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Abstract

Purpose – Evaluating warfighter lethality is a critical aspect of military performance. Raw metrics such as
marksmanship speed and accuracy can provide some insight, yet interpreting subtle differences can be
challenging. For example, is a speed difference of 300 milliseconds more important than a 10% accuracy
difference on the same drill? Marksmanship evaluations must have objective methods to differentiate between
critical factors while maintaining a holistic view of human performance.
Design/methodology/approach – Monte Carlo simulations are one method to circumvent speed/accuracy
trade-offs within marksmanship evaluations. They can accommodate both speed and accuracy implications
simultaneously without needing to hold one constant for the sake of the other. Moreover, Monte Carlo
simulations can incorporate variability as a key element of performance. This approach thus allows analysts to
determine consistency of performance expectations when projecting future outcomes.
Findings – The review divides outcomes into both theoretical overview and practical implication sections.
Each aspect of the Monte Carlo simulation can be addressed separately, reviewed and then incorporated as a
potential component of small arms combat modeling. This application allows for new human performance
practitioners to more quickly adopt the method for different applications.
Originality/value –Performance implications are often presented as inferential statistics. By using theMonte
Carlo simulations, practitioners can present outcomes in terms of lethality. Thismethod should help convey the
impact of any marksmanship evaluation to senior leadership better than current inferential statistics, such as
effect size measures.
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1. Introduction
Data is often a focal point in military discussions given the robust infrastructure and
enormous yearly fiscal investments. Nowhere is this debate more important—or more
ambiguous—than when evaluating warfighter performance. For example, are warfighter
performance and military performance distinct concepts, or parts of the same construct?
Also, what data should be used to evaluate performance? These questions ostensibly require
utilizing data to inform decision-making, which led to foundational studies in the field of

JDAL
7,2

138

© In accordance with section 105 of the US Copyright Act, this work has been produced by a US
government employee and shall be considered a public domain work, as copyright protection is not
available. Published in Journal of Defense Analytics and Logistics. Published by Emerald Publishing
Limited.

Disclaimer: The authors are military service members or employees of the US Government. This
work was prepared as part of our official duties. Title 17, U.S.C. x105 provides that copyright protection
under this title is not available for any work of the US Government. Title 17, U.S.C. x101 defines a US
Government work aswork prepared by amilitary service member or employee of the USGovernment as
part of that person’s official duties. The views expressed in this article are those of the authors and do not
necessarily reflect the official policy or position of the Department of the Navy, Department of Defense,
nor the US Government. The authors declare no financial or non-financial conflicts of interest.

The current issue and full text archive of this journal is available on Emerald Insight at:

https://www.emerald.com/insight/2399-6439.htm

Received 17 October 2022
Revised 14 June 2023
5 September 2023
5 September 2023
Accepted 6 September 2023

Journal of Defense Analytics and
Logistics
Vol. 7 No. 2, 2023
pp. 138-155
Emerald Publishing Limited
2399-6439
DOI 10.1108/JDAL-10-2022-0008

https://doi.org/10.1108/JDAL-10-2022-0008


operations research (Morse and Kimball, 1951). At its core, operations research and related
fields apply mathematical models to extract more actionable interpretations from prior
observations (Strickland, 2011). For example, vulnerability and lethality analyses are critical
issues for a combat force that could be influenced by everything from human performance to
systems engineering (Kincheloe et al., 2009). There are so many variables involved in
warfighter performance and so much available data that this particular operations research
application has received enormous attention.

Often, combat modeling is a method to quantify the impact of different variables on
warfighter performance. The perennial challenge in combat modeling, however, remains
identifying the essential variables that would allow models of armed conflict to be
manageable, meaningful and useful (Kress, 2012). As one example, a small unit combat model
may require both maneuver warfare elements (Nohel et al., 2022; Ormrod and Turnbull, 2017)
and physical fitness of the personnel (Blount et al., 2013). Different personnel would likely
have different movements and different physical limitations while encountering different
levels of fatigue. These inclusions thus illustrate how small arms combat modeling could
easily encompass dozens of different, independent actors in a squad-on-squad simulation that
must account for individual decisions while moving across varied terrain. Even this simple
variant of combat modeling thus imposes numerous challenges on any modeling and
simulation effort.

Within combat modeling, there is a critical aspect of performance supported by some of
the most well-documented measurements throughout military organizations—
marksmanship. Many infantry and special operations discussions involve marksmanship
performance as a variable with clear military relevance. Moreover, marksmanship seems to
have enormous simulation value as this human performance skill can be readily quantified
with enormous precision in both speed and accuracy. These factors should make the variable
highly appealing to modeling efforts. Despite these advantages, incorporating
marksmanship creates more challenges than simply uploading tables of human
performance observations. Notably, how do you evaluate performance when someone is a
half-second faster on one drill and another person has ten percent higher accuracy on the
same drill? Speed/accuracy trade-offs are inherently difficult, with arbitrary weighting
systems regularly used to assign relative value to speed and accuracy or controlled drills
holding one factor constant to measure another. Marksmanship tables then become used as a
surrogate standard for performance. Such point-based outcomes belie the complexities of a
combat engagement—a two-point improvement from a marksmanship table does not
adequately capture the combat advantage nor easily convey this information to military
decision-makers. Thus, despite the importance of data in evaluating militarily relevant
outcomes, there is a clear need for advanced modeling techniques in marksmanship that can
deliver more concise and compelling interpretations for military decision-making.

