-in-

duced mitochondrial fragmentation and apoptosis signal-

ing [39]. 

Mitophagy plays a protective role against cell damage. 

Inappropriate mitophagy is associated with hyperglyce-

mia-induced cytotoxicity [1,21] while reduction of mitoph-

agy is associated with accumulation of intracellular mito-

chondrial ROS. Overexpression of myo-inositol oxygenase 

(MIOX), an enzyme that inhibits PINK1-parkin-mediated 

mitophagy, increased mitochondrial ROS production in 

high glucose-treated renal tubular cells [7]. In contrast, mi-

tochondrial-targeting antioxidant mitoquinone mesylate 

was shown to restore mitophagy activity and reduce tubu-

lar cell death through restoration of nuclear factor eryth-

roid 2-related factor 2 (NRF2) and PINK1 activity in an 

experimental DKD model [40]. Studies on the mechanism 

of mitophagy regulation in diabetic tubulopathy are ongo-

ing. Thioredoxin interacting protein has been reported to 

inhibit autophagy/mitophagy flux via mammalian target 

of rapamycin signaling in renal tubular cells under high 

glucose conditions [41]. Overexpression of optineurin, a 

coordinator protein linking damaged mitochondria and 

autophagy, was shown to promote mitophagy and relieve 

cellular senescence in renal tubular cells of diabetic mice 

[42]. It has been suggested that an increase in the long non-

coding RNA (lncRNA) NEAT1 (nuclear paraspeckle assem-

bly transcript 1) can inhibit mitophagy via the miR150-5p-

Drp1 axis in high glucose-exposed HK2 human proximal 

tubular cells [43]. Recent studies have shown that upregula-

tion of TIPE1 (tumor necrosis factor alpha-induced protein 

8-like 1) in tubular epithelial cells can interfere with PHB2 

(prohibitin 2)-mediated mitophagy and exacerbate diabet-

ic tubulopathy [44]. Melatonin, a pineal hormone involved 

in regulation of circadian rhythms, can ameliorate diabetic 

tubulopathy via the AMPK-PINK1-mitophagy pathway in 

HK2 cells and streptozotocin (STZ)-induced diabetic mice 

[45]. 

Mitochondria-associated endoplasmic reticulum (ER) 

membranes (MAMs) play a critical role in mitochondrial 

quality control during ER stress [46]. MAMs are a region of 

interaction between the ER and mitochondria. They have 

diverse functions such as nutrient and hormone signaling, 

regulation of calcium homeostasis, autophagy, and apop-

tosis [46]. Li et al. [46] demonstrated that phosphofurin 

acidic cluster sorting protein 2 (PACS-2) expression is 

decreased in renal tubules of patients with DKD and that 

PACS-2 overexpression in HK2 cells can restore MAM in-

tegrity and promote the formation of mitophagosomes. 

Analytical studies of human and animal samples have 

demonstrated inefficient mitochondrial bioenergetics and 

reduced functional mitochondrial mass in DKD [6,47,48]. 

PGC1α, a key regulator of mitochondrial biogenesis, is 

highly expressed in renal proximal tubules where mito-

chondria are abundant. Notably, failure of PGC1α to be 

upregulated under hyperglycemic circumstances can ag-

gravate diabetic tubulopathy [49]. Therefore, enhancing 

PGC1α activity could be a potential therapeutic strategy for 

treating DKD. Reduction of PGC1α expression is accompa-

nied by aberrant mitochondrial dynamics, excessive ROS 

production, and tubular cell death, whereas administration 

of the pharmacological PGC1α activators 5-aminoimidaz-

ole-4-carboxamide-1-β-D-ribofuranoside (AICAR) or met-

formin can restore mitochondrial homeostasis and reduce 

apoptosis. Beneficial effects of AICAR and metformin have 

been confirmed in STZ-induced diabetic mice; AICAR 

and metformin increase renal PGC1α expression, improve 

mitochondrial fragmentation and ROS production, and 

improve hyperglycemia-related tubular damage and renal 

fibrosis [47]. In addition, chloroquine and amodiaquine 

(traditionally used to treat malaria) can effectively abrogate 

downregulation of AMPK and PGC1α phosphorylation due 

to hyperglycemia, restore mitochondrial homeostasis, and 

alleviate albuminuria and renal histopathological changes 

in the kidneys of diabetic mice [48,50]. 