Monte Carlo simulations are one alternative to bridge the gap between human
performance observations and actionable applications to marksmanship training doctrine.
Monte Carlo simulations have been suggested to explore the effectiveness of weapon strikes
(Chusilp et al., 2014; Hu and Wang, 2013), including weapons applications for platforms to
include small arms combat (Mihaylov, 2017). In this sense, the technique utilizes known
distribution patterns in accuracy to evaluate the operational effectiveness of different
weapons systems. Variance itself then becomes a factor represented in simulations. The
application is also not novel to small arms combat as Monte Carlo simulations were first
applied to Vietnam War-era modeling in describing small unit activities (Adams et al., 1961;
Bonder, 2002; De Laquil, 1980; Monahan and DuBois, 1979) [1]. However, small arms combat
applications typically involved special operations forces actions such as theft of nuclear
material. Monte Carlo simulations, during the Vietnam War-era, required comparatively
substantial computing power given the available hardware at the time. Modern computing
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power no longer has such limitations as the majority of computers could run complex Monte
Carlo simulations relatively quickly. In turn, the application of Monte Carlo simulations to
small arms combat has received renewed interest (Biggs et al., 2023), and there is a clear
opportunity for this computational technique to advance practical marksmanship
applications.

The goal of this paper is to explore how Monte Carlo simulations can be applied to
evaluate marksmanship. Each section explores a particular aspect of this larger topic with a
focus on practical applications. The first topic is an examination of the assumptions inherent
to an evaluation of warfighter performance to provide sufficient context for the discussion.
Any such assumptions become critical both to the Monte Carlo simulations and how the
outcome should be interpreted in terms of marksmanship. Next, an overview of the Monte
Carlo technique provides definitions and context to the basic method. Subsequent sections
address an additional variant of the Monte Carlo technique, such as the introduction of
Markov Chains or a multilevel Monte Carlo. To ensure military relevance of the discussion,
each section is divided into the basic overview of the mathematical modeling, the militarily
relevant applications of the specific technique and the implications for marksmanship
evaluations. This discussion thus serves as a primer for anyone interested in enhancing
marksmanship data collection and presentation.

2. Assumptions inherent to an evaluation of warfighter performance
Any Monte Carlo simulation is defined first and foremost by variables and associated data
supporting the model and its simulation. Economic simulations use financial variables
(Arnold andYildiz, 2015;Mun, 2006), whereas biological simulationsmay use energy transfer
or molecule movement (Berney and Danuser, 2003; Leblanc et al., 2003). The first
consideration is therefore the data that supports model variables—and the assumptions
that go with the data. Military applications are no different. In this case, the assumptions
largely revolve around the type of engagement that can be simulated. Despite the myriad of
tactical aspects in a military engagement, here we will describe three broad categories: (1)
determining an outcome, (2) the specific scenario and (3) data granularity.

The first factor relates directly to the question asked in the introduction. Namely, is there a
difference between warfighter lethality and military performance? In simple terms, lethality
describes a subset of military performance specific to use of force against an adversary. All
measures of warfighter lethality are measures of military performance, but not all measures
of military performance directly address lethality. For example, there are robust evaluations
of military physical fitness (Cuddy et al., 2011; Roy et al., 2010; Taylor et al., 2008), and while
physical fitness will likely impact performance in combat, faster run times do not
immediately translate into increased lethality. Physical fitness requires additional integration
to fully impact a simulation of tactical performance among warfighters (Blount et al., 2013).

If warfighter lethality is the measure of performance, assumptions made during data
collection should be known and well-documented. The first and most important assumption
is how accuracy becomes translated into lethality. Lethality can be measured following
combat as number killed-in-action, but training and evaluation applications will likely extract
lethality metrics from shot placement on a target. Measuring lethality thus becomes a critical
assumption underlying any data collection, which will likely occur on amilitary range. While
measuring lethality, target type is a critical factor. Photorealistic targets may have scoring
zones that differentiate lethal hits, non-lethal hits and misses. These scoring zones may
approximate body sections similar to the Abbreviated Injury Scale (Civil and Schwab, 1988;
MacKenzie et al., 1985; Palmer et al., 2016), although the scoring zones may also be
approximations drawn onto the target by instructors rather than carefully constructed,
medically-inspired applications (Biggs et al., 2021). The targets might also have bullseyes or
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be made from steel. Lethality must be extrapolated from bullseye targets based upon a ring
line designated to be a lethal scoring zone. By comparison, steel targets likely only denote a
hit or miss, in part because these targets are more often used at greater distances. In all cases,
lethality is extrapolated from marksmanship performance through shot placement on these
targets. The conditions of a lethal and non-lethal outcome mark the first assumption when
evaluating military performance using a Monte Carlo simulation.

The next assumption involves the specific scenario. When limited to a “combat
engagement,” there are many factors to consider, including: number of units involved,
number of personnel in each unit, training quality of each unit, distance from target, weapons
involved, physical capability, air support, mechanized vehicles, weather and terrain.
A combat engagement will be unique by virtue of the many factors specific to the
engagement. Further limiting the scenario tomarksmanship, there aremany different factors,
including: starting position of the shooter, posture adapted to take the shot, weapon optics,
wind conditions, ammunition, whether the shot is the first in a string, number of shots to be
taken and criteria for a successful hit. Furthermore, modeling such scenarios is limited by the
data on which it is based. It would be inappropriate to model an engagement at five hundred
meters based on speed and accuracy data collected from a drill where participants drew and
fired one round at a target from seven meters. Scenario factors during data collection
inherently limit any model based on collected data.

A third category of assumptions inherent to warfighter lethality, data granularity (as well
as data fidelity) is the one that most directly impacts a Monte Carlo simulation. Lethality can
be interpreted based on a given marksmanship exercise, but the fidelity and granularity of
data impact the fundamental character of the modeling. For example, an exercise with only
one successful hit prohibits modeling variance at an individual level. Without an ability to
account for individual variance, group dynamics become the most granular level of analysis.
Data fidelity also applies to the data collection from particular drills. For example, if a shooter
is using a rifle at a great distance, it is possible that the simulation will end with the shooter
running out of ammunition before hitting the target. Reloading becomes a factor that would
add time to performance during the simulation, but unless a reloading drill was conducted as
part of the exercise, reloading cannot be incorporated accurately as the marksmanship
evaluation never included a reloadingmeasurement. This broad category of assumption thus
requires an operations research analysis prior to any mathematical modeling. The goal
should be to identify all relevant factors in the process that influence speed, accuracy and
their variances.

Each of these three categories—how the outcome is determined, the specifics of the
combat engagement to be simulated, and fidelity/granularity of collected data—represents a
critical aspect to any subsequent modeling and simulation effort. These assumptionsmust be
well-documented when conducting any simulation even if the precise conditions are not
included when presenting an outcome. This latter possibility can occur when briefing senior
military leaders if time does not permit a full disclosure of all details underlying an analysis.
Even so, it is important to ensure all assumptions are clearly documented for transparency.
The next section describes how best to utilize the Monte Carlo technique as a means to
convert raw performance metrics into measures of warfighter lethality.

3. Monte Carlo simulations
3.1 Basics of the technique
Monte Carlo simulations were developed as part of research into nuclear weapons at the Los
Alamos National Laboratory (Metropolis and Ulam, 1949; Rubinstein and Kroese, 2016). The
history, and the namesake relation to a casino in Monaco, dates back to a hypothetical
question concerning the game of solitaire (Gass and Assad, 2005). The basic premise is that
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a complex problemwithmany different factors can be solved in approximation by simulating
many possible events and observing the different outcomes. Its original intended usage
involved estimating neutron diffusion as a part of nuclear weapons research. Given that
premise, and the association with nuclear weapons development, the technique required a
code name due to the classified nature of the research—Monte Carlo, a casino in Monaco.

Monte Carlo simulation has been defined in various ways, leading to some inconsistencies.
One possible definition provides some clarity by delineating between a simulation, the Monte
Carlo method and a Monte Carlo simulation (Sawilowsky, 2003; Sawilowsky and Fahoome,
2003). Simulations mimic elements of a particular situation as a means to evaluate how
different factors will impact the outcome. Marksmanship simulations may involve the
likelihood of a round striking the target given the accuracy of the shooter, size of the target
and distance from the target. In contrast, theMonte Carlomethod is one technique to estimate
the solution to a problem through repetition. Stochastic techniques use known or estimated
variance of different parameters to determine an outcome through a sample. If one shot may
be evaluated as part of a simulation, then the Monte Carlo method measures accuracy by
having a shooter fire ten shots and identifying howmany hit the target to determine accuracy.
A Monte Carlo simulation effectively blends the two, using a large number of simulations
through the Monte Carlo method to evaluate the likelihood of potential outcomes.
Determining the likelihood of one shooter hitting a target more often than another shooter
based on some set of factors would be a Monte Carlo simulation. In short, a simulation is the
basic method of sampling each individual event, the Monte Carlo method is the act of
estimating an outcome through repeated sampling of a known or proposed distribution, and a
Monte Carlo simulation determines risk or probable outcomes by sampling a large number of
pseudo-random variables with known or assumed distributions.

General applications of the technique have been used for many different purposes. Sports
performance has usedMonte Carlo simulations to estimate basketball shooting (Min, 2016) or
to determine a baseball batting order (Freeze, 1974). An exceptionally common usage is in risk
assessment, on topics ranging from ecological exposure of chemicals in the environment
(Burmaster and Anderson, 1994) to construction outcomes (Sadeghi et al., 2010). These
diverse applications should be noted in light of the corresponding limitations. The data-
intensive nature of Monte Carlo simulations requires existing evidence to conduct the
simulations (Ferson, 1996). A major advantage of Monte Carlo simulation is the ability to
assign probabilities to different outcomes, when uncertainty is a central feature of the
processing model. At relatively low cost, it is possible to demonstrate how changes in the
assumptions or distributions of various parameters change the distribution of the outcome
variable. This approach thus provides a tangible method to appreciate how a given change
might directly or indirectly influence the probability of a subsequent event.

3.2 Application to warfighter performance
Monte Carlo simulation, when used to estimate performance, presumes that we can transform
basic military performance metrics into a simulation of warfighter performance (see Table 1).
Typical military uses examine whether weapon strikes effectively damage or disable a target
(Chusilp et al., 2014; Hu and Wang, 2013). Here the intent is to use performance metrics to
simulate a combat engagement (cf. Biggs and Hirsch, 2022).