Interestingly, the PGC1α-induced increase in mitochon-

drial biogenesis affects mitochondrial ROS generation, dy-

namics, and autophagic elimination of mitochondria, sug-

gesting complex, synergistic interactions among various 

mechanisms for adequate quality control of mitochondria 

in diabetic tubulopathy. 
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Podocytes 

Podocyte injury is a critical event in the development of 

DKD [51]. As podocytes are terminally differentiated cells, 

their loss is irreversible, which can lead to functional de-

cline of the glomerular filtration barrier [52]. Podocytes are 

rich in mitochondria because they require high levels of 

energy to maintain the foot processes [52]. As with renal tu-

bular cells, podocytes under high glucose conditions show 

defects in mitochondrial quality control such as mitochon-

drial ROS overproduction, abnormal dynamics, inappro-

priate mitophagy, and failure of biogenesis. Fig. 4 shows 

how mitochondrial quality control is altered in podocytes 

under high glucose conditions. 

Hyperglycemia can induce excessive ROS production 

from mitochondria and contributes to podocyte apoptosis 

coinciding with albuminuria [53]. Peroxisome prolifera-

tor-activated receptor (PPAR) signaling is downregulated 

in podocytes under high glucose conditions. Use of PPAR 

activators such as thiazolidinediones is one strategy for 

recovery of insulin resistance in diabetic patients. Phar-

macologic augmentation of the PPARγ-Klotho axis can 

help attenuate diabetic podocytopathy via suppression 

of mitochondrial ROS overproduction and activation of 

NRF2 signaling [54–56]. NADPH oxidase 4 (NOX4) is the 

principle non-mitochondrial ROS source in diabetic kid-

neys. You et al. [57] demonstrated that hydrogen peroxide 

produced by NOX4 can inhibit mitochondrial fumarate hy-

dratase followed by upregulation of HIF1α signaling, which 

is associated with inflammatory and profibrotic cytokines. 

Interestingly, NOX4 also appears to be present in the mito-

chondria of podocytes [58]. Overproduction of ROS from 

mitochondrial and non-mitochondrial sources can oxidize 

cardiolipin, a mitochondrial membrane-specific phospho-

lipid, which is an initiator for the NLR family pyrin domain 

containing 3 (NLRP3) inflammasome [59]. Activation of the 

NLRP3 inflammasome can lead to caspase 1-dependent 

release of proinflammatory cytokines. Persistent inflam-

mation induced by the NLRP3 inflammasome pathway 

plays an important role in the pathophysiology of diabetic 

podocytopathy [60].  

Unopposed mitochondrial fission in podocytes is a 

pathognomonic feature of diabetic podocytopathy and is 

present before the clinical manifestations of DKD [61,62]. 

When the mitochondrial fission regulator Drp1 is deleted 

in podocytes, albuminuria is decreased and major patho-

logic features of DKD are improved in mice [62]. Wang et al. 

[61] found that Rho-associated coiled-coil containing pro-

tein kinase 1 (ROCK1) contributes to Drp1 recruitment to 

mitochondrial membrane by phosphorylation of Drp1 and 

aggravates mitochondrial fission and ROS production in 

podocytes under high glucose conditions. Podocyte-specif-

ic deletion of ROCK1 can inhibit apoptosis and mitochon-

drial ROS production [61]. MFN2, a fusion-related protein, 

is located at ER membranes and regulates the dynamics of 

MAMs [8]. Cao et al. [63] demonstrated that MFN2 expres-

sion was low in the podocytes of DKD patients and that 

MFN2 overexpression attenuated the high glucose effect in 

an animal model. They also confirmed that MFN2-protein 

kinase RNA-like ER kinase (PERK)-regulated MAMs and 

had antiapoptotic effects in podocytes under hyperglyce-

mic conditions [8]. 

A few studies have investigated the role of mitophagy 

in diabetic podocytopathy. Mitophagy is an important 

defense mechanism during cellular stress, and inappro-

priate mitophagy can exacerbate podocyte injury [64,65]. 

Forkhead transcription factor O1 (FoxO1) is inactivated by 

the PI3K/Akt (phosphatidylinositol-3-kinase/Akt) pathway 

under high glucose conditions. FoxO1 upregulation can 

increase PINK1/parkin-dependent mitophagy to restore 

podocyte damage in STZ-induced diabetic type 1 diabetic 

mice [64]. Progranulin is an autocrine growth hormone 

involved in development, inflammation, cell proliferation, 

and protein homeostasis [65]. Recombinant human pro-

granulin treatment was shown to facilitate mitophagy and 

mitochondrial biogenesis in the podocytes of diabetic mice 

through progranulin-sirtuin1-PGC1α/FoxO1 signaling [65]. 