Scenario specifics are the boundaries for the simulation. For example, consider the basic
marksmanship metrics of speed, accuracy and variance as collected from two different
shooters when simulating a head-to-head gunfight. Monte Carlo simulation uses observed
metrics to form performance distributions that serve as parameters to the simulation. Each
individual simulation depends on the speed and accuracy of a shot as sampled from themodel
distributions.
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Sampling from these distributions yields four possible outcomes between Shooter A and
Shooter B: (1) Shooter A wins outright, (2) Shooter B wins outright, (3) a lethal draw where
both shooters fire a lethal round and (4) a non-lethal draw where neither shooter fires a lethal
round. It is possible to further segment the outcomes, but these four are an adequate
representation of the possibilities. Winning occurs when one shooter fires a lethal round
faster than the other shooter, or one shooter fires a lethal round when the other shooter
missed. Non-lethal draws occur when both shooters miss, and lethal draws occur when both
shooters fire a lethal round in such close proximity that the rounds would pass in the air. The
latter outcome depends upon a latency parameter, or duration the bullet would need to travel
over the given distance between the two shooters. Thousands of samples convert raw
marksmanship metrics into these four outcomes with a percentage representation of each. In
short, the individual shooter chance of winning a gunfight is quantified based upon the
relative differences in speed and accuracy.

There are several major advantages of presenting performance data as a percentage
chance of winning a gunfight rather than a raw marksmanship metric of speed on a given
drill. First, relative performance differences are immediately evident when the data is
presented as a 72% chance of winning the fight rather than a speed difference of
300 milliseconds in drawing a weapon. Second, the technique avoids assigning arbitrary
points or a weighting systemwhen evaluating performance on a given drill. Instructors often
debate the merit of one drill over another, which is how marksmanship tables are designed
with points arbitrarily weighted to aspects of the associated exercises. The Monte Carlo
simulation effectively determines the relative influences of speed and accuracy in the given
situation without resorting to arbitrary weighting differences (assuming the simulation has
been well constructed and accurately reflects a combat situation). Third, this approach
embraces variance as a key part of performance. Even if an individual wins a shooting
competition today, there is no guarantee that the individual will win a competition with the
same opponents tomorrow. Incorporating variance represents performance as a continuum of
possibilities, which better addresses the changing day-to-day realities of human performance.
Fourth, there is the value of simplicity in presenting the data. Endless tables are necessary
when relating the value of different training regimens or equipment given themyriad of ways
data can be collected. AMonte Carlo simulation allows for a simple head-to-head comparison
that supports military decision-making by producing a quantifiable assessment of different
programs, whether they involve different equipment, different units or different training

Assumption Description Examples

1. Determining
Lethal Outcomes

Lethality is interpreted from performance
during training or assessments

Evaluating whether a shot is lethal from a
photorealistic or bullseye target requires
an assumption during the scoring process

2. Specific Scenario Any data is limited by the scenario in
which data collection occurred

Speed, accuracy and variance data
collected from 7-m drills cannot be used to
simulate performance in a 300-m
engagement

3. Data
Granularity

Data collection impacts simulation
possibilities. Individual behaviors and
transition states cannot be modeled
without first collecting that information

Shot times can incorporate many different
behaviors dependent on whether the
outcome is based on the first shot or
subsequent shots. Also, reloading
behaviors cannot be incorporated into
simulation without a measure of reloading
speed

Source(s): Table created by Adam Biggs and Joseph Hamilton

Table 1.
Examples of the

primary assumptions
made during any data

collection involving
warfighter

performance
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prior to the evaluation. Any scenario involving a comparison of data could potentially use the
Monte Carlo technique.

Of course, the comparative nature of this head-to-head warfighting simulation is also the
primary weakness. These performance outcomes cannot be simulated without a comparison
group, and while a given standard of expected peer or near-peer performance can be
established, the outcomes can be unduly biased by the selected standard. One unit may seem
to excel based on the simulated opponent rather than their inherent skill set. This limitation is
the primary concern in applying a Monte Carlo simulation to evaluate warfighter
performance. Another concern is the basic nature of the Monte Carlo technique when used
without additional considerations. Warfighter performance can be simulated as a single shot
from a head-to-head outcome—one shooter fires upon another shooter and the engagement
ends. At close proximity, where accuracy is high, speed is likely to be the determining factor
and many engagements will have a victor in only few shots (Biggs and Hirsch, 2022).
At greater distances, where accuracy is lower, a single shot simulation will produce a high
number of non-lethal draws, or indeterminate outcomes. Combat engagements, however, will
not end after a single unsuccessful shot. This shortcoming is not a failure of the Monte Carlo
method in general, but rather a demonstration thatmore depth and context is needed tomodel
performance than a single-shot outcome. Engagements continue well after the first shot, and
so while a Monte Carlo simulation can evaluate warfighter performance, additional
information is required to fully simulate a combat engagement. These additional
considerations can utilize the other additions to the Monte Carlo technique that have been
devised over years of research and exploration.

3.3 Implications for marksmanship evaluations
Monte Carlo applications, even the simplest form of the technique, provide a key advantage to
marksmanship evaluations. Specifically, Monte Carlo simulations provide a method to
integrate speed and accuracy in a meaningful way without compromising the relative
contribution of either. Both speed and accuracy can contribute to amarksmanship evaluation
by sampling the speed of shots and shot accuracy in a Monte Carlo simulation. Nevertheless,
there are other methods that similarly utilize speed and accuracy in marksmanship
evaluations. Competition shooting attempts to achieve this integration by using hit factor,
which divides points (or accuracy) by time. Monte Carlo simulations provide an advantage
over hit factor by allowing variance to be represented in the simulation, whereas hit factor
only accounts for performance at particular point in time on a particular course of fire. This
measurementmakes hit factor scoring immensely practical for competitions that need to rank
order performance on a particular day. Combat modeling projections, on the other hand,
should incorporate variance as an appreciable component of human performance
measurement. Monte Carlo simulations can incorporate variance based on how speed and
accuracy are sampled through both means and standard deviations derived from observable
human performance measurements.

Despite the clear advantage of Monte Carlo simulation over hit factor scoring, there
remain limitations to the technique. Most notably, Monte Carlo simulation falls into a class of
numerical analysis simulations and therefore represents a fundamentally distinct category
compared to other simulations that measure behavior over time (Birta and Arbez, 2013). This
characteristic would make simple Monte Carlo simulations a valuable technique for
interpreting the relative performance implications of marksmanship tables. After all,
performance on a marksmanship drill provides input on speed, accuracy, or both for a
number of marksmanship behaviors. The challenge for combat modeling, and indeed for
discrete-event simulation (G€unal and Pidd, 2010; Misra, 1986), involves incorporating how
behavior might change over time. Marksmanship performance can be influenced by any
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number of cognitive and physiological variables that might influence the outcome (Rao et al.,
2020). A simple application of the Monte Carlo technique presumes unchanged capabilities in
the system, and when the “system” is the human weapons system—conceived as a
combination of human, weapon and ammunition—performance should be expected to
change. Nonetheless, a simpleMonte Carlo technique represents a substantial contribution to
marksmanship evaluations over points-based applications or hit factor scoring because it
provides a method to easily integrate speed, accuracy and variability into the evaluation.

4. Markov Chains and Monte Carlo simulations
4.1 Basics of the technique
Monte Carlo simulations determine probable outcomes by sampling distributions from
multiple variables. Each added sample adds some depth and context to the potential
outcomes. Although this approach has value in communicating the relative differences of
marksmanship performance beyond rawmetrics of speed or accuracy, a single shot outcome
does not truly simulate a combat engagement. This basic approach can be layered by
samplingmultiple performance aspects from a sequence of events to give amore holistic view
of performance. The simulation should therefore involve multiple shots, and ideally, multiple
personnel on both sides. Moving beyond a single shot requires simulating a sequence of
events rather than a single outcome. Thus, a better simulation of warfighter performance
invokes a Markov Chain to enable multiple events in the sequence.

A Markov Chain describes a sequence of possible events where each individual event
depends upon the probabilities of different outcomes and the current state of affairs (Gagniuc,
2017; Roberts, 1996). There are multiple types of Markov Chains, although they can be
divided along lines such as discrete-time chains or continuous-time chains (Coolen-Schrijner
and Van Doorn, 2002; Craig and Sendi, 2002; Spedicato, 2017; Suchard et al., 2001). The
difference is whether the sequential events occur as step-by-step outcomes or in a continuous
time space. As such, Markov chains critically depend upon how transitions between states
are defined. One classic example is the drunkard’s walk (Diaconis, 1996). From any position
on the number line (e.g. 7), the position might go up one (8) or down one to the next integer (6),
which can continue indefinitely. The next outcome in the chain depends upon the probability
of the number increasing vs decreasing and the current number in the sequence. A more
familiar example involves board games that use dice. The next state of the board depends
upon a dice roll, which is memoryless—the probabilities of one dice roll are the same as the
next. These possibilities are also determined by the current state of the board, which is the
product of previous dice rolls in the sequence. Any potential configuration is the outcome of a
Markov Chain that led to the current state on the board.

The memoryless nature of probabilistic determination is a defining component of Markov
Chains. As such, a true Markov Chain does not alter transition probability based on previous
events. Board games with dice are a good example because the dice rolls are independent.
By comparison, a card game such as blackjack would not constitute a Markov Chain. The
next potential card draw is not independent of the previous card draw as the probabilities
have changed based on the previous events. So, there is a subtle, theoretical point about
whethermodeling a sequence of events is a trueMarkov chain which depends upon unaltered
probabilities for outcomes in the current state based on outcomes from the previous state.

When combinedwith theMonte Carlo simulation technique, the result is aMarkov Chain
Monte Carlo (Brooks et al., 2011; Geyer, 1992; Gilks et al., 1995). A Monte Carlo simulation
determines outcomes by sampling randomly from different variable distributions of
variables, which are combined to determine an outcome. So, each outcome depends upon
the Monte Carlo process and the variable distributions in a complex way. The introduction
of a Markov Chain links multiple events to produce an outcome that depends upon multiple

Monte Carlo
simulations

and
marksmanship

145



stages rather than a single event. Several different algorithms define different nuanced
points to this method, such as the Gibbs Sampling algorithm (Gelfand, 2000; Geman and
Geman, 1984) and theMetropolis–Hastings algorithm (Chib and Greenberg, 1995; Hastings,
1970). Each algorithm defines one method of constructing the Markov Chain, and the
appropriate use for a particular method depends on the specific scenario and the data being
sampled.

4.2 Application to warfighter performance
Monte Carlo simulations allow for probabilistic sampling of individual shots and actions that
can accumulate throughout the engagement. The introduction of Markov Chains enables
moving beyond simple head-to-head engagements including only a single shot and into
complex scenarios with prolonged engagements. However, Markov Chain Monte Carlo
methods typically indicate a class of algorithms used to sample from some probability
distribution. When applied to warfighter performance, the intent is to use a Markov Chain to
simulate a series of behaviors rather than a single behavior. For example, a first shot time
includes multiple behaviors such as locating the target, manipulating the weapon into firing
position, aiming and trigger squeeze. All these individual behaviors become encapsulated in
the first shot time. The intent of a Markov Chain is to break performance into a series of
behaviors to include factors such as reloading and acquiring a new target. This introduction
allows a complex engagement with multiple shots and multiple personnel to be simulated in
small arms combatmodeling. In this application, the goal is to sample from distributions built
on observations of actual human performance. Markov Chains create the sequence of
behaviors and Monte Carlo simulations determine transition, but the process is not
technically a Markov Chain Monte Carlo method.