Mitochondrial biogenesis is suppressed in podocytes un-

der high glucose conditions [9,66]. Reduced expression of 

PGC1α and mitochondrial dysfunction have been observed 

in the podocytes of DKD animal models [9,66]. Analysis 

of kidney biopsies from patients with DKD revealed a re-

duction in PGC1α expression in micro-dissected glomeruli 

[67]. As a positive control for PGC1α, podocyte-specific 

knockdown of sirtuin1 can increase susceptibility to di-

abetic nephropathy in a murine model [68]. In contrast, 

podocyte-specific sirtuin1 overexpression can ameliorate 

podocyte loss and DKD progression [69]. lncRNA taurine 

upregulated gene 1 (TUG1) is a recently discovered PGC1α 

regulator. Podocyte-specific overexpression of TUG1 in 
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Figure 4. Altered mitochondrial quality control in podocytes under high glucose conditions. In a diabetic state, the expression of 
PGC1α is usually suppressed and its downstream signaling networks are also altered. Downregulations of SIRT1 and TUG1 are asso-
ciated with reduced expression of PGC1α. Reduced TGR5 mRNA transcription inhibits SIRT1, SIRT3, and NRF1, leading to reduced 
mitochondrial biosynthesis and overproduction of mitochondrial ROS. Upregulation of A3AR is associated with suppression of PGC1α. 
Nuclear translocation of TFEB can increase the expression of PGC1α and antioxidant enzymes. Hyperglycemia-induced mGPDH down-
regulation can inhibit PGC1α activity by modulating receptors for RAGE signaling. ROCK1 phosphorylates Drp1 and aggravates mito-
chondrial fragmentation. MFN2 is decreased in podocytes of diabetic kidney disease patients. MFN2 is localized in the endoplasmic 
reticulum membrane and can regulate MAM dynamics. As FoxO1 mediates PINK1 transcription, phosphorylated and inactivated FoxO1 
under high glucose conditions can contribute to mitophagy reduction. The PPARγ-Klotho axis can help attenuate diabetic podocytop-
athies by inhibiting mitochondrial ROS overproduction and activation of NRF2 signaling. NOX4 can produce excess ROS under high 
glucose conditions and is associated with HIF1α signaling. Excessive ROS can activate the NLRP3 inflammasome to induce caspase 
1-dependent release of proinflammatory and profibrotic cytokines.
A3AR, A3 adenosine receptor; Drp1, dynamin-related protein 1; ETC, electron transport chain; FoxO1, forkhead box protein O1; Glu, 
glucose; GLUT, glucose transporter; HIF1α, hypoxia-inducible factor 1α; lnc, long noncoding; MAM, mitochondrial-associated endoplas-
mic reticulum membrane; MFN2, mitofusin protein 2; mGPDH, mitochondrial glycerol-3-phosphate dehydrogenase; mRNA, messenger 
RNA; NLRP3, NLR family pyrin domain containing 3; NOX4, NADPH oxidase 4; NRF1, nuclear respiratory factor 1; NRF2, nuclear factor 
erythroid 2-related factor 2; P, phosphorylation; PGC1α, peroxisome proliferator-activated receptor γ coactivator 1α; PINK1, phospha-
tase and tensin homolog-induced putative kinase protein 1; PPARγ, peroxisome proliferator-activated receptor γ; RAGE, receptor for 
advanced glycation end products; ROCK1, Rho-associated coiled-coil-containing protein kinase 1; ROS, reactive oxygen systems; SIRT, 
sirtuin; TFEB, transcription factor EB; TGR5, G protein-coupled receptor 5; TUG1, taurine upregulated 1.