Additionally, multiple shooters make the scenario more militarily relevant as it allows for
modeling of squad-level engagements, which are a far more practical application than a
fabricated dueling scenario. Perhaps the most important addition involves risk exposure.
Squad-level engagement models use the estimated casualties suffered by both sides as a
means of interpreting operational risk based on different skill levels. The percentage chance
of winning the engagement is accompanied by the level of risk assumed to achieve this
victory.

Furthermore, squad-level engagements—as with any Monte Carlo simulation of
warfighter performance—depend upon the data from which the simulation can be
modeled. Each step contributes to the next possible outcome, such as how different shot
characteristics can be modeled for the first shot vs an inter-shot interval. A first shot
incorporates procedures such as visual search for the target or distance calculation in initial
aiming behaviors, whereas inter-shot interval may be the time between subsequent shots that
incorporates different aiming behaviors or omits the visual search step. Multiple shots
incorporate a wider range of marksmanship behaviors and military performance that makes
the entire simulation more holistic and realistic. However, modeling this distinction requires
data that differentiate the first shot from subsequent shots.

Multiple shooters complicate this scenario because shot characteristics also involve
assumptions about the nature of target selection and how the engagement terminates. The
simulation could proceed as a series of head-to-head outcomes, or target identification and
selection could proceed from a tactical instruction. In either case, the Markov Chain nature
allows for shooters to continue in the engagement after eliminating amember of the opposing
force. The final outcome depends upon a termination rule. Simulations could continue until
the entire opposing force is eliminated, or themodel could enact a retreat rule where the losing
force will withdraw following some level of casualties suffered. The casualty estimates
support the risk estimation component of the simulation.
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This proposed squad-level engagement could be modeled by either a continuous or
discrete Markov Chain, although a continuous process is preferred. A discrete approach
requires a combat engagement to be represented as arbitrary stages. One head-to-head
outcome might need to wait for resolution before the victorious shooter could continue in the
engagement. In this case, a tournament style approachmight be necessary in themodel rather
than the ongoing, unstructured nature of actual combat. A continuous approach allows a
victorious shooter to immediately engage a new enemy while the other shooters continue
their head-to-head fight. Discretization undercuts this fluid nature while continuous
processes more closely mimic the fluid nature of combat. A discrete process could be
necessary if speed information about individual shot performance does not enable the
continuous approach. In these cases, accuracy-focused outcomes allow a squad-level
engagement to proceed as discrete stages based upon the accuracy of each individual shot.

4.3 Implications for marksmanship evaluations
For marksmanship, the Markov Chain component introduces several potential advantages.
Multiple behaviors can be evaluated in sequence. Marksmanship tables are notorious for
integrating multiple behaviors into a single outcome, where performance on a drill is
summarized as time or accuracy under a given set of conditions. These restrictions are often
imposed to ensure safe and reliable evaluations on a live fire range. These limitations may
also inhibit modeling efforts. For example, reload speed at a known distance in a known drill
against a known target inherently creates predictability that no longer resembles a combat
exercise. This aspect applies to virtually all live fire data collection, often driven by safety
issues or related procedural complications. The sequential nature ofMarkov Chains supports
more effective modeling using more granular information about behaviors from
marksmanship drills. If using a pistol, an appropriately sequenced Markov Chain could
simulate the draw from holster, first shot aiming behaviors, recoil control and even reload
speed. Additionally, sequences between individuals in a squad can be modeled accurately.
Squad-level behaviors in aMarkov Chain could include shifting between targets or caring for
wounded allies.

These ideas demonstrate how a Markov Chain may support more effective modeling, but
this value can only be unlocked with effort that extends beyond the modeling effort.
Specifically, this advantage requires appropriately segmenting the behaviors during human
performance measurement. This aspect highlights a key bridge between test design and the
modeling effort. Integrating personnel with modeling expertise into the test design stage
helps ensure that subsequent simulations can precisely emulate the intended behavior from
the available data. Thus, the Markov Chain can support marksmanship by allowing
practitioners, both as trainers or as analysts, to reach a common ground prior to data
collection that will best support eventual decisions.

5. Multilevel Monte Carlo simulations
5.1 Basics of the technique
Fidelity of data is a critical concern for anyMonte Carlo simulation. A successful Monte Carlo
technique requires sampled distributions to accurately represent actual military
performance. Of all the assumptions in the Markov Chain Monte Carlo technique, the
assumption of valid data is perhaps the most insidious. Every sampled data distribution
presents an opportunity for error. Moreover, different assumptions can vastly impact the
requisite computing time for a single simulation. Given that thousands or millions of
simulations need to be conducted in Monte Carlo techniques, the complexity of each
individual simulation represents an important concern for the process.
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The multilevel Monte Carlo technique helps address this concern by addressing the
quality of the data collected (Giles, 2008, 2015). Repeated sampling remains the basis of the
technique, viaMonte Carlo simulation, yet the technique embraces a volume/fidelity trade-off
when accounting for cost. Samples with low cost are taken at high volume, whereas samples
with high cost are taken at low volume. There is a particular advantage in reducing
computational time for uncertainty quantification, which tries to determine outcomes when
there are significant unknowns in the simulation (Cliffe et al., 2011; Heinrich, 2001; Kebaier,
2005). The reduction of required computational effort is a key component of the multilevel
methodwith valuable applications in areas such as evaluating option pricing using stochastic
differential equations (Evans, 2012; Gobet et al., 2005).

5.2 Application to warfighter performance
Although the multilevel method is primarily a mathematical solution aimed at reducing
computational effort, the volume/fidelity cost trade-off is fundamental to warfighter
simulations. Complex simulations require measurement of many different variables that can
be difficult to collect at volume. Shot accuracy can be collected easily at high volume, but shot
speed can be difficult to collect from many different shooters using currently available
acoustic timers. Alternatively, the sample may estimate speed by taking the time a shooter
needed to complete ten shots and dividing to get an average. This estimate is flawed because
the behaviors involved during an initial shot vs an inter-shot interval have fundamentally
different aiming calculations, but to overcome logistical challenges, this lower fidelity
solution could be used.

5.3 Implications for marksmanship evaluations
For marksmanship, it is important to identify where data can be collected at acceptable
volume, fidelity and cost. Accuracy data thus represents low investment information that can
be collected in high volume. Every shooter from an entire military company could be sampled
for accuracy. Meanwhile, speed metrics will be more difficult to collect because only one
shooter at a time can fire to avoid overlap in the acoustic shot timing. Thus, the sample of
shooters is likely to be much smaller for speed, potentially leading to a lower fidelity
representation than for accuracy. This difference in fidelity must be managed carefully in the
model to avoid biasing the possible outcomes. For example, if a subset of shooters is going to
represent the entire group during sampling, the best shootersmight be selected to provide the
data. The result would be a biased sample that skews the modeled capabilities of the unit.
This must be avoided, if possible, to ensure the simulation accurately depicts warfighting
capability.

Another aspect involves the complexity of the simulation. Speed and accuracy can be
collected from particular distances, but there are other factors that could be represented
during simulation that are more difficult to collect. For example, moving between multiple
firing positions requires forward motion on a live fire range, which can be logistically
difficult to collect on some ranges or especially with larger forces. Thus, factors supporting
simulated movement during the engagement might need to be sampled with high fidelity
among a few personnel rather than sampled across all participants. More generally, for a
complex Monte Carlo simulation of warfighter performance, factors related to transition
states might need to be measured in smaller samples with high fidelity rather than in large
samples across the entire force. These transition states may include moving between firing
positions, reloading, and clearing weapon malfunctions. Their inclusion allows for a more
complex simulation that fully embraces the wider range of behaviors within a combat
engagement.
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6. Kinetic Monte Carlo simulations
6.1 Basics of the technique
Monte Carlo simulations are particularly useful for risk analyses, but their applications also
include explorations of how certain process evolve over time. One particular variant, the
kinetic Monte Carlo simulation (Battaile, 2008; Voter, 2007; Young and Elcock, 1966), allows
for simulations of growth and change as a system adapts or impacts a given environment.
This process has a wide range of applications in chemistry and molecular physics with
functions such as modeling crystal growth (Gilmer and Bennema, 1972; Kotrla, 1996),
radiation damage (Domain et al., 2004), surface growth (Lou and Christofides, 2003;
Whitesides and Frenklach, 2010) or evaporation (Gruber et al., 2011). The approach differs
from other Monte Carlo techniques due to the timeline and scale. Modeling atomic growth or
radiation damage requires a large-scale evaluation given the sheer number of atoms or
molecules involved and the time scale of associated growth. Kinetic Monte Carlo simulations
add this scale and scope to the process in a way above and beyond the alternative methods.
Aswith the other methods, there are multiple algorithms described in the literature (Gillespie,
1976; Meng et al., 2010; Sanz and Marenduzzo, 2010).

A critical element of kineticMonte Carlo simulations is that they can be broadly divided into
two categories, rejection-free or rejection-based. Rejection-free simulations can be more time
consuming as they have to calculate all possible transition states in the simulated system (Bortz
et al., 1975; Schulze, 2008). Conversely, rejection-based algorithms sample from the given
distributionswhile rejecting some subset of possible events based on assigned criteria (Schulze,
2008). Each approach has advantages and disadvantages to the calculations and data involved.
Given the large number of calculations and scope involved in a kineticMonte Carlo, considering
whether some events should be rejected is a matter of both data fidelity and computing power.

6.2 Application to warfighter performance
Kinetic Monte Carlo simulations address a potential aspect of warfighter performance that the
previous methods did not—namely, the large-scale nature of the simulation. The previous
examples provide avenues for converting raw marksmanship data into combat simulations.
Although these techniques are suitable for head-to-head or squad-level simulations, a battle can
involve significantly larger numbers of troops. Actions of individual squads generate larger
consequences in battlefield dynamics that cannot be readily ignored. Large-scale simulations
must incorporate these additional considerations and the myriad of other factors that could be
involved, ranging from artillery and air support to modeling the potential for panic and retreat.