Glu
Glu

Glu
Glu

Glu

Glu

Glu

Glu GluGlu

Glu
Glu

Glu

Glu

PGC1α

NRF2

TFAM

TFEB

PPARγ-Klotho

FoxO1 ROCK1

NLRP3 inflammasome

Drp1

FissionFusion MitophagyBiogenesis

ROS overproduction

PINK1

MAMs

MFN2

PKM2

mGPDH

A3AR
SIRT1 NOX4

SIRT3

TGR5

PGC1α

IncTUG1

High glucose condition

554 www.krcp-ksn.org

Kidney Res Clin Pract 2023;42(5):546-560



diabetic mice restored PGC1α expression, leading to im-

proved mitochondrial ATP production along with amelio-

ration of diabetic glomerulopathy [9]. Proteomic analysis 

using glomeruli from individuals with or without DKD 

has revealed that levels of pyruvate kinase M2 (PKM2), a 

rate-limiting glycolytic enzyme, are elevated in diabetes 

patients without DKD [70]. Podocyte-specific PKM2 knock-

out mice with diabetes showed aggravated albuminuria 

with more severe pathologic changes in the glomeruli 

than wild-type diabetic mice. Conversely, treatment with 

a PKM2 activator was shown to induce mitochondrial 

biogenesis and reverse glomerular pathology in part by in-

creasing glycolytic flux and PGC1α transcription [70]. Fac-

tors that affect mitochondrial biogenesis in diabetic podo-

cytopathy by acting directly or indirectly on PGC1α such as 

TGR5 (G protein-coupled bile acid receptor), A3 adenosine 

receptor, transcription factor EB, and mitochondrial glyc-

erol 3-phosphate dehydrogenase are continuously being 

discovered [71–74]. NRF2 is a downstream transcription 

factor of PGC1α. It is responsible for gene expression in the 

mitochondrial redox system and the induction of TFAM 

(mitochondrial transcription factor A) [2]. Wang et al. [75] 

showed that NRF2 activation attenuated high glucose-in-

duced injury in mouse podocytes and that downregulation 

of NRF2 promoted more severe injury and increased ROS 

production in podocytes exposed to high glucose levels. 

Evidence published to date indicates that mitochondrial 

quality control plays an important role in diabetic podo-

cytopathy. There are several unanswered questions in this 

area. For example, the precise roles and interactions of 

each process involved in mitochondrial quality control and 

the detailed role of MAMs during the development and 

progression of diabetic podocytopathy require further ex-

ploration.  

Endothelial cells  

In DKD, glomerular endothelial cell injury is an early 

process that occurs before the onset of albuminuria. This 

event contributes to DKD by paracrine mediator release, 

leading to subsequent kidney injury [76]. Although the 

mechanism of glomerular endothelial cell-podocyte cross-

talk regulation in DKD is obscure, a previous study showed 

that podocyte detachment and a decrease in endothelial 

cell fenestration play an important role in kidney injury 

in type 2 diabetes [77]. In addition, conditioned medium 

derived from endothelial nitric oxide synthase-deficient 

glomerular endothelial cells induced podocyte injury un-

der high glucose conditions, suggesting the importance of 

communication between endothelial cells and podocytes 

in diabetes [78]. Qi et al. [79] investigated the role of glo-

merular endothelial mitochondrial dysfunction in DKD. 

They found that mitochondrial dysfunction and oxidized 

mitochondrial DNA in glomerular endothelial cells were 

related to high glucose-induced podocytopathy after com-

paring transcriptome profiles between DKD-resistant and 

susceptible mice strains [79]. They demonstrated that di-

abetes-induced endothelin-1 (Edn1)/Edn1 receptor type 

A (Ednra) signaling facilitated mitochondrial stress and 

injury in endothelial cells [79]. They also observed that 

mitochondrial DNA damage resulting from mitochondrial 

ROS was associated with glomerular endothelial Ednra 

expression and rapid DKD progression. Notably, an Ednra 

antagonist inhibited endothelial mitochondrial oxidative 

damage and reduced albuminuria and podocyte depletion 

in DKD-susceptible mice [79]. 

Hyperglycemia can lead to mitochondrial fission in glo-

merular endothelial cells coupled with mitochondrial ROS 

production and cell death [61]. ROCK1 contributes to Drp1 

activation by phosphorylating Drp1 at serine 600 and trig-

gers mitochondrial fragmentation, as it does in podocytes 

under high glucose conditions [61]. 

Although the content of mitochondria in endothelial 

cells is low, mitochondria play an important role in endo-

thelial cell signaling in response to external stimuli. There-

fore, studies on mitochondrial quality control of endotheli-

al cells in diabetic nephropathy are necessary for new drug 

development. 