6.3 Implications for marksmanship evaluations
Combat simulations hinge on actions of individual personnel with implications that resonate
throughout the larger force. Simulating a full-scale battle requires many different simulations
of these more local interactions. A kinetic Monte Carlo approach can incorporate the local
outcomes of individual events as indicated by Markov Chain and Monte Carlo simulations
into a more global model that simulates transitions between various states of the battlefield.
Thus, Monte Carlo simulation applies to modeling a combat engagement with different
variants of the techniques applied at different levels of combat. Marksmanship is a suitable
variable to represent the performance of the individual warfighter, but additional details
describing the transitions between states become an important consideration when modeling
the evolving nature of a combat engagement.

7. Conclusion
When presenting information to military decision-makers, there is a critical need for the
communication to be as clear and concise as possible (for a thorough discussion, see NATO,
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2002; Tolk, 2019). Monte Carlo simulations are one possible way to convert raw performance
metrics into appreciable differences in warfighter performance. Marksmanship metrics of
speed and accuracy are translated into a percentage chance of winning a combat engagement
and the number of casualties suffered to earn the victory. This approach circumvents many
of the debates about arbitrary points or weighting of different drills in favor of simulating the
intended end state as the drills would apply to combat marksmanship. Decision-makers
receive a quantifiable evaluation that can be used to compare warfighter performance based
on different equipment, training regimens or other model inputs.

The purpose of this review was to provide insight into different Monte Carlo techniques
and how they might be applied to a warfighter simulation (see Table 2). In general, Monte
Carlo simulations are a broad constellation of mathematical modeling techniques and
algorithms rather than a well-defined set of procedures. These simulations can be
summarized as a method to utilize randomness or pseudo-random variables to estimate
the likelihood of different outcomes. Although there are no hard and fast criteria to what
defines aMonte Carlo simulation, there are some characteristics of a high-qualityMonte Carlo
simulation (cf. Sawilowsky, 2003):

(1) Any random sampling number generator is truly random.

(2) The number of simulations is sufficiently large to ensure the results adequately
capture the different possibilities.

(3) An appropriate technique is selected from the myriad of options based on what the
modeling process or algorithm attempts to model.

(4) The data available can adequately represent the scenario being simulated.

(5) Simulations will benefit warfighter performance evaluations most when the available
data includes both speed and accuracy metrics with means, variance or a knowledge
of the underlying distribution to adequately represent human performance.

Type Basics of the Technique Application to Warfighter Lethality

Monte Carlo
simulation

Using a large number of simulations to
determine the likelihood of potential
outcomes

Using speed and accuracy sampling to
determine whether a warfighter defeats an
enemy during simulation

Markov Chain
and Monte Carlo

Sampling from a probability distribution
using a series of transition states to model
complex outcomes from a series of events

Simulating combat from human
performance by using multiple shots,
weapon manipulations, and multiple
shooters through multiple transition states
between behaviors

Multilevel Monte
Carlo

A Monte Carlo simulation that permits a
trade-off in data fidelity. Samples with low
cost and low accuracy are sampled at high
volume, whereas samples with high cost
and high accuracy are sampled at low
volume

Samples can be incorporated based on
difficulty to collect. Simple weapon
proficiency performance can be collected at
high volume from range-based
performance, whereas room clearing during
close quarters combat can be sampled at
higher cost and with fewer samples

Kinetic Monte
Carlo

Allow for growth and change as a system
adapts to a certain environment or impacts
the scenario. This technique can add scale
and scope to the simulation that other
techniques cannot

This technique can simulate combat at a
more complex scale than squad-level
engagements. Battlefield dynamics can be
represented alongside warfighter lethality
during simulation

Source(s): Table created by Adam Biggs and Joseph Hamilton

Table 2.
A summary overview
of the basics for each
Monte Carlo technique
and its applications to
warfighter lethality
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Despite the numerous advantages provided to marksmanship evaluations by variations of the
Monte Carlo method, there are several limitations not discussed here that should be mentioned
as they pertain to future work. Much of the Monte Carlo advantage hinges upon integrating
variance into the marksmanship evaluation. Although this technique advances the
marksmanship evaluation, quantifying uncertainty is itself a process with many
complications (Smith, 2013; Xie et al., 2014). Combat can be understood as a complex system-
of-systems process (cf. Shi and Zhang, 2020). Variance itself within this complex system
becomes a complication that must be estimated. Accurate modeling also requires an accurate
estimation for the shape of any underlying distribution, which requires understanding how the
distribution shape itself might be another complexity that affects outcomes. Thus, while there
are advantages to the Monte Carlo method, for both marksmanship and warfighter
performance, the applications require additional effort. Future work will have to explore
many of the nuanced issues involved when simulating human performance in combat models.

Ultimately, any assessment of warfighter performance will only be as strong as the data
available, the design of the simulation and the assumptions used during the modeling process.
Observation of human performance is a critical component because the conditions underwhich
data is collected affect how that data can be used. If you tell someone amiss can still earn points
vs a miss will cost points, behavior becomes affected by the scoring implications. Therefore, no
matter how good the modeling efforts may be, modeling efforts cannot take full advantage of
poorly collected data.Additionally, these assumptions and the process should always be clearly
documented for clarity. If properly conducted and documented, however, Monte Carlo
simulations provide an excellent option for interpreting and presenting military data. Future
military uses of these techniques should take advantage of the potential inherent to this
modeling method as a way to clearly communicate the possibilities of a combat engagement.

Note

1. For a more complete discussion about the history of military simulation, see Hill, R. R., &Miller, J. O.
(2017, December). A history of United States military simulation. In 2017 Winter Simulation
Conference (WSC) (pp. 346–364). IEEE.
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