Immune cells 

Intrarenal inflammation is one of the most important con-

tributing factors to the initiation and progression of DKD. 

Given that immune cell infiltration is frequently observed 

in biopsy-proven DKD, it is a major pathologic criterion 

used in pathologic classification of DKD [80]. Research 

studies have consistently demonstrated that the severity 

of interstitial inflammation is significantly associated with 

renal outcomes in patients with DKD [81–83]. Notably, 

kidney transcriptomic profiles of human diabetic kidneys 
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have revealed decreased expression levels of inflamma-

tion-associated genes in early diabetic kidneys compared 

to healthy controls, whereas expression levels of these 

genes are significantly increased in advanced diabetic 

kidneys, suggesting that the roles of inflammation in early 

and late DKD are different [84]. Deconvolution of RNA-se-

quencing data revealed significantly increased infiltration 

of virtually all immune cell types including macrophages, 

monocytes, B and T cells, and plasma cells, in advanced 

DKD compared to early DKD and control samples [84]. The 

significant increase in proinflammatory stimuli in patients 

with advanced DKD suggests that intrarenal inflammation 

plays a pivotal role in the progression of DKD. Consistent 

with these data, several studies have demonstrated that 

intrarenal macrophage infiltration is associated with al-

buminuria, the severity of histologic damage, and adverse 

renal outcomes [83,85]. 

Hyperglycemia can significantly affect mitochondrial ho-

meostasis in immune cells and induce phenotypic chang-

es. Several studies have shown that hyperglycemic stimuli 

can provoke mitochondrial dysfunction in circulating 

macrophages, which in turn can increase the proportion 

of proinflammatory M1 macrophages [86]. Hyperglyce-

mia can induce the proinflammatory polarization of T cell 

compartments by increasing Th17 and Th1 subsets and de-

creasing regulatory T subsets [87]. Hyperglycemia can also 

induce mitochondrial inner-membrane hyperpolarization 

and increase the production of intracellular ROS and ac-

tivation-induced interferon-γ [88]. Several studies have 

shown that B cells can also acquire proinflammatory phe-

notypes upon hyperglycemic stimulation. B cells have also 

been suggested to be involved in the pathogenesis of DKD, 

mainly by producing antibodies that can lead to the forma-

tion and deposition of immune complexes in the kidney 

[89]. Nevertheless, the role of immune cell mitochondria in 

DKD requires further investigation. 

Conclusions and future perspectives 

Defects in mitochondrial quality control and mitochon-

drial dysfunction are common characteristics of damaged 

kidney cells under hyperglycemic conditions [4,90]. Studies 

using diabetic rats have shown that abnormal changes in 

mitochondria precede the onset of albuminuria and histo-

pathology [35]. Thus, disruption of mitochondrial homeo-

stasis has been postulated to be a primary initiator of DKD 

and a potential target for developing new drugs. However, 

most studies that have investigated mitochondrial homeo-

stasis-targeting drugs for DKD are in preclinical trials, with 

the exception of bardoxolone methyl [91]. Bardoxolone 

methyl, an activator of the NRF2 pathway, can inhibit mi-

tochondrial ROS generation and nuclear factor kappa B 

signaling and is currently being investigated in a phase 3 

clinical trial for DKD patients (NCT03550443). 

Interestingly, although newly introduced antidiabetic 

drugs with reno-protective effects were not initially de-

veloped to target mitochondria, subsequent studies have 

shown that they improve mitochondrial health and dy-

namics [36,37,92]. In vivo and in vitro experiments have 

revealed that SGLT2 inhibitors can reduce mitochondrial 

fission and facilitate mitophagy in DKD [36,37]. Similarly, 

analysis of urine metabolites in patients with type 2 dia-

betes mellitus treated with atrasentan (an endothelin A 

receptor antagonist) suggested that this drug can prevent 

renal mitochondrial dysfunction under hyperglycemic 

conditions [92]. Therefore, the ability of a drug to affect mi-

tochondrial dynamics and function may be used to deter-

mine its potential therapeutic effectiveness in DKD. 

Due to the increasing prevalence of diabetes worldwide 

and the adverse effects of DKD on mortality, it is critical to 

gain a comprehensive understanding of the pathogenesis 

of DKD. Although many studies have investigated mito-

chondrial quality control, much remains to be clarified. 

Mitochondrial quality control deserves further investiga-

tion as a potential novel therapeutic target for DKD. 
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